1
|
Magalhães CP, Alves JI, Duber A, Oleskowicz-Popiel P, Stams AJM, Cavaleiro AJ. Metabolic versatility of anaerobic sludge towards platform chemical production from waste glycerol. Appl Microbiol Biotechnol 2024; 108:419. [PMID: 39012392 PMCID: PMC11252210 DOI: 10.1007/s00253-024-13248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Waste glycerol is produced in excess by several industries, such as during biodiesel production. In this work, the metabolic versatility of anaerobic sludge was explored towards waste glycerol valorization. By applying different environmental (methanogenic and sulfate-reducing) conditions, three distinct microbial cultures were obtained from the same inoculum (anaerobic granular sludge), with high microbial specialization, within three different phyla (Thermodesulfobacteriota, Euryarchaeota and Pseudomonadota). The cultures are capable of glycerol conversion through different pathways: (i) glycerol conversion to methane by a bacterium closely related to Solidesulfovibrio alcoholivorans (99.8% 16S rRNA gene identity), in syntrophic relationship with Methanofollis liminatans (98.8% identity), (ii) fermentation to propionate by Propionivibrio pelophilus strain asp66 (98.6% identity), with a propionate yield of 0.88 mmol mmol-1 (0.71 mg mg-1) and a propionate purity of 80-97% and (iii) acetate production coupled to sulfate reduction by Desulfolutivibrio sulfoxidireducens (98.3% identity). In conclusion, starting from the same inoculum, we could drive the metabolic and functional potential of the microbiota towards the formation of several valuable products that can be used in industrial applications or as energy carriers. KEY POINTS: Versatility of anaerobic cultures was explored for waste glycerol valorization Different environmental conditions lead to metabolic specialization Biocommodities such as propionate, acetate and methane were produced.
Collapse
Affiliation(s)
- Carla P Magalhães
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Joana I Alves
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Anna Duber
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Poznan, Poland
| | - Alfons J M Stams
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ana J Cavaleiro
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Thompson JC, Zavala VM, Venturelli OS. Integrating a tailored recurrent neural network with Bayesian experimental design to optimize microbial community functions. PLoS Comput Biol 2023; 19:e1011436. [PMID: 37773951 PMCID: PMC10540976 DOI: 10.1371/journal.pcbi.1011436] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/16/2023] [Indexed: 10/01/2023] Open
Abstract
Microbiomes interact dynamically with their environment to perform exploitable functions such as production of valuable metabolites and degradation of toxic metabolites for a wide range of applications in human health, agriculture, and environmental cleanup. Developing computational models to predict the key bacterial species and environmental factors to build and optimize such functions are crucial to accelerate microbial community engineering. However, there is an unknown web of interactions that determine the highly complex and dynamic behavior of these systems, which precludes the development of models based on known mechanisms. By contrast, entirely data-driven machine learning models can produce physically unrealistic predictions and often require significant amounts of experimental data to learn system behavior. We develop a physically-constrained recurrent neural network that preserves model flexibility but is constrained to produce physically consistent predictions and show that it can outperform existing machine learning methods in the prediction of certain experimentally measured species abundance and metabolite concentrations. Further, we present a closed-loop, Bayesian experimental design algorithm to guide data collection by selecting experimental conditions that simultaneously maximize information gain and target microbial community functions. Using a bioreactor case study, we demonstrate how the proposed framework can be used to efficiently navigate a large design space to identify optimal operating conditions. The proposed methodology offers a flexible machine learning approach specifically tailored to optimize microbiome target functions through the sequential design of informative experiments that seek to explore and exploit community functions.
Collapse
Affiliation(s)
- Jaron C. Thompson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Victor M. Zavala
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ophelia S. Venturelli
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Zhang Y, Shi K, Cui H, Han J, Wang H, Ma X, Li Z, Zhang L, Nie S, Ma C, Wang A, Liang B. Efficient biodegradation of acetoacetanilide in hypersaline wastewater with a synthetic halotolerant bacterial consortium. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129926. [PMID: 36099740 DOI: 10.1016/j.jhazmat.2022.129926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The high concentrations of salt and refractory toxic organics in industrial wastewater seriously restrict biological treatment efficiency and functional stability. However, how to construct a salt-tolerant biocatalytic community and realize the decarbonization coupled with detoxification toward green bio-enhanced treatment, has yet to be well elucidated. Here, acetoacetanilide (AAA), an important intermediate for many dyes and medicine synthesis, was used as the model amide pollutant to elucidate the directional enrichment of halotolerant degradative communities and the corresponding bacterial interaction mechanism. Combining microbial community composition and molecular ecological network analyses as well as the biodegradation efficiencies of AAA and its hydrolysis product aniline (AN) of pure strains, the core degradative bacteria were identified during the hypersaline AAA degradation process. A synthetic bacterial consortium composed of Paenarthrobacter, Rhizobium, Rhodococcus, Delftia and Nitratireductor was constructed based on the top-down strategy to treat AAA wastewater with different water quality characteristics. The synthetic halotolerant consortium showed promising treatment ability toward the simulated AAA wastewater (AAA 100-500 mg/L, 1-5% salinity) and actual AAA mother liquor. Additionally, the comprehensive toxicity of AAA mother liquor significantly reduced after biological treatment. This study provides a green biological approach for the treatment of hypersaline and high concentration of organics wastewater.
Collapse
Affiliation(s)
- Yanqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Shi
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinglong Han
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaodan Ma
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ling Zhang
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shichen Nie
- Shandong Hynar Water Environmental Protection Co., Ltd., Caoxian, China
| | - Changshui Ma
- Tai'an Hospital of Chinese Medicine, Tai'an 271000, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
4
|
Brodowski F, Łężyk M, Gutowska N, Kabasakal T, Oleskowicz-Popiel P. Influence of lactate to acetate ratio on biological production of medium chain carboxylates via open culture fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158171. [PMID: 35988608 DOI: 10.1016/j.scitotenv.2022.158171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Waste valorisation via biological production of widely used in the industry medium chain carboxylates (MCCs) via open culture fermentation (OCF) could be a promising alternative to the commonly used anaerobic digestion. Lactate-rich waste streams are considered as valuable substrates for carboxylate chain elongation (CE), however, there are certain limitations related to the production efficiency. Acetate produced and accumulated in the acetogenesis plays an important role in CE, i.e. acetate is elongated to butyrate and then to caproate which is most popular MCC. Henceforth, it was investigated whether the ratio of lactate to acetate (L:A) affected carboxylates yields and product distribution in the lactate-based CE in OCF. The tested L:A ratios influenced carboxylates selectivity in batch trials. In the ones with lactate as the sole carbon source, propionate production was predominant but when a higher relative acetate concentration was used, the production of butyrate and CE to caproate was favored. The co-utilization of lactate and acetate in a continuous process increased the production of butyrate and caproate compared to the phase with lactate as the sole carbon source, however, controlling the relative concentration of lactate and acetate during co-utilization was not an effective strategy for increasing caproate production. 16S rRNA gene amplicon reads mapping to Caproiciproducens were the most abundant in samples collected throughout the continuous processes regardless of the L:A ratios.
Collapse
Affiliation(s)
- Filip Brodowski
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Natalia Gutowska
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Tugba Kabasakal
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
5
|
Brodowski F, Łężyk M, Gutowska N, Oleskowicz-Popiel P. Effect of external acetate on lactate-based carboxylate platform: Shifted lactate overloading limit and hydrogen co-production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149885. [PMID: 34474295 DOI: 10.1016/j.scitotenv.2021.149885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Chain elongation is an anaerobic biotechnological process that converts short chain carboxylates and an electron donor (e.g. ethanol, lactate) into more valuable medium chain carboxylates. Caproate production in lactate-based chain elongation is gaining popularity, however, the relation between lactate (electron donor) and acetate (electron acceptor) has not yet been fully elucidated. Herein, for the first time, the effect of an external acetate on the lactate-based chain elongation in a continuously-fed bioreactor was tested to verify how the external acetate would affect the product spectrum, gas production, as well as stability and efficiency of carboxylates production. Periodic fluctuations in caproate production were observed in bioreactor continuously fed with lactate as a sole carbon source due to the lack of an electron acceptor (acetate) and low chain elongation performance. The recovery of stable caproate production (68.9 ± 2.2 mmol C/L/d), total lactate consumption, and high hydrogen co-production (748 ± 76 mLH2/d) was observed as an effect of the addition of an external acetate. The lactate conversion with the external acetate in the second bioreactor ensured stable and dominant caproate production from the beginning of the process. Moreover, despite the continuous lactate overloading in the process with external acetate, stable caproate production was achieved (71.7 ± 2.4 mmol C/L/d) and previously unobserved hydrogen production occurred (213 ± 30 mLH2/d). Thus, external electron acceptor addition (i.e. acetate) was proposed as an effective method for stable lactate-based caproate production. Microbiological analysis showed the dominance of microbes closely related to Ruminococcaceae bacterium CPB6 and Acinetobacter throughout the process. Co-occurrence networks based on taxon abundances and process parameters revealed microbial sub-networks responding to lactate concentrations.
Collapse
Affiliation(s)
- Filip Brodowski
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Natalia Gutowska
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
6
|
Contreras-Dávila CA, Zuidema N, Buisman CJN, Strik DPBTB. Reactor microbiome enriches vegetable oil with n-caproate and n-caprylate for potential functionalized feed additive production via extractive lactate-based chain elongation. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:232. [PMID: 34872602 PMCID: PMC8647473 DOI: 10.1186/s13068-021-02084-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Biotechnological processes for efficient resource recovery from residual materials rely on complex conversions carried out by reactor microbiomes. Chain elongation microbiomes produce valuable medium-chain carboxylates (MCC) that can be used as biobased starting materials in the chemical, agriculture and food industry. In this study, sunflower oil is used as an application-compatible solvent to accumulate microbially produced MCC during extractive lactate-based chain elongation. The MCC-enriched solvent is harvested as a potential novel product for direct application without further MCC purification, e.g., direct use for animal nutrition. Sunflower oil biocompatibility, in situ extraction performance and effects on chain elongation were evaluated in batch and continuous experiments. Microbial community composition and dynamics of continuous experiments were analyzed based on 16S rRNA gene sequencing data. Potential applications of MCC-enriched solvents along with future research directions are discussed. RESULTS Sunflower oil showed high MCC extraction specificity and similar biocompatibility to oleyl alcohol in batch extractive fermentation of lactate and food waste. Continuous chain elongation microbiomes produced the MCC n-caproate (nC6) and n-caprylate (nC8) from L-lactate and acetate at pH 5.0 standing high undissociated n-caproic acid concentrations (3 g L-1). Extractive chain elongation with sunflower oil relieved apparent toxicity of MCC and production rates and selectivities reached maximum values of 5.16 ± 0.41 g nC6 L-1 d-1 (MCC: 11.5 g COD L-1 d-1) and 84 ± 5% (e- eq MCC per e- eq products), respectively. MCC were selectively enriched in sunflower oil to concentrations up to 72 g nC6 L-1 and 3 g nC8 L-1, equivalent to 8.3 wt% in MCC-enriched sunflower oil. Fermentation at pH 7.0 produced propionate and n-butyrate instead of MCC. Sunflower oil showed stable linoleic and oleic acids composition during extractive chain elongation regardless of pH conditions. Reactor microbiomes showed reduced diversity at pH 5.0 with MCC production linked to Caproiciproducens co-occurring with Clostridium tyrobutyricum, Clostridium luticellarii and Lactobacillus species. Abundant taxa at pH 7.0 were Anaerotignum, Lachnospiraceae and Sporoanaerobacter. CONCLUSIONS Sunflower oil is a suitable biobased solvent to selectively concentrate MCC. Extractive reactor microbiomes produced MCC with improved selectivity and production rate, while downstream processing complexity was reduced. Potential applications of MCC-enriched solvents may include feed, food and biofuels purposes.
Collapse
Affiliation(s)
- Carlos A. Contreras-Dávila
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Norwin Zuidema
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Cees J. N. Buisman
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - David P. B. T. B. Strik
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
7
|
Baleeiro FCF, Ardila MS, Kleinsteuber S, Sträuber H. Effect of Oxygen Contamination on Propionate and Caproate Formation in Anaerobic Fermentation. Front Bioeng Biotechnol 2021; 9:725443. [PMID: 34568301 PMCID: PMC8460912 DOI: 10.3389/fbioe.2021.725443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/19/2021] [Indexed: 01/19/2023] Open
Abstract
Mixed microbial cultures have become a preferred choice of biocatalyst for chain elongation systems due to their ability to convert complex substrates into medium-chain carboxylates. However, the complexity of the effects of process parameters on the microbial metabolic networks is a drawback that makes the task of optimizing product selectivity challenging. Here, we studied the effects of small air contaminations on the microbial community dynamics and the product formation in anaerobic bioreactors fed with lactate, acetate and H2/CO2. Two stirred tank reactors and two bubble column reactors were operated with H2/CO2 gas recirculation for 139 and 116 days, respectively, at pH 6.0 and 32°C with a hydraulic retention time of 14 days. One reactor of each type had periods with air contamination (between 97 ± 28 and 474 ± 33 mL O2 L−1 d−1, lasting from 4 to 32 days), while the control reactors were kept anoxic. During air contamination, production of n-caproate and CH4 was strongly inhibited, whereas no clear effect on n-butyrate production was observed. In a period with detectable O2 concentrations that went up to 18%, facultative anaerobes of the genus Rummeliibacillus became predominant and only n-butyrate was produced. However, at low air contamination rates and with O2 below the detection level, Coriobacteriia and Actinobacteria gained a competitive advantage over Clostridia and Methanobacteria, and propionate production rates increased to 0.8–1.8 mmol L−1 d−1 depending on the reactor (control reactors 0.1–0.8 mmol L−1 d−1). Moreover, i-butyrate production was observed, but only when Methanobacteria abundances were low and, consequently, H2 availability was high. After air contamination stopped completely, production of n-caproate and CH4 recovered, with n-caproate production rates of 1.4–1.8 mmol L−1 d−1 (control 0.7–2.1 mmol L−1 d−1). The results underline the importance of keeping strictly anaerobic conditions in fermenters when consistent n-caproate production is the goal. Beyond that, micro-aeration should be further tested as a controllable process parameter to shape the reactor microbiome. When odd-chain carboxylates are desired, further studies can develop strategies for their targeted production by applying micro-aerobic conditions.
Collapse
Affiliation(s)
- Flávio C F Baleeiro
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Process Engineering in Life Science 2, Technical Biology, Karlsruhe Institute of Technology - KIT, Karlsruhe, Germany
| | - Magda S Ardila
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Process Engineering in Life Science 2, Technical Biology, Karlsruhe Institute of Technology - KIT, Karlsruhe, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
8
|
Microbial Ecological Mechanism for Long-Term Production of High Concentrations of n-Caproate via Lactate-Driven Chain Elongation. Appl Environ Microbiol 2021; 87:AEM.03075-20. [PMID: 33741616 DOI: 10.1128/aem.03075-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Lactate-driven chain elongation (LCE) has emerged as a new biotechnology to upgrade organic waste streams into a valuable biochemical and fuel precursor, medium-chain carboxylate, n-caproate. Considering that a low cost of downstream extraction is critical for biorefinery technology, a high concentration of n-caproate production is very important to improve the scale-up of the LCE process. We report here that in a nonsterile open environment, the n-caproate concentration was increased from the previous record of 25.7 g·liter-1 to a new high level of 33.7 g·liter-1 (76.8 g chemical oxygen demand [COD]·liter - 1), with the highest production rate being 11.5 g·liter-1·day-1 (26.2 g COD·liter - 1·day-1). In addition, the LCE process remained stable, with an average concentration of n-caproate production of 20.2 ± 5.62 g·liter-1 (46.1 ± 12.8 g COD·liter - 1) for 780 days. Dynamic changes in taxonomic composition integrated with metagenomic data reveal the microbial ecology for long-term production of high concentrations of n-caproate: (i) the core microbiome is related to efficient functional groups, such as Ruminococcaceae (with functional strain CPB6); (ii) the core bacteria can maintain stability for long-term operation; (iii) the microbial network has relatively low microbe-microbe interaction strength; and (iv) low relative abundance and variety of competitors. The network structure could be shaped by hydraulic retention time (HRT) over time, and long-term operation at an HRT of 8 days displayed higher efficacy.IMPORTANCE Our research revealed the microbial network of the LCE reactor microbiome for n-caproate production at high concentrations, which will provide a foundation for designing or engineering the LCE reactor microbiome to recover n-caproate from organic waste streams in the future. In addition, the hypothetical model of the reactor microbiome that we proposed may offer guidance for researchers to find the underlying microbial mechanism when they encounter low-efficiency n-caproate production from the LCE process. We anticipate that our research will rapidly advance LCE biotechnology with the goal of promoting the sustainable development of human society.
Collapse
|
9
|
Qi M, Liang B, Zhang L, Ma X, Yan L, Dong W, Kong D, Zhang L, Zhu H, Gao SH, Jiang J, Liu SJ, Corvini PFX, Wang A. Microbial Interactions Drive the Complete Catabolism of the Antibiotic Sulfamethoxazole in Activated Sludge Microbiomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3270-3282. [PMID: 33566597 DOI: 10.1021/acs.est.0c06687] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbial communities are believed to outperform monocultures in the complete catabolism of organic pollutants via reduced metabolic burden and increased robustness to environmental challenges; however, the interaction mechanism in functional microbiomes remains poorly understood. Here, three functionally differentiated activated sludge microbiomes (S1: complete catabolism of sulfamethoxazole (SMX); S2: complete catabolism of the phenyl part of SMX ([phenyl]-SMX) with stable accumulation of its heterocyclic product 3-amino-5-methylisoxazole (3A5MI); A: complete catabolism of 3A5MI rather than [phenyl]-SMX) were enriched. Combining time-series cultivation-independent microbial community analysis, DNA-stable isotope probing, molecular ecological network analysis, and cultivation-dependent function verification, we identified key players involved in the SMX degradation process. Paenarthrobacter and Nocardioides were primary degraders for the initial cleavage of the sulfonamide functional group (-C-S-N- bond) and 3A5MI degradation, respectively. Complete catabolism of SMX was achieved by their cross-feeding. The co-culture of Nocardioides, Acidovorax, and Sphingobium demonstrated that the nondegraders Acidovorax and Sphingobium were involved in the enhancement of 3A5MI degradation. Moreover, we unraveled the internal labor division patterns and connections among the active members centered on the two primary degraders. Overall, the proposed methodology is promisingly applicable and would help generate mechanistic, predictive, and operational understanding of the collaborative biodegradation of various contaminants. This study provides useful information for synthetic activated sludge microbiomes with optimized environmental functions.
Collapse
Affiliation(s)
- Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchen Dong
- Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch 8140, New Zealand
| | - Deyong Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haizhen Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz 4132, Switzerland
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
10
|
Vendruscolo ECG, Mesa D, Rissi DV, Meyer BH, de Oliveira Pedrosa F, de Souza EM, Cruz LM. Microbial communities network analysis of anaerobic reactors fed with bovine and swine slurry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140314. [PMID: 33167293 DOI: 10.1016/j.scitotenv.2020.140314] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/18/2020] [Accepted: 06/15/2020] [Indexed: 05/28/2023]
Abstract
Anaerobic digestion can produce biogas as an eco-friendly energy source, driven by a microbial community-dependent process and, as such, suffer influences from many biotic and abiotic factors. Understanding the players and how they interact, the mechanisms involved, what the factors are, and how they influence the biogas process and production is an important way to better control it and make it more efficient. Metagenomic approach is a powerful tool to assess microbial diversity and further, allow correlating changes in microbial communities with multiple factors in virtually all environments. In the present study, we used metagenomic approach to assess microbial community structure changes in two biodigesters, differing in their biogas production capacity, architecture, and feed. A total of 1,440,096 reads of the 16S rRNA gene V4 region were obtained and analyzed. The main bacterial phyla were Firmicutes and Bacteroidetes in both biodigesters, but the biodiversity was greater in the Upflow Anaerobic Sludge Blanket (UASB) reactor fed with bovine manure than in the Continuous Stirred Tank Reactor (CSTR) fed with swine manure, which also correlated with an increase in biogas or methane production. Microbial community structure associated with biodigesters changed seasonally and depended on animal growth stage. Random forest algorithm analysis revealed key microbial taxa for each biodigester. Candidatus Cloacomonas, Methanospirillum, and Methanosphaera were the marker taxa for UASB and the archaea groups Methanobrevibacter and Candidatus Methanoplasma were the marker taxa for CSTR. A high abundance of Candidatus Methanoplasma and Marinimicrobia SAR406 clade suggested lower increments in methane production. Network analysis pointed to negative and positive associations and specific key groups, essential in maintaining the anaerobic digestion (AD) process, as being uncultured Parcubacteria bacteria, Candidatus Cloacomonas, and Candidatus Methanoplasma groups, whose functions in AD require investigation.
Collapse
Affiliation(s)
| | - Dany Mesa
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Av. Coronel Francisco H. dos Santos,100, CP 19031, Centro Politécnico, Curitiba, PR, 81531-980, Brazil
| | - Daniel Vasconcelos Rissi
- Sector of Professional and Technological Education, Federal University of Paraná, R. Dr. Alcides Vieira Arcoverde, 1225 - Jardim das Américas, Curitiba, PR, 81520-260, Brazil
| | - Bruno Henrique Meyer
- Department of Informatics, Federal University of Paraná, R. Evaristo F. Ferreira da Costa, 383-391 - Jardim das Américas, Curitiba, PR, 82590-300, Brazil
| | - Fábio de Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Av. Coronel Francisco H. dos Santos,100, CP 19031, Centro Politécnico, Curitiba, PR, 81531-980, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Av. Coronel Francisco H. dos Santos,100, CP 19031, Centro Politécnico, Curitiba, PR, 81531-980, Brazil
| | - Leonardo Magalhães Cruz
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Av. Coronel Francisco H. dos Santos,100, CP 19031, Centro Politécnico, Curitiba, PR, 81531-980, Brazil; Department of Informatics, Federal University of Paraná, R. Evaristo F. Ferreira da Costa, 383-391 - Jardim das Américas, Curitiba, PR, 82590-300, Brazil
| |
Collapse
|
11
|
Peces M, Astals S, Jensen PD, Clarke WP. Transition of microbial communities and degradation pathways in anaerobic digestion at decreasing retention time. N Biotechnol 2020; 60:52-61. [PMID: 32858258 DOI: 10.1016/j.nbt.2020.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 01/04/2023]
Abstract
Tuning of operational variables is a common practice to control the anaerobic digestion process and, in advanced applications, to promote the accumulation of fermentation products. However, process variables are interrelated. In this study, the hydraulic retention time (HRT) was decoupled from the organic loading rate (OLR) in order to isolate the effect of HRT as a selective pressure on: process performance, metabolic rates (hydrolytic, acetogenic, and methanogenic) and the microbial community. Four mesophilic anaerobic digesters were subjected to a sequential decrease in HRT from 15 to 8, 4 and 2 days while keeping the OLR constant at chemical oxygen demand of 1 gCOD L r-1 d-1. The results showed that HRT alone was insufficient to washout methanogens from the digesters, which in turn prevented the accumulation of volatile fatty acids (VFA). Methanosaeta was the dominant genus in the four digesters at all HRTs. Metabolic rates showed that process performance was controlled by hydrolysis, with a clear shift in acetogenic rates, from butyrate and propionate degradation to ethanol degradation at 4 and 2d HRT. The change in acetogenic pathways was attributed to a shift in the fermentation pathways co-current with changes in fermentative bacteria. At 2d HRT, biofilm was formed on the walls and paddles of the digesters, probably as a survival strategy. Most of the taxa in the biofilm were also present in the digester media. Overall, it is the combination of HRT with other operational parameters which promotes the washout of methanogens and the accumulation of VFA.
Collapse
Affiliation(s)
- Miriam Peces
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, St. Lucia, 4072, QLD, Australia; Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, 9220 Aalborg, Denmark.
| | - Sergi Astals
- Advanced Water Management Centre, The University of Queensland, St Lucia, 4072, QLD, Australia; Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Paul D Jensen
- Advanced Water Management Centre, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - William P Clarke
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, St. Lucia, 4072, QLD, Australia
| |
Collapse
|
12
|
Chu N, Liang Q, Jiang Y, Zeng RJ. Microbial electrochemical platform for the production of renewable fuels and chemicals. Biosens Bioelectron 2020; 150:111922. [DOI: 10.1016/j.bios.2019.111922] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/01/2022]
|
13
|
Wu Q, Bao X, Guo W, Wang B, Li Y, Luo H, Wang H, Ren N. Medium chain carboxylic acids production from waste biomass: Current advances and perspectives. Biotechnol Adv 2019; 37:599-615. [PMID: 30849433 DOI: 10.1016/j.biotechadv.2019.03.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 11/29/2022]
Abstract
Alternative chemicals to diverse fossil-fuel-based products is urgently needed to mitigate the adverse impacts of fossil fuel depletion on human development. To this end, researchers have focused on the production of biochemical from readily available and affordable waste biomass. This is consistent with current guidelines for sustainable development and provides great advantages related to economy and environment. The search for suitable biochemical products is in progress worldwide. Therefore, this review recommends a biochemical (i.e., medium chain carboxylic acids (MCCAs)) utilizing an emerging biotechnological production platform called the chain elongation (CE) process. This work covers comprehensive introduction of the CE mechanism, functional microbes, available feedstock types and corresponding utilization strategies, major methods to enhance the performance of MCCAs production, and the challenges that need to be addressed for practical application. This work is expected to provide a thorough understanding of the CE technology, to guide and inspire researchers to solve existing problems in depth, and motivate large-scale MCCAs production.
Collapse
Affiliation(s)
- Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xian Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Bing Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yunxi Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|