1
|
Khalaf AT, Abdalla AN, Ren K, Liu X. Cold atmospheric plasma (CAP): a revolutionary approach in dermatology and skincare. Eur J Med Res 2024; 29:487. [PMID: 39367460 PMCID: PMC11453049 DOI: 10.1186/s40001-024-02088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
Cold atmospheric plasma (CAP) technology has emerged as a revolutionary therapeutic technology in dermatology, recognized for its safety, effectiveness, and minimal side effects. CAP demonstrates substantial antimicrobial properties against bacteria, viruses, and fungi, promotes tissue proliferation and wound healing, and inhibits the growth and migration of tumor cells. This paper explores the versatile applications of CAP in dermatology, skin health, and skincare. It provides an in-depth analysis of plasma technology, medical plasma applications, and CAP. The review covers the classification of CAP, its direct and indirect applications, and the penetration and mechanisms of action of its active components in the skin. Briefly introduce CAP's suppressive effects on microbial infections, detailing its impact on infectious skin diseases and its specific effects on bacteria, fungi, viruses, and parasites. It also highlights CAP's role in promoting tissue proliferation and wound healing and its effectiveness in treating inflammatory skin diseases such as psoriasis, atopic dermatitis, and vitiligo. Additionally, the review examines CAP's potential in suppressing tumor cell proliferation and migration and its applications in cosmetic and skincare treatments. The therapeutic potential of CAP in treating immune-mediated skin diseases is also discussed. CAP presents significant promise as a dermatological treatment, offering a safe and effective approach for various skin conditions. Its ability to operate at room temperature and its broad spectrum of applications make it a valuable tool in dermatology. Finally, introduce further research is required to fully elucidate its mechanisms, optimize its use, and expand its clinical applications.
Collapse
Grants
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
Collapse
Affiliation(s)
- Ahmad Taha Khalaf
- Medical College, Anhui University of Science and Technology (AUST), Huainan, 232001, China
| | - Ahmed N Abdalla
- Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kaixuan Ren
- Department of Dermatology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710006, China
| | - Xiaoming Liu
- Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Zheng M, Ma X, Tan J, Zhao H, Yang Y, Ye X, Liu M, Li H. Enhancement of Biocompatibility of High-Transparency Zirconia Abutments with Human Gingival Fibroblasts via Cold Atmospheric Plasma Treatment: An In Vitro Study. J Funct Biomater 2024; 15:200. [PMID: 39057321 PMCID: PMC11277629 DOI: 10.3390/jfb15070200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The objective of this study was to explore the effects of cold atmospheric plasma (CAP) treatment on the biological behavior of human gingival fibroblasts (HGFs) cultured on the surface of high-transparency zirconia. Two types of zirconia, 3Y-ZTP and 4Y-PSZ, were subjected to a CAP treatment for various treatment durations. Analyses of the physical and chemical properties of 3Y-ZTP and 4Y-PSZ were conducted using scanning electron microscopy, contact angle measurements, and X-ray photoelectron spectroscopy, both before and after CAP treatment. The biological responses of HGFs on both surfaces were assessed using CCK-8 assay, confocal laser scanning microscopy, and real-time PCR. Initially, the oxygen and hydroxyl contents on the surface of 4Y-PSZ exceeded those on 3Y-ZTP. CAP treatment enhanced the surface hydrophilicity and the reactive oxygen species (ROS) content of 4Y-PSZ, while not altering the surface morphology. After CAP treatment, HGFs' adhesion on 4Y-PSZ was superior, with more pronounced effects compared to 3Y-ZTP. Notably, HGFs counts and the expression of adhesion-related genes on 4Y-PSZ peaked following the CAP exposures for 30 s and 60 s. Consequently, this study demonstrates that, following identical CAP treatments, 4Y-PSZ is more effective in promoting HGFs adhesion compared to traditional 3Y-ZTP zirconia.
Collapse
Affiliation(s)
- Miao Zheng
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China; (M.Z.); (X.M.)
| | - Xinrong Ma
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China; (M.Z.); (X.M.)
| | - Jianguo Tan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (J.T.); (Y.Y.); (X.Y.)
| | - Hengxin Zhao
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
| | - Yang Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (J.T.); (Y.Y.); (X.Y.)
| | - Xinyi Ye
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (J.T.); (Y.Y.); (X.Y.)
| | - Mingyue Liu
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100034, China
| | - Heping Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
3
|
Dai XF, Yang YX, Yang BZ. Glycosylation editing: an innovative therapeutic opportunity in precision oncology. Mol Cell Biochem 2024:10.1007/s11010-024-05033-w. [PMID: 38861100 DOI: 10.1007/s11010-024-05033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/06/2024] [Indexed: 06/12/2024]
Abstract
Cancer is still one of the most arduous challenges in the human society, even though humans have found many ways to try to conquer it. With our incremental understandings on the impact of sugar on human health, the clinical relevance of glycosylation has attracted our attention. The fact that altered glycosylation profiles reflect and define different health statuses provide novel opportunities for cancer diagnosis and therapeutics. By reviewing the mechanisms and critical enzymes involved in protein, lipid and glycosylation, as well as current use of glycosylation for cancer diagnosis and therapeutics, we identify the pivotal connection between glycosylation and cellular redox status and, correspondingly, propose the use of redox modulatory tools such as cold atmospheric plasma (CAP) in cancer control via glycosylation editing. This paper interrogates the clinical relevance of glycosylation on cancer and has the promise to provide new ideas for laboratory practice of cold atmospheric plasma (CAP) and precision oncology therapy.
Collapse
Affiliation(s)
- Xiao-Feng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Yi-Xuan Yang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Bo-Zhi Yang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| |
Collapse
|
4
|
Stapelmann K, Gershman S, Miller V. Plasma-liquid interactions in the presence of organic matter-A perspective. JOURNAL OF APPLIED PHYSICS 2024; 135:160901. [PMID: 38681528 PMCID: PMC11055635 DOI: 10.1063/5.0203125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
As investigations in the biomedical applications of plasma advance, a demand for describing safe and efficacious delivery of plasma is emerging. It is quite clear that not all plasmas are "equal" for all applications. This Perspective discusses limitations of the existing parameters used to define plasma in context of the need for the "right plasma" at the "right dose" for each "disease system." The validity of results extrapolated from in vitro studies to preclinical and clinical applications is discussed. We make a case for studying the whole system as a single unit, in situ. Furthermore, we argue that while plasma-generated chemical species are the proposed key effectors in biological systems, the contribution of physical effectors (electric fields, surface charging, dielectric properties of target, changes in gap electric fields, etc.) must not be ignored.
Collapse
Affiliation(s)
- Katharina Stapelmann
- Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Sophia Gershman
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - Vandana Miller
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
5
|
Yan C, Zhao L, Zhang X, Chu Z, Zhou T, Zhang Y, Geng S, Guo K. Cold atmospheric plasma sensitizes melanoma cells to targeted therapy agents in vitro. JOURNAL OF BIOPHOTONICS 2024; 17:e202300356. [PMID: 38041219 DOI: 10.1002/jbio.202300356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Cold atmospheric plasma (CAP) has been reported to kill melanoma cells in vitro and in vivo. BRAF and MEK inhibitors are targeted therapy agents for advanced melanoma patients with BRAF mutations. However, low overall survival and relapse-free survival are still tough challenges due to drug resistance. In this study, we confirmed that CAP alleviated innate drug resistance and promoted the anti-tumor effect of targeted therapy in A875 and WM115 melanoma cells in vitro. Further, we revealed that CAP altered the expression of various molecules concerning MAPK and PI3K-AKT pathways in A875 cells. This study demonstrates that CAP promises to work as adjuvant treatment with targeted therapy to overcome drug resistance for malignant tumors in future.
Collapse
Affiliation(s)
- Cong Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lihong Zhao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyue Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tong Zhou
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| |
Collapse
|
6
|
Bakhtiyari-Ramezani M, Nohekhan M, Akbari ME, Abbasvandi F, Bayat M, Akbari A, Nasiri M. Comparative assessment of direct and indirect cold atmospheric plasma effects, based on helium and argon, on human glioblastoma: an in vitro and in vivo study. Sci Rep 2024; 14:3578. [PMID: 38347045 PMCID: PMC10861458 DOI: 10.1038/s41598-024-54070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/08/2024] [Indexed: 02/15/2024] Open
Abstract
Recent research has highlighted the promising potential of cold atmospheric plasma (CAP) in cancer therapy. However, variations in study outcomes are attributed to differences in CAP devices and plasma parameters, which lead to diverse compositions of plasma products, including electrons, charged particles, reactive species, UV light, and heat. This study aimed to evaluate and compare the optimal exposure time, duration, and direction-dependent cellular effects of two CAPs, based on argon and helium gases, on glioblastoma U-87 MG cancer cells and an animal model of GBM. Two plasma jets were used as low-temperature plasma sources in which helium or argon gas was ionized by high voltage (4.5 kV) and frequency (20 kHz). In vitro assessments on human GBM and normal astrocyte cell lines, using MTT assays, flow cytometry analysis, wound healing assays, and immunocytochemistry for Caspase3 and P53 proteins, demonstrated that all studied plasma jets, especially indirect argon CAP, selectively induced apoptosis, hindered tumor cell growth, and inhibited migration. These effects occurred concurrently with increased intracellular levels of reactive oxygen species and decreased total antioxidant capacity in the cells. In vivo results further supported these findings, indicating that single indirect argon and direct helium CAP therapy, equal to high dose Temozolomide treatment, induced tumor cell death in a rat model of GBM. This was concurrent with a reduction in tumor size observed through PET-CT scan imaging and a significant increase in the survival rate. Additionally, there was a decrease in GFAP protein levels, a significant GBM tumor marker, and an increase in P53 protein expression based on immunohistochemical analyses. Furthermore, Ledge beam test analysis revealed general motor function improvement after indirect argon CAP therapy, similar to Temozolomide treatment. Taken together, these results suggest that CAP therapy, using indirect argon and direct helium jets, holds great promise for clinical applications in GBM treatment.
Collapse
Affiliation(s)
- Mahdiyeh Bakhtiyari-Ramezani
- Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14399-53991, Tehran, Iran.
| | - Mojtaba Nohekhan
- Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14399-53991, Tehran, Iran
| | | | - Fereshteh Abbasvandi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Research Institute, ACECR, Tehran, Iran
| | - Mahdis Bayat
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Research Institute, ACECR, Tehran, Iran
| | - Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Nasiri
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
7
|
Aggarwal Y, Vaid A, Visani A, Rane R, Joseph A, Mukherjee S, Tripathi M, Chandra PS, Doddamani R, Dixit AB, Banerjee J. Cold atmospheric plasma (CAP) treatment increased reactive oxygen and nitrogen species (RONS) levels in tumor samples obtained from patients with low-grade glioma. Biomed Phys Eng Express 2024; 10:025018. [PMID: 38241730 DOI: 10.1088/2057-1976/ad20a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Low-grade gliomas (LGGs) are a heterogeneous group of tumors with an average 10-year survival rate of 40%-55%. Current treatment options include chemotherapy, radiotherapy, and gross total resection (GTR) of the tumor. The extent of resection (EOR) plays an important role in improving surgical outcomes. However, the major obstacle in treating low-grade gliomas is their diffused nature and the presence of residual cancer cells at the tumor margins post resection. Cold Atmospheric Plasma (CAP) has shown to be effective in targeted killing of tumor cells in various glioma cell lines without affecting non-tumor cells through Reactive Oxygen and Nitrogen Species (RONS). However, no study on the effectiveness of CAP has been carried out in LGG tissues till date. In this study, we applied helium-based CAP on tumor tissues resected from LGG patients. Our results show that CAP is effective in promoting RONS accumulation in LGG tissues when CAP jet parameters are set at 4 kV voltage, 5 min treatment time and 3 lpm gas flow rate. We also observed that CAP jet is more effective in thinner slice preparations of tumor as compared to thick tumor samples. Our results indicate that CAP could prove to be an effective adjunct therapy in glioma surgery to target residual cancer cells to improve surgical outcome of patients with low-grade glioma.
Collapse
Affiliation(s)
- Yogesh Aggarwal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Akshay Vaid
- Institute of Plasma Research, Gandhinagar, Gujarat, India
| | - Anand Visani
- Institute of Plasma Research, Gandhinagar, Gujarat, India
| | | | | | | | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ramesh Doddamani
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
8
|
Dai X, Wu J, Lu L, Chen Y. Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy. Biomol Ther (Seoul) 2023; 31:496-514. [PMID: 37641880 PMCID: PMC10468422 DOI: 10.4062/biomolther.2023.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 08/31/2023] Open
Abstract
Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiale Wu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lianghui Lu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyu Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
9
|
Low temperature plasma suppresses proliferation, invasion, migration and survival of SK-BR-3 breast cancer cells. Mol Biol Rep 2023; 50:2025-2031. [PMID: 36538172 DOI: 10.1007/s11033-022-08026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Low temperature plasma (LTP) is a developing field in recent years to play important roles of sterilization, material modification and wound healing. Breast cancer is a common gynecological malignant tumor. Recent studies have shown that LTP is a promising selective anti-cancer treatment. The effect of LTP on breast cancer is still unclear. In this study, We treated breast cancer cell lines with low temperature plasma for different periods of time and analyzed the relevant differences. METHODS AND RESULTS SK-BR-3 cell nutrient solution was firstly treated by ACP for 0, 10, 20, 40, 80 and 120 s, which was next used to cultivateSK-BR-3cells for overnight.we found that LTP was able to suppress cell vitality, proliferation, invasion and migration of SK-BR-3 cells. Also, SK-BR-3 apoptosis was induced by LTP in a time-dependent manner. CONCLUSION These evidences suggest the negative effect of LTP on malignant development of SK-BR-3 cells, and LTP has the potential clinical application for breast cancer treatment.
Collapse
|
10
|
Lin A, Sahun M, Biscop E, Verswyvel H, De Waele J, De Backer J, Theys C, Cuypers B, Laukens K, Berghe WV, Smits E, Bogaerts A. Acquired non-thermal plasma resistance mediates a shift towards aerobic glycolysis and ferroptotic cell death in melanoma. Drug Resist Updat 2023; 67:100914. [PMID: 36630862 DOI: 10.1016/j.drup.2022.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
AIMS To gain insights into the underlying mechanisms of NTP therapy sensitivity and resistance, using the first-ever NTP-resistant cell line derived from sensitive melanoma cells (A375). METHODS Melanoma cells were exposed to NTP and re-cultured for 12 consecutive weeks before evaluation against the parental control cells. Whole transcriptome sequencing analysis was performed to identify differentially expressed genes and enriched molecular pathways. Glucose uptake, extracellular lactate, media acidification, and mitochondrial respiration was analyzed to determine metabolic changes. Cell death inhibitors were used to assess the NTP-induced cell death mechanisms, and apoptosis and ferroptosis was further validated via Annexin V, Caspase 3/7, and lipid peroxidation analysis. RESULTS Cells continuously exposed to NTP became 10 times more resistant to NTP compared to the parental cell line of the same passage, based on their half-maximal inhibitory concentration (IC50). Sequencing and metabolic analysis indicated that NTP-resistant cells had a preference towards aerobic glycolysis, while cell death analysis revealed that NTP-resistant cells exhibited less apoptosis but were more vulnerable to lipid peroxidation and ferroptosis. CONCLUSIONS A preference towards aerobic glycolysis and ferroptotic cell death are key physiological changes in NTP-resistance cells, which opens new avenues for further, in-depth research into other cancer types.
Collapse
Affiliation(s)
- Abraham Lin
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp (PLASMANT), University of Antwerp, Antwerp-Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp-Wilrijk, Belgium.
| | - Maxime Sahun
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp (PLASMANT), University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Eline Biscop
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp (PLASMANT), University of Antwerp, Antwerp-Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Hanne Verswyvel
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp (PLASMANT), University of Antwerp, Antwerp-Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Joey De Backer
- Protein Chemistry, Proteomics, and Epigenetic Signalling, University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Claudia Theys
- Protein Chemistry, Proteomics, and Epigenetic Signalling, University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Bart Cuypers
- Adrem Data Lab, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Adrem Data Lab, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics, and Epigenetic Signalling, University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp-Wilrijk, Belgium
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp (PLASMANT), University of Antwerp, Antwerp-Wilrijk, Belgium
| |
Collapse
|
11
|
Understanding the Role of Plasma Bullet Currents in Heating Skin to Mitigate Risks of Thermal Damage Caused by Low-Temperature Atmospheric-Pressure Plasma Jets. PLASMA 2023. [DOI: 10.3390/plasma6010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Low-temperature atmospheric-pressure plasma jets are generally considered a safe medical technology with no significant long-term side effects in clinical studies reported to date. However, there are studies emerging that show plasma jets can cause significant side effects in the form of skin burns under certain conditions. Therefore, with a view of developing safer plasma treatment approaches, in this study we have set out to provide new insights into the cause of these skin burns and how to tailor plasma treatments to mitigate these effects. We discovered that joule heating by the plasma bullet currents is responsible for creating skin burns during helium plasma jet treatment of live mice. These burns can be mitigated by treating the mice at a further distance so that the visible plasma plume does not contact the skin. Under these treatment conditions we also show that the plasma jet treatment still retains its medically beneficial property of producing reactive oxygen species in vivo. Therefore, treatment distance is an important parameter for consideration when assessing the safety of medical plasma treatments.
Collapse
|
12
|
Wang F, Li C, Zhang R, Liu Y, Lin H, Nan L, Khan MA, Xiao Y, Shum HC, Deng H. A composition-tunable cold atmospheric plasma chip for multiplex-treatment of cells. LAB ON A CHIP 2023; 23:580-590. [PMID: 36644992 DOI: 10.1039/d2lc00951j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cold atmospheric plasma treatment promises a targeted cancer therapy due to its selectivity and specificity in killing tumor cells. However, the current plasma exposure devices produce diverse and coupled reactive species, impeding the investigation of the underlying plasma-anticancer mechanisms. Also, the limited mono-sample and mono-dosage treatment modality result in tedious and manual experimental tasks. Here, we propose a cold atmospheric plasma chip producing targeted species, delivering multiple dosages, and treating multiple cell lines in a single treatment. Three modules are integrated into the chip. The environment control module and multi-inlet gas-feed module coordinately ignite component-tunable and uniformly distributed plasma. The multi-sample holding module enables multiplex treatment: multi-sample and -dosage treatment with single radiation. By exposing the HepG2 cell line to nitrogen-feed plasmas, we prove the crucial role of nitrogen-based species in inhibiting cell growth and stimulating apoptosis. By loading four-type cell lines on our chip, we can identify the most vulnerable cell line for plasma oncotherapy. Simultaneously, three-level treatment dosages are imposed on the cells with single radiation to optimize the applicable treatment dosage for plasma oncotherapy. Our chip will broaden the design principles of plasma exposure devices, potentially help clarify plasma-induced anticancer mechanisms, and guide the clinical application of plasma-based oncotherapy.
Collapse
Affiliation(s)
- Fang Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Shenzhen, Guangdong, China.
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Chang Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Ruotong Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Yuan Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Haisong Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Lang Nan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Muhammad Ajmal Khan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Shenzhen, Guangdong, China.
| | - Yang Xiao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Hui Deng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Förster S, Niu Y, Eggers B, Nokhbehsaim M, Kramer FJ, Bekeschus S, Mustea A, Stope MB. Modulation of the Tumor-Associated Immuno-Environment by Non-Invasive Physical Plasma. Cancers (Basel) 2023; 15:cancers15041073. [PMID: 36831415 PMCID: PMC9953794 DOI: 10.3390/cancers15041073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Over the past 15 years, investigating the efficacy of non-invasive physical plasma (NIPP) in cancer treatment as a safe oxidative stress inducer has become an active area of research. So far, most studies focused on the NIPP-induced apoptotic death of tumor cells. However, whether NIPP plays a role in the anti-tumor immune responses need to be deciphered in detail. In this review, we summarized the current knowledge of the potential effects of NIPP on immune cells, tumor-immune interactions, and the immunosuppressive tumor microenvironment. In general, relying on their inherent anti-oxidative defense systems, immune cells show a more resistant character than cancer cells in the NIPP-induced apoptosis, which is an important reason why NIPP is considered promising in cancer management. Moreover, NIPP treatment induces immunogenic cell death of cancer cells, leading to maturation of dendritic cells and activation of cytotoxic CD8+ T cells to further eliminate the cancer cells. Some studies also suggest that NIPP treatment may promote anti-tumor immune responses via other mechanisms such as inhibiting tumor angiogenesis and the desmoplasia of tumor stroma. Though more evidence is required, we expect a bright future for applying NIPP in clinical cancer management.
Collapse
Affiliation(s)
- Sarah Förster
- Department of Pathology, University Hospital Bonn, 35127 Bonn, Germany
| | - Yuequn Niu
- Department of Pathology, University Hospital Bonn, 35127 Bonn, Germany
| | - Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University Hospital Bonn, 53111 Bonn, Germany
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
- Correspondence: ; Tel.: +49-228-287-11361
| |
Collapse
|
14
|
Chupradit S, Widjaja G, Radhi Majeed B, Kuznetsova M, Ansari MJ, Suksatan W, Turki Jalil A, Ghazi Esfahani B. Recent advances in cold atmospheric plasma (CAP) for breast cancer therapy. Cell Biol Int 2023; 47:327-340. [PMID: 36342241 DOI: 10.1002/cbin.11939] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
The serious problems of conventional breast cancer therapy strategies such as drug resistance, severe side effects, and lack of selectivity prompted the development of various cold atmospheric plasma (CAP) devices. Due to its advanced technology, CAP can produce a unique environment rich in reactive oxygen and nitrogen species (RONS), photons, charged ions, and an electric field, making it a promising revolutionary platform for cancer therapy. Despite substantial technological successes, CAP-based therapeutic systems are encounter with distinct limitations, including low control of the generated RONS, poor knowledge about its anticancer mechanisms, and challenges concerning designing, manufacturing, clinical translation, and commercialization, which must be resolved. The latest developments in CAP-based therapeutic systems for breast cancer treatment are discussed in this review. More significantly, the integration of CAP-based medicine approaches with other breast cancer therapies, including chemo- and nanotherapy is thoroughly addressed.
Collapse
Affiliation(s)
- Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Suthep, Chiang Mai, Thailand
| | - Gunawan Widjaja
- Universitas Krisnadwipayana, Universitas Indonesia, Jakarta, Indonesia
| | | | - Maria Kuznetsova
- Department of Propaedeutics of Dental Diseases, I.M. Sechenov First Moscow State Medical University, Moskva, Russia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Wanich Suksatan
- HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Faculty of Nursing, Bangkok, Thailand
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, Grodno, Belarus.,College of Technical Engineering, The Islamic University, Najaf, Iraq.,Department of Dentistry, Kut University College, Kut, Wasit, Iraq
| | - Bahar Ghazi Esfahani
- Department of Biological Sciences and Technologies, University of Isfahan, Iran, Isfahan
| |
Collapse
|
15
|
Sasi S, Prasad K, Weerasinghe J, Bazaka O, Ivanova EP, Levchenko I, Bazaka K. Plasma for aquaponics. Trends Biotechnol 2023; 41:46-62. [PMID: 36085105 DOI: 10.1016/j.tibtech.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 12/27/2022]
Abstract
Global environmental, social, and economic challenges call for innovative solutions to food production. Current food production systems require advances beyond traditional paradigms, acknowledging the complexity arising from sustainability and a present lack of awareness about technologies that may help limit, for example, loss of nutrients from soil. Aquaponics, a closed-loop system that combines aquaculture with hydroponics, is a step towards the more efficient management of scarce water, land, and nutrient resources. However, its large-scale use is currently limited by several significant challenges of maintaining desirable water chemistry and pH, managing infections in fish and plants, and increasing productivity efficiently, economically, and sustainably. This paper investigates the opportunities presented by plasma technologies in meeting these challenges, potentially opening new pathways for sustainability in food production.
Collapse
Affiliation(s)
- Syamlal Sasi
- Product Development, BudMore Pty Ltd, Brisbane, QLD 4000, Australia; School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2600, Australia
| | - Karthika Prasad
- Product Development, BudMore Pty Ltd, Brisbane, QLD 4000, Australia; School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2600, Australia.
| | - Janith Weerasinghe
- Product Development, BudMore Pty Ltd, Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Olha Bazaka
- School of Science, RMIT University, PO Box 2476, Melbourne, Vic 3001, Australia
| | - Elena P Ivanova
- School of Science, RMIT University, PO Box 2476, Melbourne, Vic 3001, Australia
| | - Igor Levchenko
- Plasma Sources and Applications Centre, National Institute of Education, Nanyang Technological University, Singapore 637616
| | - Kateryna Bazaka
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2600, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
16
|
Choi JH, Gu HJ, Park KH, Hwang DS, Kim GC. Anti-Cancer Activity of the Combinational Treatment of Noozone Cold Plasma with p-FAK Antibody-Conjugated Gold Nanoparticles in OSCC Xenograft Mice. Biomedicines 2022; 10:biomedicines10092259. [PMID: 36140360 PMCID: PMC9496586 DOI: 10.3390/biomedicines10092259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 01/11/2023] Open
Abstract
Oral squamous cell cancer (OSCC) is the most common type of oral cancer (about 80–90% of cases) and various research is being done to cure the disease. This paper aims to verify whether treatment with no-ozone cold plasma (NCP), which is designed for safe usage of the plasma on oral cavities, in combination with gold nanoparticles conjugated with p-FAK antibody (p-FAK/GNP) can trigger the selective and instant killing of SCC-25 cells both in vitro and in vivo. When SCC25 and HaCaT cells are exposed to p-FAK/GNP+NCP, the instant cell death was observed only in SCC25 cells. Such p-FAK/GNP+NCP-mediated cell death was observed only when NCP was directly treated on SCC25 harboring p-FAK/GNP. During NCP treatment, the removal of charged particles from NCP using grounded electric mesh radically decreased the p-FAK/GNP+NCP-mediated cell death. This p-FAK/GNP+NCP-mediated selective cell death of OSCC was also observed in mice xenograft models using SCC25 cells. The mere treatment of p-FAK/GNP and NCP on the xenograft tumor slowly decreased the size of the tumor, and only about 50% of the tumor remained at the end of the experiment. On the other hand, 1 week of p-FAK/GNP+NCP treatment was enough to reduce half of the tumor size, and most of tumor tissue had vanished at the end. An analysis of isolated tissues showed that in the case of individual treatment with p-FAK/GNP or NCP, the cancer cell population was reduced due to apoptotic cell death. However, in the case of p-FAK/GNP+NCP, apoptotic cell death was unobserved, and most tissues were composed of collagen. Thus, this paper suggests the possibility of p-FAK/GNP+NCP as a new method for treating OSCC.
Collapse
Affiliation(s)
- Jeong-Hae Choi
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan 50614, Korea
- Correspondence: (J.-H.C.); (G.-C.K.)
| | - Hee-Jin Gu
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan 50614, Korea
| | - Kwang-Ha Park
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan 50614, Korea
| | - Dae-Seok Hwang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Gyoo-Cheon Kim
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan 50614, Korea
- Department of Oral Anatomy and Cell Biology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Correspondence: (J.-H.C.); (G.-C.K.)
| |
Collapse
|
17
|
Kumar Dubey S, Dabholkar N, Narayan Pal U, Singhvi G, Kumar Sharma N, Puri A, Kesharwani P. Emerging innovations in cold plasma therapy against cancer: A paradigm shift. Drug Discov Today 2022; 27:2425-2439. [PMID: 35598703 PMCID: PMC9420777 DOI: 10.1016/j.drudis.2022.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
Cancer is one of the major causes of mortality, accounting for ∼ 9.5 million deaths globally in 2018. The spectrum of conventional treatment for cancer includes surgery, chemotherapy and radiotherapy. Recently, cold plasma therapy surfaced as a novel technique in the treatment of cancer. The FDA approval of the first trial for the use of cold atmospheric plasma (CAP) in cancer therapy in 2019 is evidence of this. This review highlights the mechanisms of action of CAP. Additionally, its applications in anticancer therapy have been reviewed. In summary, this article will introduce the readers to the exciting field of plasma oncology and help them understand the current status and prospects of plasma oncology.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- R&D Healthcare Division, Emami, 13 BT Road, Belgharia, Kolkata 700056, India.
| | - Neha Dabholkar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Udit Narayan Pal
- Council of Scientific and Industrial Research (CSIR)-Central Electronics Engineering Research Institute (CEERI), Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Navin Kumar Sharma
- School of Physics, Devi Ahilya Vishwavidyalaya, Indore, Madhya Pradesh 452001, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute - Frederick, Frederick, MD 21702, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
18
|
Recognizing Cold Atmospheric Plasma Plume Using Computer Vision. PLASMA 2022. [DOI: 10.3390/plasma5030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Over the last three decades, cold atmospheric plasma (CAP) has been heavily investigated in a wide range of biological applications, including wound healing, microorganism sterilization, and cancer treatment. Atmospheric pressure plasma jets (APPJs) are the most common plasma sources in plasma medicine. An APPJ’s size determines its application range and approach in treatment. In this study, we demonstrated the real-time recognition of an APPJ’s plasma plume output using computer vision (CV), dramatically improving the measurement speed compared to the traditional method of using the naked eye. Our work provides a framework to monitor an aspect of an APPJ’s performance in real time, which is a necessary step to achieving an intelligent CAP source.
Collapse
|
19
|
Gangemi S, Petrarca C, Tonacci A, Di Gioacchino M, Musolino C, Allegra A. Cold Atmospheric Plasma Targeting Hematological Malignancies: Potentials and Problems of Clinical Translation. Antioxidants (Basel) 2022; 11:antiox11081592. [PMID: 36009311 PMCID: PMC9405440 DOI: 10.3390/antiox11081592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cold atmospheric plasma is an ionized gas produced near room temperature; it generates reactive oxygen species and nitrogen species and induces physical changes, including ultraviolet, radiation, thermal, and electromagnetic effects. Several studies showed that cold atmospheric plasma could effectively provoke death in a huge amount of cell types, including neoplastic cells, via the induction of apoptosis, necrosis, and autophagy. This technique seems able to destroy tumor cells by disturbing their more susceptible redox equilibrium with respect to normal cells, but it is also able to cause immunogenic cell death by enhancing the immune response, to decrease angiogenesis, and to provoke genetic and epigenetics mutations. Solutions activated by cold gas plasma represent a new modality for treatment of less easily reached tumors, or hematological malignancies. Our review reports on accepted knowledge of cold atmospheric plasma’s effect on hematological malignancies, such as acute and chronic myeloid leukemia and multiple myeloma. Although relevant progress was made toward understanding the underlying mechanisms concerning the efficacy of cold atmospheric plasma in hematological tumors, there is a need to determine both guidelines and safety limits that guarantee an absence of long-term side effects.
Collapse
Affiliation(s)
- Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Claudia Petrarca
- Department of Medicine and Aging Sciences, G. D’Annunzio University, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy
- Correspondence:
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Mario Di Gioacchino
- Department of Medicine and Aging Sciences, G. D’Annunzio University, 66100 Chieti, Italy
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| |
Collapse
|
20
|
Tan F, Wang Y, Zhang S, Shui R, Chen J. Plasma Dermatology: Skin Therapy Using Cold Atmospheric Plasma. Front Oncol 2022; 12:918484. [PMID: 35903680 PMCID: PMC9314643 DOI: 10.3389/fonc.2022.918484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Cold atmospheric plasma-based plasma medicine has been expanding the diversity of its specialties. As an emerging branch, plasma dermatology takes advantage of the beneficial complexity of plasma constituents (e.g., reactive oxygen and nitrogen species, UV photons, and electromagnetic emission), technical versatility (e.g., direct irradiation and indirect aqueous treatment), and practical feasibility (e.g., hand-held compact device and clinician-friendly operation). The objective of this comprehensive review is to summarize recent advances in the CAP-dominated skin therapy by broadly covering three aspects. We start with plasma optimisation of intact skin, detailing the effect of CAP on skin lipids, cells, histology, and blood circulation. We then conduct a clinically oriented and thorough dissection of CAP treatment of various skin diseases, focusing on the wound healing, inflammatory disorders, infectious conditions, parasitic infestations, cutaneous malignancies, and alopecia. Finally, we conclude with a brief analysis on the safety aspect of CAP treatment and a proposal on how to mitigate the potential risks. This comprehensive review endeavors to serve as a mini textbook for clinical dermatologists and a practical manual for plasma biotechnologists. Our collective goal is to consolidate plasma dermatology’s lead in modern personalized medicine.
Collapse
Affiliation(s)
- Fei Tan
- Department of Otorhinolaryngology and Head & Neck Surgery (ORL-HNS), Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
- *Correspondence: Fei Tan,
| | - Yang Wang
- Department of Pathology, Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Shiqun Zhang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Runying Shui
- Department of Surgery, Department of Dermatology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jianghan Chen
- Department of Surgery, Department of Dermatology, Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Brunner TF, Probst FA, Troeltzsch M, Schwenk-Zieger S, Zimmermann JL, Morfill G, Becker S, Harréus U, Welz C. Primary cold atmospheric plasma combined with low dose cisplatin as a possible adjuvant combination therapy for HNSCC cells-an in-vitro study. Head Face Med 2022; 18:21. [PMID: 35768853 PMCID: PMC9245296 DOI: 10.1186/s13005-022-00322-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The aim of the present study was to examine the cytostatic effects of cold atmospheric plasma (CAP) on different head and neck squamous carcinoma (HNSCC) cell lines either in isolation or in combination with low dose cisplatin. The effect of CAP treatment was investigated by using three different HNSCC cell lines (chemo-resistant Cal 27, chemo-sensitive FaDu and OSC 19). MATERIALS AND METHOD Cell lines were exposed to CAP treatment for 30, 60, 90, 120 and 180 s (s). Cisplatin was added concurrently (cc) or 24 h after CAP application (cs). Cell viability, DNA damage and apoptosis was evaluated by dye exclusion, MTT, alkaline microgel electrophoresis assay and Annexin V-Fit-C/PI respectively. RESULTS In all cell lines, 120 s of CAP exposure resulted in a significant reduction of cell viability. DNA damage significantly increased after 60 s. Combined treatment of cells with CAP and low dose cisplatin showed additive effects. A possible sensitivity to cisplatin could be restored in Cal 27 cells by CAP application. CONCLUSION CAP shows strong cytostatic effects in HNSCC cell lines that can be increased by concurrent cisplatin treatment, suggesting that CAP may enhance the therapeutic efficacy of low dose cisplatin.
Collapse
Affiliation(s)
- Teresa F Brunner
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU, Munich, Germany.
| | - Florian A Probst
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU, Munich, Germany
| | - Matthias Troeltzsch
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU, Munich, Germany
| | - Sabina Schwenk-Zieger
- Department of Otolaryngology, Head and Neck Surgery, University Hospital, LMU, Munich, Germany
| | | | | | - Sven Becker
- Department of Otolaryngology, Head and Neck Surgery, University Hospital, EKU , Tübingen, Germany
| | - Ulrich Harréus
- Department of ENT/Head and Neck Surgery, Asklepios Hospital, Bad Tölz, Germany
| | | |
Collapse
|
22
|
Soni V, Adhikari M, Lin L, Sherman JH, Keidar M. Theranostic Potential of Adaptive Cold Atmospheric Plasma with Temozolomide to Checkmate Glioblastoma: An In Vitro Study. Cancers (Basel) 2022; 14:cancers14133116. [PMID: 35804888 PMCID: PMC9264842 DOI: 10.3390/cancers14133116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is an aggressive form of brain cancer. Here, we present a combination therapy of cold atmospheric plasma (CAP) and temozolomide (TMZ) to treat GBM in vitro. We analyze the effects of the co-treatment in two GBM (TMZ-resistant and -sensitive) cell lines. The aim of this study is mainly to sensitize these cells using CAP so that they respond well to TMZ. We further found that the removal of cell culture media after CAP treatment does not affect the sensitivity of CAP to cancer cells but enhances the effects of TMZ. However, it was observed in our study that keeping the CAP-treated media for a shorter time did not significantly inhibit T98G cells. Interestingly, keeping the same plasma-treated media for a longer duration resulted in a decrease in cell viability. On the contrary, TMZ-sensitive cell A172 responded well to the co-treatment. This could be a potential reason for the sensitization of the combination therapy. Abstract Cold atmospheric plasma (CAP) has been used for the treatment of various cancers. The anti-cancer properties of CAP are mainly due to the reactive species generated from it. Here, we analyze the efficacy of CAP in combination with temozolomide (TMZ) in two different human glioblastoma cell lines, T98G and A172, in vitro using various conditions. We also establish an optimized dose of the co-treatment to study potential sensitization in TMZ-resistant cells. The removal of cell culture media after CAP treatment did not affect the sensitivity of CAP to cancer cells. However, keeping the CAP-treated media for a shorter time helped in the slight proliferation of T98G cells, while keeping the same media for longer durations resulted in a decrease in its survivability. This could be a potential reason for the sensitization of the cells in combination treatment. Co-treatment effectively increased the lactate dehydrogenase (LDH) activity, indicating cytotoxicity. Furthermore, apoptosis and caspase-3 activity also significantly increased in both cell lines, implying the anticancer nature of the combination. The microscopic analysis of the cells post-treatment indicated nuclear fragmentation, and caspase activity demonstrated apoptosis. Therefore, a combination treatment of CAP and TMZ may be a potent therapeutic modality to treat glioblastoma. This could also indicate that a pre-treatment with CAP causes the cells to be more sensitive to chemotherapy treatment.
Collapse
Affiliation(s)
- Vikas Soni
- Micro-Propulsion and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, The George Washington University, Science and Engineering Hall, 800 22nd Street, NW, Washington, DC 20052, USA; (M.A.); (L.L.)
- Correspondence: (V.S.); (M.K.); Tel.: +1-202-994-6929 (M.K.)
| | - Manish Adhikari
- Micro-Propulsion and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, The George Washington University, Science and Engineering Hall, 800 22nd Street, NW, Washington, DC 20052, USA; (M.A.); (L.L.)
| | - Li Lin
- Micro-Propulsion and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, The George Washington University, Science and Engineering Hall, 800 22nd Street, NW, Washington, DC 20052, USA; (M.A.); (L.L.)
| | - Jonathan H. Sherman
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, 880 N Tennessee Avenue, Suite 104, Martinsburg, WV 25401, USA;
| | - Michael Keidar
- Micro-Propulsion and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, The George Washington University, Science and Engineering Hall, 800 22nd Street, NW, Washington, DC 20052, USA; (M.A.); (L.L.)
- Correspondence: (V.S.); (M.K.); Tel.: +1-202-994-6929 (M.K.)
| |
Collapse
|
23
|
Insight into the Impact of Oxidative Stress on the Barrier Properties of Lipid Bilayer Models. Int J Mol Sci 2022; 23:ijms23115932. [PMID: 35682621 PMCID: PMC9180489 DOI: 10.3390/ijms23115932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
As a new field of oxidative stress-based therapy, cold physical plasma is a promising tool for several biomedical applications due to its potential to create a broad diversity of reactive oxygen and nitrogen species (RONS). Although proposed, the impact of plasma-derived RONS on the cell membrane lipids and properties is not fully understood. For this purpose, the changes in the lipid bilayer functionality under oxidative stress generated by an argon plasma jet (kINPen) were investigated by electrochemical techniques. In addition, liquid chromatography-tandem mass spectrometry was employed to analyze the plasma-induced modifications on the model lipids. Various asymmetric bilayers mimicking the structure and properties of the erythrocyte cell membrane were transferred onto a gold electrode surface by Langmuir-Blodgett/Langmuir-Schaefer deposition techniques. A strong impact of cholesterol on membrane permeabilization by plasma-derived species was revealed. Moreover, the maintenance of the barrier properties is influenced by the chemical composition of the head group. Mainly the head group size and its hydrogen bonding capacities are relevant, and phosphatidylcholines are significantly more susceptible than phosphatidylserines and other lipid classes, underlining the high relevance of this lipid class in membrane dynamics and cell physiology.
Collapse
|
24
|
Mihai CT, Mihaila I, Pasare MA, Pintilie RM, Ciorpac M, Topala I. Cold Atmospheric Plasma-Activated Media Improve Paclitaxel Efficacy on Breast Cancer Cells in a Combined Treatment Model. Curr Issues Mol Biol 2022; 44:1995-2014. [PMID: 35678664 PMCID: PMC9164030 DOI: 10.3390/cimb44050135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
The use of plasma-activated media (PAM), an alternative to direct delivery of cold atmospheric plasma to cancer cells, has recently gained interest in the plasma medicine field. Paclitaxel (PTX) is used as a chemotherapy of choice for various types of breast cancers, which is the leading cause of mortality in females due to cancer. In this study, we evaluated an alternative way to improve anti-cancerous efficiency of PTX by association with PAM, the ultimate achievement being a better outcome in killing tumoral cells at smaller doses of PTX. MCF-7 and MDA-MB-231 cell lines were used, and the outcome was measured by cell viability (MTT assay), the survival rate (clonogenic assay), apoptosis occurrence, and genotoxicity (COMET assay). Treatment consisted of the use of PAM in combination with under IC50 doses of PTX in short- and long-term models. The experimental data showed that PAM had the capacity to improve PTX's cytotoxicity, as viability of the breast cancer cells dropped, an effect maintained in long-term experiments. A higher frequency of apoptotic, dead cells, and DNA fragmentation was registered in cells treated with the combined treatment as compared with those treated only with PT. Overall, PAM had the capacity to amplify the anti-cancerous effect of PTX.
Collapse
Affiliation(s)
- Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Ilarion Mihaila
- Integrated Centre of Environmental Science Studies in the North-Eastern Development Region (CERNESIM), Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania;
| | - Maria Antoanela Pasare
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Robert Mihai Pintilie
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Mitica Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Ionut Topala
- Iasi Plasma Advanced Research Centre (IPARC), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I blvd., 700506 Iasi, Romania
| |
Collapse
|
25
|
Hou Z, Lee T, Keidar M. Reinforcement Learning With Safe Exploration for Adaptive Plasma Cancer Treatment. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3094874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Yao X, Yan D, Lin L, Sherman JH, Peters KB, Keir ST, Keidar M. Cold Plasma Discharge Tube Enhances Antitumoral Efficacy of Temozolomide. ACS APPLIED BIO MATERIALS 2022; 5:1610-1623. [PMID: 35324138 DOI: 10.1021/acsabm.2c00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is a fatal human brain tumor with a low survival rate. Temozolomide (TMZ) has been widely used in GBM therapy with noticeable side effects. Cold plasma is an ionized gas that is generated near room temperature. Here, we demonstrated the enhancement therapeutic efficacy of TMZ via using a cold plasma source based on nonequilibrium plasma in a sealed glass tube, named a radial cold plasma discharge tube (PDT). The PDT affected glioblastoma cells' function just by its electromagnetic (EM) emission rather than any chemical factors in the plasma. The PDT selectively increased the cytotoxicity of TMZ on two typical glioblastoma cell lines, U87MG and A172, compared with normal astrocyte cell line hTERT/E6/E7 to some extent. Furthermore, on the basis of a patient-derived xenograft model, our preliminary in vivo studies demonstrated the drastically improved mean survival days of the tumor-barrier mice by more than 100% compared to control. The PDT is not only independent of continuous helium supply but is also capable of resisting the interference of environmental changes. Thus, the PDT was a stable and low-cost cold atmospheric plasma source. In short, this study is the first to demonstrate the promising application of PDTs in GBM therapy as a noninvasive and portable modality.
Collapse
Affiliation(s)
- Xiaoliang Yao
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, District of Columbia 20052, United States
| | - Dayun Yan
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, District of Columbia 20052, United States
| | - Li Lin
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, District of Columbia 20052, United States
| | - Jonathan H Sherman
- WVU Medicine-Berkeley Medical Center, West Virginia University, Martinsburg, West Virginia 25041, United States
| | - Katherine B Peters
- Departments of Neurology and Neurosurgery, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Stephen T Keir
- Departments of Neurology and Neurosurgery, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
27
|
Choi EH, Kaushik NK, Hong YJ, Lim JS, Choi JS, Han I. Plasma bioscience for medicine, agriculture and hygiene applications. THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY 2022; 80:817-851. [PMID: 35261432 PMCID: PMC8895076 DOI: 10.1007/s40042-022-00442-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Nonthermal biocompatible plasma (NBP) sources operating in atmospheric pressure environments and their characteristics can be used for plasma bioscience, medicine, and hygiene applications, especially for COVID-19 and citizen. This review surveyed the various NBP sources, including a plasma jet, micro-DBD (dielectric barrier discharge) and nanosecond discharged plasma. The electron temperatures and the plasma densities, which are produced using dielectric barrier discharged electrode systems, can be characterized as 0.7 ~ 1.8 eV and (3-5) × 1014-15 cm-3, respectively. Herein, we introduce a general schematic view of the plasma ultraviolet photolysis of water molecules for reactive oxygen and nitrogen species (RONS) generation inside biological cells or living tissues, which would be synergistically important with RONS diffusive propagation into cells or tissues. Of the RONS, the hydroxyl radical [OH] and hydrogen peroxide H2O2 species would mainly result in apoptotic cell death with other RONS in plasma bioscience and medicines. The diseased biological protein, cancer, and mutated cells could be treated by using a NBP or plasma activated water (PAW) resulting in their apoptosis for a new paradigm of plasma medicine.
Collapse
Affiliation(s)
- Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Young June Hong
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Jun Sup Lim
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Jin Sung Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Ihn Han
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| |
Collapse
|
28
|
Aggelopoulos CA, Christodoulou AM, Tachliabouri M, Meropoulis S, Christopoulou ME, Karalis TT, Chatzopoulos A, Skandalis SS. Cold Atmospheric Plasma Attenuates Breast Cancer Cell Growth Through Regulation of Cell Microenvironment Effectors. Front Oncol 2022; 11:826865. [PMID: 35111687 PMCID: PMC8801750 DOI: 10.3389/fonc.2021.826865] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer exists in multiple subtypes some of which still lack a targeted and effective therapy. Cold atmospheric plasma (CAP) has been proposed as an emerging anti-cancer treatment modality. In this study, we investigated the effects of direct and indirect CAP treatment driven by the advantageous nanosecond pulsed discharge on breast cancer cells of different malignant phenotypes and estrogen receptor (ER) status, a major factor in the prognosis and therapeutic management of breast cancer. The main CAP reactive species in liquid (i.e. H2O2, NO2−/NO3−) and gas phase were determined as a function of plasma operational parameters (i.e. treatment time, pulse voltage and frequency), while pre-treatment with the ROS scavenger NAC revealed the impact of ROS in the treatment. CAP treatment induced intense phenotypic changes and apoptosis in both ER+ and ER- cells, which is associated with the mitochondrial pathway as evidenced by the increased Bax/Bcl-2 ratio and cleavage of PARP-1. Interestingly, CAP significantly reduced CD44 protein expression (a major cancer stem cell marker and matrix receptor), while differentially affected the expression of proteases and inflammatory mediators. Collectively, the findings of the present study suggest that CAP suppresses breast cancer cell growth and regulates several effectors of the tumor microenvironment and thus it could represent an efficient therapeutic approach for distinct breast cancer subtypes.
Collapse
Affiliation(s)
- Christos A. Aggelopoulos
- Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece
- *Correspondence: Christos A. Aggelopoulos, ; Spyros S. Skandalis,
| | - Anna-Maria Christodoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Myrsini Tachliabouri
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Stauros Meropoulis
- Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece
| | - Maria-Elpida Christopoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Theodoros T. Karalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Athanasios Chatzopoulos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Spyros S. Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- *Correspondence: Christos A. Aggelopoulos, ; Spyros S. Skandalis,
| |
Collapse
|
29
|
Laroussi M, Bekeschus S, Keidar M, Bogaerts A, Fridman A, Lu XP, Ostrikov KK, Hori M, Stapelmann K, Miller V, Reuter S, Laux C, Mesbah A, Walsh J, Jiang C, Thagard SM, Tanaka H, Liu DW, Yan D, Yusupov M. Low Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3135118] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Fallon M, Conway J, Kennedy S, Kumar S, Daniels S, Humphreys H. The effect of cold plasma operating parameters on the production of reactive oxygen and nitrogen species and the resulting antibacterial and antibiofilm efficiency. PLASMA MEDICINE 2022. [DOI: 10.1615/plasmamed.2022043043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Multi-Modal Biological Destruction by Cold Atmospheric Plasma: Capability and Mechanism. Biomedicines 2021; 9:biomedicines9091259. [PMID: 34572443 PMCID: PMC8465976 DOI: 10.3390/biomedicines9091259] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 01/07/2023] Open
Abstract
Cold atmospheric plasma (CAP) is a near-room-temperature, partially ionized gas composed of reactive neutral and charged species. CAP also generates physical factors, including ultraviolet (UV) radiation and thermal and electromagnetic (EM) effects. Studies over the past decade demonstrated that CAP could effectively induce death in a wide range of cell types, from mammalian to bacterial cells. Viruses can also be inactivated by a CAP treatment. The CAP-triggered cell-death types mainly include apoptosis, necrosis, and autophagy-associated cell death. Cell death and virus inactivation triggered by CAP are the foundation of the emerging medical applications of CAP, including cancer therapy, sterilization, and wound healing. Here, we systematically analyze the entire picture of multi-modal biological destruction by CAP treatment and their underlying mechanisms based on the latest discoveries particularly the physical effects on cancer cells.
Collapse
|
32
|
Inactivation of Acanthamoeba Cysts in Suspension and on Contaminated Contact Lenses Using Non-Thermal Plasma. Microorganisms 2021; 9:microorganisms9091879. [PMID: 34576774 PMCID: PMC8465664 DOI: 10.3390/microorganisms9091879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022] Open
Abstract
Water suspensions of cysts of a pathogenic clinical isolate of Acanthamoeba sp. were prepared, and the cysts were inactivated either in suspension or placed on the surface of contact lenses by the non-thermal plasma produced by the DC corona transient spark discharge. The efficacy of this treatment was determined by cultivation and the presence of vegetative trophozoites indicating non-inactivated cysts. The negative discharge appeared to be more effective than the positive one. The complete inactivation occurred in water suspension after 40 min and on contaminated lenses after 50 min of plasma exposure. The properties of lenses seem to not be affected by plasma exposure; that is, their optical power, diameter, curvature, water content and infrared and Raman spectra remain unchanged.
Collapse
|
33
|
Hua D, Cai D, Ning M, Yu L, Zhang Z, Han P, Dai X. Cold atmospheric plasma selectively induces G 0/G 1 cell cycle arrest and apoptosis in AR-independent prostate cancer cells. J Cancer 2021; 12:5977-5986. [PMID: 34476012 PMCID: PMC8408125 DOI: 10.7150/jca.54528] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/27/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose: Androgen receptor-independent prostate cancers do not respond to androgen blockage therapies and suffer from high recurrence rate. We aim to contribute to the establishment of novel therapeutic approaches against such malignancies. Materials and Methods: We examined whether and how cold atmospheric plasma delivers selectivity against AR-independent prostate cancers via cell viability, transwell assay, wound healing, cell apoptosis assay, flow cytometry, intracellular hydrogen peroxide determination assay, RONS scavenger assay and western blot using human normal epithelial prostatic cells PNT1A and AR-negative DU145 prostate cancer cells. Results: We show that cold atmospheric plasma could selectively halt cell proliferation and migration in androgen receptor-independent cells as a result of induced cell apoptosis and G0/G1 stage cell cycle arrest, and such outcomes were achieved through modulations on the MAPK and NF-kB pathways in response to physical plasma induced intracellular redox level. Conclusion: Our study reports cold atmospheric plasma induced reduction on the proliferation and migration of androgen receptor-independent prostate cancer cells that offers novel therapeutic insights on the treatment of such cancers, and provides the first evidence on physical plasma induced cell cycle G0/G1 stage arrest that warrants the exploration on the synergistic use of cold atmospheric plasma and drugs such as chemotherapies in eradicating such cancer cells.
Collapse
Affiliation(s)
- Dong Hua
- Wuxi People's Hospital, Wuxi 214043, China.,Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.,Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Dongyan Cai
- Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Meng Ning
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.,Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
| | - Lihui Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhifa Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Peiyu Han
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
34
|
Hamouda I, Labay C, Cvelbar U, Ginebra MP, Canal C. Selectivity of direct plasma treatment and plasma-conditioned media in bone cancer cell lines. Sci Rep 2021; 11:17521. [PMID: 34471164 PMCID: PMC8410816 DOI: 10.1038/s41598-021-96857-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
Atmospheric pressure plasma jets have been shown to impact several cancer cell lines, both in vitro and in vivo. These effects are based on the biochemistry of the reactive oxygen and nitrogen species generated by plasmas in physiological liquids, referred to as plasma-conditioned liquids. Plasma-conditioned media are efficient in the generation of reactive species, inducing selective cancer cell death. However, the concentration of reactive species generated by plasma in the cell culture media of different cell types can be highly variable, complicating the ability to draw precise conclusions due to the differential sensitivity of different cells to reactive species. Here, we compared the effects of direct and indirect plasma treatment on non-malignant bone cells (hOBs and hMSCs) and bone cancer cells (SaOs-2s and MG63s) by treating the cells directly or exposing them to previously treated cell culture medium. Biological effects were correlated with the concentrations of reactive species generated in the liquid. A linear increase in reactive species in the cell culture medium was observed with increased plasma treatment time independent of the volume treated. Values up to 700 µM for H2O2 and 140 µM of NO2- were attained in 2 mL after 15 min of plasma treatment in AdvDMEM cell culture media. Selectivity towards bone cancer cells was observed after both direct and indirect plasma treatments, leading to a decrease in bone cancer cell viability at 72 h to 30% for the longest plasma treatment times while maintaining the survival of non-malignant cells. Therefore, plasma-conditioned media may represent the basis for a potentially novel non-invasive technique for bone cancer therapy.
Collapse
Affiliation(s)
- Inès Hamouda
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019, Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - Cédric Labay
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019, Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - Uroš Cvelbar
- Department of Gaseous Electronics (F-6), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019, Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Institute for Bioengineering of Catalonia, c/Baldiri i Reixach 10-12, 08028, Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019, Barcelona, Spain.
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain.
- Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain.
| |
Collapse
|
35
|
Abstract
Cold atmospheric plasma (CAP) is an ionized gas, the product of a non-equilibrium discharge at atmospheric conditions. Both chemical and physical factors in CAP have been demonstrated to have unique biological impacts in cancer treatment. From a chemical-based perspective, the anti-cancer efficacy is determined by the cellular sensitivity to reactive species. CAP may also be used as a powerful anti-cancer modality based on its physical factors, mainly EM emission. Here, we delve into three CAP cancer treatment approaches, chemically based direct/indirect treatment and physical-based treatment by discussing their basic principles, features, advantages, and drawbacks. This review does not focus on the molecular mechanisms, which have been widely introduced in previous reviews. Based on these approaches and novel adaptive plasma concepts, we discuss the potential clinical application of CAP cancer treatment using a critical evaluation and forward-looking perspectives.
Collapse
|
36
|
Abstract
Nonthermal atmospheric pressure biocompatible plasma (NBP), alternatively called bio-cold plasma, is a partially ionized gas that consists of charged particles, neutral atoms and molecules, photons, an electric field, and heat. Recently, nonthermal plasma-based technology has been applied to bioscience, medicine, agriculture, food processing, and safety. Various plasma device configurations and electrode layouts has fast-tracked plasma applications in the treatment of biological and material surfaces. The NBP action mechanism may be related to the synergy of plasma constituents, such as ultraviolet radiation or a reactive species. Recently, plasma has been used in the inactivation of viruses and resistant microbes, such as fungal cells, bacteria, spores, and biofilms made by microbes. It has also been used to heal wounds, coagulate blood, degrade pollutants, functionalize material surfaces, kill cancers, and for dental applications. This review provides an outline of NBP devices and their applications in bioscience and medicine. We also discuss the role of plasma-activated liquids in biological applications, such as cancer treatments and agriculture. The individual adaptation of plasma to meet specific medical requirements necessitates real-time monitoring of both the plasma performance and the target that is treated and will provide a new paradigm of plasma-based therapeutic clinical systems.
Collapse
Affiliation(s)
- Eun H. Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Han S. Uhm
- Canode # 702, 136-11 Tojeong-ro, Mapo-gu, Seoul, 04081 Republic of Korea
| | - Nagendra K. Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| |
Collapse
|
37
|
Cold atmospheric plasma induced genotoxicity and cytotoxicity in esophageal cancer cells. Mol Biol Rep 2021; 48:1323-1333. [PMID: 33547994 DOI: 10.1007/s11033-021-06178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
In this paper, we studied the functional effects of cold atmospheric plasma (CAP) on the esophageal cancer cell line (KYSE-30) by direct and indirect treatment and fibroblast cell lines as normal cells. KYSE-30 cells were treated with CAP at different time points of 60, 90, 120 and, 240 s for direct exposure and 90, 180, 240 and, 360 s for indirect exposure. Cell viability was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and apoptosis induction in the treated cells was measured by Annexin-V/PI using flow cytometry. The expression of apoptotic related genes (BAX/BCL-2) was analyzed by real-time polymerase chain reaction. Moreover, the genotoxicity was analyzed by comet assay. Cell viability results showed that direct CAP treatment has a markedly cytotoxic impact on the reduction of KYSE-30 cells at 60 s (p = 0.000), while indirect exposure was less impactful (p > 0.05). The results of the Annexin-V/PI staining confirmed this analysis. Subsequently, the genotoxicity study of the direct CAP treatment demonstrated a longer tail-DNA length and caused increase in DNA damage in the cells (p < 0.00001) as well as shift BAX/BCL-2 toward apoptosis. The concentration of H2O2 and NO2- in direct CAP treatment was significantly higher than indirect (p > 0.05). Treatment with direct CAP showed genotoxicity in cancer cells. Collectively, our results pave a deeper understanding of CAP functions and the way for further investigations in the field of esophageal cancer treatment.
Collapse
|
38
|
Hejzlarová S, Chanová M, Khun J, Julák J, Scholtz V. Inactivation of Schistosoma Using Low-Temperature Plasma. Microorganisms 2020; 9:microorganisms9010032. [PMID: 33374135 PMCID: PMC7823541 DOI: 10.3390/microorganisms9010032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
The inactivation of Schistosoma mansoni cercariae and miracidia was achieved by exposure to plasma produced by the positive, negative, and axial negative corona discharges. The positive discharge appeared as the most effective, causing the death of cercariae and miracidia within 2-3 min of exposure. The negative discharge was less effective, and the axial discharge was ineffective. The water pre-activated (PAW) by the discharges showed similar efficiency, with the exception of the significantly effective PAW activated with axial discharge. These facts, together with the observation of various reactions among plasma-damaged schistosomes, suggest that the mechanisms of inactivation by different types of discharges are different.
Collapse
Affiliation(s)
- Silvie Hejzlarová
- Department of Physics and Measurements, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Praha, Czech Republic; (S.H.); (J.K.)
| | - Marta Chanová
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00 Praha 2, Czech Republic; (M.C.); (J.J.)
| | - Josef Khun
- Department of Physics and Measurements, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Praha, Czech Republic; (S.H.); (J.K.)
| | - Jaroslav Julák
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00 Praha 2, Czech Republic; (M.C.); (J.J.)
| | - Vladimír Scholtz
- Department of Physics and Measurements, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Praha, Czech Republic; (S.H.); (J.K.)
- Correspondence:
| |
Collapse
|
39
|
Dai X, Bazaka K, Thompson EW, Ostrikov K(K. Cold Atmospheric Plasma: A Promising Controller of Cancer Cell States. Cancers (Basel) 2020; 12:cancers12113360. [PMID: 33202842 PMCID: PMC7696697 DOI: 10.3390/cancers12113360] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Cancer treatment is complicated by the distinct phenotypic attractor states in which cancer cells exist within individual tumors, and inherent plasticity of cells in transiting between these states facilitates the acquisition of drug-resistant and more stem cell-like phenotypes in cancer cells. Controlling these crucial transition switches is therefore critical for the long-term success of any cancer therapy. This paper highlights the most promising avenues for controlling cancer state transition events by cold atmospheric plasma (CAP) to enable the development of efficient tools for cancer prevention and management. The key switches in carcinogenesis can be used to halt or reverse cancer progression, and understanding how CAP can modulate these processes is critical for the development of CAP-based strategies for cancer prevention, detection and effective treatment. Abstract Rich in reactive oxygen and nitrogen species, cold atmospheric plasma has been shown to effectively control events critical to cancer progression; selectively inducing apoptosis, reducing tumor volume and vasculature, and halting metastasis by taking advantage of, e.g., synergies between hydrogen peroxide and nitrites. This paper discusses the efficacy, safety and administration of cold atmospheric plasma treatment as a potential tool against cancers, with a focus on the mechanisms by which cold atmospheric plasma may affect critical transitional switches that govern tumorigenesis: the life/death control, tumor angiogenesis and epithelial–mesenchymal transition, and drug sensitivity spectrum. We introduce the possibility of modeling cell transitions between the normal and cancerous states using cold atmospheric plasma as a novel research avenue to enhance our understanding of plasma-aided control of oncogenesis.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Wuhan Ammunition Life-Tech Company, Ltd., Wuhan 430200, China
- Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence: ; Tel.: +86-181-6887-0169
| | - Kateryna Bazaka
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2600, Australia;
| | - Erik W. Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (E.W.T.); (K.O.)
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Kostya (Ken) Ostrikov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (E.W.T.); (K.O.)
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
40
|
Advances in Plasma Oncology toward Clinical Translation. Cancers (Basel) 2020; 12:cancers12113283. [PMID: 33171984 PMCID: PMC7694599 DOI: 10.3390/cancers12113283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022] Open
Abstract
This Special Issue on "Advances in Plasma Oncology Toward Clinical Translation" aims to bring together cutting-edge research papers within the field in the context of clinical translation and application [...].
Collapse
|
41
|
Zubor P, Wang Y, Liskova A, Samec M, Koklesova L, Dankova Z, Dørum A, Kajo K, Dvorska D, Lucansky V, Malicherova B, Kasubova I, Bujnak J, Mlyncek M, Dussan CA, Kubatka P, Büsselberg D, Golubnitschaja O. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int J Mol Sci 2020; 21:ijms21217988. [PMID: 33121141 PMCID: PMC7663780 DOI: 10.3390/ijms21217988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Vulvar cancer (VC) is a specific form of malignancy accounting for 5–6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as “plasma medicine” and “plasma oncology”. This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
- OBGY Health & Care, Ltd., 010 01 Zilina, Slovakia
- Correspondence: or
| | - Yun Wang
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Alena Liskova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Lenka Koklesova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Anne Dørum
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Bibiana Malicherova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Ivana Kasubova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, 07101 Michalovce, Slovakia;
| | - Milos Mlyncek
- Department of Obstetrics and Gynaecology, Faculty Hospital Nitra, Constantine the Philosopher University, 949 01 Nitra, Slovakia;
| | - Carlos Alberto Dussan
- Department of Surgery, Orthopaedics and Oncology, University Hospital Linköping, 581 85 Linköping, Sweden;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144 Doha, Qatar;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, Rheinische Friedrich-Wilhelms-Universität Bonn, 53105 Bonn, Germany;
| |
Collapse
|
42
|
Martinez L, Dhruv A, Lin L, Balaras E, Keidar M. Model for deformation of cells from external electric fields at or near resonant frequencies. Biomed Phys Eng Express 2020; 6. [PMID: 35091510 DOI: 10.1088/2057-1976/abc05e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 11/11/2022]
Abstract
This paper presents a numerical model to investigate the deformation of biological cells by applying external electric fields operating at or near cell resonant frequencies. Cells are represented as pseudo solids with high viscosity suspended in liquid media. The electric field source is an atmospheric plasma jet developed inhouse, for which the emitted energy distribution has been measured. Viscoelastic response is resolved in the entire cell structure by solving a deformation matrix assuming an isotropic material with a prescribed modulus of elasticity. To investigate cell deformation at resonant frequencies, one mode of natural cell oscillation is considered in which the cell membrane is made to radially move about its eigenfrequency. An electromagnetic wave source interacts with the cell and induces oscillation and viscoelastic response. The source carries energy in the form of a distribution function which couples a range of oscillating frequencies with electric field amplitudes. Results show that cell response may be increased by the external electric field operating at or near resonance. In the elastic regime, response increases until a steady threshold value, and the structure moves as a damped oscillator. Generally, this response is a function of both frequency and magnitude of the source, with a maximum effect found at resonance. To understand the full effect of the source energy spectrum, the system is solved by considering five frequency-amplitude couplings. Results show that the total solution is a nonlinear combination of the individual solutions. Additionally, sources with different signal phases are simulated to determine the effect of initial conditions on the evolution of the system, and the result suggests that there may be multiple solutions within the same order of magnitude for elastic response and velocity. Cell rupture from electric stress may occur during application given a high energy source.
Collapse
Affiliation(s)
- Luis Martinez
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, TheGeorge Washington University, Washington, DC 20052, United States of America
| | - Akash Dhruv
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, TheGeorge Washington University, Washington, DC 20052, United States of America
| | - Li Lin
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, TheGeorge Washington University, Washington, DC 20052, United States of America
| | - Elias Balaras
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, TheGeorge Washington University, Washington, DC 20052, United States of America
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, TheGeorge Washington University, Washington, DC 20052, United States of America
| |
Collapse
|
43
|
Cheng YJ, Lin CK, Chen CY, Chien PC, Chuan HH, Ho CC, Cheng YC. Plasma-activated medium as adjuvant therapy for lung cancer with malignant pleural effusion. Sci Rep 2020; 10:18154. [PMID: 33097755 PMCID: PMC7584628 DOI: 10.1038/s41598-020-75214-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 10/08/2020] [Indexed: 11/24/2022] Open
Abstract
This study compared effects of plasma-activated medium (PAM) with effects of conventional clinical thermal therapy on both lung cancer cells and benign cells for management of malignant pleural effusion (MPE). For MPE treatment, chemotherapy, photodynamic therapy, and thermal therapy are used but caused systemic side effects, patient photosensitivity, and edema, respectively. Recent studies show that plasma induces apoptosis in cancer cells with minor effects on normal cells and is cost-effective. However, the effects of plasma on MPE have not been investigated previously. This study applied a nonthermal atmospheric-pressure plasma jet to treat RPMI medium to produce PAM, carefully controlled the long-life reactive oxygen and nitrogen species concentration in PAM, and treated the cells. The influence of PAM treatment on the microenvironment of cells was also checked. The results indicated that PAM selectively inhibited CL1–5 and A549 cells, exerting minor effects on benign mesothelial and fibroblast cells. In contrast to selective lethal effects of PAM, thermal therapy inhibited both CL1–5 and benign mesothelial cells. This study also found that fibroblast growth factor 1 is not the factor explaining why PAM can selectively inhibit CL1–5 cells. These results indicate that PAM is potentially a less-harmful and cost-effective adjuvant therapy for MPE.
Collapse
Affiliation(s)
- Yi-Jing Cheng
- Department of Mechanical Engineering, College of Engineering, National Chiao Tung University, EE465, 1001 University Road, 30010, Hsin-Chu, Taiwan
| | - Ching-Kai Lin
- Department of Mechanical Engineering, College of Engineering, National Chiao Tung University, EE465, 1001 University Road, 30010, Hsin-Chu, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan.,Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chao-Yu Chen
- Department of Mechanical Engineering, College of Engineering, National Chiao Tung University, EE465, 1001 University Road, 30010, Hsin-Chu, Taiwan
| | - Po-Chien Chien
- Department of Mechanical Engineering, College of Engineering, National Chiao Tung University, EE465, 1001 University Road, 30010, Hsin-Chu, Taiwan
| | - Ho-Hsien Chuan
- Department of Surgery, National Taiwan University Hospital Chu-Tung Branch, Hsin-Chu, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yun-Chien Cheng
- Department of Mechanical Engineering, College of Engineering, National Chiao Tung University, EE465, 1001 University Road, 30010, Hsin-Chu, Taiwan.
| |
Collapse
|
44
|
Inactivation of Dermatophytes Causing Onychomycosis and Its Therapy Using Non-Thermal Plasma. J Fungi (Basel) 2020; 6:jof6040214. [PMID: 33050542 PMCID: PMC7712512 DOI: 10.3390/jof6040214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 11/28/2022] Open
Abstract
Onychomycosis is one of the most common nail disorders. Its current treatment is not satisfactorily effective and often causes adverse side effects. This study aims to determine the optimal conditions for non-thermal plasma (NTP) inactivation of the most common dermatophytes in vitro and to apply it in patient`s therapy. The in vitro exposure to NTP produced by negative DC corona discharge caused full inactivation of Trichophyton spp. if applied during the early growth phases. This effect decreased to negligible inactivation with the exposure applied six days after inoculation. In a group of 40 patients with onychomycosis, NTP therapy was combined with nail plate abrasion and refreshment (NPAR) or treatment with antimycotics. The cohort included 17 patients treated with NPAR combined with NTP, 11 patients treated with antimycotics and NTP, and 12 patients treated with NPAR alone. The combination of NPAR and NTP resulted in clinical cure in more than 70% of patients. The synergistic effect of NPAR and NTP caused 85.7% improvement of mycological cure confirmed by negative microscopy and culture of the affected nail plate. We conclude that NTP can significantly improve the treatment of onychomycosis.
Collapse
|
45
|
Combination therapy of cold atmospheric plasma (CAP) with temozolomide in the treatment of U87MG glioblastoma cells. Sci Rep 2020; 10:16495. [PMID: 33020527 PMCID: PMC7536419 DOI: 10.1038/s41598-020-73457-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Cold atmospheric plasma (CAP) technology, a relatively novel technique mainly investigated as a stand-alone cancer treatment method in vivo and in vitro, is being proposed for application in conjunction with chemotherapy. In this study, we explore whether CAP, an ionized gas produced in laboratory settings and that operates at near room temperature, can enhance Temozolomide (TMZ) cytotoxicity on a glioblastoma cell line (U87MG). Temozolomide is the first line of treatment for glioblastoma, one of the most aggressive brain tumors that remains incurable despite advancements with treatment modalities. The cellular response to a single CAP treatment followed by three treatments with TMZ was monitored with a cell viability assay. According to the cell viability results, CAP treatment successfully augmented the effect of a cytotoxic TMZ dose (50 μM) and further restored the effect of a non-cytotoxic TMZ dose (10 μM). Application of CAP in conjunction TMZ increased DNA damage measured by the phosphorylation of H2AX and induced G2/M cell cycle arrest. These findings were supported by additional data indicating reduced cell migration and increased αvβ3 and αvβ5 cell surface integrin expression as a result of combined CAP–TMZ treatment. The data presented in this study serve as evidence that CAP technology can be a suitable candidate for combination therapy with existing chemotherapeutic drugs. CAP can also be investigated in future studies for sensitizing glioblastoma cells to TMZ and other drugs available in the market.
Collapse
|
46
|
Verloy R, Privat-Maldonado A, Smits E, Bogaerts A. Cold Atmospheric Plasma Treatment for Pancreatic Cancer-The Importance of Pancreatic Stellate Cells. Cancers (Basel) 2020; 12:cancers12102782. [PMID: 32998311 PMCID: PMC7601057 DOI: 10.3390/cancers12102782] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary This review aims to highlight the potential of cold plasma, the fourth state of matter, as anti-cancer treatment for pancreatic cancer, and the importance of pancreatic stellate cells in the response to this treatment. Currently, a significant lack of basic research on cold plasma considering both pancreatic cancer and stellate cells exists. However, co-cultures of these populations can be advantageous, as they resemble the cell-to-cell interactions occurring in a tumor in response to therapy. Even more, these studies should be performed prior to clinical trials of cold plasma to avoid unforeseen responses to treatment. This review article provides a framework for future research of cold plasma therapies for pancreatic cancer, considering the critical role of pancreatic stellate cells in the disease and treatment outcome. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with low five-year survival rates of 8% by conventional treatment methods, e.g., chemotherapy, radiotherapy, and surgery. PDAC shows high resistance towards chemo- and radiotherapy and only 15–20% of all patients can have surgery. This disease is predicted to become the third global leading cause of cancer death due to its significant rise in incidence. Therefore, the development of an alternative or combinational method is necessary to improve current approaches. Cold atmospheric plasma (CAP) treatments could offer multiple advantages to this emerging situation. The plasma-derived reactive species can induce oxidative damage and a cascade of intracellular signaling pathways, which could lead to cell death. Previous reports have shown that CAP treatment also influences cells in the tumor microenvironment, such as the pancreatic stellate cells (PSCs). These PSCs, when activated, play a crucial role in the propagation, growth and survival of PDAC tumors. However, the effect of CAP on PSCs is not yet fully understood. This review focuses on the application of CAP for PDAC treatment and the importance of PSCs in the response to treatment.
Collapse
Affiliation(s)
- Ruben Verloy
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
- Correspondence: (R.V.); (A.P.-M.); Tel.: +32-3265-2343 (R.V. & A.P.-M.)
| | - Angela Privat-Maldonado
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
- Correspondence: (R.V.); (A.P.-M.); Tel.: +32-3265-2343 (R.V. & A.P.-M.)
| | - Evelien Smits
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
| |
Collapse
|
47
|
Smolková B, Frtús A, Uzhytchak M, Lunova M, Kubinová Š, Dejneka A, Lunov O. Critical Analysis of Non-Thermal Plasma-Driven Modulation of Immune Cells from Clinical Perspective. Int J Mol Sci 2020; 21:ijms21176226. [PMID: 32872159 PMCID: PMC7503900 DOI: 10.3390/ijms21176226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
The emerged field of non-thermal plasma (NTP) shows great potential in the alteration of cell redox status, which can be utilized as a promising therapeutic implication. In recent years, the NTP field considerably progresses in the modulation of immune cell function leading to promising in vivo results. In fact, understanding the underlying cellular mechanisms triggered by NTP remains incomplete. In order to boost the field closer to real-life clinical applications, there is a need for a critical overview of the current state-of-the-art. In this review, we conduct a critical analysis of the NTP-triggered modulation of immune cells. Importantly, we analyze pitfalls in the field and identify persisting challenges. We show that the identification of misconceptions opens a door to the development of a research strategy to overcome these limitations. Finally, we propose the idea that solving problems highlighted in this review will accelerate the clinical translation of NTP-based treatments.
Collapse
Affiliation(s)
- Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
| | - Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Šárka Kubinová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (A.F.); (M.U.); (M.L.); (Š.K.); (A.D.)
- Correspondence: ; Tel.: +420-2660-52131
| |
Collapse
|
48
|
Yan D, Wang Q, Adhikari M, Malyavko A, Lin L, Zolotukhin DB, Yao X, Kirschner M, Sherman JH, Keidar M. A Physically Triggered Cell Death via Transbarrier Cold Atmospheric Plasma Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34548-34563. [PMID: 32648738 DOI: 10.1021/acsami.0c06500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cold atmospheric plasma (CAP) is a near room-temperature ionized gas composed of highly reactive species. CAP also generates thermal radiation, ultraviolet radiation, and electromagnetic (EM) waves. So far, nearly all biological effects of CAP have relied on the chemical factors in CAP. Here, we first show that the EM emission from CAP can lead to the death of melanoma cells via a transbarrier contactless method. Compared with reactive species, the effect of the physical factors causes much stronger growth inhibition on a reactive species-resistant melanoma cell line B16F10. Such a physically triggered growth inhibition is due to a new cell death type, characterized by the rapid leakage of bulk solutions from the cells, resulting in cytoplasm shrinkage and bubbling on the cell membrane. The physically based CAP-triggered cell death can occur even there is a macroscale gap between the bulk CAP and cells, which includes an air gap (∼8 mm) and a dielectric material of the dish or plate (∼1 mm). Either a too large or a too small gap will inhibit such cell death. The physically triggered cellular pressure may cause the bubbling on cells, which can be inhibited in a hypotonic environment via the extracellular osmotic pressure. This study builds a foundation to use CAP as a physically based noninvasive cancer treatment.
Collapse
Affiliation(s)
- Dayun Yan
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Qihui Wang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Manish Adhikari
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Alisa Malyavko
- School of Medicine and Health Sciences, The George Washington University, 2300 I Street, NW, Washington, D.C. 20052, United States
| | - Li Lin
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Denis B Zolotukhin
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Xiaoliang Yao
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Megan Kirschner
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Jonathan H Sherman
- Neurological Surgery, The George Washington University, Foggy Bottom South Pavilion, 22nd Street, NW, 7th Floor, Washington, D.C. 20037, United States
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| |
Collapse
|
49
|
Yan D, Wang Q, Malyavko A, Zolotukhin DB, Adhikari M, Sherman JH, Keidar M. The anti-glioblastoma effect of cold atmospheric plasma treatment: physical pathway v.s. chemical pathway. Sci Rep 2020; 10:11788. [PMID: 32678153 PMCID: PMC7366727 DOI: 10.1038/s41598-020-68585-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Cold atmospheric plasma (CAP), a near room temperature ionized gas, has shown potential application in many branches of medicine, particularly in cancer treatment. In previous studies, the biological effect of CAP on cancer cells and other mammalian cells has been based solely on the chemical factors in CAP, particularly the reactive species. Therefore, plasma medicine has been regarded as a reactive species-based medicine, and the physical factors in CAP such as the thermal effect, ultraviolet irradiation, and electromagnetic effect have been regarded as ignorable factors. In this study, we investigated the effect of a physical CAP treatment on glioblastoma cells. For the first time, we demonstrated that the physical factors in CAP could reinstate the positive selectivity on CAP-treated astrocytes. The positive selectivity was a result of necrosis, a new cell death in glioblastoma cells characterized by the leak of bulk water from the cell membrane. The physically-based CAP treatment overcomed a large limitation of the traditional chemically based CAP treatment, which had complete dependence on the sensitivity of cells to reactive species. The physically-based CAP treatment is a potential non-invasive anti-tumor tool, which may have wide application for tumors located in deeper tissues.
Collapse
Affiliation(s)
- Dayun Yan
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA.
| | - Qihui Wang
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Alisa Malyavko
- School of Medicine and Health Science, George Washington University, Washington, DC, 20052, USA
| | - Denis B Zolotukhin
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Manish Adhikari
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Jonathan H Sherman
- Neurosurgery, School of Medicine and Health Science, George Washington University, Washington, DC, 20052, USA
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
50
|
Recent advances in the implant-based drug delivery in otorhinolaryngology. Acta Biomater 2020; 108:46-55. [PMID: 32289495 DOI: 10.1016/j.actbio.2020.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
The surgical implant is an interdisciplinary therapeutic modality that offers unique advantages in the daily practice of otorhinolaryngology. Some well-known examples include cochlear implants, bone-anchored hearing aids, sinus stents, and tracheostomy tubes. Neuroprotective, osteogenic, anti-inflammatory, and antimicrobial effects are among their established or pursued functions. Implant-based drug delivery affords an efficient and potent approach to enhancing these therapeutic functions. Recent innovations have infiltrated all four elements of a drug-eluting implant. The purpose of this pre-clinical, biotechnology-oriented review is to discuss these developments in terms of the implant biomaterial, loaded medication, delivery pattern, and system fabrication. Cell-mediated neurotrophin release, fabrication of a hydroxyapatite-supported system, biodegradable polymer-based implants, and multiclass and multidrug delivery are some representative advancements. The ultimate goal here is to bridge the gap between biotechnology advances and clinical needs. The review is concluded with a perspective regarding the future opportunities and challenges in this popular and rapidly developing subject of research. STATEMENT OF SIGNIFICANCE: Surgical implants and local drug delivery are representative modern modalities of surgical treatment and medical treatment, respectively. Their synergy offers unique therapeutic advantages, such as minimal systemic side effects, proximity-related high efficiency, and potential absorbability. The applications of implant-based drug delivery have infiltrated otorhinolaryngology and head & neck surgery, which is well known for its related tissue diversity and surgical complexity. Examples discussed here include cochlear implants, bone-anchored hearing aids, sinus stents, and airway tubes. This timely review focuses primarily on the four fundamental components of an implant-based drug delivery system, namely implant biomaterial, loaded medication, delivery pattern, and system fabrication. A particular emphasis is placed upon the in vitro cellular and in vivo animal studies that demonstrate pre-clinical potentials.
Collapse
|