1
|
Yu Y, Alseekh S, Zhu Z, Zhou K, Fernie AR. Multiomics and biotechnologies for understanding and influencing cadmium accumulation and stress response in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2641-2659. [PMID: 38817148 PMCID: PMC11536459 DOI: 10.1111/pbi.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals faced by plants and, additionally, via the food chain, threatens human health. It is principally dispersed through agro-ecosystems via anthropogenic activities and geogenic sources. Given its high mobility and persistence, Cd, although not required, can be readily assimilated by plants thereby posing a threat to plant growth and productivity as well as animal and human health. Thus, breeding crop plants in which the edible parts contain low to zero Cd as safe food stuffs and harvesting shoots of high Cd-containing plants as a route for decontaminating soils are vital strategies to cope with this problem. Recently, multiomics approaches have been employed to considerably enhance our understanding of the mechanisms underlying (i) Cd toxicity, (ii) Cd accumulation, (iii) Cd detoxification and (iv) Cd acquisition tolerance in plants. This information can be deployed in the development of the biotechnological tools for developing plants with modulated Cd tolerance and detoxification to safeguard cellular and genetic integrity as well as to minimize food chain contamination. The aim of this review is to provide a current update about the mechanisms involved in Cd uptake by plants and the recent developments in the area of multiomics approach in terms of Cd stress responses, as well as in the development of Cd tolerant and low Cd accumulating crops.
Collapse
Affiliation(s)
- Yan Yu
- School of AgronomyAnhui Agricultural UniversityHefeiChina
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Saleh Alseekh
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Zonghe Zhu
- School of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Kejin Zhou
- School of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| |
Collapse
|
2
|
Al Mamun A, Rahman MM, Huq MA, Rahman MM, Rana MR, Rahman ST, Khatun ML, Alam MK. Phytoremediation: a transgenic perspective in omics era. Transgenic Res 2024; 33:175-194. [PMID: 38922381 DOI: 10.1007/s11248-024-00393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Phytoremediation is an environmental safety strategy that might serve as a viable preventative approach to reduce soil contamination in a cost-effective manner. Using plants to remediate pollution from the environment is referred to as phytoremediation. In the past few decades, plants have undergone genetic manipulation to overcome inherent limitations by using genetically modified plants. This review illustrates the eco-friendly process of cleaning the environment using transgenic strategies combined with omics technologies. Herbicides tolerance and phytoremediation abilities have been established in genetically modified plants. Transgenic plants have eliminated the pesticides atrazine and metolachlor from the soil. To expand the application of genetically engineered plants for phytoremediation process, it is essential to test strategies in the field and have contingency planning. Omics techniques were used for understanding various genetic, hormonal, and metabolic pathways responsible for phytoremediation in soil. Transcriptomics and metabolomics provide useful information as resources to understand the mechanisms behind phytoremediation. This review aims to highlight the integration of transgenic strategies and omics technologies to enhance phytoremediation efficiency, emphasizing the need for field testing and comprehensive planning for successful implementation.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh.
| | - Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Md Mashiar Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Rasel Rana
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Shabiha Tasbir Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Mst Lata Khatun
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Khasrul Alam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
3
|
Rout Y, Swain SS, Ghana M, Dash D, Nayak S. Perspectives of pteridophytes microbiome for bioremediation in agricultural applications. Open Life Sci 2024; 19:20220870. [PMID: 38840895 PMCID: PMC11151392 DOI: 10.1515/biol-2022-0870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 06/07/2024] Open
Abstract
The microbiome is the synchronised congregation of millions of microbial cells in a particular ecosystem. The rhizospheric, phyllospheric, and endospheric microbial diversity of lower groups of plants like pteridophytes, which includes the Ferns and Fern Allies, have also given numerous alternative opportunities to achieve greener and sustainable agriculture. The broad-spectrum bioactivities of these microorganisms, including bioremediation of heavy metals (HMs) in contaminated soil, have been drawing the attention of agricultural researchers for the preparation of bioformulations for applications in climate-resilient and versatile agricultural production systems. Pteridophytes have an enormous capacity to absorb HMs from the soil. However, their direct application in the agricultural field for HM absorption seems infeasible. At the same time, utilisation of Pteridophyte-associated microbes having the capacity for bioremediation have been evaluated and can revolutionise agriculture in mining and mineral-rich areas. In spite of the great potential, this group of microbiomes has been less studied. Under these facts, this prospective review was carried out to summarise the basic and applied research on the potential of Pteridophyte microbiomes for soil bioremediation and other agricultural applications globally. Gaps have also been indicated to present scopes for future research programmes.
Collapse
Affiliation(s)
- Yasaswinee Rout
- Central National Herbarium, Botanical Survey of India, 711103, Howrah, West Bengal, India
| | | | - Madhusmita Ghana
- Odisha Biodiversity Board, Nayapalli, Bhubaneswar, 751015, India
| | - Debabrata Dash
- Odisha Biodiversity Board, Nayapalli, Bhubaneswar, 751015, India
| | - Shubhransu Nayak
- Odisha Biodiversity Board, Nayapalli, Bhubaneswar, 751015, India
| |
Collapse
|
4
|
Chen ZJ, Li ML, Gao SS, Sun YB, Han H, Li BL, Li YY. Plant Growth-Promoting Bacteria Influence Microbial Community Composition and Metabolic Function to Enhance the Efficiency of Hybrid pennisetum Remediation in Cadmium-Contaminated Soil. Microorganisms 2024; 12:870. [PMID: 38792702 PMCID: PMC11124114 DOI: 10.3390/microorganisms12050870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The green and efficient remediation of soil cadmium (Cd) is an urgent task, and plant-microbial joint remediation has become a research hotspot due to its advantages. High-throughput sequencing and metabolomics have technical advantages in analyzing the microbiological mechanism of plant growth-promoting bacteria in improving phytoremediation of soil heavy metal pollution. In this experiment, a pot trial was conducted to investigate the effects of inoculating the plant growth-promoting bacterium Enterobacter sp. VY on the growth and Cd remediation efficiency of the energy plant Hybrid pennisetum. The test strain VY-1 was analyzed using high-throughput sequencing and metabolomics to assess its effects on microbial community composition and metabolic function. The results demonstrated that Enterobacter sp. VY-1 effectively mitigated Cd stress on Hybrid pennisetum, resulting in increased plant biomass, Cd accumulation, and translocation factor, thereby enhancing phytoremediation efficiency. Analysis of soil physical-chemical properties revealed that strain VY-1 could increase soil total nitrogen, total phosphorus, available phosphorus, and available potassium content. Principal coordinate analysis (PCoA) indicated that strain VY-1 significantly influenced bacterial community composition, with Proteobacteria, Firmicutes, Chloroflexi, among others, being the main differential taxa. Redundancy analysis (RDA) revealed that available phosphorus, available potassium, and pH were the primary factors affecting bacterial communities. Partial Least Squares Discriminant Analysis (PLS-DA) demonstrated that strain VY-1 modulated the metabolite profile of Hybrid pennisetum rhizosphere soil, with 27 differential metabolites showing significant differences, including 19 up-regulated and eight down-regulated expressions. These differentially expressed metabolites were primarily involved in metabolism and environmental information processing, encompassing pathways such as glutamine and glutamate metabolism, α-linolenic acid metabolism, pyrimidine metabolism, and purine metabolism. This study utilized 16S rRNA high-throughput sequencing and metabolomics technology to investigate the impact of the plant growth-promoting bacterium Enterobacter sp. VY-1 on the growth and Cd enrichment of Hybrid pennisetum, providing insights into the regulatory role of plant growth-promoting bacteria in microbial community structure and metabolic function, thereby improving the microbiological mechanisms of phytoremediation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu-Ying Li
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China; (Z.-J.C.)
| |
Collapse
|
5
|
Wang JX, Li P, Chen CZ, Liu L, Li ZH. Biodegradation of sulfadiazine by ryegrass (Lolium perenne L.) in a soil system: Analysis of detoxification mechanisms, transcriptome, and bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132811. [PMID: 37866149 DOI: 10.1016/j.jhazmat.2023.132811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
The indiscriminate use of sulfadiazine has caused severe harm to the environment, and biodegradation is a viable method for the removal of sulfadiazine. However, there are few studies that consider sulfadiazine biodegradation mechanisms. To comprehensively investigate the process of sulfadiazine biodegradation by plants in a soil system, a potted system that included ryegrass and soil was constructed in this study. The removal of sulfadiazine from the system was found to be greater than 95% by determining the sulfadiazine residue. During the sulfadiazine removal process, a significant decrease in ryegrass growth and a significant increase in antioxidant enzyme activity were observed, which indicates the toxic response and detoxification mechanism of sulfadiazine on ryegrass. The ryegrass transcriptome and soil bacterial communities were further investigated. These results revealed that most of the differentially expressed genes (DEGs) were enriched in the CYP450 enzyme family and phenylpropanoid biosynthesis pathway after sulfadiazine exposure. The expression of these genes was significantly upregulated. Sulfadiazine significantly increased the abundance of Vicinamibacteraceae, RB41, Ramlibacter, and Microvirga in the soil. These key genes and bacteria play an important role in sulfadiazine biodegradation. Through network analysis of the relationship between the DEGs and soil bacteria, it was found that many soil bacteria promote the expression of plant metabolic genes. This mutual promotion enhanced the sulfadiazine biodegradation in the soil system. This study demonstrated that this pot system could substantially remove sulfadiazine and elucidated the biodegradation mechanism through changes in plants and soil bacteria.
Collapse
Affiliation(s)
- Jin-Xin Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | | | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
6
|
Zhao F, Ding X, Liu Z, Yan X, Chen Y, Jiang Y, Chen S, Wang Y, Kang T, Xie C, He M, Zheng J. Application of CRISPR/Cas9-based genome editing in ecotoxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122458. [PMID: 37633433 DOI: 10.1016/j.envpol.2023.122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Chemicals are widely used and released into the environment, and their degradation, accumulation, migration, and transformation processes in the environment can pose a threat to the ecosystem. The advancement in analytical methods with high-throughput screening of biomolecules has revolutionized the way toxicologists used to explore the effects of chemicals on organisms. CRISPR/Cas is a newly developed tool, widely used in the exploration of basic science and biologically engineered products given its high efficiency and low cost. For example, it can edit target genes efficiently, and save loss of the crop yield caused by environmental pollution as well as gain a better understanding of the toxicity mechanisms from various chemicals. This review briefly introduces the development history of CRISPR/Cas and summarizes the current application of CRISPR/Cas in ecotoxicology, including its application on improving crop yield and drug resistance towards agricultural pollution, antibiotic pollution and other threats. The benefits by applying the CRISPR/Cas9 system in conventional toxicity mechanism studies are fully demonstrated here together with its foreseeable expansions in other area of ecotoxicology. Finally, the prospects and disadvantages of CRISPR/Cas system in the field of ecotoxicology are also discussed.
Collapse
Affiliation(s)
- Fang Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China; School of Public Health, Guizhou Medical University, Guizhou, China
| | - Xiaofan Ding
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Zimeng Liu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiao Yan
- State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China
| | - Yanzhen Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yaxin Jiang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shunjie Chen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yuanfang Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tingting Kang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chun Xie
- School of Public Health, Guizhou Medical University, Guizhou, China
| | - Mian He
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Jing Zheng
- State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China
| |
Collapse
|
7
|
Liu YQ, Chen Y, Ren XM, Li YY, Zhang YJ, Zhang H, Han H, Chen ZJ. Plant growth-promoting bacteria modulate gene expression and induce antioxidant tolerance to alleviate synergistic toxicity from combined microplastic and Cd pollution in sorghum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115439. [PMID: 37690172 DOI: 10.1016/j.ecoenv.2023.115439] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Microplastics (MPs) can act as carriers for environmental pollutants; therefore, MPs combined with heavy metal pollution are attracting increasing attention from researchers. In this study, the potential of the plant growth-promoting bacterium Bacillus sp. SL-413 to mitigate the stress caused by exposure to both MPs and cadmium (Cd) in sorghum plants was investigated. The effects of inoculation on sorghum biomass were investigated using hydroponic experiments, and evaluation of Cd accumulation and enzyme activity changes and transcriptomics approaches were used to analyze its effect on sorghum gene expression. The results showed that combined polyethylene (PE) and Cd pollution reduced the length and the fresh and dry weights of sorghum plants and thus exerted a synergistic toxic effect. However, inoculation with the strains alleviated the stress caused by the combined pollution and significantly increased the biomass. Inoculation increased the dry weights of the aboveground and belowground parts by 11.5-44.6% and 14.9-38.4%, respectively. Plant physiological measurements indicated that inoculation reduced the reactive oxygen species (ROS) content of sorghum by 10.5-27.2% and thereby alleviated oxidative stress. Transcriptome sequencing showed that exposure to combined Cd+MP contamination induced downregulation of gene expression, particularly that of genes related to amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, and plant hormone signal transduction, in sorghum. However, inoculation with Bacillus sp. SL-413 resulted in an increase in the proportion of upregulated genes involved in signal transduction, antioxidant defense, cell wall biology, and other metabolic pathways, which included the phenylpropanoid biosynthesis, photosynthesis, flavonoid biosynthesis, and MAPK signaling pathways. The upregulation of these genes promoted the tolerance of sorghum under combined Cd+MP pollution stress and alleviated the stress induced by these conditions. This study provides the first demonstration that plant growth-promoting bacteria can alleviate the stress caused by combined pollution with MPs and Cd by regulating plant gene expression. These findings provide a reference for the combined plant-microbial remediation of MPs and Cd.
Collapse
Affiliation(s)
- Yong-Qi Liu
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Middle Route of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yan Chen
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Middle Route of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xue-Min Ren
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Middle Route of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yu-Ying Li
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Middle Route of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Ying-Jun Zhang
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Middle Route of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Hao Zhang
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Middle Route of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Hui Han
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Middle Route of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Zhao-Jin Chen
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Middle Route of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
8
|
Yadav R, Singh G, Santal AR, Singh NP. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117730. [PMID: 36921476 DOI: 10.1016/j.jenvman.2023.117730] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Soil and water pollution, rapid industrialization, contaminated irrigation-water, increased waste-production and surge in agricultural land leads to the accumulation of Heavy Metals (HM) with time. HM contamination has raised concern over the past years and new remediation strategies are required to deal with it. HM-contaminated soil is often used for the production of food, which makes a gateway for toxic metals into the food-chain, thereby affecting food security and human health. To avoid HM-toxicity, decontamination of important resources is essential. Therefore, exploring phytoremediation for the removal, decomposition and detoxification of hazardous metals from HM-contaminated sites is of great significance. Hyper-accumulator plants can efficiently remove HMs. However, despite many hyper-accumulator plant species, there is a research gap in the studies of phytotechnology. Hence biotechnological efforts advocating omics studies i.e. genomics, transcriptomics, proteomics, metabolomics and phenomics are in order, the purpose being to select and enhance a plant's potential for the process of phytoremediation to be more effective. There is a need to study newly developed high-efficiency hyper-accumulator plants as HM-decontaminator candidates for phytoremediation and phytomining. Therefore, this review focuses on various strategies and bio-technological methods for the removal of HM contaminants from sites, with emphasis on the advancement of phytoremediation, along with applications in cleaning up various toxic pollutants.
Collapse
Affiliation(s)
- Renu Yadav
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Gagandeep Singh
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
9
|
Garraud J, Plihon H, Capiaux H, Le Guern C, Mench M, Lebeau T. Drivers to improve metal(loid) phytoextraction with a focus on microbial degradation of dissolved organic matter in soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:63-81. [PMID: 37303191 DOI: 10.1080/15226514.2023.2221740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioaugmentation of soils can increase the mobilization of metal(loid)s from the soil-bearing phases. However, once desorbed, these metal(loid)s are mostly complexed to the dissolved organic matter (DOM) in the soil solution, which can restrict their availability to plants (roots mainly taking up the free forms) and then the phytoextraction performances. Firstly the main drivers influencing phytoextraction are reminded, then the review focuses on the DOM role. After having reminding the origin, the chemical structure and the lability of DOM, the pool of stable DOM (the most abundant in the soil) most involved in the complexation of metal(loid)s is addressed in particular by focusing on carboxylic and/or phenolic groups and factors controlling metal(loid) complexation with DOM. Finally, this review addresses the ability of microorganisms to degrade metal(loid)-DOM complexes as an additional lever for increasing the pool of free metal(loid) ions, and then phytoextraction performances, and details the origin of microorganisms and how they are selected. The development of innovative processes including the use of these DOM-degrading microorganisms is proposed in perspectives.
Collapse
Affiliation(s)
- Justine Garraud
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - Hélène Plihon
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - Hervé Capiaux
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | | | | | - Thierry Lebeau
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| |
Collapse
|
10
|
Qi S, Wang J, Zhang Y, Naz M, Afzal MR, Du D, Dai Z. Omics Approaches in Invasion Biology: Understanding Mechanisms and Impacts on Ecological Health. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091860. [PMID: 37176919 PMCID: PMC10181282 DOI: 10.3390/plants12091860] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Invasive species and rapid climate change are affecting the control of new plant diseases and epidemics. To effectively manage these diseases under changing environmental conditions, a better understanding of pathophysiology with holistic approach is needed. Multiomics approaches can help us to understand the relationship between plants and microbes and construct predictive models for how they respond to environmental stresses. The application of omics methods enables the simultaneous analysis of plant hosts, soil, and microbiota, providing insights into their intricate relationships and the mechanisms underlying plant-microbe interactions. This can help in the development of novel strategies for enhancing plant health and improving soil ecosystem functions. The review proposes the use of omics methods to study the relationship between plant hosts, soil, and microbiota, with the aim of developing a new technique to regulate soil health. This approach can provide a comprehensive understanding of the mechanisms underlying plant-microbe interactions and contribute to the development of effective strategies for managing plant diseases and improving soil ecosystem functions. In conclusion, omics technologies offer an innovative and holistic approach to understanding plant-microbe interactions and their response to changing environmental conditions.
Collapse
Affiliation(s)
- Shanshan Qi
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiahao Wang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Zhang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Muhammad Rahil Afzal
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhicong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
11
|
Licinio A, Laur J, Pitre FE, Labrecque M. Willow and Herbaceous Species' Phytoremediation Potential in Zn-Contaminated Farm Field Soil in Eastern Québec, Canada: A Greenhouse Feasibility Study. PLANTS (BASEL, SWITZERLAND) 2022; 12:167. [PMID: 36616296 PMCID: PMC9824536 DOI: 10.3390/plants12010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Phytoremediation shows great promise as a plant-based alternative to conventional clean-up methods that are prohibitively expensive. As part of an integrated strategy, the selection of well-adapted plant species as well as planting and management techniques could determine the success of a long-term program. Herein, we conducted an experiment under semi-controlled conditions to screen different plants species with respect to their ability to phytoremediate Zn-contaminated soil excavated from a contaminated site following a train derailment and spillage. The effect of nitrilotriacetic acid (NTA) application on the plants and soil was also comprehensively evaluated, albeit we did not find its use relevant for field application. In less than 100 days, substantial Zn removal occurred in the soil zone proximal to the roots of all the tested plant species. Three perennial herbaceous species were tested, namely, Festuca arundinacea, Medicago sativa, and a commercial mix purposely designed for revegetation; they all showed strong capacity for phytostabilization at the root level but not for phytoextraction. The Zn content in the aboveground biomass of willows was much higher. Furthermore, the degree of growth, physiological measurements, and the Zn extraction yield indicated Salix purpurea ‘Fish Creek’ could perform better than Salix miyabeana, ‘SX67’, in situ. Therefore, we suggest implementing an S. purpurea—perennial herbaceous co-cropping strategy at this decade-long-abandoned contaminated site or at similar disrupted landscapes.
Collapse
|
12
|
Haque S, Srivastava N, Pal DB, Alkhanani MF, Almalki AH, Areeshi MY, Naidu R, Gupta VK. Functional microbiome strategies for the bioremediation of petroleum-hydrocarbon and heavy metal contaminated soils: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155222. [PMID: 35421499 DOI: 10.1016/j.scitotenv.2022.155222] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 05/21/2023]
Abstract
Petroleum hydrocarbons and heavy metals are the two major soil contaminants that are released into the environment in the forms of industrial effluents. These contaminants exert serious impacts on human health and the sustainability of the environment. In this context, remediation of these pollutants via a biological approach can be effective, low-cost, and eco-friendly approach. The implementation of microorganisms and metagenomics are regarded as the advanced solution for remediating such pollutants. Further, microbiomes can overcome this issue via adopting specific structural, functional and metabolic pathways involved in the microbial community to degrade these pollutants. Genomic sequencing and library can effectively channelize the degradation of these pollutants via microbiomes. Nevertheless, more advanced technology and reliable strategies are required to develop. The present review provides insights into the role of microbiomes to effectively remediate/degrade petroleum hydrocarbons and heavy metals in contaminated soil. The possible degradation mechanisms of these pollutants have also been discussed in detail along with their existing limitations. Finally, prospects of the bioremediation strategies using microbiomes are discussed.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Mustfa F Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif 21944, Saudi Arabia
| | - Mohammed Y Areeshi
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia; Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
13
|
Ishida JK, Bini AP, Creste S, Van Sluys MA. Towards defining the core Saccharum microbiome: input from five genotypes. BMC Microbiol 2022; 22:193. [PMID: 35941528 PMCID: PMC9358853 DOI: 10.1186/s12866-022-02598-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/11/2022] [Indexed: 12/19/2022] Open
Abstract
Background Plant microbiome and its manipulation inaugurate a new era for plant biotechnology with the potential to benefit sustainable crop production. Here, we used the large-scale 16S rDNA sequencing analysis to unravel the dynamic, structure, and composition of exophytic and endophytic microbial communities in two hybrid commercial cultivars of sugarcane (R570 and SP80–3280), two cultivated genotypes (Saccharum officinarum and Saccharum barberi) and one wild species (Saccharum spontaneum). Results Our analysis identified 1372 amplicon sequence variants (ASVs). The microbial communities’ profiles are grouped by two, root and bulk soils and stem and leave when these four components are compared. However, PCoA-based data supports that endophytes and epiphytes communities form distinct groups, revealing an active host-derived mechanism to select the resident microbiota. A strong genotype-influence on the assembly of microbial communities in Saccharum ssp. is documented. A total of 220 ASVs persisted across plant cultivars and species. The ubiquitous bacteria are two potential beneficial bacteria, Acinetobacter ssp., and Serratia symbiotica. Conclusions The results presented support the existence of common and cultivar-specific ASVs in two commercial hybrids, two cultivated canes and one species of Saccharum across tissues (leaves, stems, and roots). Also, evidence is provided that under the experimental conditions described here, each genotype bears its microbial community with little impact from the soil conditions, except in the root system. It remains to be demonstrated which aspect, genotype, environment or both, has the most significant impact on the microbial selection in sugarcane fields. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02598-8.
Collapse
Affiliation(s)
- Juliane K Ishida
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, São Paulo, SP, 05508-090, Brazil.,Present address: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Andressa P Bini
- Centro de Cana, IAC-Apta, Ribeirão Preto, Av. Pádua Dias n11, CEP 13418-900, Piracicaba, São Paulo, Brazil
| | - Silvana Creste
- Centro de Cana, IAC-Apta, Ribeirão Preto, Av. Pádua Dias n11, CEP 13418-900, Piracicaba, São Paulo, Brazil
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
14
|
Teng Y, Li Z, Yu A, Guan W, Wang Z, Yu H, Zou L. Phytoremediation of cadmium-contaminated soils by Solanum nigrum L. enhanced with biodegradable chelating agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56750-56759. [PMID: 35347607 DOI: 10.1007/s11356-022-19879-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The application of biodegradable chelating agents to enhance phytoremediation is a low-cost and promising method to improve the remediation efficiency of heavy metal-contaminated soil. The effects of N, N-bis glutamic acid (GLDA) on the growth and heavy metal absorption of Solanum nigrum were studied by pot experiment. The addition of chelate on the 20th day after sowing can improve the bioavailability of cadmium (Cd) in the soil. The results showed that the addition of chelating agents effectively improved the migration rate of the target heavy metal Cd in the soil, and significantly increased the accumulation of heavy metal in the roots, stems, and leaves of plants. The results showed that compared with the control group, the chelating agent could increase the extraction rate of total Cd by 28.65-68.74%. The application of GLDA significantly increased the accumulation of Cd (20 mg kg-1 and 40 mg kg-1), reaching 24.28-40.30 and 25.71-33.16 μg of pot-1 DW, respectively. At the same time, GLDA increased Cd stress by decreasing plant biomass, inhibiting photosynthetic pigment synthesis and increasing MDA levels. These results indicated that GLDA could improve the absorption of Cd by S. nigrum, which provided a new idea for its practical application in the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Yue Teng
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China.
| | - Zhishuai Li
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - An Yu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wenjie Guan
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenjun Wang
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hongyan Yu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Luyi Zou
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
15
|
Use of Biostimulants as a New Approach for the Improvement of Phytoremediation Performance—A Review. PLANTS 2022; 11:plants11151946. [PMID: 35893650 PMCID: PMC9332818 DOI: 10.3390/plants11151946] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022]
Abstract
Environmental pollution is one of the most pressing global issues, and it requires priority attention. Environmental remediation techniques have been developed over the years and can be applied to polluted sites, but they can have limited effectiveness and high energy consumption and costs. Bioremediation techniques, on the other hand, represent a promising alternative. Among them, phytoremediation is attracting particular attention, a green methodology that relies on the use of plant species to remediate contaminated sites or prevent the dispersion of xenobiotics into the environment. In this review, after a brief introduction focused on pollution and phytoremediation, the use of plant biostimulants (PBs) in the improvement of the remediation effectiveness is proposed. PBs are substances widely used in agriculture to raise crop production and resistance to various types of stress. Recent studies have also documented their ability to counteract the deleterious effects of pollutants on plants, thus increasing the phytoremediation efficiency of some species. The works published to date, reviewed and discussed in the present work, reveal promising prospects in the remediation of polluted environments, especially for heavy metals, when PBs derived from humic substances, protein and amino acid hydrolysate, inorganic salts, microbes, seaweed, plant extracts, and fungi are employed.
Collapse
|
16
|
Saeed M, Ilyas N, Jayachandran K, Shabir S, Akhtar N, Shahzad A, Sayyed RZ, Bano A. Advances in Biochar and PGPR engineering system for hydrocarbon degradation: A promising strategy for environmental remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119282. [PMID: 35413406 DOI: 10.1016/j.envpol.2022.119282] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 05/22/2023]
Abstract
In soil, polycyclic aromatic hydrocarbons (PAHs) have resulted in severe environmental deterioration, compromised soil characteristics, and negatively affect all life forms, including humans. Developing appropriate and effective clean-up technology is crucial in solving the contamination issues. The traditional methods to treat PHAs contaminated soil are less effective and not ecofriendly. Bioremediation, based on bioaugmentation and biostimulation approaches, is a promising strategy for remediating contaminated soil. The use of plant growth-promoting rhizobacteria (PGPR) as a bioaugmentation tool is an effective technique for treating hydrocarbon contaminated soil. Plant growth-promoting rhizobacteria (PGPR) are group of rhizospheric bacteria that colonize the roots of plants. Biochar is a carbon-rich residue, which acts as a source of nutrients, and is also a bio-stimulating candidate to enhance the activities of oil-degrading bacteria. The application of biochar as a nutrient source to bioremediate oil-contaminated soil is a promising approach for reducing PHA contamination. Biochar induces polyaromatic hydrocarbons (PAHs) immobilization and removes the contaminants by various methods such as ion exchange electrostatic attractions and volatilization. In comparison, PGPR produce multiple types of biosurfactants to enhance the adsorption of hydrocarbons and mineralize the hydrocarbons with the conversion to less toxic substances. During the last few decades, the use of PGPR and biochar in the bioremediation of hydrocarbons-contaminated soil has gained greater importance. Therefore, developing and applying a PGPR-biochar-based remediating system can help manage hazardous PAH contaminated soil. The goal of this review paper is to (i) provide an overview of the PGPR mechanism for degradation of hydrocarbons and (ii) discuss the contaminants absorbent by biochar and its characteristics (iii) critically discuss the combined effect of PGPR and biochar for degradation of hydrocarbons by decreasing their mobility and bioavailability. The present review focuses on techniques of bioaugmentation and biostimulation based on use of PGPR and biochar in remediating the oil-contaminated soil.
Collapse
Affiliation(s)
- Maimona Saeed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan; Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan.
| | | | - Sumera Shabir
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Nosheen Akhtar
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Asim Shahzad
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif AJ&K, Pakistan
| | - R Z Sayyed
- Department of Microbiology, P.S.G.V.P. Mandal's, Arts, Science, and Commerce College, Shahada, 425409, India
| | - Asghari Bano
- Department of Biosciences University of Wah, Quaid Avenue, Wah Cantt, Pakistan
| |
Collapse
|
17
|
Ercole E, Adamo M, Lumini E, Fusconi A, Mucciarelli M. Alpine constructed wetlands: A metagenomic analysis reveals microbial complementary structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153640. [PMID: 35124050 DOI: 10.1016/j.scitotenv.2022.153640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetlands (CWs) are used to water treatment worldwide, however their application at high-altitude is poorly studied. In order to survive mountain winters, CWs rely on native flora and associated microbial communities. However, the choice of plant-microbes pairs more suitable for water treatment is challenging in alpine environments. Using a metagenomic approach, we investigated the composition of prokaryotes and fungal communities, through extensive sampling inside a constructed wetland in the SW-Alps. Best performing plant species were searched among those hosting the most diverse and resilient microbial communities and to this goal, we analysed them in the natural environment also. Our results showed that microbial communities were less diverse in the CW than at natural conditions, and they differed from plant to plant, revealing a clear variation in taxonomic composition between forbs and gramineous plants. Carex rostrata, Deschampsia caespitosa and Rumex alpinus hosted bacteria very active in N-cycles. Moreover, fungal and prokaryotic communities associated to R. alpinus (Polygonaceae) turned to be the richest and stable among the studied species. In our opinion, this species should be prioritized in CWs at high elevations, also in consideration of its low maintenance requirements.
Collapse
Affiliation(s)
- Enrico Ercole
- University of Torino, Department of Life Sciences and Systems Biology, Torino, Italy
| | - Martino Adamo
- University of Torino, Department of Life Sciences and Systems Biology, Torino, Italy
| | - Erica Lumini
- Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), Torino, Italy
| | - Anna Fusconi
- University of Torino, Department of Life Sciences and Systems Biology, Torino, Italy
| | - Marco Mucciarelli
- University of Torino, Department of Life Sciences and Systems Biology, Torino, Italy.
| |
Collapse
|
18
|
Raklami A, Meddich A, Oufdou K, Baslam M. Plants-Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses. Int J Mol Sci 2022; 23:5031. [PMID: 35563429 PMCID: PMC9105715 DOI: 10.3390/ijms23095031] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Rapid industrialization, mine tailings runoff, and agricultural activities are often detrimental to soil health and can distribute hazardous metal(loid)s into the soil environment, with harmful effects on human and ecosystem health. Plants and their associated microbes can be deployed to clean up and prevent environmental pollution. This green technology has emerged as one of the most attractive and acceptable practices for using natural processes to break down organic contaminants or accumulate and stabilize metal pollutants by acting as filters or traps. This review explores the interactions between plants, their associated microbiomes, and the environment, and discusses how they shape the assembly of plant-associated microbial communities and modulate metal(loid)s remediation. Here, we also overview microbe-heavy-metal(loid)s interactions and discuss microbial bioremediation and plants with advanced phytoremediation properties approaches that have been successfully used, as well as their associated biological processes. We conclude by providing insights into the underlying remediation strategies' mechanisms, key challenges, and future directions for the remediation of metal(loid)s-polluted agricultural soils with environmentally friendly techniques.
Collapse
Affiliation(s)
- Anas Raklami
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (A.R.); (K.O.)
| | - Abdelilah Meddich
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre Agro-Biotech URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco;
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (A.R.); (K.O.)
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
19
|
Rane NR, Tapase S, Kanojia A, Watharkar A, Salama ES, Jang M, Kumar Yadav K, Amin MA, Cabral-Pinto MMS, Jadhav JP, Jeon BH. Molecular insights into plant-microbe interactions for sustainable remediation of contaminated environment. BIORESOURCE TECHNOLOGY 2022; 344:126246. [PMID: 34743992 DOI: 10.1016/j.biortech.2021.126246] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The widespread distribution of organic and inorganic pollutants in water resources have increased due to rapid industrialization. Rhizospheric zone-associated bacteria along with endophytic bacteria show a significant role in remediation of various pollutants. Metaomics technologies are gaining an advantage over traditional methods because of their capability to obtain detailed information on exclusive microbial communities in rhizosphere of the plant including the unculturable microorganisms. Transcriptomics, proteomics, and metabolomics are functional methodologies that help to reveal the mechanisms of plant-microbe interactions and their synergistic roles in remediation of pollutants. Intensive analysis of metaomics data can be useful to understand the interrelationships of various metabolic activities between plants and microbes. This review comprehensively discusses recent advances in omics applications made hitherto to understand the mechanisms of plant-microbe interactions during phytoremediation. It extends the delivery of the insightful information on plant-microbiomes communications with an emphasis on their genetic, biochemical, physical, metabolic, and environmental interactions.
Collapse
Affiliation(s)
- Niraj R Rane
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Savita Tapase
- Department of Biotechnology, Shivaji University, Kolhapur 416004, India
| | - Aakansha Kanojia
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Anuprita Watharkar
- Amity Institute of Biotechnology, Amity University, Bhatan, Panvel, Mumbai, India
| | - El-Sayed Salama
- Occupational and Environmental Health Department, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, People's Republic of China
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jyoti P Jadhav
- Department of Biochemistry, Shivaji University, Kolhapur 416004, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
20
|
Alberts ME, Wong J, Hindle R, Degenhardt D, Krygier R, Turner RJ, Muench DG. Detection of naphthenic acid uptake into root and shoot tissues indicates a direct role for plants in the remediation of oil sands process-affected water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148857. [PMID: 34328940 DOI: 10.1016/j.scitotenv.2021.148857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Bitumen extraction from surface-mined oil sands deposits results in the accumulation of large volumes of oil sands process-affected water (OSPW). Naphthenic acids (NAs) are primary contributors to OSPW toxicity and have been a focal point for the development of OSPW remediation strategies. Phytoremediation is an approach that utilizes plants and their associated microbes to remediate contaminants from soil and groundwater. While previous evidence has indicated a role for phytoremediation in OSPW treatment through the transformation and degradation of NAs, there are no reports that demonstrate the direct uptake of NAs into plant tissue. Using NAs labelled with 14C radioisotopes (14C-NAs) paired with whole-plant autoradiography, we show that NAs representing aliphatic (linear), single-ring, and diamondoid compounds were effectively removed from hydroponic solution and OSPW-treated soil by sandbar willow (Salix interior) and slender wheatgrass (Elymus trachycaulus) and their associated microbiomes. The NA-derived 14C label accumulated in root and shoot tissues of both plant species and was concentrated in vascular tissue and rapidly growing sink tissues, indicating that 14C-NAs or their metabolic derivatives were incorporated into physiological processes within the plants. Slender wheatgrass seedlings grown under axenic (sterile) hydroponic and soil conditions also effectively removed all 14C-NAs, including a highly stable diamondoid NA, demonstrating that plants can directly take up simple and complex NAs without the assistance of microbes. Furthermore, root and shoot tissue fractionation into major biomolecule groups suggests that NA-derived carbon is allocated toward biomolecule synthesis rapidly after NA treatment. These findings provide evidence of plant-mediated uptake of NAs and support a direct role for plants and their associated microbes in the development of future large-scale OSPW phytoremediation strategies.
Collapse
Affiliation(s)
- Mitchell E Alberts
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Jeremy Wong
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Ralph Hindle
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada; Vogon Laboratory Services Ltd., Cochrane, Alberta, Canada
| | - Dani Degenhardt
- Natural Resources Canada (Canadian Forest Service), Edmonton, Alberta, Canada
| | - Richard Krygier
- Natural Resources Canada (Canadian Forest Service), Edmonton, Alberta, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
21
|
Gervais-Bergeron B, Chagnon PL, Labrecque M. Willow Aboveground and Belowground Traits Can Predict Phytoremediation Services. PLANTS 2021; 10:plants10091824. [PMID: 34579357 PMCID: PMC8471398 DOI: 10.3390/plants10091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
The increasing number of contaminated sites worldwide calls for sustainable remediation, such as phytoremediation, in which plants are used to decontaminate soils. We hypothesized that better anchoring phytoremediation in plant ecophysiology has the potential to drastically improve its predictability. In this study, we explored how the community composition, diversity and coppicing of willow plantations, influenced phytoremediation services in a four-year field trial. We also evaluated how community-level plant functional traits might be used as predictors of phytoremediation services, which would be a promising avenue for plant selection in phytoremediation. We found no consistent impact of neither willow diversity nor coppicing on phytoremediation services directly. These services were rather explained by willow traits related to resource economics and management strategy along the plant "fast-slow" continuum. We also found greater belowground investments to promote plant bioconcentration and soil decontamination. These traits-services correlations were consistent for several trace elements investigated, suggesting high generalizability among contaminants. Overall, our study provides evidence, even using a short taxonomic (and thus functional) plant gradient, that traits can be used as predictors for phytoremediation efficiency for a broad variety of contaminants. This suggests that a trait-based approach has great potential to develop predictive plant selection strategies in phytoremediation trials, through a better rooting of applied sciences in fundamental plant ecophysiology.
Collapse
|
22
|
Abstract
Soil contamination with petroleum hydrocarbons (PHCs) has become a global concern and has resulted from the intensification of industrial activities. This has created a serious environmental issue; therefore, there is a need to find solutions, including application of efficient remediation technologies or improvement of current techniques. Rhizoremediation is a green technology that has received global attention as a cost-effective and possibly efficient remediation technique for PHC-polluted soil. Rhizoremediation refers to the use of plants and their associated microbiota to clean up contaminated soils, where plant roots stimulate soil microbes to mineralize organic contaminants to H2O and CO2. However, this multipartite interaction is complicated because many biotic and abiotic factors can influence microbial processes in the soil, making the efficiency of rhizoremediation unpredictable. This review reports the current knowledge of rhizoremediation approaches that can accelerate the remediation of PHC-contaminated soil. Recent approaches discussed in this review include (1) selecting plants with desired characteristics suitable for rhizoremediation; (2) exploiting and manipulating the plant microbiome by using inoculants containing plant growth-promoting rhizobacteria (PGPR) or hydrocarbon-degrading microbes, or a combination of both types of organisms; (3) enhancing the understanding of how the host–plant assembles a beneficial microbiome, and how it functions, under pollutant stress. A better understanding of plant–microbiome interactions could lead to successful use of rhizoremediation for PHC-contaminated soil in the future.
Collapse
|
23
|
Bacterial inoculant-assisted phytoremediation of heavy metal-contaminated soil: Inoculant development and the inoculation effects. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00804-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Sharma P. Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. BIORESOURCE TECHNOLOGY 2021; 328:124835. [PMID: 33618184 DOI: 10.1016/j.biortech.2021.124835] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 05/12/2023]
Abstract
The aim of this review to address the plant-associated bacteria to enhance the phytoremediation efficiency of the heavy metals from polluted sites and it is also highlighted advances for the application in wastewater treatment. Plant-associated bacteria have potential to encourage the plant growth and resistance under stress conditions. Such bacteria could enhance plant growth by controlling growth hormone, nutrition security, producing siderophore, secondary metabolites, and improving the antioxidant enzymes system. This review also explores the concepts and applications of bacteria assisted phytoremediation, addressing aspects that affect phytoremediation and pathways for restoration. Significant review issues relating to production and application of bacteria for improvement of bioremediation were established and presented for possible future research. Bacteria assisted phytoremediation is cost-effective strategy and metal sequestration mechanism that hold high metal biosorption capacities. This also takes into consideration the current state of technology implementations and proposals for prospective clean-up studies.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Lucknow 226 025, Uttar Pradesh, India
| |
Collapse
|
25
|
Liu Y, Zhang H, He X, Liu J. Genetically Engineered Methanotroph as a Platform for Bioaugmentation of Chemical Pesticide Contaminated Soil. ACS Synth Biol 2021; 10:487-494. [PMID: 33616380 DOI: 10.1021/acssynbio.0c00532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioaugmentation is a promising alternative in soil remediation. One challenge of bioaugmentation is that exogenous pollutant-degrading microbes added to soil cannot establish enough biomass to eliminate pollutants. Considering that methanotrophs have a growth advantage in the presence of methane, we hypothesize that genetically engineered methanotrophs could degrade contaminants efficiently in soil with methane. Here, methanotroph Methylomonas sp. LW13, herbicide bensulfuron-methyl (BSM), and two kinds of soil were chosen to confirm this hypothesis. The unmarked gene knock-in method was first developed for strain LW13. Then, BSM hydrolase encoding gene sulE was inserted into the chromosome of strain LW13, conferring it BSM-degrading ability. After inoculation, the cell amount of strain LW13-sulE in soil raised considerably (over 100 fold in 9 days) with methane provision; meanwhile, >90% of BSM in soil was degraded. This study provides a proof of the concept that genetically engineered methanotroph is a potential platform for soil remediation.
Collapse
Affiliation(s)
- Yongchuang Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Haili Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xiangrong He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
26
|
Cavé-Radet A, Correa-Garcia S, Monard C, El Amrani A, Salmon A, Ainouche M, Yergeau É. Phenanthrene contamination and ploidy level affect the rhizosphere bacterial communities of Spartina spp. FEMS Microbiol Ecol 2021; 96:5895320. [PMID: 32821911 DOI: 10.1093/femsec/fiaa156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Spartina spp. are widely distributed salt marsh plants that have a recent history of hybridization and polyploidization. These events have resulted in a heightened tolerance to hydrocarbon contaminants, but the effects of this phenomenon on the rhizosphere microbial communities are unknown. Here, we grew two parental Spartina species, their hybrid and the resulting allopolyploid in salt marsh sediments that were contaminated or not with phenanthrene. The DNA from the rhizosphere soil was extracted and the bacterial 16S rRNA gene was amplified and sequenced, whereas the abundances of the genes encoding for the PAH (polycyclic aromatic hydrocarbon) ring-hydroxylating dioxygenase (RHD) of Gram-negative and Gram-positive bacteria were quantified by real-time PCR. Both the contamination and the plant genotype significantly affected the bacterial communities. In particular, the allopolyploid S. anglica harbored a more diverse bacterial community in its rhizosphere. The interspecific hybrid and the allopolyploid also harbored significantly more copies of the PAH-RHD gene of Gram-negative bacteria in their rhizosphere than the parental species, irrespective of the contamination treatments. Overall, our results are showing that the recent polyploidization events in the Spartina affected its rhizosphere bacterial communities, both under normal and contaminated conditions, possibly increasing its phytoremediation potential.
Collapse
Affiliation(s)
- Armand Cavé-Radet
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Sara Correa-Garcia
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Cécile Monard
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Abdelhak El Amrani
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Armel Salmon
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Malika Ainouche
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Étienne Yergeau
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
27
|
Soil Characteristics Constrain the Response of Microbial Communities and Associated Hydrocarbon Degradation Genes during Phytoremediation. Appl Environ Microbiol 2021; 87:AEM.02170-20. [PMID: 33097512 DOI: 10.1128/aem.02170-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022] Open
Abstract
Rhizodegradation is a promising cleanup technology where microorganisms degrade soil contaminants in the rhizosphere. A symbiotic relationship is expected to occur between plant roots and soil microorganisms in contaminated soils that enhances natural microbial degradation. However, little is known about how different initial microbiotas influence the rhizodegradation outcome. Recent studies have hinted that soil initial diversity has a determining effect on the outcome of contaminant degradation. To test this, we either planted (P) or not (NP) balsam poplars (Populus balsamifera) in two soils of contrasting diversity (agricultural and forest) that were contaminated or not with 50 mg kg-1 of phenanthrene (PHE). The DNA from the rhizosphere of the P and the bulk soil of the NP pots was extracted and the bacterial genes encoding the 16S rRNA, the PAH ring-hydroxylating dioxygenase alpha subunits (PAH-RHDα) of Gram-positive and Gram-negative bacteria, and the fungal ITS region were sequenced to characterize the microbial communities. The abundances of the PAH-RHDα genes were quantified by real-time quantitative PCR. Plant presence had a significant effect on PHE degradation only in the forest soil, whereas both NP and P agricultural soils degraded the same amount of PHE. Fungal communities were mainly affected by plant presence, whereas bacterial communities were principally affected by the soil type, and upon contamination the dominant PAH-degrading community was similarly constrained by soil type. Our results highlight the crucial importance of soil microbial and physicochemical characteristics in the outcome of rhizoremediation.IMPORTANCE Polycyclic aromatic hydrocarbons (PAH) are a group of organic contaminants that pose a risk to ecosystems' health. Phytoremediation is a promising biotechnology with the potential to restore PAH-contaminated soils. However, some limitations prevent it from becoming the remediation technology of reference, despite being environmentally friendlier than mainstream physicochemical alternatives. Recent reports suggest that the original soil microbial diversity is the key to harnessing the potential of phytoremediation. Therefore, this study focused on determining the effect of two different soil types in the fate of phenanthrene (a polycyclic aromatic hydrocarbon) under balsam poplar remediation. Poplar increased the degradation of phenanthrene in forest, but not in agricultural soil. The fungi were affected by poplars, whereas total bacteria and specific PAH-degrading bacteria were constrained by soil type, leading to different degradation patterns between soils. These results highlight the importance of performing preliminary microbiological studies of contaminated soils to determine whether plant presence could improve remediation rates or not.
Collapse
|
28
|
Gu P, Zhang Y, Xie H, Wei J, Zhang X, Huang X, Wang J, Lou X. Effect of cornstalk biochar on phytoremediation of Cd-contaminated soil by Beta vulgaris var. cicla L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111144. [PMID: 32846295 DOI: 10.1016/j.ecoenv.2020.111144] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) contamination is the most common and extensive heavy metal pollution in the farmland of China. Phytoremediation is considered as a promising measure for Cd-contaminated soil remediation, but the remediation efficiency still needs to be enhanced. Biochar as an effective amendment medium is widely manufactured and studied for the soil remediation of heavy metals. In this study, a greenhouse pot trial was conducted to investigate the effects of cornstalk biochar on Cd accumulation of Beta vulgaris var. cicla L. (Beta vulgaris) in Cd contaminated soil. The Cd availability, speciation and nutrients in soil, biomass and Cd chemical forms in the Beta vulgaris root were studied to explore the mechanism that how the cornstalk biochar promoted Cd accumulation in Beta vulgaris. Biochar amendment reduced the DTPA-extractable Cd concentration and stimulated the growth of root. Compared to the Beta vulgaris without biochar treatment, the results of 5% biochar amendment showed that the root dry weight of Beta vulgaris increased to 267%, Cd accumulation in Beta vulgaris increased to 206% and the Cd concentration in leaves and roots increased by 36% and 52%, respectively. Additionally, after 5% biochar was applied to soil, the total content of organic matter-bound Cd and residual Cd increased by 38%, while the content of Fe-Mn oxides-bound Cd decreased by 40%. Meanwhile, Cd may mainly bind to the root cell wall and the ratio of NaCl-extracted Cd to HAc-extracted Cd increased to 166% with 5% biochar amendment. According to our study, Cd in soil can be removed by Beta vulgaris and phytoremediation efficiency can be improved with biochar amendment. The combination of phytoremediation and biochar amendment is a promising strategy for the Cd-contaminated soil remediation.
Collapse
Affiliation(s)
- Panxue Gu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yanming Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; SGIDI Engineering Consulting (Group) Co., Ltd, No.38, ShuiFeng Road, YangPu District, Shanghai, 200093, China
| | - Huanhuan Xie
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jing Wei
- Laboratory for Air Pollution & Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology, Empa, 8600, Dübendorf, Switzerland.
| | - Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Xun Huang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jiayi Wang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xinyi Lou
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
29
|
Agarwal P, Giri BS, Rani R. Unravelling the Role of Rhizospheric Plant-Microbe Synergy in Phytoremediation: A Genomic Perspective. Curr Genomics 2020; 21:334-342. [PMID: 33093797 PMCID: PMC7536802 DOI: 10.2174/1389202921999200623133240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 12/27/2022] Open
Abstract
Background Accretion of organic and inorganic contaminants in soil interferes in the food chain, thereby posing a serious threat to the ecosystem and adversely affecting crop productivity and human life. Both endophytic and rhizospheric microbial communities are responsible for the biodegradation of toxic organic compounds and have the capability to enhance the uptake of heavy metals by plants via phytoremediation approaches. The diverse set of metabolic genes encoding for the production of biosurfactants and biofilms, specific enzymes for degrading plant polymers, modification of cell surface hydrophobicity and various detoxification pathways for the organic pollutants, plays a significant role in bacterial driven bioremediation. Various genetic engineering approaches have been demonstrated to modulate the activity of specific microbial species in order to enhance their detoxification potential. Certain rhizospheric bacterial communities are genetically modified to produce specific enzymes that play a role in degrading toxic pollutants. Few studies suggest that the overexpression of extracellular enzymes secreted by plant, fungi or rhizospheric microbes can improve the degradation of specific organic pollutants in the soil. Plants and microbes dwell synergistically, where microbes draw benefit by nutrient acquisition from root exudates whereas they assist in plant growth and survival by producing certain plant growth promoting metabolites, nitrogen fixation, phosphate solubilization, auxin production, siderophore production, and inhibition or suppression of plant pathogens. Thus, the plant-microbe interaction establishes the foundation of the soil nutrient cycle as well as decreases soil toxicity by the removal of harmful pollutants. Conclusion The perspective of integrating genetic approach with bioremediation is crucial to evaluate connexions among microbial communities, plant communities and ecosystem processes with a focus on improving phytoremediation of contaminated sites.
Collapse
Affiliation(s)
- Priyanka Agarwal
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, Uttar Pradesh, India; 2Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology Banaras Hindu University, Varanasi221005, India
| | - Balendu Shekher Giri
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, Uttar Pradesh, India; 2Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology Banaras Hindu University, Varanasi221005, India
| | - Radha Rani
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, Uttar Pradesh, India; 2Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology Banaras Hindu University, Varanasi221005, India
| |
Collapse
|
30
|
Molecular Methods as Potential Tools in Ecohydrological Studies on Emerging Contaminants in Freshwater Ecosystems. WATER 2020. [DOI: 10.3390/w12112962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Contaminants of emerging concern (CECs) present a threat to the functioning of freshwater ecosystems. Their spread in the environment can affect both plant and animal health. Ecohydrology serves as a solution for assessment approaches (i.e., threat identification, ecotoxicological assessment, and cause–effect relationship analysis) and solution approaches (i.e., the elaboration of nature-based solutions: NBSs), mitigating the toxic effect of CECs. However, the wide array of potential molecular analyses are not fully exploited in ecohydrological research. Although the number of publications considering the application of molecular tools in freshwater studies has been steadily growing, no paper has reviewed the most prominent studies on the potential use of molecular technologies in ecohydrology. Therefore, the present article examines the role of molecular methods and novel omics technologies as essential tools in the ecohydrological approach to CECs management in freshwater ecosystems. It considers DNA, RNA and protein-level analyses intended to provide an overall view on the response of organisms to stress factors. This is compliant with the principles of ecohydrology, which emphasize the importance of multiple indicator measurements and correlation analysis in order to determine the effects of contaminants, their interaction with other environmental factors and their removal using NBS in freshwater ecosystems.
Collapse
|
31
|
Jaskulak M, Grobelak A, Vandenbulcke F. Modelling assisted phytoremediation of soils contaminated with heavy metals - Main opportunities, limitations, decision making and future prospects. CHEMOSPHERE 2020; 249:126196. [PMID: 32088456 DOI: 10.1016/j.chemosphere.2020.126196] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/27/2020] [Accepted: 02/11/2020] [Indexed: 05/27/2023]
Abstract
The heavy metals (HMs) soils contamination is a growing concern since HMs are not biodegradable and can accumulate in all living organisms causing a threat to plants and animals, including humans. Phytoremediation is a cost-efficient technology that uses plants to remove, transform or detoxify contaminants. In recent years, phytoremediation is entering the stage of large-scale modelling via various mathematical models. Such models can be useful tools to further our understanding and predicting of the processes that influence the efficiency of phytoremediation and to precisely plan such actions on a large-scale. When dealing with extremely complicated and challenging variables like the interactions between the climate, soil and plants, modelling before starting an operation can significantly reduce the time and cost of such process by granting us an accurate prediction of possible outcomes. Research on the applicability of different modelling approaches is ongoing and presented work compares and discusses available models in order to point out their specific strengths and weaknesses in given scenarios. The main aim of this paper is to critically evaluate the main advantages and limitations of available models for large-scale phytoremediation including, among others, the Decision Support System (DSS), Response Surface Methodology (RSM), BALANS, PLANTIX and various regression models. Study compares their applicability and highlight existing gaps in current knowledge with a special reference to improving the efficiency of large-scale phytoremediation of sites contaminated with heavy-metals. The presented work can serve as a useful tool when choosing the most suitable model for the phytoremediation of contaminated sites.
Collapse
Affiliation(s)
- Marta Jaskulak
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Czestochowa, Poland; University of Lille, Laboratory of Civil Engineering and Environment (LGCgE), Environmental Axis, F-59650, Villeneuve d'Ascq, France.
| | - Anna Grobelak
- Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Czestochowa, Poland
| | - Franck Vandenbulcke
- University of Lille, Laboratory of Civil Engineering and Environment (LGCgE), Environmental Axis, F-59650, Villeneuve d'Ascq, France
| |
Collapse
|
32
|
Rai PK, Kim KH, Lee SS, Lee JH. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135858. [PMID: 31846820 DOI: 10.1016/j.scitotenv.2019.135858] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 05/06/2023]
Abstract
Concerns about emerging environmental contaminants have been growing along with industrialization and urbanization around the globe. Among various options for remediating these contaminants, phytotechnology is suggested as a feasible option to maintain the environmental sustainability. The recent advances in phytoremediation, genetic/molecular/omics/metabolic engineering, and nanotechnology are opening new paths for efficient treatment of emerging organic/inorganic contaminants. In this respect, elucidation of molecular mechanisms and genetic engineering of hyperaccumulator plants is expected to enhance remediation of environmental contaminants. This review was organized to offer valuable insights into the molecular mechanisms of phytoremediation and the prospects of transgenic hyperaccumulators with enhanced stress tolerance to diverse contaminants such as heavy metals and metalloids, xenobiotics, explosives, poly aromatic hydrocarbons (PAHs), petroleum hydrocarbons, pesticides, and nanoparticles. The roles of genoremediation and nanoparticles in augmenting the phytoremediation technology are also described in an interrelated framework with biotechnological prospects (e.g., plant molecular nano-farming). Finally, political debate on the preferential use of crops versus non-crop hyperaccumulators in genoremediation, limitations of transgenics in phytotechnologies, and their public acceptance issues are discussed in the policy framework.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26494, Republic of Korea.
| | - Jin-Hong Lee
- Department of Environmental Engineering, Chungnam National University, Daejeon 34148, Republic of Korea
| |
Collapse
|
33
|
Nunes DAD, Salgado AM, Gama-Rodrigues EFD, Taketani RG, Cunha CDD, Sérvulo EFC. Use of plant materials for the bioremediation of soil from an industrial site. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:650-660. [PMID: 32067565 DOI: 10.1080/10934529.2020.1726695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Bioremediation is one of the existing techniques applied for treating oil-contaminated soil, which can be improved by the incorporation of low-cost nutritional materials. This study aimed to assess the addition of two low-cost plant residues, sugarcane bagasse (SCB) and leaf litter (LL) of the forest leguminous Mimosa caesalpiniifolia plant (sabiá), either separately or combined, to a contaminated soil from a petroleum refinery area, analyzed after 90 days of treatment. Individually, both amounts of SCB (20 and 40 g kg-1) favored the growth of total heterotrophic bacteria and total fungi, while LL at 20 g kg-1 better stimulated the hydrocarbon-degrading microorganism's activity in the soil. However, no TPH removal was observed under any of these conditions. Higher microbial growth was detected by the application of both plant residues in multicontaminated soil. The maximum TPH removal of 30% was achieved in amended soil with 20 g kg-1 SCB and 20 kg-1 LL. All the experimental conditions revealed changes in the microbial community structure, related to the handling of the soil, with abundance of Alphaproteobacteria. This study demonstrates the effectiveness of the plant residues SCB and LL as low-cost nutritional materials for biodegradation of hydrocarbon in real oil contaminated soil by indigenous populations.
Collapse
Affiliation(s)
| | - Andrea Medeiros Salgado
- School of Chemistry, Centro de Tecnologia Bloco E, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rodrigo Gouvêa Taketani
- Department of Soil Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariúna, SP, Brazil
| | - Cláudia Duarte da Cunha
- MCTIC Ministry of Science, Technology, Innovation and Communication, CETEM, Centre for Mineral Technology, Rio de Janeiro, Brazil
| | | |
Collapse
|
34
|
Yang Y, Shen Q. Phytoremediation of cadmium-contaminated wetland soil with Typha latifolia L. and the underlying mechanisms involved in the heavy-metal uptake and removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4905-4916. [PMID: 31845259 DOI: 10.1007/s11356-019-07256-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
The effects of Typha latifolia L. on the remediation of cadmium (Cd) in wetland soil were studied using greenhouse pot culture, with soil Cd concentrations of 0, 1, and 30 mg/kg. The T. latifolia showed excellent tolerance to the low and high concentrations of Cd in soil. A higher bioaccumulation of Cd was observed in roots, with bioconcentration factor values of 51.6 and 9.30 at 1 and 30 mg/kg of Cd stress, respectively; Cd concentration in T. latifolia was 77.0 and 410.7 mg/kg, and Cd content was 0.11 and 0.22 mg/plant at the end of the test period. The soil enzyme activities (urease, alkaline phosphatase, and dehydrogenase) exposed to 0, 1, and 30 mg/kg Cd were measured after 0-, 30-, 60-, and 90-day cultivation period and showed an increasing trend with exposure time. Metabolite changes were analyzed using liquid chromatography-mass spectrometry, combined with principal component analysis and orthogonal partial least squares discrimination analysis. Among 102 metabolites, 21 compounds were found and identified, in response to treatment of T. latifolia with different Cd concentrations. The results showed that T. latifolia had a good remedial effect on Cd-contaminated soil. The metabolites of T. latifolia changed with different Cd concentration exposures, as a result of metabolic response of plants to Cd-contaminated soils. Analysis of metabolites could better reveal the pollution remediation mechanism involved in different Cd uptake and accumulate properties.
Collapse
Affiliation(s)
- Yan Yang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution, Guangdong University of Technology, Guangzhou, 510006, China.
- Synergy Innovation Institute of GDUT, Shantou, 515041, China.
| | - Qianyong Shen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution, Guangdong University of Technology, Guangzhou, 510006, China
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
35
|
Waigi MG, Wang J, Yang B, Gudda FO, Ling W, Liu J, Gao Y. Endophytic Bacteria in in planta Organopollutant Detoxification in Crops. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 252:1-50. [PMID: 31451946 DOI: 10.1007/398_2019_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbe-assisted organopollutant removal, or in planta crop decontamination, is based on an interactive system between organopollutant-degrading endophytic bacteria (DEBOP) and crops in alleviating organic toxins in plants. This script focuses on the fast-growing body of literature that has recently bloomed in organopollutant control in agricultural plants. The various facets of DEBOP under study include their colonization, distribution, plant growth-promoting mechanisms, and modes of action in the detoxification process in plants. Also, an assessment of the biotechnological advances, advantages, and bottlenecks in accelerating the implementation of this decontamination strategy will be undertaken. The highlighted key research directions from this review will shape the future of agro-environmental sustainability and preservation of human health.
Collapse
Affiliation(s)
- Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
36
|
Souza TDD, Borges AC, Braga AF, Veloso RW, Teixeira de Matos A. Phytoremediation of arsenic-contaminated water by Lemna Valdiviana: An optimization study. CHEMOSPHERE 2019; 234:402-408. [PMID: 31228843 DOI: 10.1016/j.chemosphere.2019.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/16/2019] [Accepted: 06/01/2019] [Indexed: 05/15/2023]
Abstract
Phytoremediation is a technique in which plants are used to treat contaminated media. The objective of this study was to monitor the influence of the parameters pH, phosphate concentration, and nitrate concentration in the process of arsenic absorption by Lemna valdiviana Phil. The response surface methodology was used to analyze the data to subsidize actions that maximize the phytoremediation process. A central composite rotational design (CCRD) was used with 3 variables including 6 axial points and 6 repetitions at the central point, totaling 20 trials. The plants were exposed to a constant concentration of arsenic in the optimization test of 0.5 mg L-1 (NaAsO2) and varied levels of pH, P-PO4, and N-NO3 in a period of 7 d. At the end of the experiment, the mass of arsenic removed from water and arsenic accumulated in the plants, the arsenic species present, the relative growth rate of plants (RGR), the tolerance index (TI), and the bioaccumulation factor (BAF) were calculated. Lemna valdiviana absorbed a greater amount of As when cultivated under pH conditions between 6.3 and 7.0, readily available phosphorus (P-PO4) concentration of 0.0488 mmol L-1, and nitrogen in the form of 7.9 mmol L-1 nitrate. Under these conditions, the plants were able to accumulate 1190 mg kg-1 As (in dry weight) from the aqueous media and reduce 82% of its initial concentration. Therefore, Lemna valdiviana has been shown to be an arsenic bioaccumulating macrophyte with high phytoremediation potential for media contaminated with the metalloid.
Collapse
Affiliation(s)
- Tamara Daiane de Souza
- Federal University of Viçosa, Brazil; Federal University of Southern and Southeastern Para, Brazil
| | | | | | | | | |
Collapse
|
37
|
Zhang X, Zhang Y, Liu X, Zhang C, Dong S, Liu Q, Deng M. Cd uptake by Phytolacca americana L. promoted by cornstalk biochar amendments in Cd-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:251-258. [PMID: 31475859 DOI: 10.1080/15226514.2019.1658707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) contamination is the most extensive pollution in China farmland. A greenhouse pot trial was conducted to investigate the effects of cornstalk biochar on Cd accumulation by Phytolacca americana L. (pokeweed) in Cd-contaminated soil. The Cd concentration increased in leaves, shoots, and roots of plants amended with 5% biochar by 79%, 113%, and 32%, respectively, compared with the pokeweed without biochar. The Cd availability, soil Cd speciation, soil fertility, root biomass, and Cd chemical forms in root were investigated to explore the mechanism by which Cd uptake increased in presence of biochar. The extractability of Cd by DTPA decreased in presence of biochar by 30% compared with that of soil without biochar. The increases occurred with dose of biochar increased in available phosphorus, labile organic carbon, and C/N atom ratio. Although, the dry weight of the aboveground part of the pokeweed decreased by 38.5%, however, the weight of roots increased by 20.8%. Root biomass and microbial activity reached maximum in the treatment that recieved 5% biochar. Cd forms extracted by NaCl and acetic acid (HAc) were predominant in root. When 5% biochar applied to soil, HAc-extracted Cd took up maximum of the increase in root.
Collapse
Affiliation(s)
- Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Yanming Zhang
- SGIDI Engineering Consulting (Group) Co., Ltd, Shanghai, China
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Chenying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Shaodong Dong
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Qu Liu
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Min Deng
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
38
|
DalCorso G, Fasani E, Manara A, Visioli G, Furini A. Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation. Int J Mol Sci 2019; 20:E3412. [PMID: 31336773 PMCID: PMC6679171 DOI: 10.3390/ijms20143412] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
Mineral nutrition of plants greatly depends on both environmental conditions, particularly of soils, and the genetic background of the plant itself. Being sessile, plants adopted a range of strategies for sensing and responding to nutrient availability to optimize development and growth, as well as to protect their metabolisms from heavy metal toxicity. Such mechanisms, together with the soil environment, meaning the soil microorganisms and their interaction with plant roots, have been extensively studied with the goal of exploiting them to reclaim polluted lands; this approach, defined phytoremediation, will be the subject of this review. The main aspects and innovations in this field are considered, in particular with respect to the selection of efficient plant genotypes, the application of improved cultural strategies, and the symbiotic interaction with soil microorganisms, to manage heavy metal polluted soils.
Collapse
Affiliation(s)
- Giovanni DalCorso
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Elisa Fasani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Anna Manara
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43124 Parma, Italy
| | - Antonella Furini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
39
|
Odoh CK, Zabbey N, Sam K, Eze CN. Status, progress and challenges of phytoremediation - An African scenario. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:365-378. [PMID: 30818239 DOI: 10.1016/j.jenvman.2019.02.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 05/21/2023]
Abstract
Environmental pollution occasioned by artisanal activities and technical failures at exploration sites has affected mostly oil producing and other mineral resources mining regions in developed and developing nations. As conventional techniques of remediation seem to be progressively unreliable and inefficient, contaminated land management experts have adopted a plant-based technology described as 'phytoremediation' for effective detoxification and removal of contaminants in substrate environmental media (soil and sediment). This technique, has gained public acceptance because of its aesthetic, eco-friendly, solar energy driven and low cost attributes. With complexity of environmental pollution in Africa, identification of appropriate remediation approach that deliver net environmental benefit and economic profit to the society is vital, while also focusing on the exploitation of plants genetic tools for more clarity on phyto tolerance, uptake and translocation of pollutants. In this article, we reviewed the status, progress and challenges of phytoremediation in selected African countries (South Africa, Nigeria, Tanzania, Zambia, Egypt and Ghana), the ecological impact of the pollutants, phytoremediation strategies and the possible plants of choice. Besides highlighting the support roles played by soil fauna and flora, the fate of harvested biomass/dieback and its future prospects are also discussed. We further explored the factors challenging phytoremediation progress in Africa, amidst its promising potentials and applicability for sustainable ecosystem management paradigm.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Department of Microbiology, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Nenibarini Zabbey
- Department of Fisheries, Faculty of Agriculture, University of Port Harcourt, PMB, 5323, East-West Road, Choba, Rivers State, Nigeria; Environment and Conservation Unit, Centre for Environment, Human Rights and Development (CEHRD), Legacy Centre, 6 Abuja Lane, D-Line, Port Harcourt, Rivers State, Nigeria
| | - Kabari Sam
- Environment and Conservation Unit, Centre for Environment, Human Rights and Development (CEHRD), Legacy Centre, 6 Abuja Lane, D-Line, Port Harcourt, Rivers State, Nigeria; Department of Marine Environment and Pollution Control, Faculty of Marine Environmental Management, Nigeria Maritime University, Warri, Delta State, Nigeria.
| | - Chibuzor Nwadibe Eze
- Department of Microbiology, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
40
|
Kumar V, Singh J, Kumar P. Heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME): experimental and prediction modeling studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14400-14413. [PMID: 30868462 DOI: 10.1007/s11356-019-04766-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
The present paper reports the heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME) with its prediction modeling studies. Lab scale phytoremediation experiments were performed in glass aquariums to grow P. stratiotes in 0% (bore well water as a control), 25%, 50%, 75%, and 100% concentrations of PME. The influence of pH and heavy metal concentration in PME for the effective uptake and accumulation of heavy metal contents (∆Y: mg/kg) in plant tissues was modeled using two-factor multiple linear regression. The results showed that the selected input variables were supportive to develop prediction models with higher linear regression (R2 > 0.72), high model efficiency (ME: 0.92-0.99), low mean average normalizing error (MANE < 0.02), and statistically significant F > Prob values. Kruskal-Wallis one-way post hoc test indicated that the contents of Cd, Cu, Fe, Pb, and Zn in the roots, leaves, and whole plant were affected by PME concentration while the contents of Mn did not. The correlation studies showed that the bioaccumulation of heavy metals was found both element and PME concentration specific. This work represents an effective method to model heavy metal uptake by P. stratiotes from PME. Furthermore, this methodology can also be adopted for predicting effective metal uptake by plant species being used for the phytoremediation of heavy metals from industrial effluents.
Collapse
Affiliation(s)
- Vinod Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri Vishwavidyalaya, Haridwar, Uttarakhand, 249404, India
| | - Jogendra Singh
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri Vishwavidyalaya, Haridwar, Uttarakhand, 249404, India.
| | - Pankaj Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri Vishwavidyalaya, Haridwar, Uttarakhand, 249404, India
| |
Collapse
|
41
|
Defining the Genetic Basis of Plant⁻Endophytic Bacteria Interactions. Int J Mol Sci 2019; 20:ijms20081947. [PMID: 31010043 PMCID: PMC6515357 DOI: 10.3390/ijms20081947] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/17/2023] Open
Abstract
Endophytic bacteria, which interact closely with their host, are an essential part of the plant microbiome. These interactions enhance plant tolerance to environmental changes as well as promote plant growth, thus they have become attractive targets for increasing crop production. Numerous studies have aimed to characterise how endophytic bacteria infect and colonise their hosts as well as conferring important traits to the plant. In this review, we summarise the current knowledge regarding endophytic colonisation and focus on the insights that have been obtained from the mutants of bacteria and plants as well as ‘omic analyses. These show how endophytic bacteria produce various molecules and have a range of activities related to chemotaxis, motility, adhesion, bacterial cell wall properties, secretion, regulating transcription and utilising a substrate in order to establish a successful interaction. Colonisation is mediated by plant receptors and is regulated by the signalling that is connected with phytohormones such as auxin and jasmonic (JA) and salicylic acids (SA). We also highlight changes in the expression of small RNAs and modifications of the cell wall properties. Moreover, in order to exploit the beneficial plant-endophytic bacteria interactions in agriculture successfully, we show that the key aspects that govern successful interactions remain to be defined.
Collapse
|
42
|
The accumulation of metals, PAHs and alkyl PAHs in the roots of Echinacea purpurea. PLoS One 2018; 13:e0208325. [PMID: 30521573 PMCID: PMC6283564 DOI: 10.1371/journal.pone.0208325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/15/2018] [Indexed: 12/24/2022] Open
Abstract
We examined the accumulation of polycyclic aromatic hydrocarbons (PAHs), alkyl PAHs, and toxic metals in soils by the roots of Echinacea purpurea (L.) Moench, in a 20-week greenhouse study and a 2-year field study. In the greenhouse study, inoculation by arbuscular mycorrhizal fungus (AMF), Rhizoglomus intraradices (N.C. Schenck & G.S. Sm.). increased the first order accumulation rates (k1) for PAHs by 10-fold, though had no effect on the bioaccumulation rates of toxic metals. In the greenhouse study, PAHs concentrations in soil increased over time with AMF inoculation, suggesting AMF promote ‘solvent depletion’ in soils by enhancing absorption of minerals and carbon by roots, concentrating the more hydrophobic PAHs in the residual soil. Under field conditions, contaminant concentrations in soils remained unchanged over the 2-year duration of the study. Despite this, all contaminants in E. purpurea roots increased significantly, as a result of a long term extraction of contaminants by plants from soil and a reduction in soil volume as a result of plant growth. First order accumulation rates by roots were inversely correlated to log Kow for the PAHs and alkyl PAHs, indicating that accumulation is inversely related to the compound’s hydrophobicity. This study is the first to our knowledge to assess the accumulation of alkyl PAHs by roots, with implications for soil bioremediation by plants because alkyl PAHs are a major source of petrogenic contamination in soils.
Collapse
|
43
|
Agnello AC, Potysz A, Fourdrin C, Huguenot D, Chauhan PS. Impact of pyrometallurgical slags on sunflower growth, metal accumulation and rhizosphere microbial communities. CHEMOSPHERE 2018; 208:626-639. [PMID: 29894964 DOI: 10.1016/j.chemosphere.2018.06.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Metallurgical exploitation originates metal-rich by-products termed slags, which are often disposed in the environment being a source of heavy metal pollution. Despite the environmental risk that this may pose for living organisms, little is known about the impact of slags on biotic components of the ecosystem like plants and rhizosphere microbial communities. In this study, metal-rich (Cu, Pb, Zn) granulated slags (GS) derived from Cu production process, were used for a leaching test in the presence of the soil pore solution, showing that soil solution enhanced the release of Cu from GS. A pot experiment was conducted using as growing substrate for sunflower (Helianthus annuus) a 50% w/w mix of an agricultural soil and GS. Bioavailability of metals in soil was, in increasing order: Pb < Zn < Cu. Sunflower was able to grow in the presence of GS and accumulated metals preferentially in above-ground tissues. Microbial diversity was assessed in rhizosphere and bulk soil using community level physiological profiling (CLPP) and 16S rRNA gene based denaturing gradient gel electrophoresis (DGGE) analyses, which demonstrated a shift in the diversity of microbial communities induced by GS. Overall, these results suggest that metallurgical wastes should not be considered inert when dumped in the soil. Implications from this study are expected to contribute to the development of sustainable practices for the management of pyrometallurgical slags, possibly involving a phytomanagement approach.
Collapse
Affiliation(s)
- A C Agnello
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 5 Bd Descartes 77454 Marne-la-Vallée, France.
| | - A Potysz
- Institute of Geological Sciences, University of Wrocław, Cybulskiego 30, 50-205 Wrocław, Poland.
| | - C Fourdrin
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 5 Bd Descartes 77454 Marne-la-Vallée, France.
| | - D Huguenot
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 5 Bd Descartes 77454 Marne-la-Vallée, France.
| | - P S Chauhan
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P. 226001, India.
| |
Collapse
|
44
|
Dangi AK, Sharma B, Hill RT, Shukla P. Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol 2018; 39:79-98. [DOI: 10.1080/07388551.2018.1500997] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Arun Kumar Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Russell T. Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
45
|
Correa‐García S, Pande P, Séguin A, St‐Arnaud M, Yergeau E. Rhizoremediation of petroleum hydrocarbons: a model system for plant microbiome manipulation. Microb Biotechnol 2018; 11:819-832. [PMID: 30066464 PMCID: PMC6116750 DOI: 10.1111/1751-7915.13303] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Phytoremediation is a green and sustainable alternative to physico-chemical methods for contaminated soil remediation. One of the flavours of phytoremediation is rhizoremediation, where plant roots stimulate soil microbes to degrade organic contaminants. This approach is particularly interesting as it takes advantage of naturally evolved interaction mechanisms between plant and microorganisms and often results in a complete mineralization of the contaminants (i.e. transformation to water and CO2 ). However, many biotic and abiotic factors influence the outcome of this interaction, resulting in variable efficiency of the remediation process. The difficulty to predict precisely the timeframe associated with rhizoremediation leads to low adoption rates of this green technology. Here, we review recent literature related to rhizoremediation, with a particular focus on soil organisms. We then expand on the potential of rhizoremediation to be a model plant-microbe interaction system for microbiome manipulation studies.
Collapse
Affiliation(s)
- Sara Correa‐García
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
- Laurentian Forest CenterNatural Ressources CanadaQuébec CityQCCanada
| | - Pranav Pande
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
- Institut de recherche en biologie végétaleUniversité de Montréal and Jardin Botanique de MontréalMontréalQCCanada
| | - Armand Séguin
- Laurentian Forest CenterNatural Ressources CanadaQuébec CityQCCanada
| | - Marc St‐Arnaud
- Institut de recherche en biologie végétaleUniversité de Montréal and Jardin Botanique de MontréalMontréalQCCanada
| | - Etienne Yergeau
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
| |
Collapse
|
46
|
Isolation of multi-metal tolerant ubiquitin fusion protein from metal polluted soil by metatranscriptomic approach. J Microbiol Methods 2018; 152:119-125. [PMID: 30077694 DOI: 10.1016/j.mimet.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 11/21/2022]
Abstract
Release of heavy metals into the soil pose a significant threat to the environment and public health because of their toxicity accumulation in the food chain and persistence in nature. The potential of soil microbial diversity of cadmium (Cd) contaminated site was exploited through functional metatranscriptomics by construction of cDNA libraries A (0.1-0.5 kb), B (0.5-1.0 kb), and C (1-4 kb) of variable size, from the eukaryotic mRNA. The cDNA library B was further screened for cadmium tolerant transcripts through yeast complementation system. We are reporting one of the transformants ycf1ΔPLBe1 capable of tolerating high concentrations of Cd (40 μM - 80 μM). Sequence analysis revealed that PLBe1 cDNA showed homology with ubiquitin domain containing protein fused with AN1 type zinc finger protein of Acanthameoba castellani. Further, this cDNA was tested for its tolerance towards other heavy metals such as copper (Cu), zinc (Zn) and cobalt (Co). Functional complementation assay of cDNA PLBe1 showed a range of tolerance towards copper (150 μM - 300 μM), zinc (10 mM - 12 mM) and cobalt (2 mM - 4 mM). This study promulgates PLBe1 as credible member of multi-metal tolerant gene in the eukaryotic soil microbial community and can be used as potential member to revitalise the heavy metal contaminated sites or can be used as a biomarker to detect heavy metal contamination in the soil environment.
Collapse
|
47
|
Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd Allah EF. Understanding and Designing the Strategies for the Microbe-Mediated Remediation of Environmental Contaminants Using Omics Approaches. Front Microbiol 2018; 9:1132. [PMID: 29915565 PMCID: PMC5994547 DOI: 10.3389/fmicb.2018.01132] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 12/24/2022] Open
Abstract
Rapid industrialization and population explosion has resulted in the generation and dumping of various contaminants into the environment. These harmful compounds deteriorate the human health as well as the surrounding environments. Current research aims to harness and enhance the natural ability of different microbes to metabolize these toxic compounds. Microbial-mediated bioremediation offers great potential to reinstate the contaminated environments in an ecologically acceptable approach. However, the lack of the knowledge regarding the factors controlling and regulating the growth, metabolism, and dynamics of diverse microbial communities in the contaminated environments often limits its execution. In recent years the importance of advanced tools such as genomics, proteomics, transcriptomics, metabolomics, and fluxomics has increased to design the strategies to treat these contaminants in ecofriendly manner. Previously researchers has largely focused on the environmental remediation using single omics-approach, however the present review specifically addresses the integrative role of the multi-omics approaches in microbial-mediated bioremediation. Additionally, we discussed how the multi-omics approaches help to comprehend and explore the structural and functional aspects of the microbial consortia in response to the different environmental pollutants and presented some success stories by using these approaches.
Collapse
Affiliation(s)
- Muneer A Malla
- Department of Zoology, Dr. Harisingh Gour University, Sagar, India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University, Sagar, India
| | - Shweta Yadav
- Department of Zoology, Dr. Harisingh Gour University, Sagar, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University, Sagar, India
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
48
|
Faure D, Simon JC, Heulin T. Holobiont: a conceptual framework to explore the eco-evolutionary and functional implications of host-microbiota interactions in all ecosystems. THE NEW PHYTOLOGIST 2018; 218:1321-1324. [PMID: 29738088 DOI: 10.1111/nph.15199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Denis Faure
- Institute for Integrative Biology of the Cell, CNRS, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91 190, Gif-sur-Yvette, France
| | - Jean-Christophe Simon
- INRA/Agrocampus Ouest/Université Rennes 1, UMR 1349, IGEPP, Domaine de la Motte, B.P. 35327, F-35653, Le Rheu Cedex, France
| | - Thierry Heulin
- Aix Marseille University, CEA, CNRS, Laboratory for Microbial Ecology of the Rhizosphere and Extreme Environment (LEMiRE), UMR7265 BVME, F-13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
49
|
Core Concept: Phytoremediation advances in the lab but lags in the field. Proc Natl Acad Sci U S A 2018; 114:7475-7477. [PMID: 28720737 DOI: 10.1073/pnas.1707883114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Wu Z, Wang S, Luo J. Transfer kinetics of phosphorus (P) in macrophyte rhizosphere and phytoremoval performance for lake sediments using DGT technique. JOURNAL OF HAZARDOUS MATERIALS 2018; 350:189-200. [PMID: 29501960 DOI: 10.1016/j.jhazmat.2018.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 01/13/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
DGT (diffusive gradients in thin films) technique and DIFS (DGT induced fluxes in sediment) model are firstly designed for macrophyte-rhizobox system and in-situ macrophytes in Lake Erhai. Dynamics of phosphorus (P) transfer in Zizania latifolia (ZL) and Myriophyllum verticiilatur (MV) rhizosphere is revealed and phytoremediation performance for P in sediment is evaluated. Dynamic transfer process of P at DGT/sediment interface includes (i) diffusion flux and concentration gradients at DGT(root)/porewater interface leading to porewater concentration (C0) depletion and (ii) P desorption from labile P pool in sediment solid to resupply C0 depletion. Fe-redox controlled P release from Fe-bound P (BD-P2) and then NH4Cl-P1 in rhizosphere sediment resupplies porewater depletion due to DGT (root) sink. Kd (labile P pool size in solid phase), r (resupply ratio) and kinetic exchange (Tc and k-1) lead to change characters of DIFS curves of (1) r against deployment time and (2) Csolu (dissolved concentration) against distance at 24 h. They include two opposite types of "fast" and "slow" rate of resupplies. Sediment properties and DIFS parameters control P diffusion and resupply in rhizosphere sediment. Phytoremoval ability for sediment P in lake is estimated to be 23.4 (ZL) or 15.0 t a-1 (MV) by "DGT-flux" method.
Collapse
Affiliation(s)
- Zhihao Wu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; National Engineering Laboratory for Lake Water Pollution Control and Ecological Restoration Technology, Research Center of Lake Eco-Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012 China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 China
| | - Shengrui Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; National Engineering Laboratory for Lake Water Pollution Control and Ecological Restoration Technology, Research Center of Lake Eco-Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012 China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 China.
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|