1
|
Goulart MO, Paulino JM, Silveira NN, Bertonha AF, Berlinck RGS, Santos RA. Isolation and comparative genotoxicity screening of trichokonins VI and VIII on CHO-K1 cells. Drug Chem Toxicol 2024:1-9. [PMID: 39262131 DOI: 10.1080/01480545.2024.2389977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/10/2024] [Accepted: 08/04/2024] [Indexed: 09/13/2024]
Abstract
Peptaibols are fungal peptides that exhibit efficacy against pathogen microorganisms. Trichokonin VI (TK-VI) and trichokonin VIII (TK-VIII) are known peptaibols isolated from the endolichenic fungi Hypocrea sp. Previous investigations reported that trichokonin VI presents antiproliferative effects on tumor cells. This study is pioneering in elucidating the genotoxic effects of TK-VI and TK-VIII, contributing to the thorough assessment of their safety as potential therapeutic agents. The present investigation aimed to evaluate the genotoxicity of TK-VI and TK-VIII on CHO-K1 cells. Cytotoxicity was evaluated using the XTT assay and clonogenic survival assays, followed by evaluation of DNA damage using the comet assay and micronucleus test conducted in vitro. The XTT assay results indicated IC50 values of 10.30 µM and 9.89 µM for TK-VI and TK-VIII, respectively. The clonogenic survival assay indicated that concentrations of 10 µM or higher completely inhibited the cell colony formation. In the comet assay, both TK-VI and TK-VIII increased the DNA damage score and the frequency of comet nuclei in all tested concentrations. In the micronucleus assay, TK-VI and TK-VIII at 10 µM increased the frequency of MN in CHO-K1 cells. Both TK-VI and TK-VIII exhibited genotoxic effects. Our findings underscore the importance of considering the genotoxicological safety of peptaibols, particularly when assessing their potential for other biological activities.
Collapse
Affiliation(s)
| | | | | | - Ariane F Bertonha
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | | |
Collapse
|
2
|
Chakarwarti J, Anand V, Nayaka S, Srivastava S. In vitro Antibacterial Activity and Secondary Metabolite Profiling of Endolichenic Fungi Isolated from Genus Parmotrema. Curr Microbiol 2024; 81:195. [PMID: 38809483 DOI: 10.1007/s00284-024-03719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
The endolichenic fungi are an unexplored group of organisms for the production of bioactive secondary metabolites. The aim of the present study is to determine the antibacterial potential of endolichenic fungi isolated from genus Parmotrema. The study is continuation of our previous work, wherein a total of 73 endolichenic fungi were isolated from the lichenized fungi, which resulted in 47 species under 23 genera. All the isolated endolichenic fungi were screened for preliminary antibacterial activity. Five endolichenic fungi-Daldinia eschscholtzii, Nemania diffusa, Preussia sp., Trichoderma sp. and Xylaria feejeensis, were selected for further antibacterial activity by disc diffusion method. The zone of inhibition ranged from 14.3 ± 0.1 to 23.2 ± 0.1. The chemical composition of the selected endolichenic fungi was analysed through GC-MS, which yielded a total of 108 compounds from all the selected five endolichenic fungi. Diethyl phthalate, 1-hexadecanol, dibutyl phthalate, n-tetracosanol-1, 1-nonadecene, pyrrol[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methyl) and tetratetracontane were found to be common compounds among one or the other endolichenic fungi, which possibly were responsible for antibacterial activity. GC-MS data were further analysed through Principal Component Analysis which showed D. eschscholtzii to be with unique pattern of expression of metabolites. Compound confirmation test revealed coumaric acid to be responsible for antibacterial activity in D. eschscholtzii. So, the study proves that endolichenic fungi that inhabit lichenized fungal thalli could be a source of potential antibacterial compounds.
Collapse
Affiliation(s)
- Jyotsna Chakarwarti
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Lichenology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Vandana Anand
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Botany, IFTM University, Moradabad, 244102, India
| | - Sanjeeva Nayaka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Lichenology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | - Suchi Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| |
Collapse
|
3
|
Kawakami H, Watabe N, Matsubuchi Y, Hara K, Komine M. Antioxidant compounds produced by endolichenic fungus Penicillium sp.-strain 1322P isolated from Pyxine subcinerea. Arch Microbiol 2024; 206:187. [PMID: 38514498 DOI: 10.1007/s00203-024-03898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Endolichenic fungi are expecting for new bioresources of pharmacological compounds. However, the number of investigations targeting antioxidant compounds produced by endolichenic fungi remains limited. To discover new antioxidant compounds, we analyzed the antioxidant activity of the methanol extracts derived from isolated lichen mycobionts or endolichenic fungi induced from Pyxine subcinerea. We performed this analysis using the oxygen radical absorbance capacity (ORAC) method. As a result, we isolated from an endolichenic fungus identified as Penicillium sp.-stain 1322P in Pyxine subcinerea. This fungus produced a red pigment, and its chemical structure was determined to be sclerotioramine based on the analytical data obtained from NMR, LC-MS/MS, and HPLC-PDA. Sclerotioramine exhibited high antioxidant activity, and the ORAC values (mean ± SD) of sclerotioramine and sclerotiorin were 11.4 ± 0.36 and 4.86 ± 0.70 mmol TE per gram of the respective pure compound. Thus, the antioxidant activity of sclerotioramine was greater than twice that of sclerotiorin. This work represents the first report that the antioxidant activity of sclerotioramine is higher than that of the sclerotiorin.
Collapse
Affiliation(s)
- Hiroko Kawakami
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshinjo-Nakano, Akita-shi, Akita, 010-0195, Japan.
| | - Nao Watabe
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshinjo-Nakano, Akita-shi, Akita, 010-0195, Japan
| | - Yuko Matsubuchi
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshinjo-Nakano, Akita-shi, Akita, 010-0195, Japan
| | - Kojiro Hara
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshinjo-Nakano, Akita-shi, Akita, 010-0195, Japan
| | - Masashi Komine
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshinjo-Nakano, Akita-shi, Akita, 010-0195, Japan
| |
Collapse
|
4
|
Wang M, Luo M, Ding X, Chang S, He N, Hong B, Xie Y. (±) Pestalactone D and pestapyrone F, two new isocoumarins from an endolichenic Pestalotiopsis rhododendri. J Antibiot (Tokyo) 2023; 76:678-681. [PMID: 37612463 DOI: 10.1038/s41429-023-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Three isocoumarins, including two new compounds, (±) pestalactone D (1) and pestapyrone F (2), as well as one known compound, pestapyrone D (3), were isolated from the culture of the endolichenic Pestalotiopsis rhododendri LF-19-12. The planar structures of all compounds were elucidated by NMR and MS spectra. And the absolute configurations of 1 were confirmed by single crystal X-ray diffraction analysis, indicative of it as a racemate of 4S/12S and 4R/12R enantiomers. Compound 1 exhibited weak anti-coronaviral activity against human coronavirus HCoV-229E with an EC50 of 77.61 μM. Based on the bioinformatics analysis, the biosynthetic pathway of 1 has been proposed.
Collapse
Affiliation(s)
- Mengyuan Wang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Mengna Luo
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Xiaotian Ding
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Shanshan Chang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Ning He
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Bin Hong
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China
| | - Yunying Xie
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantan xili No.1, Beijing, 100050, China.
| |
Collapse
|
5
|
Hassan M, Shahzadi S, Ransom RF, Kloczkowski A. Nature's Own Pharmacy: Mushroom-Based Chemical Scaffolds and Their Therapeutic Implications. Int J Mol Sci 2023; 24:15596. [PMID: 37958579 PMCID: PMC10647524 DOI: 10.3390/ijms242115596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Mushrooms are new potential sources of valuable medicines, long neglected because of difficulties experienced in their cultivation. There is a large variety of medicinal mushrooms which possess significant therapeutic properties and are used as medications for various diseases because they contain several novel highly bioactive components. Medicinal mushrooms can be identified based on their morphology, size, mass, and the color of the stalk, cap and spore, and attachment to the stalk. Medicinal mushrooms possess a variety of important biological activities and are used as antioxidants, hepatoprotectors, anticancer, antidiabetic, anti-inflammatory, antiaging, antiviral, antiparasitic, and antimicrobial agents, among others. This review provides a basic overview of the chemical scaffolds present in mushrooms and their therapeutic implications in the human body.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (S.S.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (S.S.)
| | | | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (S.S.)
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
6
|
Kim J, He MT, Hur JS, Lee JW, Kang KB, Kang KS, Shim SH. Discovery of Naphthol Tetramers from Endolichenic Fungus Daldinia childiae 047219 Based on MS/MS Molecular Networking. JOURNAL OF NATURAL PRODUCTS 2023; 86:2031-2038. [PMID: 37589086 DOI: 10.1021/acs.jnatprod.3c00468] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Feature-based molecular networking analysis suggested the presence of naphthol tetramers in Daldinia childae 047219, the same species but a different strain from one used previously for the discovery of naphthol trimers promoting adiponectin synthesis. The new tetramers were composed of 5-methoxy-4-naphthol, each of which was connected to one another in various positions. Targeted isolation afforded six previously unreported naphthol tetramers (1-6) together with 13 known polyketides (7-19) including naphthol monomers, dimers, and trimers. Structures of the isolated compounds were established by using NMR and mass spectroscopic analysis. Nodulisporin A (13), nodulisporin B (14), and 1,1',3',3″-ternaphthalene-5,5',5″-trimethoxy-4,4',4″-triol (16) demonstrated anti-inflammatory activities against NO production, but the new compounds were less active.
Collapse
Affiliation(s)
- Jaekyeong Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Mei Tong He
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Kyo Bin Kang
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Grishkan I, Temina M. Composition and diversity of endolichenic microfungal communities from saxicolous lichens at Nahal Boker, the central Negev Desert, Israel. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Kalra R, Conlan XA, Goel M. Recent advances in research for potential utilization of unexplored lichen metabolites. Biotechnol Adv 2023; 62:108072. [PMID: 36464145 DOI: 10.1016/j.biotechadv.2022.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
Several research studies have shown that lichens are productive organisms for the synthesis of a broad range of secondary metabolites. Lichens are a self-sustainable stable microbial ecosystem comprising an exhabitant fungal partner (mycobiont) and at least one or more photosynthetic partners (photobiont). The successful symbiosis is responsible for their persistence throughout time and allows all the partners (holobionts) to thrive in many extreme habitats, where without the synergistic relationship they would be rare or non-existent. The ability to survive in harsh conditions can be directly correlated with the production of some unique metabolites. Despite the potential applications, these unique metabolites have been underutilised by pharmaceutical and agrochemical industries due to their slow growth, low biomass availability and technical challenges involved in their artificial cultivation. However, recent development of biotechnological tools such as molecular phylogenetics, modern tissue culture techniques, metabolomics and molecular engineering are opening up a new opportunity to exploit these compounds within the lichen holobiome for industrial applications. This review also highlights the recent advances in culturing the symbionts and the computational and molecular genetics approaches of lichen gene regulation recognized for the enhanced production of target metabolites. The recent development of multi-omics novel biodiscovery strategies aided by synthetic biology in order to study the heterologous expressed lichen-derived biosynthetic gene clusters in a cultivatable host offers a promising means for a sustainable supply of specialized metabolites.
Collapse
Affiliation(s)
- Rishu Kalra
- Sustainable Agriculture Program, The Energy and Resources Institute, Gurugram, Haryana, India
| | - Xavier A Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, Victoria, Australia
| | - Mayurika Goel
- Sustainable Agriculture Program, The Energy and Resources Institute, Gurugram, Haryana, India.
| |
Collapse
|
9
|
Kim J, Ko H, Hur JS, An S, Lee JW, Deyrup ST, Noh M, Shim SH. Discovery of Pan-peroxisome Proliferator-Activated Receptor Modulators from an Endolichenic Fungus, Daldinia childiae. JOURNAL OF NATURAL PRODUCTS 2022; 85:2804-2816. [PMID: 36475432 DOI: 10.1021/acs.jnatprod.2c00791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Adiponectin-synthesis-promoting compounds possess therapeutic potential to treat diverse metabolic diseases, including obesity and diabetes. Phenotypic screening to find adiponectin-synthesis-promoting compounds was performed using the adipogenesis model of human bone marrow mesenchymal stem cells. The extract of the endolichenic fungus Daldinia childiae 047215 significantly promoted adiponectin production. Bioactivity-guided isolation led to 13 active polyketides (1-13), which include naphthol monomers, dimers, and trimers. To the best of our knowledge, trimers of naphthol (1-4) have not been previously isolated as either natural or synthetic products. The novel naphthol trimer 3,1',3',3″-ternaphthalene-5,5',5″-trimethoxy-4,4',4″-triol (2) and a dimer, nodulisporin A (12), exhibited concentration-dependent adiponectin-synthesis-promoting activity (EC50 30.8 and 15.2 μM, respectively). Compounds 2 and 12 bound to all three peroxisome proliferator-activated receptor (PPAR) subtypes, PPARα, PPARγ, and PPARδ. In addition, compound 2 transactivated retinoid X receptor α, whereas 12 did not. Naphthol oligomers 2 and 12 represent novel pan-PPAR modulators and are potential pharmacophores for designing new therapeutic agents against hypoadiponectinemia-associated metabolic diseases.
Collapse
Affiliation(s)
- Jaekyeong Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyejin Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seungchan An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Stephen T Deyrup
- Department of Chemistry and Biochemistry, Siena College, Londonville, New York 12211, United States
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Toure S, Millot M, Ory L, Roullier C, Khaldi Z, Pichon V, Girardot M, Imbert C, Mambu L. Access to Anti-Biofilm Compounds from Endolichenic Fungi Using a Bioguided Networking Screening. J Fungi (Basel) 2022; 8:jof8101012. [PMID: 36294577 PMCID: PMC9604612 DOI: 10.3390/jof8101012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Endolichenic microorganisms represent a new source of bioactive natural compounds. Lichens, resulting from a symbiotic association between algae or cyanobacteria and fungi, constitute an original ecological niche for these microorganisms. Endolichenic fungi inhabiting inside the lichen thallus have been isolated and characterized. By cultivation on three different culture media, endolichenic fungi gave rise to a wide diversity of bioactive metabolites. A total of 38 extracts were screened for their anti-maturation effect on Candida albicans biofilms. The 10 most active ones, inducing at least 50% inhibition, were tested against 24 h preformed biofilms of C. albicans, using a reference strain and clinical isolates. The global molecular network was associated to bioactivity data in order to identify and priorize active natural product families. The MS-targeted isolation led to the identification of new oxygenated fatty acid in Preussia persica endowed with an interesting anti-biofilm activity against C. albicans yeasts.
Collapse
Affiliation(s)
- Seinde Toure
- Laboratoire PEIRENE, University Limoges, UR 22722, F-87000 Limoges, France
| | - Marion Millot
- Laboratoire PEIRENE, University Limoges, UR 22722, F-87000 Limoges, France
| | - Lucie Ory
- Institut des Substances et Organismes de la Mer (ISOMer), Nantes Université, UR 2160, F-44000 Nantes, France
| | - Catherine Roullier
- Institut des Substances et Organismes de la Mer (ISOMer), Nantes Université, UR 2160, F-44000 Nantes, France
| | - Zineb Khaldi
- Laboratoire PEIRENE, University Limoges, UR 22722, F-87000 Limoges, France
| | - Valentin Pichon
- Laboratoire PEIRENE, University Limoges, UR 22722, F-87000 Limoges, France
| | - Marion Girardot
- Laboratoire Ecologie et Biologie des Interactions (EBI), University Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
| | - Christine Imbert
- Laboratoire Ecologie et Biologie des Interactions (EBI), University Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
| | - Lengo Mambu
- Laboratoire PEIRENE, University Limoges, UR 22722, F-87000 Limoges, France
- Correspondence: ; Tel.: +33-5-55-43-58-34
| |
Collapse
|
11
|
Microbe-fabricated nanoparticles as potent biomaterials for efficient food preservation. Int J Food Microbiol 2022; 379:109833. [PMID: 35914405 DOI: 10.1016/j.ijfoodmicro.2022.109833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
In recent years, cutting-edge nanotechnology research has revolutionized several facets of the food business, including food processing, packaging, transportation, preservation, and functioning. Nanotechnology has beginning to loom large in the food business as the industry's demand for biogenic nanomaterial grows. The intracellular and extracellular synthesis of metal, metal oxide, and other essential NPs has recently been explored in a variety of microorganisms, including bacteria, actinomycetes, fungi, yeasts, microalgae, and viruses. These microbes produce a variety extracellular material, exopolysaccharides, enzymes, and secondary metabolites which play key roles in synthesizing as well as stabilizing the nanoparticle (NPs). Furthermore, genetic engineering techniques can help them to improve their capacity to generate NPs more efficiently. As a result, using microorganisms to manufacture NPs is unique and has a promising future. Microbial-mediated synthesis of NPs has lately been popular as a more environmentally friendly alternative to physical and chemical methods of nanomaterial synthesis, which require higher prices, more energy consumption, and more complex reaction conditions, as well as a potentially dangerous environmental impact. It is critical to consider regulatory measures implemented at all stages of the process, from production through refining, packaging, preservation, and storage, when producing bionanomaterials derived from culturable microbes for efficient food preservation. The current review discusses the synthesis, mechanism of action, and possible food preservation uses of microbial mediated NPs, which can assist to minimize food deterioration from the inside out while also ensuring that food is safe and free of contaminants. Despite the numerous benefits, there are looming debates concerning their usage in food items, particularly regarding its aggregation in human bodies and other risks to the environment. Other applications and impacts of these microbe-fabricated NPs in the context of future food preservation prospects connected with regulatory problems and potential hazards are highlighted.
Collapse
|
12
|
Zhao L, Kim JC, Hur JS. 7-Hydroxy-2-octenoic acid-ethyl ester mixture as an UV protectant secondary metabolite of an endolichenic fungus isolated from Menegazzia terebrata. Arch Microbiol 2022; 204:395. [PMID: 35705862 DOI: 10.1007/s00203-022-02997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022]
Abstract
Enodolichenic fungi (ELF) are considered a promising bio-resource since they produce a variety of novel secondary metabolites with bioactivities. Ultraviolet (UV) radiation in sunlight containing UVA and UVB can cause acute and chronic skin diseases, and the demand for UV protectants in sunscreens has been increasing. Such situations evoke the strong interest of researchers in seeking effective UV protectants from natural products. In this study, we obtained partially purified 7-hydroxy-2-octenoic acid-ethyl ester (7E) from the secondary metabolites of ELF000548, which has UVA absorption activity. The antioxidant properties were performed by in vitro tests. The superoxide anion scavenging activity and inhibition of linoleic acid peroxidation of the 7E mixture were higher than ascorbic acid (ASA) and butyl hydroxyl anisole (BHA). Furthermore, the compound recovered the damage caused by UVB irradiation and inhibited melanin synthesis. Additionally, the 7E mixture exhibited no cytotoxicity toward the mouse melanoma cell lines, B16F1 and B16F10, except for the normal cell line, HaCaT. In general, these results are the first report about bioactivities of 7E, and those demonstrated that this compound might be a UV protectant to go further study.
Collapse
Affiliation(s)
- Lu Zhao
- Central Laboratory, Weifang People's Hospital/The First Affiliated Hospital of Weifang Medical Unviersity, Weifang, 261000, People's Republic of China.,Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.,Shandong Laibo Biotechnology Co., Ltd., Jinan, 250101, People's Republic of China
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, 57922, Korea.
| |
Collapse
|
13
|
dos Santos Varjão MT, Duarte AWF, Rosa LH, Alexandre-Moreira MS, de Queiroz AC. Leishmanicidal activity of fungal bioproducts: A systematic review. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Shevkar C, Armarkar A, Weerasinghe R, Maduranga K, Pandey K, Behera SK, Kalia K, Paranagama P, Kate AS. Cytotoxic Bioxanthracene and Macrocyclic Polyester from Endolichenic Fungus Talaromyces pinophilus: In-Vitro and In-Silico Analysis. Indian J Microbiol 2022; 62:204-214. [DOI: 10.1007/s12088-021-00994-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
|
15
|
Song J, Xie F, Luan X, Xu K, Qian L, Lu J, Chang W, Wang X, Lou H. Perylenequinone derivatives from the endolichenic fungus Phialocephala fortinii. Nat Prod Res 2022; 37:1527-1535. [PMID: 35007177 DOI: 10.1080/14786419.2021.2025366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Five undescribed perylenequinone derivatives (PQDs) phialocephalarins H - L (1 - 5), together with two known PQDs phialocephalarins A - B (6, 7) and one known spirobisnaphthalene palmarumycin P3 (8) were isolated from the endolichenic fungus Phialocephala fortinii. Their structures were elucidated on the basis of NMR and HRESIMS data as well as electronic circular dichroism (ECD) calculations. Compounds 1, 2, 4, and 6 - 8 were evaluated for cytotoxic activities against NCI-H460, NCI-H446, PC3, and EC109 cell lines. The results showed that compounds 1, 2, 6, and 8 showed cytotoxic activities against EC109 cells with IC50 values ranging from 24.5 to 33.3 μM.
Collapse
Affiliation(s)
- Jintong Song
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| | - Fei Xie
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China.,Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Xiaoyi Luan
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| | - Ke Xu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China.,The Second Hospital of Shandong University, Jinan, P.R. China
| | - Lilin Qian
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| | - Jinghui Lu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| | - Xiaoning Wang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| |
Collapse
|
16
|
Chang R, Cao W, Wang Y, Li S, Li X, Bose T, Si H. Melanodevriesia, a new genus of endolichenic oleaginous black yeast recovered from the Inner Mongolia Region of China. Fungal Syst Evol 2022; 9:1-9. [PMID: 35978989 PMCID: PMC9355103 DOI: 10.3114/fuse.2022.09.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
Black yeasts are a phylogenetically diverse group of ascomycetous fungi that may exist in both unicellular and mycelial morphs. This group of fungi contains numerous commercially significant species as well as others whose precise roles are unknown, such as endolichenic species. There is currently a paucity of data about endolichenic black yeast species. To bridge this gap, we surveyed China’s Inner Mongolia Autonomous Region in July 2019. Several fungal species associated with diverse lichens were isolated during this survey. Among these were two isolates of a previously unknown species of oleaginous black yeast from Mycosphaerellales. Analyses of morphological and molecular data revealed that these two isolates were closely related to Xenodevriesia strelitziicola (Xenodevriesiaceae), although with significant differences. As a result, we established the genus Melanodevriesiagen. nov. to describe this previously unknown species, Melanodevriesia melanelixiaesp. nov. In addition, we used Transmission Electron Microscopy to visualise the intracellular oil bodies metabolised by this fungus in its unicellular state. The black yeast species identified in this study may have a wide range of commercial applications. More research is needed to determine the chemical composition of the microbial oil synthesized by this fungus and whether it has commercial value. Citation: Chang R, Cao W, Wang Y, Li S, Li X, Bose T, Si HL (2022). Melanodevriesia, a new genus of endolichenic oleaginous black yeast recovered from the Inner Mongolia Region of China. Fungal Systematics and Evolution9: 1–9. doi: 10.3114/fuse.2022.09.01
Collapse
Affiliation(s)
- R. Chang
- College of Life Science, Shandong Normal University, Jinan 250000, Shandong, China
| | - W. Cao
- College of Life Science, Shandong Normal University, Jinan 250000, Shandong, China
| | - Y. Wang
- College of Life Science, Shandong Normal University, Jinan 250000, Shandong, China
| | - S. Li
- College of Life Science, Shandong Normal University, Jinan 250000, Shandong, China
| | - X. Li
- College of Life Science, Shandong Normal University, Jinan 250000, Shandong, China
| | - T. Bose
- Department of Biochemistry, Genetics & Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - H.L. Si
- College of Life Science, Shandong Normal University, Jinan 250000, Shandong, China
| |
Collapse
|
17
|
Xu K, Li R, Zhu R, Li X, Xu Y, He Q, Xie F, Qiao Y, Luan X, Lou H. Xylarins A-D, Two Pairs of Diastereoisomeric Isoindoline Alkaloids from the Endolichenic Fungus Xylaria sp. Org Lett 2021; 23:7751-7754. [PMID: 34605655 DOI: 10.1021/acs.orglett.1c02730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two pairs of diastereoisomeric isoindoline alkaloids, xylarins A-D (1-4), were isolated from the endolichenic fungus Xylaria sp. Xylarins A and B (1 and 2) possess a previously undescribed 5/6/5-5/6 polycyclic scaffold, featuring a combination of a novel dihydrobenzofurone unit and an isoindoline unit, while xylarins C and D (3 and 4) contain an additional N,N-dimethylaniline at the C-3' position. Their structures were elucidated by comprehensive spectroscopic analyses combined with single-crystal X-ray diffraction and electronic circular dichroism calculations. The plausible biosynthetic pathways and gene clusters for 1-4 were proposed. Compound 1 exhibited significant antithrombotic activity.
Collapse
Affiliation(s)
- Ke Xu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China.,Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China
| | - Ruijuan Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Rongxiu Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, People's Republic of China
| | - Yuliang Xu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Qiaobian He
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Fei Xie
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Yanan Qiao
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Xiaoyi Luan
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| |
Collapse
|
18
|
Wethalawe AN, Alwis YV, Udukala DN, Paranagama PA. Antimicrobial Compounds Isolated from Endolichenic Fungi: A Review. Molecules 2021; 26:molecules26133901. [PMID: 34202392 PMCID: PMC8271976 DOI: 10.3390/molecules26133901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/25/2022] Open
Abstract
A lichen is a symbiotic relationship between a fungus and a photosynthetic organism, which is algae or cyanobacteria. Endolichenic fungi are a group of microfungi that resides asymptomatically within the thalli of lichens. Endolichenic fungi can be recognized as luxuriant metabolic artists that produce propitious bioactive secondary metabolites. More than any other time, there is a worldwide search for new antibiotics due to the alarming increase in microbial resistance against the currently available therapeutics. Even though a few antimicrobial compounds have been isolated from endolichenic fungi, most of them have moderate activities, implying the need for further structural optimizations. Recognizing this timely need and the significance of endolichenic fungi as a promising source of antimicrobial compounds, the activity, sources and the structures of 31 antibacterial compounds, 58 antifungal compounds, two antiviral compounds and one antiplasmodial (antimalarial) compound are summarized in this review. In addition, an overview of the common scaffolds and structural features leading to the corresponding antimicrobial properties is provided as an aid for future studies. The current challenges and major drawbacks of research related to endolichenic fungi and the remedies for them have been suggested.
Collapse
Affiliation(s)
- A. Nethma Wethalawe
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10100, Sri Lanka; (A.N.W.); (Y.V.A.); (D.N.U.)
| | - Y. Vindula Alwis
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10100, Sri Lanka; (A.N.W.); (Y.V.A.); (D.N.U.)
| | - Dinusha N. Udukala
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10100, Sri Lanka; (A.N.W.); (Y.V.A.); (D.N.U.)
| | - Priyani A. Paranagama
- Department of Chemistry, University of Kelaniya, Kelaniya 11600, Sri Lanka
- Correspondence:
| |
Collapse
|
19
|
Zhai YJ, Li JN, Gao YQ, Gao LL, Wang DC, Han WB, Gao JM. Structurally Diverse Sesquiterpenoids with Anti-neuroinflammatory Activity from the Endolichenic Fungus Cryptomarasmius aucubae. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:325-332. [PMID: 33963522 PMCID: PMC8141073 DOI: 10.1007/s13659-021-00299-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 01/27/2021] [Indexed: 05/04/2023]
Abstract
Two new sterpurane sesquiterpenoids named sterpurol D (1) and sterpurol E (2), and one skeletally new sesquiterpene, cryptomaraone (3), bearing a 5,6-fused bicyclic ring system, along with five known ones, sterpurol A (4), sterpurol B (5), paneolilludinic Acid (6), murolane-2α, 9β-diol-3-ene (7) and (-)-10,11-dihydroxyfarnesol (8) were isolated from an endolichenic fungus Cryptomarasmius aucubae. The structures of the new compounds were elucidated by analysis of NMR spectroscopic spectra and HRESIMS data. The absolute configurations of 1 and 2 were established by spectroscopic data analysis and comparison of specific optical rotation, as well as the biosynthetic consideration. Additionally, compounds 1, 2, 4-6, and 8 showed significant nitric oxide (NO) production inhibition in Lipopolysaccharide (LPS)-induced BV-2 microglial cells with the IC50 values ranging from 9.06 to 14.81 μM.
Collapse
Affiliation(s)
- Yi-Jie Zhai
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jian-Nan Li
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yu-Qi Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Lin-Lin Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Da-Cheng Wang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
20
|
Tripathi AH, Negi N, Gahtori R, Kumari A, Joshi P, Tewari LM, Joshi Y, Bajpai R, Upreti DK, Upadhyay SK. A Review of Anti-Cancer and Related Properties of Lichen-Extracts and Metabolites. Anticancer Agents Med Chem 2021; 22:115-142. [PMID: 34225637 DOI: 10.2174/1871520621666210322094647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/08/2020] [Accepted: 01/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lichens are a composite consortium of fungus and alga. The symbiotic organisms are naturally equipped with distinct characteristics as compared to constituting organisms separately. Lichens due to their peculiar anatomy and physiology, are the reservoir of more than 600 unique secondary metabolites, also known as 'lichen substances'. Since ancient times, many ethnic groups from various parts of the world had knowledge about the applications of lichens as major provenance of food/fodder, medicine, dyes, spices, perfumes, etc. Lichen substances have shown impressive antioxidant, antimicrobial, antiviral, antitumor, and anti-inflammatory activities under experimental conditions. Usnic acid, a well-known metabolite, found in several species of lichens, possesses potent antioxidant and anti-inflammatory activities. It also has significant anti-proliferative potential as revealed through testing in different cancer cell lines. Atranorin, Lecanoric acid, Norstictic acid, Lobaric acid, Stictic acid, Ramalin, Gyrophoric acid, Salazinic acid, Protolichesterinic, and Fumarprotocetraric acid are some of the other purified lichen metabolites with potent anti-cancer activities. OBJECTIVE This study presents an overview of lichen derived extracts/compounds augmenting the anti-cancer (related) properties. METHOD The review comprehends different studies (in vivo and in vitro) backing up the possibility of lichen extracts and metabolites towards their use as antioxidant, anti-proliferative, anti-inflammatory and EMT-inhibiting agents. RESULTS The review focuses on anti-cancer and related properties of lichen extracts and metabolites that include their anti-oxidative, anti-inflammatory, anti-proliferative and pro-apoptotic, cancer stemness reduction, activities and, the potential of inhibition of cancer-associated Epithelial-mesenchymal transition (EMT) that is responsible for multiple drug-resistance and metastasis of cancer cells in a large proportion of cases. CONCLUSION Lichens can be the repertoire of a plethora of lichen metabolites with putative bioactive potential, which is needed to be explored in order to find out novel anti-cancer drugs.
Collapse
Affiliation(s)
- Ankita H Tripathi
- Department of Biotechnology, Kumaun University Campus, Bhimtal, Uttarakhand, India
| | - Nidhi Negi
- Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Rekha Gahtori
- Department of Biotechnology, Kumaun University Campus, Bhimtal, Uttarakhand, India-263136; b Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Amrita Kumari
- Department of Biotechnology, Kumaun University Campus, Bhimtal, Uttarakhand, India-263136; b Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Penny Joshi
- Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand. 0
| | - Lalit M Tewari
- Department of Botany, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Yogesh Joshi
- Department of Botany, University of Rajasthan, Jaipur, Rajasthan, India
| | - Rajesh Bajpai
- CSIR-National Botanical Research Institute, Lucknow, India
| | - Dalip K Upreti
- CSIR-National Botanical Research Institute, Lucknow, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Kumaun University Campus, Bhimtal, Uttarakhand, India
| |
Collapse
|
21
|
Biodiscovery of Potential Antibacterial Diagnostic Metabolites from the Endolichenic Fungus Xylaria venustula Using LC-MS-Based Metabolomics. BIOLOGY 2021; 10:biology10030191. [PMID: 33806264 PMCID: PMC8000601 DOI: 10.3390/biology10030191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 01/27/2023]
Abstract
Simple Summary In this study, we determined the bioactivities and chemical natures of three species of lichen Usnea and their associated endolichenic fungi (ELF) through metabolomics. We found significant differences in the antibacterial activities and the metabolites produced by the host lichen and its ELF, with the latter targeting a wider scope of organisms. We also discovered potential key metabolites produced by ELF that are yet to be reported. This study shows the application of metabolomics in rapidly identifying bioactive metabolites that are of significance in the discovery of new drugs. Abstract Three species of the lichen Usnea (U. baileyi (Stirt.) Zahlbr., U. bismolliuscula Zahlbr. and U. pectinata Stirt.) and nine associated endolichenic fungi (ELF) were evaluated using a metabolomics approach. All investigated lichen crude extracts afforded antibacterial activity against Staphylococcus aureus (minimum inhibitory concentration (MIC): 0.0625 mg/mL), but none was observed against Escherichia coli, while the ELF extract Xylaria venustula was found to be the most active against S. aureus (MIC: 2.5 mg/mL) and E. coli (MIC: 5 mg/mL). X. venustula was fractionated and tested for to determine its antibacterial activity. Fractions XvFr1 to 5 displayed bioactivities against both test bacteria. Selected crude extracts and fractions were subjected to metabolomics analyses using high-resolution LC–MS. Multivariate analyses showed the presence of five secondary metabolites unique to bioactive fractions XvFr1 to 3, which were identified as responsible for the antibacterial activity of X. venustula. The p-values of these metabolites were at the margin of significance level, with methyl xylariate C (P_60) being the most significant. However, their high variable importance of projection (VIP) scores (>5) suggest these metabolites are potential diagnostic metabolites for X. venustula for “dual” bioactivity against S. aureus and E. coli. The statistical models also showed the distinctiveness of metabolites produced by lichens and ELF, thus supporting our hypotheses of ELF functionality similar to plant endophytes.
Collapse
|
22
|
Singh A, Singh DK, Kharwar RN, White JF, Gond SK. Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms 2021; 9:197. [PMID: 33477910 PMCID: PMC7833388 DOI: 10.3390/microorganisms9010197] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/23/2022] Open
Abstract
Fungal endophytes are well-established sources of biologically active natural compounds with many producing pharmacologically valuable specific plant-derived products. This review details typical plant-derived medicinal compounds of several classes, including alkaloids, coumarins, flavonoids, glycosides, lignans, phenylpropanoids, quinones, saponins, terpenoids, and xanthones that are produced by endophytic fungi. This review covers the studies carried out since the first report of taxol biosynthesis by endophytic Taxomyces andreanae in 1993 up to mid-2020. The article also highlights the prospects of endophyte-dependent biosynthesis of such plant-derived pharmacologically active compounds and the bottlenecks in the commercialization of this novel approach in the area of drug discovery. After recent updates in the field of 'omics' and 'one strain many compounds' (OSMAC) approach, fungal endophytes have emerged as strong unconventional source of such prized products.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India;
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Dheeraj K. Singh
- Department of Botany, Harish Chandra Post Graduate College, Varanasi 221001, India
| | - Ravindra N. Kharwar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Surendra K. Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India;
| |
Collapse
|
23
|
Zhou X, Yang C, Meng Q, Liu L, Fu S. A new alkanol from the endolichenic fungus
Daldinia childiae. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuan Zhou
- School of Pharmacy Zunyi Medical University Zunyi China
| | - Cailing Yang
- School of Pharmacy Zunyi Medical University Zunyi China
| | - Qingfeng Meng
- Department of Public Health Zunyi Medical University Zunyi China
| | - Le Liu
- School of Pharmacy Zunyi Medical University Zunyi China
| | - Shaobin Fu
- School of Pharmacy Zunyi Medical University Zunyi China
| |
Collapse
|
24
|
Abstract
Interactions among microbes are key drivers of evolutionary progress and constantly shape ecological niches. Microorganisms rely on chemical communication to interact with each other and surrounding organisms. They synthesize natural products as signaling molecules, antibiotics, or modulators of cellular processes that may be applied in agriculture and medicine. Whereas major insight has been gained into the principles of intraspecies interaction, much less is known about the molecular basis of interspecies interplay. In this review, we summarize recent progress in the understanding of chemically mediated bacterial-fungal interrelations. We discuss pairwise interactions among defined species and systems involving additional organisms as well as complex interactions among microbial communities encountered in the soil or defined as microbiota of higher organisms. Finally, we give examples of how the growing understanding of microbial interactions has contributed to drug discovery and hypothesize what may be future directions in studying and engineering microbiota for agricultural or medicinal purposes.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07745 Jena, Germany
| |
Collapse
|
25
|
Xie F, Luan XY, Gao Y, Xu K, Lou HX. Cytotoxic Heptaketides from the Endolichenic Fungus Ulospora bilgramii. JOURNAL OF NATURAL PRODUCTS 2020; 83:1623-1633. [PMID: 32394716 DOI: 10.1021/acs.jnatprod.0c00108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Eleven new metabolites including nine heptaketides, ulosporin A-G (1a-7b), one diphenyl compound, ulophenol (8), and one spirobisnaphthalene, palmarumycin P5 (9), were isolated from the endolichenic fungus Ulospora bilgramii, which inhabits the lichen Umbilicaria sp. The structures of these compounds were elucidated based on comprehensive analysis of their spectroscopic, electronic circular dichroism (ECD), and single-crystal X-ray diffraction data. Ulosporin G (7) inhibited the growth of the human cancer cell lines A549, MCF-7, and KB with IC50 values of 1.3, 1.3, and 3.0 μM, respectively. Additionally, it induced A549 cell apoptosis through G0/G1 cell cycle arrest caused by DNA damage.
Collapse
Affiliation(s)
- Fei Xie
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan250012, People's Republic of China
| | - Xiao-Yi Luan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Yun Gao
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Ke Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Hong-Xiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| |
Collapse
|
26
|
Tan MA, Castro SG, Oliva PMP, Yap PRJ, Nakayama A, Magpantay HD, Dela Cruz TEE. Biodiscovery of antibacterial constituents from the endolichenic fungi isolated from Parmotrema rampoddense. 3 Biotech 2020; 10:212. [PMID: 32351870 DOI: 10.1007/s13205-020-02213-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/16/2020] [Indexed: 11/24/2022] Open
Abstract
A total of nine endolichenic fungi were isolated from the foliose lichen Parmotrema rampoddense (Nyl.) Hale. Of the nine endolichenic fungi, three taxa (Fusarium proliferatum, Nemania primolutea, Daldinia eschsholtzii) showed antibacterial activities as determined by the disk diffusion assay against ESKAPE bacterial pathogens. Fusarium proliferatum gave the most active fungal extract with zone of inhibition values of 15 mm and 19 mm against E. faecalis and S. aureus, respectively. Further chromatographic purification of the F. proliferatum ethyl acetate extract led to the isolation and identification of bis(2-ethylhexyl)terephthalate (1), acetyl tributyl citrate (2), and fusarubin (3). Acetyl tributyl citrate (2) exhibited moderate antibacterial activity against Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Mario A Tan
- 1The Graduate School, University of Santo Tomas, Manila, Philippines
- 2College of Science, University of Santo Tomas, Manila, Philippines
- 3Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- 7Department of Bionano Technology, Bionano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Sarleen G Castro
- 1The Graduate School, University of Santo Tomas, Manila, Philippines
- 4Department of Science and Technology, Science Education Institute, Bicutan, Taguig City, Philippines
| | | | - Paul Raymund J Yap
- 1The Graduate School, University of Santo Tomas, Manila, Philippines
- 4Department of Science and Technology, Science Education Institute, Bicutan, Taguig City, Philippines
| | - Atsushi Nakayama
- 5Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Hilbert D Magpantay
- 6Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Thomas Edison E Dela Cruz
- 1The Graduate School, University of Santo Tomas, Manila, Philippines
- 2College of Science, University of Santo Tomas, Manila, Philippines
- 3Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
27
|
Xu K, Li G, Zhu R, Xie F, Li Y, Yang W, Xu L, Shen T, Zhao Z, Lou H. Polyketides from the endolichenic fungus Eupenicillium javanicum and their anti-inflammatory activities. PHYTOCHEMISTRY 2020; 170:112191. [PMID: 31731236 DOI: 10.1016/j.phytochem.2019.112191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/24/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Seven undescribed polyketides javanicols A-E, 5-epi-citreoviridin and 5-epi-isocitreoviridin, together with five known compounds, were isolated from the endolichenic fungus Eupenicillium javanicum. The structures of these polyketides were determined by means of extensive spectroscopic analyses, electronic circular dichroism (ECD) calculations and gauge-independent atomic orbital (GIAO) NMR shift calculations. These compounds were evaluated for potential anti-inflammatory activity against LPS-activated RAW 264.7 cells. Javanicol E and (+)-terrein displayed moderate inhibitory effects on NO production, with IC50 values of 17.00 and 13.46 μM, respectively.
Collapse
Affiliation(s)
- Ke Xu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, People's Republic of China
| | - Rongxiu Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Fei Xie
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Yuelan Li
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Wenjing Yang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Lintao Xu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Tao Shen
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Zuntian Zhao
- College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, People's Republic of China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China.
| |
Collapse
|
28
|
Prateeksha, Bajpai R, Yusuf MA, Upreti DK, Gupta VK, Singh BN. Endolichenic fungus, Aspergillus quandricinctus of Usnea longissima inhibits quorum sensing and biofilm formation of Pseudomonas aeruginosa PAO1. Microb Pathog 2019; 140:103933. [PMID: 31862392 DOI: 10.1016/j.micpath.2019.103933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/19/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
Lichens are composite organisms, comprising of a fungus (mycobiont) and a blue-green alga (photobiont). Along with the mycobiont, numerous non-obligate microfungi live in lichen thalli. These microfungi are called endolichenic fungi (ELF). In recent years, the ELF are emerging as promising natural sources because of their capability to exert unique drug molecules. The current study aimed to isolate the ELF from the lichen, Usnea longissima Ach., to control of biofilm formation and quorum sensing phenomenon in Pseudomonas aeruginosa PAO1, an opportunistic multidrug resistance pathogen that uses quorum sensing network to produce an array of pathogenic agents. Therefore, inhibiting quorum sensing to manage the infection caused by PAO1 could be the paramount alternative approach to conventional antibiotics. The isolated ELF was identified by amplifying the long subunit region of the fungal genome. The extracted metabolites of ELF (MELE) using the acetone solvent was further investigated for anti-quorum sensing activity using the biomarker strain Chromobacterium violaceum 12472 which exerts violacein pigment via the AHL mediated quorum sensing signalling. Moreover, the effect of MELE was also evaluated on the production of virulence factors and biofilm formation of P. aeruginosa PAO1. The molecular identification revealed that ELF (accession number MN171299) exhibited 100% similarity with Aspergillus quandricinctus strain CBS 135.52. The MELE showed significant anti-quorum sensing activity at the concentration of 4 mg/mL without affecting the bacterial cell viability of P. aeruginosa PAO1. The MELE diminished the production of virulence factors, including pyocyanin, protease, elastase, rhamnolipids, and extracellular polysaccharides of P. aeruginosa PAO1 in a concentration-dependent manner. The MELE also disturbed biofilm formation of P. aeruginosa PAO1. The 3-D analysis of biofilm architecture showed that the thickness and surface area covered by microcolonies was decreased as the concentration of MELE was increased. The GC-MS analysis of MELE exhibited that organic acids and fatty acids are major constituents of the MELE. The present study reports first time that the ELF, A. quandricinctus possesses potential to inhibit quorum sensing and biofilm formation of P. aeruginosa and can be further exploited for hospital and healthcare facilities.
Collapse
Affiliation(s)
- Prateeksha
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India; Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Rajesh Bajpai
- Lichenology Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow, 226016, Uttar Pradesh, India
| | - Dalip Kumar Upreti
- Lichenology Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | - Brahma Nand Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
29
|
Kawakami H, Suzuki C, Yamaguchi H, Hara K, Komine M, Yamamoto Y. Norlichexanthone produced by cultured endolichenic fungus induced from Pertusaria laeviganda and its antioxidant activity. Biosci Biotechnol Biochem 2019; 83:996-999. [DOI: 10.1080/09168451.2019.1585746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
Endolichenic fungi, nonobligate microfungi that live in lichen, are promising as new bioresources of pharmacological compounds. We found that norlichexanthone isolated from the endolichenic fungus in Pertusaria laeviganda exhibited high antioxidant activity. Norlichexanthone produced by endolichenic fungus had the antioxidant activity with same level of ascorbic acid. This is the first report of high antioxidant activity of norlichexanthone.
Abbreviations: AAPH: 2,2ʹ-azobis (2-methylpropionamidine) dihydrochloride; DPPH: 2,2-diphenyl-1-picrylhydrazyl; FL: fluorescein sodium salt; HPLC-PDA: high-performance liquid chromatography with photodiode array; LC-ESI-MS: liquid chromatography with electrospray ionization mass spectrometry; ORAC: oxygen radical absorbance capacity; PB: phosphate buffer; ROS: reactive oxygen species; TLC: thin-layer chromatography
Collapse
Affiliation(s)
- Hiroko Kawakami
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Chihiro Suzuki
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Haruka Yamaguchi
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Kojiro Hara
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Masashi Komine
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Yoshikazu Yamamoto
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| |
Collapse
|
30
|
Chen M, Wang R, Zhao W, Yu L, Zhang C, Chang S, Li Y, Zhang T, Xing J, Gan M, Feng F, Si S. Isocoumarindole A, a Chlorinated Isocoumarin and Indole Alkaloid Hybrid Metabolite from an Endolichenic Fungus Aspergillus sp. Org Lett 2019; 21:1530-1533. [PMID: 30785290 DOI: 10.1021/acs.orglett.9b00385] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isocoumarindole A (1), a novel polyketide synthetase-nonribosomal peptide synthetase (PKS-NRPS) hybrid metabolite, was isolated from the endolichenic fungus Aspergillus sp. CPCC 400810. The structure of isocoumarindole A (1) was featured by an unprecedented skeleton containing chlorinated isocoumarin and indole diketopiperazine alkaloid moieties linked by a carbon-carbon bond, which was determined by a combination of spectroscopic analyses, Marfey's method, and calculations of NMR chemical shifts, ECD spectra, and optical rotation values. Isocoumarindole A showed significant cytotoxicity and mild antifungal activities.
Collapse
Affiliation(s)
- Minghua Chen
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China.,Key Laboratory for Uighur Medicine , Institute of Materia Medica of Xinjiang Uygur Autonomous Region , Urumqi 830004 , People's Republic of China
| | - Renzhong Wang
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China.,Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Wuli Zhao
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Liyan Yu
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Conghui Zhang
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Shanshan Chang
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Yan Li
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Tao Zhang
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Jianguo Xing
- Key Laboratory for Uighur Medicine , Institute of Materia Medica of Xinjiang Uygur Autonomous Region , Urumqi 830004 , People's Republic of China
| | - Maoluo Gan
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Shuyi Si
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| |
Collapse
|
31
|
Prateeksha, Yusuf MA, Singh BN, Sudheer S, Kharwar RN, Siddiqui S, Abdel-Azeem AM, Fernandes Fraceto L, Dashora K, Gupta VK. Chrysophanol: A Natural Anthraquinone with Multifaceted Biotherapeutic Potential. Biomolecules 2019; 9:E68. [PMID: 30781696 PMCID: PMC6406798 DOI: 10.3390/biom9020068] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Chrysophanol is a unique anthraquinone having broad-spectrum therapeutic potential along with ecological importance. It is the first polyketide that has been reported to be biosynthesized in an organism-specific manner. The traditional Chinese and Korean medicinal systems provide evidence of the beneficial effects of chrysophanol on human health. The global distribution of chrysophanol encountered in two domains of life (bacteria and eukaryota) has motivated researchers to critically evaluate the properties of this compound. A plethora of literature is available on the pharmacological properties of chrysophanol, which include anticancer, hepatoprotective, neuroprotective, anti-inflammatory, antiulcer, and antimicrobial activities. However, the pharmacokinetics and toxicity studies on chrysophanol demand further investigations for it to be used as a drug. This is the first comprehensive review on the natural sources, biosynthetic pathways, and pharmacology of chrysophanol. Here we reviewed recent advancements made on the pharmacokinetics of the chrysophanol. Additionally, we have highlighted the knowledge gaps of its mechanism of action against diseases and toxicity aspects.
Collapse
Affiliation(s)
- Prateeksha
- Department of Biosciences, Integral University, Lucknow-226026, Uttar Pradesh, India;
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, Uttar Pradesh, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow-226016, Uttar Pradesh, India;
| | - Brahma N. Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, Uttar Pradesh, India
| | - Surya Sudheer
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia;
| | - Ravindra N. Kharwar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India;
| | - Saba Siddiqui
- Integral Institute of Agricultural Science and Technology (IIAST), Integral University, Lucknow-226026, Uttar Pradesh, India;
| | - Ahmed M. Abdel-Azeem
- Botany Department, Faculty of Science, University of Suez Canal, Ismailia 41522, Egypt;
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology of Sorocaba, São Paulo State University–Unesp, Sorocaba–São Paulo 18087-180, Brazil;
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India;
| | - Vijai K. Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia;
| |
Collapse
|
32
|
Lagarde A, Millot M, Pinon A, Liagre B, Girardot M, Imbert C, Ouk T, Jargeat P, Mambu L. Antiproliferative and antibiofilm potentials of endolichenic fungi associated with the lichen
Nephroma laevigatum. J Appl Microbiol 2019; 126:1044-1058. [DOI: 10.1111/jam.14188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/21/2018] [Accepted: 12/26/2018] [Indexed: 12/17/2022]
Affiliation(s)
- A. Lagarde
- Département de Pharmacognosie Laboratoire PEIRENE – EA 7500 Université de Limoges Limoges France
| | - M. Millot
- Département de Pharmacognosie Laboratoire PEIRENE – EA 7500 Université de Limoges Limoges France
| | - A. Pinon
- Laboratoire PEIRENE – EA 7500 Université de Limoges Limoges France
| | - B. Liagre
- Laboratoire PEIRENE – EA 7500 Université de Limoges Limoges France
| | - M. Girardot
- UMR CNRS 7267, Laboratoire Écologie et biologie des interactions Université de Poitiers Poitiers France
| | - C. Imbert
- UMR CNRS 7267, Laboratoire Écologie et biologie des interactions Université de Poitiers Poitiers France
| | - T.S. Ouk
- Laboratoire PEIRENE – EA 7500 Université de Limoges Limoges France
| | - P. Jargeat
- UMR 5174 UPS‐CNRS‐IRD, Laboratoire Évolution et Diversité Biologique Université de Toulouse 3 Toulouse France
| | - L. Mambu
- Département de Pharmacognosie Laboratoire PEIRENE – EA 7500 Université de Limoges Limoges France
| |
Collapse
|
33
|
Li YL, Zhu RX, Li G, Wang NN, Liu CY, Zhao ZT, Lou HX. Secondary metabolites from the endolichenic fungus Ophiosphaerella korrae. RSC Adv 2019; 9:4140-4149. [PMID: 35520149 PMCID: PMC9060614 DOI: 10.1039/c8ra10329a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/12/2019] [Indexed: 12/28/2022] Open
Abstract
The isolation of the cytotoxic fractions from the endolichenic fungus Ophiosphaerella korrae yielded six new metabolites, including five polyketides (ophiofuranones A (1) and B (2), with unusual furopyran-3,4-dione-fused heterocyclic skeletons, ophiochromanone (3), ophiolactone (4), and ophioisocoumarin (5)), one sesquiterpenoid ophiokorrin (10), and nine known compounds. Their structures were established on the basis of the analysis of HRESIMS and NMR spectroscopic data. ECD calculations, GIAO NMR shift calculations and single-crystal X-ray diffraction were employed for the stereo-structure determination. A plausible biogenetic pathway for the ophiofuranones A (1) and B (2) was proposed. The cytotoxic assay suggested that the five known perylenequinones mainly contributed to the cytoxicity of the extract. Further phytotoxic studies indicated that ophiokorrin inhibited root elongation in the germination of Arabidopsis thaliana with an IC50 value of 18.06 μg mL−1. Six new metabolites were isolated from the endolichenic fungus Ophiosphaerella korrae. Ophiokorrin inhibited root elongation in the germination of Arabidopsis thaliana.![]()
Collapse
Affiliation(s)
- Yue-Lan Li
- Department of Natural Product Chemistry
- Key Lab of Chemical Biology (MOE)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
| | - Rong-Xiu Zhu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- People's Republic of China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy
- School of Pharmacy
- Qingdao University
- Qingdao 266021
- People's Republic of China
| | - Ning-Ning Wang
- Department of Natural Product Chemistry
- Key Lab of Chemical Biology (MOE)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
| | - Chun-Yu Liu
- Department of Natural Product Chemistry
- Key Lab of Chemical Biology (MOE)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
| | - Zun-Tian Zhao
- College of Life Sciences
- Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Hong-Xiang Lou
- Department of Natural Product Chemistry
- Key Lab of Chemical Biology (MOE)
- School of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
| |
Collapse
|
34
|
Fungal Diversity in Lichens: From Extremotolerance to Interactions with Algae. Life (Basel) 2018; 8:life8020015. [PMID: 29789469 PMCID: PMC6027233 DOI: 10.3390/life8020015] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022] Open
Abstract
Lichen symbioses develop long-living thallus structures even in the harshest environments on Earth. These structures are also habitats for many other microscopic organisms, including other fungi, which vary in their specificity and interaction with the whole symbiotic system. This contribution reviews the recent progress regarding the understanding of the lichen-inhabiting fungi that are achieved by multiphasic approaches (culturing, microscopy, and sequencing). The lichen mycobiome comprises a more or less specific pool of species that can develop symptoms on their hosts, a generalist environmental pool, and a pool of transient species. Typically, the fungal classes Dothideomycetes, Eurotiomycetes, Leotiomycetes, Sordariomycetes, and Tremellomycetes predominate the associated fungal communities. While symptomatic lichenicolous fungi belong to lichen-forming lineages, many of the other fungi that are found have close relatives that are known from different ecological niches, including both plant and animal pathogens, and rock colonizers. A significant fraction of yet unnamed melanized (‘black’) fungi belong to the classes Chaethothyriomycetes and Dothideomycetes. These lineages tolerate the stressful conditions and harsh environments that affect their hosts, and therefore are interpreted as extremotolerant fungi. Some of these taxa can also form lichen-like associations with the algae of the lichen system when they are enforced to symbiosis by co-culturing assays.
Collapse
|
35
|
Muggia L, Kraker S, Gößler T, Grube M. Enforced fungal-algal symbioses in alginate spheres. FEMS Microbiol Lett 2018; 365:4992738. [DOI: 10.1093/femsle/fny115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Lucia Muggia
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy
| | - Sigrun Kraker
- Institut of Plant Sciences, University of Graz, Holteigasse 6, 8010 Graz, Austria
| | - Theodora Gößler
- Institut of Plant Sciences, University of Graz, Holteigasse 6, 8010 Graz, Austria
| | - Martin Grube
- Institut of Plant Sciences, University of Graz, Holteigasse 6, 8010 Graz, Austria
| |
Collapse
|
36
|
Lagarde A, Jargeat P, Roy M, Girardot M, Imbert C, Millot M, Mambu L. Fungal communities associated with Evernia prunastri, Ramalina fastigiata and Pleurosticta acetabulum: Three epiphytic lichens potentially active against Candida biofilms. Microbiol Res 2018; 211:1-12. [PMID: 29705201 DOI: 10.1016/j.micres.2018.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/07/2018] [Accepted: 03/17/2018] [Indexed: 11/26/2022]
Abstract
Fungal communities associated to three epiphytic lichens active against Candida, were investigated using culture-based methods We hypothetized that associated fungi would contribute to lichens activities. The ability of specific fungi to grow inside or outside lichens was investigated. To detect biogenesis pathways involved in the production of secondary metabolites, genes coding for nonribosomal peptide synthetase (NRPS) and polyketide synthase I (PKS I) were screened by PCR from fungal DNA extracts. Both endo and epilichenic communities were isolated from two fructicose (Evernia prunastri and Ramalina fastigiata) and one foliose (Pleurosticta acetabulum) lichens. A total of 86 endolichenic and 114 epilichenic isolates were obtained, corresponding to 18 and 24 phylogenetic groups respectively suggesting a wide diversity of fungi. The communities and the species richness were distinct between the three lichens which hosted potentially new fungal species. Additionally, the endo- and epilichenic communities differed in their composition: Sordariomycetes were particularly abundant among endolichenic fungi and Dothideomycetes among epilichenic fungi. Only a few fungi colonized both habitats, such as S. fimicola, Cladosporium sp1 and Botrytis cinerea. Interestingly, Nemania serpens (with several genotypes) was the most abundant endolichenic fungus (53% of isolates) and was shared by the three lichens. Finally, 12 out of 36 phylogenetic groups revealed the presence of genes coding for nonribosomal peptide synthetase (NRPs) and polyketide synthase I (PKS I). This study shows that common lichens are reservoirs of diverse fungal communities, which could potentially contribute to global activity of the lichen and, therefore, deserve to be isolated for further chemical studies.
Collapse
Affiliation(s)
- Aurélie Lagarde
- EA 1069 Laboratoire de Chimie des Substances Naturelles, Faculté de Pharmacie, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | - Patricia Jargeat
- UMR5174 UPS-CNRS-IRD Laboratoire Evolution et Diversité Biologique, EDB, Université Toulouse, 3, Bât 4R1, 118 route de Narbonne, 31062 Toulouse, France
| | - Mélanie Roy
- UMR5174 UPS-CNRS-IRD Laboratoire Evolution et Diversité Biologique, EDB, Université Toulouse, 3, Bât 4R1, 118 route de Narbonne, 31062 Toulouse, France
| | - Marion Girardot
- Laboratoire Ecologie et Biologie des Interactions, Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers, France
| | - Christine Imbert
- Laboratoire Ecologie et Biologie des Interactions, Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers, France
| | - Marion Millot
- EA 1069 Laboratoire de Chimie des Substances Naturelles, Faculté de Pharmacie, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | - Lengo Mambu
- EA 1069 Laboratoire de Chimie des Substances Naturelles, Faculté de Pharmacie, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges Cedex, France.
| |
Collapse
|
37
|
Calcott MJ, Ackerley DF, Knight A, Keyzers RA, Owen JG. Secondary metabolism in the lichen symbiosis. Chem Soc Rev 2018; 47:1730-1760. [PMID: 29094129 DOI: 10.1039/c7cs00431a] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lichens, which are defined by a core symbiosis between a mycobiont (fungal partner) and a photobiont (photoautotrophic partner), are in fact complex assemblages of microorganisms that constitute a largely untapped source of bioactive secondary metabolites. Historically, compounds isolated from lichens have predominantly been those produced by the dominant fungal partner, and these continue to be of great interest for their unique chemistry and biotechnological potential. In recent years it has become apparent that many photobionts and lichen-associated bacteria also produce a range of potentially valuable molecules. There is evidence to suggest that the unique nature of the symbiosis has played a substantial role in shaping many aspects of lichen chemistry, for example driving bacteria to produce metabolites that do not bring them direct benefit but are useful to the lichen as a whole. This is most evident in studies of cyanobacterial photobionts, which produce compounds that differ from free living cyanobacteria and are unique to symbiotic organisms. The roles that these and other lichen-derived molecules may play in communication and maintaining the symbiosis are poorly understood at present. Nonetheless, advances in genomics, mass spectrometry and other analytical technologies are continuing to illuminate the wealth of biological and chemical diversity present within the lichen holobiome. Implementation of novel biodiscovery strategies such as metagenomic screening, coupled with synthetic biology approaches to reconstitute, re-engineer and heterologously express lichen-derived biosynthetic gene clusters in a cultivable host, offer a promising means for tapping into this hitherto inaccessible wealth of natural products.
Collapse
Affiliation(s)
- Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, New Zealand.
| | | | | | | | | |
Collapse
|
38
|
Li Y, Zhu R, Zhang J, Xie F, Wang X, Xu K, Qiao Y, Zhao Z, Lou H. Ophiosphaerellins A-I, Polyketide-Derived Compounds from the Endolichenic Fungus Ophiosphaerella korrae. ACS OMEGA 2018; 3:176-180. [PMID: 30023771 PMCID: PMC6045351 DOI: 10.1021/acsomega.7b01668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/25/2017] [Indexed: 05/17/2023]
Abstract
Ophiosphaerellins A-I (1-9), the first example of bicyclo[4.1.0]heptenones, as well as their biosynthetic relatives ophiosphaerekorrins A-B (10-11) were isolated from the endolichenic fungus Ophiosphaerella korrae. Biosynthetically, they were derived from the polyketide pathway, and their absolute configurations were determined on the basis of the combination analysis of spectral data, circular dichroism calculations, and single-crystal X-ray diffraction measurement. Preliminary test with thin-layer chromatography bioautography found that this type of compounds showed moderate acetylcholinesterase (AChE) inhibitory effects.
Collapse
Affiliation(s)
- Yuelan Li
- Department
of Natural Products Chemistry, Key Lab of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Shandong
University, No. 44 West
Wenhua Road, Jinan 250012, People’s Republic of China
| | - Rongxiu Zhu
- School
of Chemistry and Chemical Engineering, Shandong
University, No. 27 Shanda
Nanlu, Jinan 250100, People’s Republic of China
| | - Jiaozhen Zhang
- Department
of Natural Products Chemistry, Key Lab of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Shandong
University, No. 44 West
Wenhua Road, Jinan 250012, People’s Republic of China
| | - Fei Xie
- Department
of Natural Products Chemistry, Key Lab of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Shandong
University, No. 44 West
Wenhua Road, Jinan 250012, People’s Republic of China
| | - Xiaoning Wang
- Department
of Natural Products Chemistry, Key Lab of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Shandong
University, No. 44 West
Wenhua Road, Jinan 250012, People’s Republic of China
| | - Ke Xu
- Department
of Natural Products Chemistry, Key Lab of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Shandong
University, No. 44 West
Wenhua Road, Jinan 250012, People’s Republic of China
| | - Yanan Qiao
- Department
of Natural Products Chemistry, Key Lab of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Shandong
University, No. 44 West
Wenhua Road, Jinan 250012, People’s Republic of China
| | - Zuntian Zhao
- College
of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, People’s Republic of China
| | - Hongxiang Lou
- Department
of Natural Products Chemistry, Key Lab of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Shandong
University, No. 44 West
Wenhua Road, Jinan 250012, People’s Republic of China
- E-mail:
| |
Collapse
|