1
|
Wang J, Wu J, Ma Y, Hao L, Huang W, Liu Z, Li Y. Characterization of a membrane Fcγ receptor in largemouth bass (Micropterus saloumoides) and its response to bacterial challenge. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1123-1140. [PMID: 38407736 DOI: 10.1007/s10695-024-01325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
Fc receptors (FcRs), specific to the Fc portion of immunoglobulin (Ig), are required to regulate immune responses against pathogenic infections. However, FcγR is a member of FcRs family, whose structure and function remains to be elucidated in teleost fish. In this study, the FcγRII, from largemouth bass (Micropterus saloumoides), named membrane MsFcγRII (mMsFcγRII), was cloned and identified. The opening reading frame (ORF) of mMsFcγRII was 750 bp, encoding 249 amino acids with a predicted molecular mass of 27 kDa. The mMsFcγRII contained a signal peptide, two Ig domains, a transmembrane domain, and an intracellular region, which was highly homology with FcγR from other teleost fish. The mRNA expression analysis showed that mMsFcγRII was widely distributed in all tested tissues and with the highest expression level in spleen. After bacterial challenge, the expression of mMsFcγRII was significantly upregulated in vivo (spleen and head kidney), as well as in vitro (leukocytes from head kidney). The subcellular localization assay revealed that mMsFcγRII was mostly observed on the membrane of HEK293T cells which were transfected with mMsFcγRII overexpression plasmid. Flow cytometric analysis showed that natural mMsFcγRII protein was highly expressed in head kidney lymphocytes. Moreover, indirect immunofluorescence assay and pull-down assay indicated that mMsFcγRII could bind to IgM purified from largemouth bass serum. These results suggested that mMsFcγRII was likely to play an influential role in the immune response against pathogens and provided valuable insights for studying the function of FcRs in teleost.
Collapse
Affiliation(s)
- Jingya Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China
| | - Jing Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China
| | - Wen Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China.
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Hu X, Li B, Lu B, Yu H, Du Y, Chen J. Identification and functional analysis of perforin 1 from largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109531. [PMID: 38604479 DOI: 10.1016/j.fsi.2024.109531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
In this study, we present the first cloning and identification of perforin (MsPRF1) in largemouth bass (Micropterus salmoides). The full-length cDNA of MsPRF1 spans 1572 base pairs, encoding a 58.88 kDa protein consisting of 523 amino acids. Notably, the protein contains MACPF and C2 structural domains. To evaluate the expression levels of MsPRF1 in various healthy largemouth bass tissues, real-time quantitative PCR was employed, revealing the highest expression in the liver and gut. After the largemouth bass were infected by Nocardia seriolae, the mRNA levels of MsPRF1 generally increased within 48 h. Remarkably, the recombinant protein MsPRF1 exhibits inhibitory effects against both Gram-negative and Gram-positive bacteria. Additionally, the largemouth bass showed a higher survival rate in the N. seriolae challenge following the intraperitoneal injection of rMsPRF1, with observed reductions in the tissue bacterial loads. Moreover, rMsPRF1 demonstrated a significant impact on the phagocytic and bactericidal activities of largemouth bass MO/MΦ cells, concurrently upregulating the expression of pro-inflammatory factors. These results demonstrate that MsPRF1 has a potential role in the immune response of largemouth bass against N. seriolae infection.
Collapse
Affiliation(s)
- Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Bin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Bowen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Hui Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
4
|
Gong C, Guo M, Lou J, Zhang L, An Z, Vakharia VN, Kong W, Liu X. Identification and characterization of a highly virulent Citrobacter freundii isolate and its activation on immune responses in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2023; 143:109224. [PMID: 37956797 DOI: 10.1016/j.fsi.2023.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Citrobacter freundii, a common pathogen of freshwater fish, causes significant commercial losses to the global fish farming industry. In the present study, a highly pathogenic C. freundii strain was isolated and identified from largemouth bass (Micropterus salmoides). The pathogenicity and antibiotic sensitivity of the C. freundii strain were evaluated, and the histopathology and host immune response of largemouth bass infected with C. freundii were investigated. The results showed that C. freundii was the pathogen causing disease outbreaks in largemouth bass, and the infected fish showed typical signs of acute hemorrhages and visceral enlargement. Antimicrobial susceptibility testing showed that the C. freundii strain was resistant to Kanamycin, Medimycin, Clindamycin, Penicillin, Oxacillin, Ampicillin, Cephalexin, Cefazolin, Cefradine and Vancomycin. Histopathological analysis showed different pathological changes in major tissues of diseased fish. In addition, humoral immune factors such as superoxide dismutase (SOD), catalase (CAT) and lysozyme (LZM) were used as serum indicators to evaluate the immune response of largemouth bass after infection. Quantitative real-time PCR (qRT-PCR) was performed to investigate the expression pattern of immune-related genes (CXCR1, IL-8, IRF7, IgM, CD40, IFN-γ, IL-1β, Hep1, and Hep2) in liver, spleen, and head kidney tissues, which demonstrated a strong immune response induced by C. freundii infection in largemouth bass. The present study provides insights into the pathogenic mechanism of C. freundii and immune response in largemouth bass, promoting the prevention and treatment of diseases caused by C. freundii infection.
Collapse
Affiliation(s)
- Cuiping Gong
- Huzhou Academy of Agricultural Sciences, Huzhou, 313000, China
| | - Mengya Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jianfeng Lou
- Huzhou Nanxun District Agricultural Technology Extension Service Center, Huzhou, 313000, China
| | - Liwen Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhenhua An
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Vikram N Vakharia
- Institute of Marine and Environmental Technology, University of Maryland Baltimore Country, Baltimore, MD, 21202, USA
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China.
| |
Collapse
|
5
|
Zhang HQ, Jin XY, Li XP, Li MF. IL8 of Takifugu rubripes is a chemokine that interacts with peripheral blood leukocytes and promotes antibacterial defense. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108918. [PMID: 37364660 DOI: 10.1016/j.fsi.2023.108918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 06/28/2023]
Abstract
Interleukin 8 (IL8) is a CXC chemokine that plays a crucial role on promoting inflammatory response and immune regulation. In teleost, IL8 can induce the migration and activation of immune cells. However, the biological functions of IL8 are still unknown in Takifugu rubripes. In this study, we examined the biological characteristics of TrIL8 in T. rubripes. TrIL8 is composed of 98 residues and contained a chemokine CXC domain. We found that the TrIL8 expression was detected in diverse organs and significantly increased by Vibrio harveyi or Edwardsiella tarda challenge. The recombinant TrIL8 (rTrIL8) exhibited significantly the binding capacities to 8 tested bacteria. In addition, rTrIL8 could bind to peripheral blood leukocytes (PBL), and increased the expression of immune gene, resistance to bacterial infection, respiratory burst, acid phosphatase activity, chemotactic activity, and phagocytic activity of PBL. In the presence of rTrIL8, T. rubripes was enhanced the resistance to V. harveyi infection. These results indicated that TrIL8 is a chemokine and involved in the activation of immune cells against bacterial infection in teleost.
Collapse
Affiliation(s)
- Hong-Qiang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Xiao-Yan Jin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China
| | - Mo-Fei Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
6
|
Wu J, Ma Y, Nie Y, Wang J, Feng G, Hao L, Huang W, Li Y, Liu Z. Functional Characterization of Largemouth Bass ( Micropterus salmoides) Soluble FcγR Homolog in Response to Bacterial Infection. Int J Mol Sci 2022; 23:ijms232213788. [PMID: 36430268 PMCID: PMC9699129 DOI: 10.3390/ijms232213788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Fc receptors (FcRs) are key players in antibody-dependent cellular phagocytosis (ADCP) with their specific recognition of the Fc portion of an immunoglobulin. Despite reports of FcγR-mediated phagocytosis in mammals, little is known about the effects of soluble FcγRs on the immune response. In this study, FcγRIα was cloned from the largemouth bass (Micropterus salmoides) (MsFcγRIα). Without a transmembrane segment or a cytoplasmic tail, MsFcγRIα was identified as a soluble form protein and widely distributed in the spleen, head kidney, and intestine. The native MsFcγRIα was detected in the serum of Nocardia seriolae-infected largemouth bass and the supernatants of transfected HEK293 cells. Additionally, it was verified that the transfected cells' surface secreted MsFcRIα could bind to largemouth bass IgM. Moreover, the expression changes of MsFcγRIα, Syk, and Lyn indicated that MsFcγRIα was engaged in the acute phase response to bacteria, and the FcγR-mediated phagocytosis pathway was activated by Nocardia seriolae stimulation. Furthermore, recombinant MsFcγRIα could enhance both reactive oxygen species (ROS) and phagocytosis to Nocardia seriolae of leukocytes, presumably through the interaction of MsFcγRIα with a complement receptor. In conclusion, these findings provided a better understanding of the function of soluble FcγRs in the immune response and further shed light on the mechanism of phagocytosis in teleosts.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yifan Nie
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingya Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Guoqing Feng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wen Huang
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.L.); (Z.L.)
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (Y.L.); (Z.L.)
| |
Collapse
|
7
|
Wang J, Sun Q, Wu J, Tian W, Wang H, Liu H. Identification of four STAT3 isoforms and functional investigation of IL-6/JAK2/STAT3 pathway in blunt snout bream (Megalobrama amblycephala). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104484. [PMID: 35764161 DOI: 10.1016/j.dci.2022.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a major regulator of immune response and chronic inflammatory, which can be activated by interleukin-6 (IL-6). In mammals, STAT3 has multiple isoforms, and its function has been well studied. In teleost, a single stat3 has been cloned and identified in several species, but studies on its function are limited. In the present study, four stat3 isoforms including mastat3α1, mastat3α2, mastat3β1 and mastat3β2 were identified from blunt snout bream (Megalobrama amblycephala). The results of quantitative PCR (qPCR) showed that four mastat3 transcripts were ubiquitously expressed in all 10 tissues examined. After Aeromonas hydrophila challenge, the expression patterns of mastat3a1, mastat3a2 and mastat3β2 were similar, but significantly different from that of mastat3β1. In addition, western blot showed that rmaIL-6+rmasIL-6R (IL-6 trans-signaling) significantly up-regulated phosphorylation levels of the four maSTAT3 isoforms and mRNA levels of the il-10, il-11, tnf-a, socs3a and socs3b genes, while rmaIL-6 (IL-6 classical signaling) only significantly up-regulated phosphorylation levels of the two maSTAT3α isoforms and mRNA levels of the il-10, socs3a and socs3b genes. Meanwhile, overexpression or inhibition of JAK2 could significantly change the STAT3 phosphorylation. Finally, JAK2 and STAT3 inhibitors could significantly inhibit the up-regulation of il-10, il-11, tnf-a, socs3a and socs3b induced by rmaIL-6+rmasIL-6R or rmaIL-6. To sum up, this study reveals the functional distinctions and overlaps among the four maSTAT3 isoforms in blunt snout bream and reveals the differential regulation of IL-6 classical signaling and trans-signaling on downstream immune genes via the JAK2/STAT3 pathway, enriching our knowledge of fish's defense mechanisms against pathogens.
Collapse
Affiliation(s)
- Jixiu Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Qianhui Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiaqi Wu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wanping Tian
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
8
|
Wang M, Chen Z, Wang Y, Zou J, Li S, Guo X, Gao J, Wang Q. Largemouth bass ( Micropterus salmoides) exhibited better growth potential after adaptation to dietary cottonseed protein concentrate inclusion but experienced higher inflammatory risk during bacterial infection. Front Immunol 2022; 13:997985. [PMID: 36189250 PMCID: PMC9520256 DOI: 10.3389/fimmu.2022.997985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Cottonseed protein concentrate (CPC) has been proven to partially replace fishmeal without adverse effects on fish growth performance, while little information is known about the effects on liver health during bacterial infection. In the present study, 15% CPC was included into the diet of juvenile largemouth bass (32.12 ± 0.09g) to replace fishmeal for 8 weeks, with fish growth potential and hepatic inflammatory responses during Nocardia seriolae (N. seriolae) infection systemically evaluated. After adaptation to dietary CPC inclusion, largemouth bass even exhibited better growth potential with higher SGR and WGR during the last three weeks of whole feeding trial, which was accompanied with higher phosphorylation level of TOR signaling and higher mRNA expression level of myogenin (myog). At the end of 8-weeks feeding trial, the histological structure of largemouth bass liver was not significantly affected by dietary CPC inclusion, accompanied with the similar expression level of genes involved in innate and adaptive immunity and comparable abundance of T cells in bass liver. N.seriolae infection induced the pathological changes of bass liver, while such hepatic changes were more serious in CPC group than that in FM group. Additionally, RT-qPCR results also suggested that largemouth bass fed with CPC experienced much higher inflammatory potential both in liver and gill during N. seriolae infection, which was accompanied with higher expression level of genes involved in pyroptosis. Therefore, this study demonstrated that the application of CPC in largemouth bass diet should be careful, which may induce higher inflammatory potential during N. seriolae infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Zhao Z, Peng H, Han T, Jiang Z, Yuan J, Liu X, Wang X, Zhang Y, Wang T. Pharmacological characterization and biological function of the interleukin-8 receptor, CXCR2, in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 120:441-450. [PMID: 34933090 DOI: 10.1016/j.fsi.2021.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Interleukin-8 (IL-8 or C-X-C motif chemokine ligand 8, CXCL8) is a cytokine secreted by numerous cell types and is best known for its functional roles in inflammatory response by binding to specific receptors (the interleukin-8 receptors, IL-8Rs). From the transcriptomic data of largemouth bass (Micropterus salmoides), we identified an IL-8R that is highly homologous to the functionally validated teleost IL-8Rs. The M. salmoides IL-8 receptor (MsCXCR2) was further compared with the C-X-C motif chemokine receptor 2 subfamily by phylogenetic analysis. Briefly, the full-length CDS sequence of MsCXCR2 was cloned into the pEGFP-N1 plasmid, and the membrane localization of fusion expressing MsCXCR2-EGFP was revealed in HEK293 cells. To determine the functional interaction between IL-8 and MsCXCR2, secretory expressed Larimichthys crocea IL-8 (LcIL-8) was used to stimulate MsCXCR2 expressing cells. MsCXCR2 was demonstrated to be activated by LcIL-8, leading to receptor internalization, which was further revealed by the detection of extracellular regulated protein kinase (ERK) phosphorylation. Quantitative real-time PCR was used to evaluate the expressional distribution and variation of MsCXCR2 in healthy and Nocardia seriolae infected fish. Based on our findings, MsCXCR2 was constitutively expressed in all examined tissues, despite at different levels. Furthermore, gene expression was found to be significantly upregulated in the liver and head kidney of diseased fish. Collectively, our findings reveal the molecular activity of MsCXCR2 and indicate the functional involvement of this IL-8R in the immune response induced by N. seriolae in M. salmoides.
Collapse
Affiliation(s)
- Zihao Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Hao Peng
- Department of Life Science and Engineering, Jining University, Jining, Shandong, 273155, PR China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Zhijing Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Jieyi Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Xue Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Xiaoqian Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Yuexing Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China.
| | - Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China.
| |
Collapse
|