1
|
Mhaouty-Kodja S, Zalko D, Tait S, Testai E, Viguié C, Corsini E, Grova N, Buratti FM, Cabaton NJ, Coppola L, De la Vieja A, Dusinska M, El Yamani N, Galbiati V, Iglesias-Hernández P, Kohl Y, Maddalon A, Marcon F, Naulé L, Rundén-Pran E, Salani F, Santori N, Torres-Ruiz M, Turner JD, Adamovsky O, Aiello-Holden K, Dirven H, Louro H, Silva MJ. A critical review to identify data gaps and improve risk assessment of bisphenol A alternatives for human health. Crit Rev Toxicol 2024:1-58. [PMID: 39436315 DOI: 10.1080/10408444.2024.2388712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 10/23/2024]
Abstract
Bisphenol A (BPA), a synthetic chemical widely used in the production of polycarbonate plastic and epoxy resins, has been associated with a variety of adverse effects in humans including metabolic, immunological, reproductive, and neurodevelopmental effects, raising concern about its health impact. In the EU, it has been classified as toxic to reproduction and as an endocrine disruptor and was thus included in the candidate list of substances of very high concern (SVHC). On this basis, its use has been banned or restricted in some products. As a consequence, industries turned to bisphenol alternatives, such as bisphenol S (BPS) and bisphenol F (BPF), which are now found in various consumer products, as well as in human matrices at a global scale. However, due to their toxicity, these two bisphenols are in the process of being regulated. Other BPA alternatives, whose potential toxicity remains largely unknown due to a knowledge gap, have also started to be used in manufacturing processes. The gradual restriction of the use of BPA underscores the importance of understanding the potential risks associated with its alternatives to avoid regrettable substitutions. This review aims to summarize the current knowledge on the potential hazards related to BPA alternatives prioritized by European Regulatory Agencies based on their regulatory relevance and selected to be studied under the European Partnership for the Assessment of Risks from Chemicals (PARC): BPE, BPAP, BPP, BPZ, BPS-MAE, and TCBPA. The focus is on data related to toxicokinetic, endocrine disruption, immunotoxicity, developmental neurotoxicity, and genotoxicity/carcinogenicity, which were considered the most relevant endpoints to assess the hazard related to those substances. The goal here is to identify the data gaps in BPA alternatives toxicology and hence formulate the future directions that will be taken in the frame of the PARC project, which seeks also to enhance chemical risk assessment methodologies using new approach methodologies (NAMs).
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Daniel Zalko
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Testai
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Catherine Viguié
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Nathalie Grova
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Franca Maria Buratti
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicolas J Cabaton
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio De la Vieja
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Maria Dusinska
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Naouale El Yamani
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Patricia Iglesias-Hernández
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Francesca Marcon
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Lydie Naulé
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Elise Rundén-Pran
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Francesca Salani
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicoletta Santori
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Mónica Torres-Ruiz
- National Center for Environmental Health (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Jonathan D Turner
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Ondrej Adamovsky
- Faculty of Science, Masaryk University, RECETOX, Brno, Czech Republic
| | | | - Hubert Dirven
- Department of Chemical Toxicology - Division of Climate and the Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Hart A, Schroeder H, Rose M, Vrijheid M, Kouloura E, Bordajandi LR, Riolo F, Vleminckx C. Update of the scientific opinion on tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA J 2024; 22:e8859. [PMID: 39010865 PMCID: PMC11247339 DOI: 10.2903/j.efsa.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 μg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.
Collapse
|
3
|
Yao Z, Tao S, Lai Y, Yu Y, Wang H, Sang J, Yang J, Li H, Li X, Li Y, Ning Y, Ge RS, Li S. The impact of tetrachlorobisphenol A exposure during puberty: Altered Leydig cell development and induced endoplasmic reticulum stress in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115895. [PMID: 38159341 DOI: 10.1016/j.ecoenv.2023.115895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Tetrachlorobisphenol A (TCBPA), a halogenated flame retardant and endocrine disruptor, has been detected in human urine and serum. While previous research has shown its impact on the reproductive system, investigations into its mechanisms during puberty remain limited. This study aims to explore the effects of TCBPA on Leydig cells in adolescent mice and potential underlying mechanisms. Male C57 mice of age 28 days were gavaged with 50, 100, and 200 mg/kg/day for 28 days. TCBPA did not alter body weight and testis weight but lowered testosterone levels at 100 and 200 mg/kg and reduced sperm count in the epididymis at 200 mg/kg. TCBPA lowered Leydig cell number at 200 mg/kg while it downregulated key Leydig cell gene (Lhcgr, Scarb1, Cyp11a1, Cyp17a1, Hsd3b6, Hsd17b3 and Insl3) as low as 50 mg/kg. Further study indicated that TCBPA induced reactive oxygen species and caused endoplasmic reticulum stress. In vitro study in TM3 mouse Leydig cells showed that TCBPA indeed induced reactive oxygen species and caused endoplasmic reticulum stress at 75 μM and inhibited testosterone production at this concentration and addition of antioxidant tocopherol can reverse it. These discoveries provide new insights and references for a deeper understanding of the toxic mechanisms of TCBPA on Leydig cells during puberty.
Collapse
Affiliation(s)
- Zhiang Yao
- Institute of Life Sciences, College of Life and Environmental Sciences,Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Shanhui Tao
- Institute of Life Sciences, College of Life and Environmental Sciences,Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Yingji Lai
- Alberta Institute, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yang Yu
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hong Wang
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianmin Sang
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jin Yang
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoheng Li
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Li
- Institute of Life Sciences, College of Life and Environmental Sciences,Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Yangyang Ning
- Institute of Life Sciences, College of Life and Environmental Sciences,Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Ren-Shan Ge
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Wenzhou, 325000 Zhejiang Province, China; Department of Anaesthesiology and Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Shijun Li
- Institute of Life Sciences, College of Life and Environmental Sciences,Wenzhou University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
4
|
Yu M, Xu L, Lei B, Sun S, Yang Y. Tetrachlorobisphenol A and bisphenol AF induced cell migration by activating PI3K/Akt signaling pathway via G protein-coupled estrogen receptor 1 in SK-BR-3 cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:126-135. [PMID: 36190352 DOI: 10.1002/tox.23669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Different subtypes of breast cancer express positively G protein-coupled estrogen receptor 1 (GPER1). Our previous studies found that tetrachlorobisphenol A (TCBPA) and bisphenol AF (BPAF) significantly promoted SK-BR-3 cell proliferation by activating GPER1-regulated signals. The present study further investigated the effects of TCBPA and BPAF on the migration of SK-BR-3 cells and examined the role of phosphatidylinositol 3-kinase-protein kinase B (PI3K/Akt) and its downstream signal targets in this process. We found that low-concentration BPAF and TCBPA markedly accelerated the migration of SK-BR-3 cells and elevated the mRNA levels of target genes associated with PI3K/Akt and mitogen-activated protein kinase (MAPK) signals. TCBPA- and BPAF-induced upregulation of target genes was significantly reduced by GPER1 inhibitor G15, the PI3K/Akt inhibitor wortmannin (WM), and the epidermal growth factor receptor (EGFR) inhibitor ZD1839 (ZD). G15 and WM also decreased cell migration induced by TCBPA and BPAF. The findings revealed that TCBPA and BPAF promoted SK-BR-3 cell migration ability by activating PI3K/Akt signaling pathway via GPER1-EGFR.
Collapse
Affiliation(s)
- Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Lanbing Xu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Su Sun
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Expression of estrogen receptors, PELP1, and SRC in human spermatozoa and their associations with semen quality. Hum Cell 2023; 36:554-567. [PMID: 36577884 PMCID: PMC9947025 DOI: 10.1007/s13577-022-00847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022]
Abstract
Sperm cells are target cells for both estrogens and xenoestrogens. Due to the specific structure of spermatozoa, these hormonal compounds may act on sperm in a non-genomic mechanism only. However, the ESR-mediated signaling pathways are still poorly understood. In this study, we obtained 119 samples from male participants of Caucasian descent who donated semen for standard analysis. We analyzed gene expression of estrogen receptors (ESR1 and ESR2) and their coregulators-proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), and cellular kinase c-Src (SRC). RNA level was established using reverse-transcribed RNA as a template, followed by a polymerase chain reaction. Proteins' presence was confirmed by western blot and immunocytochemistry techniques. "Normal" values of semen parameters were defined as follows: > 32% sperm with progressive motility, > 4% sperm cells with normal morphology, > 15 × 106 sperm per mL, > 58% live spermatozoa and leukocyte amount < 106 cells per mL, according to WHO 2010 reference. Semen parameters that deviated from these "normal" values were labeled as "abnormal". Gene expression ratios revealed significant, moderate, and negative correlations for ESR1/ESR2 and weak, negative ESR2/PELP1 correlations in the subgroup of patients with abnormal values of semen parameters. In addition, SRC/PELP1 was moderately and positively correlated in the subgroup with parameters within the reference values established by WHO 2010. Our study showed that both PELP1 scaffolding protein and SRC kinase might influence semen quality via ESRs. It seems that not the expression of a single gene may affect the sperm quality, but more gene-to-gene mutual ratio. Characterization of estrogen-signaling pathway-related genes' modulated expression in sperm cells could aid in better understanding sperm biology and quality.
Collapse
|
6
|
Yu M, Tang Q, Lei B, Yang Y, Xu L. Bisphenol AF Promoted the Growth of Uterus and Activated Estrogen Signaling Related Targets in Various Tissues of Nude Mice with SK-BR-3 Xenograft Tumor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15743. [PMID: 36497816 PMCID: PMC9741110 DOI: 10.3390/ijerph192315743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Environmental estrogens can promote the growth, migration, and invasion of breast cancer. However, few studies evaluate adverse health impacts of environmental estrogens on other organs of breast cancer patients. Therefore, the present study investigated the effects of environmental estrogen bisphenol AF (BPAF) on the main organs of female Balb/cA nude mice with SK-BR-3 xenograft tumor by detecting the organ development and gene expression of targets associated with G protein-coupled estrogen receptor 1 (GPER1)-mediated phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinase (MAPK) signaling pathways in hypothalamus, ovary, uterus, liver, and kidney. The results showed that BPAF at 20 mg/kg bw/day markedly increased the uterine weight and the uterine coefficient of nude mice compared to SK-BR-3 bearing tumor control, indicating that BPAF promoted the growth of uterus due to its estrogenic activity. Additionally, BPAF significantly up-regulated the mRNA relative expression of most targets related to nuclear estrogen receptor alpha (ERα) and GPER1-mediated signaling pathways in the hypothalamus, followed by the ovary and uterus, and the least in the liver and kidney, indicating that BPAF activated different estrogen activity related targets in different tissues. In addition, BPAF markedly up-regulated the mRNA expression of GPER1 in all tested tissues, and the molecular docking showed that BPAF could dock into GPER1. Because gene change is an early event of toxicity response, these findings suggested that BPAF might aggravate the condition of breast cancer patients through exerting its estrogenic activity via the GPER1 pathway in various organs.
Collapse
|
7
|
Venditti M, Arcaniolo D, De Sio M, Minucci S. First Evidence of the Expression and Localization of Prothymosin α in Human Testis and Its Involvement in Testicular Cancers. Biomolecules 2022; 12:biom12091210. [PMID: 36139050 PMCID: PMC9496091 DOI: 10.3390/biom12091210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Prothymosin α (PTMA) is a phylogenetically conserved polypeptide in male gonads of Vertebrates. In Mammals, it is a ubiquitous protein, and, possessing a random-coil structure, it interacts with many other partners, in both cytoplasmic and nuclear compartments. PTMA has been widely studied during cell progression in different types of cancer because of its anti-apoptotic and proliferative properties. Here, we provided the first evidence of PTMA expression and localization in human testis and in two testicular cancers (TC): classic seminoma (CS) and Leydig cell tumor (LCT). Data showed that its protein level, together with that of proliferating cell nuclear antigen (PCNA), a cell cycle progression marker, increased in both CS and LCT samples, as compared to non-pathological (NP) tissue. Moreover, in the two-cancer tissue, a decreased apoptotic rate and an increased autophagic flux was also evidenced. Results confirmed the anti-apoptotic action of PTMA, also suggesting that it can act as a switcher from apoptosis to autophagy, to favor the survival of testicular cancer cells when they develop in adverse environments. Finally, the combined data, even if they need to be further validated, add new insight into the role of PTMA in human normal and pathological testicular tissue.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università degli Studi della Campania “Luigi Vanvitelli”, Via Costantinopoli, 16-80138 Napoli, Italy
- Correspondence:
| | - Davide Arcaniolo
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 02-80138 Napoli, Italy
| | - Marco De Sio
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 02-80138 Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università degli Studi della Campania “Luigi Vanvitelli”, Via Costantinopoli, 16-80138 Napoli, Italy
| |
Collapse
|
8
|
Modulatory Effects of Estradiol and Its Mixtures with Ligands of GPER and PPAR on MAPK and PI3K/Akt Signaling Pathways and Tumorigenic Factors in Mouse Testis Explants and Mouse Tumor Leydig Cells. Biomedicines 2022; 10:biomedicines10061390. [PMID: 35740412 PMCID: PMC9219706 DOI: 10.3390/biomedicines10061390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
The present study was designed to evaluate how estradiol alone or in combination with G protein-coupled estrogen receptor (GPER) agonists and GPER and peroxisome proliferator-activated receptor (PPAR) antagonists alter the expression of tumor growth factor β (TGF-β), cyclooxygenase-2 (COX-2), hypoxia inducible factor 1-alpha (HIF-1α), and vascular endothelial growth factor (VEGF) in mouse testis explants and MA-10 mouse tumor Leydig cells. In order to define the hormone-associated signaling pathway, the expression of MAPK and PI3K/Akt was also examined. Tissue explants and cells were treated with estradiol as well as GPER agonist (ICI 182,780), GPER antagonist (G-15), PPARα antagonist (GW6471), and PPARγ antagonist (T00709072) in various combinations. First, we showed that in testis explants GPER and PPARα expressions were activated by the GPER agonist and estradiol (either alone or in mixtures), whereas PPARγ expression was activated only by GPER agonist. Second, increased TGF-β expression and decreased COX-2 expression were found in all experimental groups of testicular explants and MA-10 cells, except for up-regulated COX-2 expression in estradiol-treated cells, compared to respective controls. Third, estradiol treatment led to elevated expression of HIF-1α and VEGF, while their lower levels versus control were noted in the remaining groups of explants. Finally, we demonstrated the up-regulation of MAPK and PI3Kp85/Akt expressions in estradiol-treated groups of both ex vivo and in vitro models, whereas estradiol in mixtures with compounds of agonistic or antagonistic properties either up-regulated or down-regulated signaling kinase expression levels. Our results suggest that a balanced estrogen level and its action together with proper GPER and PPAR signaling play a key role in the maintenance of testis homeostasis. Moreover, changes in TGF-β and COX-2 expressions (that disrupted estrogen pathway) as well as disturbed GPER-PPAR signaling observed after estradiol treatment may be involved in testicular tumorigenesis.
Collapse
|
9
|
Galuszka A, Pawlicki P, Pardyak L, Chmurska-Gąsowska M, Pietsch-Fulbiszewska A, Duliban M, Turek W, Dubniewicz K, Ramisz G, Kotula-Balak M. Abundance of estrogen receptors involved in non-canonical signaling in the dog testis. Anim Reprod Sci 2021; 235:106888. [PMID: 34839117 DOI: 10.1016/j.anireprosci.2021.106888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
With estrogen regulation of the reproductive system, G-protein-coupled membrane estrogen receptor (GPER) and estrogen-related receptors (ERRs) are implicated. Non-canonical receptors can bind estrogens such as environmental and pharmacological chemicals. These compounds induce rapid non-genomic pathways or receptor interaction including autoactivation. Testicular tumors occur in dogs more frequently than in other domestic animals. Also, in recent decades there were increased occurrences of various tumor types in dogs. Using qRT-PCR, Western blot and immunohistochemistry procedures in the present study, there was determination of abundance pattern of GPER, ERRα, β and γ in dog tests when there were intratubular germ cell tumors. There was quantitation of estradiol, cyclic GMP and calcium ions (Ca2+). There were changes (P < 0.01; P < 0.001) in GPER, ERRα and β in both mRNA transcript and protein abundances including less (P < 0.001) co-abundance of ERRγ mRNA transcript and protein. Receptors were mainly located in Leydig cells with there being receptor delocalization to the cell cytoplasm or occasionally detections in the seminiferous tubule epithelia, especially of testicular tumor tissues. There were also greater estradiol (P < 0.05) and lesser cGMP and Ca2+ concentrations in testicular tumor tissues indicating there was a disrupted sex steroid milieu and tumor cell metastasis. Results from the present study provide further evidence that ERRγ has marked actions in testicular germ cell tumor initiation and development and in further structural-functional disruptions of dog testis. Concomitantly, abundance pattern of GPER and ERRs, relative to concentrations of cGMP and Ca2+, may be an additional indicator of intratubular germ cell tumors in dogs.
Collapse
Affiliation(s)
- Anna Galuszka
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248 Krakow, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248 Krakow, Poland
| | - Maria Chmurska-Gąsowska
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Agnieszka Pietsch-Fulbiszewska
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Michal Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - Wiktor Turek
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Klaudia Dubniewicz
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Grzegorz Ramisz
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Malgorzata Kotula-Balak
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland.
| |
Collapse
|
10
|
Molecular Characterization of Membrane Steroid Receptors in Hormone-Sensitive Cancers. Cells 2021; 10:cells10112999. [PMID: 34831222 PMCID: PMC8616056 DOI: 10.3390/cells10112999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide, and its development is a result of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can transcriptionally regulate target genes via their genomic actions. Therefore, interference with hormones’ activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets.
Collapse
|
11
|
Kotula-Balak M, Duliban M, Gurgul A, Krakowska I, Grzmil P, Bilinska B, Wolski JK. Transcriptome analysis of human Leydig cell tumours reveals potential mechanisms underlying its development. Andrologia 2021; 53:e14222. [PMID: 34494678 DOI: 10.1111/and.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 11/27/2022] Open
Abstract
Leydig cell tumours are the most common sex cord-stromal tumours. In the last years, apparent increased incidence is noted while aetiology of the tumour is still unknown. Therefore, here, we focused on the genetics of Leydig cell tumours using the next-generation sequencing. Leydig cell micronodules were revealed in patients with azoospermia who were qualified for testicular biopsy. Complete gene set of Leydig cell tumours was compared with transcriptome of healthy Leydig cells obtained from donors. Bioinformatic analysis of the obtained sequencing data revealed alterations in expression of 219 transcripts. We showed, for the first time, that a significant proportion of differentially expressed genes is directly involved in regulation of apoptotic process, which downregulation might be important to Leydig cell tumour development. Additionally, we found a significant upregulation of heat shock protein genes that might be a unique feature of Leydig cell tumours when compared to other tumour types. Our study offers fundamental transcriptomic data for future studies on human Leydig cell tumour that are crucial to determine its causes. Moreover, presented here the in-depth analysis and discussion of alterations observed in tumour transcriptome may be important for the diagnosis and therapy of this pathology.
Collapse
Affiliation(s)
- Malgorzata Kotula-Balak
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Michal Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Artur Gurgul
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Izabela Krakowska
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Pawel Grzmil
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | | |
Collapse
|
12
|
Venditti M, Arcaniolo D, De Sio M, Minucci S. Preliminary Investigation on the Involvement of Cytoskeleton-Related Proteins, DAAM1 and PREP, in Human Testicular Disorders. Int J Mol Sci 2021; 22:ijms22158094. [PMID: 34360857 PMCID: PMC8347498 DOI: 10.3390/ijms22158094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Herein, for the first time, the potential relationships between the cytoskeleton-associated proteins DAAM1 and PREP with different testicular disorders, such as classic seminoma (CS), Leydig cell tumor (LCT), and Sertoli cell-only syndrome (SOS), were evaluated. Six CS, two LCT, and two SOS tissue samples were obtained during inguinal exploration in patients with a suspect testis tumor based on clinical examination and ultrasonography. DAAM1 and PREP protein levels and immunofluorescent localization were analyzed. An increased DAAM1 protein level in CS and SOS as compared to non-pathological (NP) tissue was observed, while LCT showed no significant differences. Conversely, PREP protein level increased in LCT, while it decreased in CS and SOS compared to NP tissue. These results were strongly supported by the immunofluorescence staining, revealing an altered localization and signal intensity of DAAM1 and PREP in the analyzed samples, highlighting a perturbed cytoarchitecture. Interestingly, in LCT spermatogonia, a specific DAAM1 nuclear localization was found, probably due to an enhanced testosterone production, as confirmed by the increased protein levels of steroidogenic enzymes. Finally, although further studies are needed to verify the involvement of other formins and microtubule-associated proteins, this report raised the opportunity to indicate DAAM1 and PREP as new potential markers, supporting the cytoskeleton dynamics changes occurring during normal and/or pathological cell differentiation.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez, Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università degli Studi della Campania “Luigi Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
- Correspondence: (M.V.); (S.M.)
| | - Davide Arcaniolo
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Napoli, Italy; (D.A.); (M.D.S.)
| | - Marco De Sio
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 2, 80138 Napoli, Italy; (D.A.); (M.D.S.)
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez, Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università degli Studi della Campania “Luigi Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
- Correspondence: (M.V.); (S.M.)
| |
Collapse
|
13
|
Qie Y, Qin W, Zhao K, Liu C, Zhao L, Guo LH. Environmental Estrogens and Their Biological Effects through GPER Mediated Signal Pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116826. [PMID: 33706245 DOI: 10.1016/j.envpol.2021.116826] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Many environmental chemicals have been found to exert estrogenic effects in cells and experimental animals by activating nuclear receptors such as estrogen receptors and estrogen-related receptors. These compounds include bisphenols, pesticides, polybrominated diphenyl ethers (PBDEs), organophosphate flame retardants, phthalates and metalloestrogens. G protein-coupled estrogen receptor (GPER) exists widely in numerous cells/tissues of human and other vertebrates. A number of studies have demonstrated that GPER plays a vital role in mediating the estrogenic effects of environmental pollutants. Even at very low concentrations, these chemicals may activate GPER pathways, thus affect many aspects of cellular functions including proliferation, metastasis and apoptosis, resulting in cancer progression, cardiovascular disorders, and reproductive dysfunction. This review summarized the environmental occurrence and human exposure levels of these pollutants, and integrated current experimental evidence toward revealing the underlying mechanisms of pollutant-induced cellular dysfunction via GPER. The GPER mediated rapid non-genomic actions play an important role in the process leading to the adverse effects observed in experimental animals and even in human beings.
Collapse
Affiliation(s)
- Yu Qie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Weiping Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Keda Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310007, People's Republic of China
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, People's Republic of China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
14
|
Li B, Jiang HY, Wang ZH, Ma YC, Bao YN, Jin Y. Effect of fenofibrate on proliferation of SMMC-7721 cells via regulating cell cycle. Hum Exp Toxicol 2021; 40:1208-1221. [PMID: 33538198 DOI: 10.1177/0960327121991901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Liver cancer is a malignant cancer with great harmfulness. Fenofibrate is a peroxisome proliferation activated receptor (PPARα) agonist widely used in the treatment of dyslipidemia. Previous studies have shown that fenofibrate may promote cell proliferation, but the underlying mechanism has not been fully characterized. The aim of this study was to investigate the role of PPARα agonist fenofibrate in cell proliferation of SMMC-7721 cells compared with that of THLE-2 cells. SMMC-7721 and THLE-2 cells were treated with different concentrations of fenofibrate. Cell proliferation was analyzed by MTT, using flow cytometry for cell cycle analysis, and CyclinD1, Cyclin-dependent kinases2 (CDK2) and Proliferating Cell Nuclear Antigen (PCNA) were analyzed by Western blotting. RT-qPCR method was used to assess CDK2, CyclinD1 and PCNA mRNA levels. The results showed that 10-9-10-4 mol/L fenofibrate could induce cell growth and 10-4, 10-5, 10-6 mol/L fenofibrate could reduce the number of G0/G1 phase cells and increased in the number of cells in S and G2/M phase of cell cycle in SMMC-7721 cells. Furthermore, fenofibrate could significantly increase the expression of cell cycle related protein (CyclinD1, CDK2)and cell proliferation related proteins (PCNA). The use of PPARα inhibitor MT886 inhibited cell cycle progression and promote tumor cell apoptosis. But fenofibrate had no obvious effect on THLE-2 cells. These results revealed the effect of fenofibrate on the cell cycle of liver cancer cells, and provided a reasonable explanation for studying how fenofibrate promotes cell proliferation.
Collapse
Affiliation(s)
- B Li
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| | - H-Y Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| | - Z-H Wang
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| | - Y-C Ma
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| | - Y-N Bao
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| | - Y Jin
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Effect of selected bisphenol derivatives on nuclear receptor expression in ovarian cell line COV434. Endocr Regul 2020; 54:275-283. [PMID: 33885253 DOI: 10.2478/enr-2020-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objectives. Bisphenol A (BPA), as an indispensable plastic additive, has also been proven as an endocrine disruptor associated with adverse health effects including impaired ovarian function and cancer. Due to the restrictions of its usage, several analogs have been employed to replace BPA. Although many studies revealed a harmfulness in the biological effects of BPA analogs, their specific targets remain largely unknown. Nuclear receptors (NRs) may be one of the most important targets of bisphenols. Therefore, in this study, our attention was directed to explore the effect of BPA and its analogs, AF and S, on the mRNA expression of selected NRs involved in the steroidogenic and carcinogenic pathways in the human granulosa cell line COV434. The NRs investigated included: thyroid hormone receptor α (THRA), peroxisome proliferator activating receptor β/δ (PPARD), retinoid X receptor α (RXRA), chicken ovalbumin upstream promoter-transcription factor II (COUPTFII), nuclear receptor-related protein 1 (NURR1), and liver receptor homolog-1 (LRH1).Methods. COV434 cells were treated with the bisphenols at the concentrations of 10-9 M, 10-7 M, and 10-5 M, and after 24 and 48 h, cell viability was monitored by the MTS assay and gene expressions were analyzed using RT-qPCR.Results. Bisphenol treatment did not alter the COV434 cell viability. After 24 h, the expression of neither of the NRs was changed. Likewise, after 48 h, the expression of the selected genes was not altered. However, both BPAF and BPS increased, at the highest concentration (10-5 M) used, the mRNA levels of both PPARD and NURR1 NRs after 48 h of the treatment. In the BPA-treated groups, no significant upregulation was observed.Conclusions. In the present study, the effect of bisphenols on COUP-TFII, Nurr1, and LRH-1 NRs was investigated for the first time. Although generally we did not observe that BPs provoked any alterations in the expression of the selected NRs in COV434 cells, at specific concentrations and time points they might alter mRNA expression of certain NRs (NURR1, PPARD).
Collapse
|
16
|
Chimento A, De Luca A, Nocito MC, Avena P, La Padula D, Zavaglia L, Pezzi V. Role of GPER-Mediated Signaling in Testicular Functions and Tumorigenesis. Cells 2020; 9:cells9092115. [PMID: 32957524 PMCID: PMC7563107 DOI: 10.3390/cells9092115] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Estrogen signaling plays important roles in testicular functions and tumorigenesis. Fifteen years ago, it was discovered that a member of the G protein-coupled receptor family, GPR30, which binds also with high affinity to estradiol and is responsible, in part, for the rapid non-genomic actions of estrogens. GPR30, renamed as GPER, was detected in several tissues including germ cells (spermatogonia, spermatocytes, spermatids) and somatic cells (Sertoli and Leydig cells). In our previous review published in 2014, we summarized studies that evidenced a role of GPER signaling in mediating estrogen action during spermatogenesis and testis development. In addition, we evidenced that GPER seems to be involved in modulating estrogen-dependent testicular cancer cell growth; however, the effects on cell survival and proliferation depend on specific cell type. In this review, we update the knowledge obtained in the last years on GPER roles in regulating physiological functions of testicular cells and its involvement in neoplastic transformation of both germ and somatic cells. In particular, we will focus our attention on crosstalk among GPER signaling, classical estrogen receptors and other nuclear receptors involved in testis physiology regulation.
Collapse
Affiliation(s)
- Adele Chimento
- Correspondence: (A.C.); (V.P.); Tel.: +39-0984-493184 (A.C.); +39-0984-493148 (V.P.)
| | | | | | | | | | | | - Vincenzo Pezzi
- Correspondence: (A.C.); (V.P.); Tel.: +39-0984-493184 (A.C.); +39-0984-493148 (V.P.)
| |
Collapse
|
17
|
Hussain A, Gilloteaux J. The human testes: Estrogen and ageing outlooks. TRANSLATIONAL RESEARCH IN ANATOMY 2020. [DOI: 10.1016/j.tria.2020.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Ding H, Zhao J, Liu H, Wang J, Lu W. BMAL1 knockdown promoted apoptosis and reduced testosterone secretion in TM3 Leydig cell line. Gene 2020; 747:144672. [PMID: 32305634 DOI: 10.1016/j.gene.2020.144672] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/06/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Brain and muscle Arnt-like protein-1 (BMAL1) is a clock gene that plays an important role in hormone secretion and apoptosis, but its effect on Leydig cells is unidentified. Here the role of BMAL1 in apoptosis and testosterone secretion in TM3 Leydig cell line were investigated by inhibiting its expression using small interfering RNA (siRNA). Results showed that BMAL1 knockdown promoted the apoptosis of Leydig cells and expression of (BCL2 associated X) BAX mRNA and protein, and reduced the expression of (B-cell lymphoma-2) BCL-2 mRNA and protein. BMAL1 inhibition resulted in decreased testosterone secretion and reduced expression of key genes during hormone synthesis, specifically steroidogenic acute regulatory protein (STAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), and 3β-hydroxysteroid dehydrogenase (3β-HSD). In addition, BMAL1 knockdown reduced the expression of phosphorylated p85 and AKT as confirmed by western blot. In conclusion, BMAL1 may affect testosterone secretion and apoptosis in mouse Leydig cells through regulation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- He Ding
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Wenfa Lu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
19
|
Kotula-Balak M, Gorowska-Wojtowicz E, Milon A, Pawlicki P, Tworzydlo W, Płachno BJ, Krakowska I, Hejmej A, Wolski JK, Bilinska B. Towards understanding leydigioma: do G protein-coupled estrogen receptor and peroxisome proliferator-activated receptor regulate lipid metabolism and steroidogenesis in Leydig cell tumors? PROTOPLASMA 2020; 257:1149-1163. [PMID: 32180008 PMCID: PMC7329793 DOI: 10.1007/s00709-020-01488-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Leydig cell tumors (LCT) are the most common type of testicular stromal tumor. Herein, we investigate the G protein-coupled estrogen receptor (GPER) and peroxisome proliferator-activated receptor (PPAR) implication in regulation of lipid homeostasis including the expression of steroidogenesis-controlling molecules in clinical specimens of LCTs and tumor Leydig cells (MA-10). We showed the general structure and morphology of LCTs by scanning electron and light microscopy. In LCTs, mRNA and protein analyses revealed increased expression of GPER and decreased expression of PPARα, β, and γ. Concomitantly, changes in expression pattern of the lutropin receptor (LHR), protein kinase A (PKA), perilipin (PLIN), hormone sensitive lipase (HSL), steroidogenic acute regulatory protein (StAR), translocator protein (TSPO), HMG-CoA synthase, and reductase (HMGCS, HMGCR) were observed. Using MA-10 cells treated with GPER and PPAR antagonists (alone and in combination), we demonstrated GPER-PPAR-mediated control of estradiol secretion via GPER-PPARα and cyclic guanosine monophosphate (cGMP) concentration via GPER-PPARγ. It is assumed that GPER and PPAR can crosstalk, and this can be altered in LCT, resulting in a perturbed lipid balance and steroidogenesis. In LCTs, the phosphatidylinositol-3-kinase (PI3K)-Akt-mTOR pathway was disturbed. Thus, PI3K-Akt-mTOR with cGMP can play a role in LCT outcome and biology including lipid metabolism.
Collapse
Affiliation(s)
- M Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland.
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059, Kraków, Poland.
| | - E Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland
| | - A Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland
| | - P Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland
| | - W Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland
| | - B J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland
| | - I Krakowska
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059, Kraków, Poland
| | - A Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland
| | - J K Wolski
- nOvum Fertility Clinic, Bociania 13, 02-807, Warszawa, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
20
|
Duliban M, Gorowska-Wojtowicz E, Tworzydlo W, Rak A, Brzoskwinia M, Krakowska I, Wolski JK, Kotula-Balak M, Płachno BJ, Bilinska B. Interstitial Leydig Cell Tumorigenesis-Leptin and Adiponectin Signaling in Relation to Aromatase Expression in the Human Testis. Int J Mol Sci 2020; 21:ijms21103649. [PMID: 32455738 PMCID: PMC7279359 DOI: 10.3390/ijms21103649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Although epidemiological studies from the last years report an increase in the incidences of Leydig cell tumors (previously thought to be a rare disease), the biochemical characteristics of that tumor important for understanding its etiology, diagnosis, and therapy still remains not completely characterized. Our prior studies reported G-protein coupled estrogen receptor signaling and estrogen level disturbances in Leydig cell tumors. In addition, we found that expressions of multi-level-acting lipid balance- and steroidogenesis–controlling proteins including peroxisome proliferator-activated receptor are altered in this tumor. In order to get deeper into the other molecular mechanisms that regulate lipid homeostasis in the Leydig cell tumor, here we investigate the presence and expression of newly-described hormones responsible for lipid homeostasis balancing (leptin and adiponectin), together with expression of estrogen synthase (aromatase). Samples of Leydig cell tumors (n = 20) were obtained from patients (31–45 years old) and used for light and transmission electron microscopic, western blotting, and immunohistochemical analyses. In addition, body mass index (BMI) was calculated. In tumor mass, abundant lipid accumulation in Leydig cells and various alterations of Leydig cell shape, as well as the presence of adipocyte-like cells, were observed. Marked lipid content and various lipid droplet size, especially in obese patients, may indicate alterations in lipid homeostasis, lipid processing, and steroidogenic organelle function in response to interstitial tissue pathological changes. We revealed significantly increased expression of leptin, adiponectin and their receptors, as well as aromatase in Leydig cell tumors in comparison to control. The majority of patients (n = 13) were overweight as indicated by their BMI. Moreover, a significant increase in expression of phospholipase C (PLC), and kinases Raf, ERK which are part of adipokine transductional pathways, was demonstrated. These data expand our previous findings suggesting that in human Leydig cell tumors, estrogen level and signaling, together with lipid status, are related to each other. Increased BMI may contribute to certain biochemical characteristics and function of the Leydig cell in infertile patients with a tumor. In addition, altered adipokine-estrogen microenvironment can have an effect on proliferation, growth, and metastasis of tumor cells. We report here various targets (receptors, enzymes, hormones) controlling lipid balance and estrogen action in Leydig cell tumors indicating their possible usefulness for diagnostics and therapy.
Collapse
Affiliation(s)
- Michal Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland; (M.D.); (M.B.); (B.B.)
| | - Ewelina Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland; (M.D.); (M.B.); (B.B.)
- Correspondence: (E.G.-W.); (M.K.-B.)
| | - Waclaw Tworzydlo
- Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Malgorzata Brzoskwinia
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland; (M.D.); (M.B.); (B.B.)
| | - Izabella Krakowska
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland;
| | - Jan K. Wolski
- nOvum Fertility Clinic, Bociania 13, 02-807 Warszawa, Poland;
| | - Malgorzata Kotula-Balak
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland;
- Correspondence: (E.G.-W.); (M.K.-B.)
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland; (M.D.); (M.B.); (B.B.)
| |
Collapse
|
21
|
Kotula-Balak M, Duliban M, Pawlicki P, Tuz R, Bilinska B, Płachno BJ, Arent ZJ, Krakowska I, Tarasiuk K. The meaning of non-classical estrogen receptors and peroxisome proliferator-activated receptor for boar Leydig cell of immature testis. Acta Histochem 2020; 122:151526. [PMID: 32094002 DOI: 10.1016/j.acthis.2020.151526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023]
Abstract
Communication in biological systems involves diverse-types of cell-cell interaction including cross-talk between receptors expressed by the target cells. Recently, novel sort of estrogen receptors (G protein - coupled estrogen receptor; GPER and estrogen-related receptor; ERR) that signal directly via estrogen binding and/or via mutual interaction-regulated estrogen signaling were reported in various organs including testis. Peroxisome proliferator - activated receptor (PPAR) is responsible for maintaining of lipid homeostasis that is critical for sex steroid production in the testis. Here, we investigated the role of interaction between GPER, ERRβ and PPARγ in steroidogenic Leydig cells of immature boar testis. Testicular fragments cultured ex vivo were treated with GPER or PPARγ antagonists. Then, cell ultrastructure, expression and localization of GPER, ERRβ, PPARγ together with the molecular receptor mechanism, through cyclic AMP and Raf/Ras/extracellular signal activated kinases (ERK), in the control of cholesterol concentration and estrogen production by Leydig cells were studied. In the ultrastructure of antagonist-treated Leydig cells, mitochondria were not branched and not bifurcated as they were found in control. Additionally, in PPARγ-blocked Leydig cells changes in the number of lipid droplets were revealed. Independent of used antagonist, western blot revealed decreased co-expression of GPER, ERRβ, PPARγ with exception of increased expression of ERRβ after PPARγ blockage. Immunohistochemistry confirmed presence of all receptors partially located in the nucleus or cytoplasm of Leydig cells of both control and treated testes. Changes in receptor expression, decreased cholesterol and increased estradiol tissue concentrations occurred through decreased cAMP level (with exception after GPER blockage) as well as Raf/Ras/ERK pathway expression. These all findings indicate that GPER-ERRβ-PPARγ interaction exists in immature boar testis and regulates Leydig cell function. Further detailed studies and considerations on GPER-ERRβ-PPARγ as possible diagnosis/therapy target in disturbances of testis steroidogenic function are needed.
Collapse
Affiliation(s)
- M Kotula-Balak
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - M Duliban
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - P Pawlicki
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - R Tuz
- Department of Swine and Small Animal Breeding, Institute of Animal Sciences, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - B J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387 Krakow, Poland
| | - Z J Arent
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - I Krakowska
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - K Tarasiuk
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|