1
|
Wu YH, Podvalny E, Levinson M, He BJ. Network mechanisms of ongoing brain activity's influence on conscious visual perception. Nat Commun 2024; 15:5720. [PMID: 38977709 PMCID: PMC11231278 DOI: 10.1038/s41467-024-50102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Sensory inputs enter a constantly active brain, whose state is always changing from one moment to the next. Currently, little is known about how ongoing, spontaneous brain activity participates in online task processing. We employed 7 Tesla fMRI and a threshold-level visual perception task to probe the effects of prestimulus ongoing brain activity on perceptual decision-making and conscious recognition. Prestimulus activity originating from distributed brain regions, including visual cortices and regions of the default-mode and cingulo-opercular networks, exerted a diverse set of effects on the sensitivity and criterion of conscious recognition, and categorization performance. We further elucidate the mechanisms underlying these behavioral effects, revealing how prestimulus activity modulates multiple aspects of stimulus processing in highly specific and network-dependent manners. These findings reveal heretofore unknown network mechanisms underlying ongoing brain activity's influence on conscious perception, and may hold implications for understanding the precise roles of spontaneous activity in other brain functions.
Collapse
Affiliation(s)
- Yuan-Hao Wu
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ella Podvalny
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
- The Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Max Levinson
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Biyu J He
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Baror S, Baumgarten TJ, He BJ. Neural Mechanisms Determining the Duration of Task-free, Self-paced Visual Perception. J Cogn Neurosci 2024; 36:756-775. [PMID: 38357932 DOI: 10.1162/jocn_a_02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Humans spend hours each day spontaneously engaging with visual content, free from specific tasks and at their own pace. Currently, the brain mechanisms determining the duration of self-paced perceptual behavior remain largely unknown. Here, participants viewed naturalistic images under task-free settings and self-paced each image's viewing duration while undergoing EEG and pupillometry recordings. Across two independent data sets, we observed large inter- and intra-individual variability in viewing duration. However, beyond an image's presentation order and category, specific image content had no consistent effects on spontaneous viewing duration across participants. Overall, longer viewing durations were associated with sustained enhanced posterior positivity and anterior negativity in the ERPs. Individual-specific variations in the spontaneous viewing duration were consistently correlated with evoked EEG activity amplitudes and pupil size changes. By contrast, presentation order was selectively correlated with baseline alpha power and baseline pupil size. Critically, spontaneous viewing duration was strongly predicted by the temporal stability in neural activity patterns starting as early as 350 msec after image onset, suggesting that early neural stability is a key predictor for sustained perceptual engagement. Interestingly, neither bottom-up nor top-down predictions about image category influenced spontaneous viewing duration. Overall, these results suggest that individual-specific factors can influence perceptual processing at a surprisingly early time point and influence the multifaceted ebb and flow of spontaneous human perceptual behavior in naturalistic settings.
Collapse
Affiliation(s)
- Shira Baror
- New York University Grossman School of Medicine
- Hebrew University of Jerusalem
| | - Thomas J Baumgarten
- New York University Grossman School of Medicine
- Heinrich Heine University, Düsseldorf
| | - Biyu J He
- New York University Grossman School of Medicine
| |
Collapse
|
3
|
Riddle J, Schooler JW. Hierarchical consciousness: the Nested Observer Windows model. Neurosci Conscious 2024; 2024:niae010. [PMID: 38504828 PMCID: PMC10949963 DOI: 10.1093/nc/niae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Foremost in our experience is the intuition that we possess a unified conscious experience. However, many observations run counter to this intuition: we experience paralyzing indecision when faced with two appealing behavioral choices, we simultaneously hold contradictory beliefs, and the content of our thought is often characterized by an internal debate. Here, we propose the Nested Observer Windows (NOW) Model, a framework for hierarchical consciousness wherein information processed across many spatiotemporal scales of the brain feeds into subjective experience. The model likens the mind to a hierarchy of nested mosaic tiles-where an image is composed of mosaic tiles, and each of these tiles is itself an image composed of mosaic tiles. Unitary consciousness exists at the apex of this nested hierarchy where perceptual constructs become fully integrated and complex behaviors are initiated via abstract commands. We define an observer window as a spatially and temporally constrained system within which information is integrated, e.g. in functional brain regions and neurons. Three principles from the signal analysis of electrical activity describe the nested hierarchy and generate testable predictions. First, nested observer windows disseminate information across spatiotemporal scales with cross-frequency coupling. Second, observer windows are characterized by a high degree of internal synchrony (with zero phase lag). Third, observer windows at the same spatiotemporal level share information with each other through coherence (with non-zero phase lag). The theoretical framework of the NOW Model accounts for a wide range of subjective experiences and a novel approach for integrating prominent theories of consciousness.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychology, Florida State University, 1107 W Call St, Tallahassee, FL 32304, USA
| | - Jonathan W Schooler
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Psychological & Brain Sciences, Santa Barbara, CA 93106, USA
| |
Collapse
|
4
|
Medel V, Irani M, Crossley N, Ossandón T, Boncompte G. Complexity and 1/f slope jointly reflect brain states. Sci Rep 2023; 13:21700. [PMID: 38065976 PMCID: PMC10709649 DOI: 10.1038/s41598-023-47316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
Characterization of brain states is essential for understanding its functioning in the absence of external stimuli. Brain states differ on their balance between excitation and inhibition, and on the diversity of their activity patterns. These can be respectively indexed by 1/f slope and Lempel-Ziv complexity (LZc). However, whether and how these two brain state properties relate remain elusive. Here we analyzed the relation between 1/f slope and LZc with two in-silico approaches and in both rat EEG and monkey ECoG data. We contrasted resting state with propofol anesthesia, which directly modulates the excitation-inhibition balance. We found convergent results among simulated and empirical data, showing a strong, inverse and non trivial monotonic relation between 1/f slope and complexity, consistent at both ECoG and EEG scales. We hypothesize that differentially entropic regimes could underlie the link between the excitation-inhibition balance and the vastness of the repertoire of brain systems.
Collapse
Affiliation(s)
- Vicente Medel
- Latin American Health Brain Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
| | - Martín Irani
- Department of Psychology, University of Illinois Urbana-Champaign, IL, USA
| | - Nicolás Crossley
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás Ossandón
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Gonzalo Boncompte
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- División de Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Onoda K, Akama H. Complex of global functional network as the core of consciousness. Neurosci Res 2023; 190:67-77. [PMID: 36535365 DOI: 10.1016/j.neures.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/20/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Finding the neural basis of consciousness is challenging, and the distribution location of the core of consciousness remains inconclusive. Integrated information theory (IIT) argues that the posterior part of the brain is the hot zone of consciousness, especially phenological consciousness. The IIT has proposed a "main complex", a set of elements determined such that the information loss in a hierarchical partition approach is the largest among those of any other supersets and subsets, as the core of consciousness in a dynamic system. This approach may be applicable not only to phenomenal but also to access-consciousness. This study estimated the main complex of brain dynamics using functional magnetic resonance imaging in Human Connectome Project (HCP) and sleep datasets. The complex analyses revealed the common networks across various tasks and rest-state in HCP, composed of executive control, salience, and dorsal/ventral attention networks. The set of networks of the main complex was maintained during sleep. However, compared with the wakefulness stage, the amount of information of these networks and the default mode network, was reduced for the hypnagogic stage. The global interconnected structure composed of major functional networks can comprise the core of consciousness.
Collapse
Affiliation(s)
- Keiichi Onoda
- Department of Psychology, Otemon Gakuin University, Ibaraki, Osaka 567-8502, Japan.
| | - Hiroyuki Akama
- Department of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
6
|
Jacob M, Ford J, Deacon T. Cognition is entangled with metabolism: relevance for resting-state EEG-fMRI. Front Hum Neurosci 2023; 17:976036. [PMID: 37113322 PMCID: PMC10126302 DOI: 10.3389/fnhum.2023.976036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
The brain is a living organ with distinct metabolic constraints. However, these constraints are typically considered as secondary or supportive of information processing which is primarily performed by neurons. The default operational definition of neural information processing is that (1) it is ultimately encoded as a change in individual neuronal firing rate as this correlates with the presentation of a peripheral stimulus, motor action or cognitive task. Two additional assumptions are associated with this default interpretation: (2) that the incessant background firing activity against which changes in activity are measured plays no role in assigning significance to the extrinsically evoked change in neural firing, and (3) that the metabolic energy that sustains this background activity and which correlates with differences in neuronal firing rate is merely a response to an evoked change in neuronal activity. These assumptions underlie the design, implementation, and interpretation of neuroimaging studies, particularly fMRI, which relies on changes in blood oxygen as an indirect measure of neural activity. In this article we reconsider all three of these assumptions in light of recent evidence. We suggest that by combining EEG with fMRI, new experimental work can reconcile emerging controversies in neurovascular coupling and the significance of ongoing, background activity during resting-state paradigms. A new conceptual framework for neuroimaging paradigms is developed to investigate how ongoing neural activity is "entangled" with metabolism. That is, in addition to being recruited to support locally evoked neuronal activity (the traditional hemodynamic response), changes in metabolic support may be independently "invoked" by non-local brain regions, yielding flexible neurovascular coupling dynamics that inform the cognitive context. This framework demonstrates how multimodal neuroimaging is necessary to probe the neurometabolic foundations of cognition, with implications for the study of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michael Jacob
- Mental Health Service, San Francisco VA Healthcare System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Judith Ford
- Mental Health Service, San Francisco VA Healthcare System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Terrence Deacon
- Department of Anthropology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
7
|
Noah S, Meyyappan S, Ding M, Mangun GR. Time Courses of Attended and Ignored Object Representations. J Cogn Neurosci 2023; 35:645-658. [PMID: 36735619 PMCID: PMC10024573 DOI: 10.1162/jocn_a_01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Selective attention prioritizes information that is relevant to behavioral goals. Previous studies have shown that attended visual information is processed and represented more efficiently, but distracting visual information is not fully suppressed, and may also continue to be represented in the brain. In natural vision, to-be-attended and to-be-ignored objects may be present simultaneously in the scene. Understanding precisely how each is represented in the visual system, and how these neural representations evolve over time, remains a key goal in cognitive neuroscience. In this study, we recorded EEG while participants performed a cued object-based attention task that involved attending to target objects and ignoring simultaneously presented and spatially overlapping distractor objects. We performed support vector machine classification on the stimulus-evoked EEG data to separately track the temporal dynamics of target and distractor representations. We found that (1) both target and distractor objects were decodable during the early phase of object processing (∼100 msec to ∼200 msec after target onset), and (2) the representations of both objects were sustained over time, remaining decodable above chance until ∼1000-msec latency. However, (3) the distractor object information faded significantly beginning after about 300-msec latency. These findings provide information about the fate of attended and ignored visual information in complex scene perception.
Collapse
Affiliation(s)
- Sean Noah
- University of California, Davis.,University of California, Berkeley
| | | | | | | |
Collapse
|
8
|
Cavelli ML, Mao R, Findlay G, Driessen K, Bugnon T, Tononi G, Cirelli C. Sleep/wake changes in perturbational complexity in rats and mice. iScience 2023; 26:106186. [PMID: 36895652 PMCID: PMC9988678 DOI: 10.1016/j.isci.2023.106186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/31/2022] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
In humans, the level of consciousness is assessed by quantifying the spatiotemporal complexity of cortical responses using Perturbational Complexity Index (PCI) and related PCIst (st, state transitions). Here we validate PCIst in freely moving rats and mice by showing that it is lower in NREM sleep and slow wave anesthesia than in wake or REM sleep, as in humans. We then show that (1) low PCIst is associated with the occurrence of an OFF period of neuronal silence; (2) stimulation of deep, but not superficial, cortical layers leads to reliable PCIst changes across sleep/wake and anesthesia; (3) consistent PCIst changes are independent of which single area is being stimulated or recorded, except for recordings in mouse prefrontal cortex. These experiments show that PCIst can reliably measure vigilance states in unresponsive animals and support the hypothesis that it is low when an OFF period disrupts causal interactions in cortical networks.
Collapse
Affiliation(s)
- Matias Lorenzo Cavelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Departamento de Fisiología de Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Rong Mao
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Graham Findlay
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Kort Driessen
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Tom Bugnon
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| |
Collapse
|
9
|
Xu C, Li H, Gao J, Li L, He F, Yu J, Ling Y, Gao J, Li J, Melloni L, Luo B, Ding N. Statistical learning in patients in the minimally conscious state. Cereb Cortex 2023; 33:2507-2516. [PMID: 35670595 DOI: 10.1093/cercor/bhac222] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/22/2022] Open
Abstract
When listening to speech, cortical activity can track mentally constructed linguistic units such as words, phrases, and sentences. Recent studies have also shown that the neural responses to mentally constructed linguistic units can predict the outcome of patients with disorders of consciousness (DoC). In healthy individuals, cortical tracking of linguistic units can be driven by both long-term linguistic knowledge and online learning of the transitional probability between syllables. Here, we investigated whether statistical learning could occur in patients in the minimally conscious state (MCS) and patients emerged from the MCS (EMCS) using electroencephalography (EEG). In Experiment 1, we presented to participants an isochronous sequence of syllables, which were composed of either 4 real disyllabic words or 4 reversed disyllabic words. An inter-trial phase coherence analysis revealed that the patient groups showed similar word tracking responses to real and reversed words. In Experiment 2, we presented trisyllabic artificial words that were defined by the transitional probability between words, and a significant word-rate EEG response was observed for MCS patients. These results suggested that statistical learning can occur with a minimal conscious level. The residual statistical learning ability in MCS patients could potentially be harnessed to induce neural plasticity.
Collapse
Affiliation(s)
- Chuan Xu
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hangcheng Li
- Department of Rehabilitation, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou 311215, China
| | - Jiaxin Gao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
- Research Center for Advanced Artificial Intelligence Theory, Zhejiang Lab, Hangzhou 311121, China
| | - Lingling Li
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Yu
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi Ling
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Gao
- Department of Rehabilitation, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou 311215, China
| | - Jingqi Li
- Department of Rehabilitation, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou 311215, China
| | - Lucia Melloni
- New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY 10016, USA
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Nai Ding
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
- Research Center for Advanced Artificial Intelligence Theory, Zhejiang Lab, Hangzhou 311121, China
| |
Collapse
|
10
|
Eierud C, Michael A, Banks D, Andrews E. Resting-state functional connectivity in lifelong musicians. PSYCHORADIOLOGY 2023; 3:kkad003. [PMID: 38666119 PMCID: PMC10917383 DOI: 10.1093/psyrad/kkad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 02/24/2023] [Indexed: 04/28/2024]
Abstract
Background It has been postulated that musicianship can lead to enhanced brain and cognitive reserve, but the neural mechanisms of this effect have been poorly understood. Lifelong professional musicianship in conjunction with novel brain imaging techniques offers a unique opportunity to examine brain network differences between musicians and matched controls. Objective In this study we aim to investigate how resting-state functional networks (FNs) manifest in lifelong active musicians. We will evaluate the FNs of lifelong musicians and matched healthy controls using resting-state functional magnetic resonance imaging. Methods We derive FNs using the data-driven independent component analysis approach and analyze the functional network connectivity (FNC) between the default mode (DMN), sensory-motor (SMN), visual (VSN), and auditory (AUN) networks. We examine whether the linear regressions between FNC and age are different between the musicians and the control group. Results The age trajectory of average FNC across all six pairs of FNs shows significant differences between musicians and controls. Musicians show an increase in average FNC with age while controls show a decrease (P = 0.013). When we evaluated each pair of FN, we note that in musicians FNC values increased with age in DMN-AUN, DMN-VSN, and SMN-VSN and in controls FNC values decreased with age in DMN-AUN, DMN-SMN, AUN-SMN, and SMN-VSN. Conclusion This result provides early evidence that lifelong musicianship may contribute to enhanced brain and cognitive reserve. Results of this study are preliminary and need to be replicated with a larger number of participants.
Collapse
Affiliation(s)
- Cyrus Eierud
- Linguistics Program, Duke University, Durham, NC 27708, USA
| | - Andrew Michael
- Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, USA
| | - David Banks
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Edna Andrews
- Linguistics Program, Duke University, Durham, NC 27708, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, USA
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
11
|
Tanglay O, Dadario NB, Chong EHN, Tang SJ, Young IM, Sughrue ME. Graph Theory Measures and Their Application to Neurosurgical Eloquence. Cancers (Basel) 2023; 15:556. [PMID: 36672504 PMCID: PMC9857081 DOI: 10.3390/cancers15020556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Improving patient safety and preserving eloquent brain are crucial in neurosurgery. Since there is significant clinical variability in post-operative lesions suffered by patients who undergo surgery in the same areas deemed compensable, there is an unknown degree of inter-individual variability in brain 'eloquence'. Advances in connectomic mapping efforts through diffusion tractography allow for utilization of non-invasive imaging and statistical modeling to graphically represent the brain. Extending the definition of brain eloquence to graph theory measures of hubness and centrality may help to improve our understanding of individual variability in brain eloquence and lesion responses. While functional deficits cannot be immediately determined intra-operatively, there has been potential shown by emerging technologies in mapping of hub nodes as an add-on to existing surgical navigation modalities to improve individual surgical outcomes. This review aims to outline and review current research surrounding novel graph theoretical concepts of hubness, centrality, and eloquence and specifically its relevance to brain mapping for pre-operative planning and intra-operative navigation in neurosurgery.
Collapse
Affiliation(s)
- Onur Tanglay
- UNSW School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Omniscient Neurotechnology, Level 10/580 George Street, Sydney, NSW 2000, Australia
| | - Nicholas B. Dadario
- Robert Wood Johnson Medical School, Rutgers University, 125 Paterson St, New Brunswick, NJ 08901, USA
| | - Elizabeth H. N. Chong
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
| | - Si Jie Tang
- School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Isabella M. Young
- Omniscient Neurotechnology, Level 10/580 George Street, Sydney, NSW 2000, Australia
| | - Michael E. Sughrue
- Omniscient Neurotechnology, Level 10/580 George Street, Sydney, NSW 2000, Australia
| |
Collapse
|
12
|
Klöbl M, Prillinger K, Diehm R, Doganay K, Lanzenberger R, Poustka L, Plener P, Konicar L. Individual brain regulation as learned via neurofeedback is related to affective changes in adolescents with autism spectrum disorder. Child Adolesc Psychiatry Ment Health 2023; 17:6. [PMID: 36635760 PMCID: PMC9837918 DOI: 10.1186/s13034-022-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/18/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Emotions often play a role in neurofeedback (NF) regulation strategies. However, investigations of the relationship between the induced neuronal changes and improvements in affective domains are scarce in electroencephalography-based studies. Thus, we extended the findings of the first study on slow cortical potential (SCP) NF in autism spectrum disorder (ASD) by linking affective changes to whole-brain activity during rest and regulation. METHODS Forty-one male adolescents with ASD were scanned twice at rest using functional magnetic resonance imaging. Between scans, half underwent NF training, whereas the other half received treatment as usual. Furthermore, parents reported on their child's affective characteristics at each measurement. The NF group had to alternatingly produce negative and positive SCP shifts during training and was additionally scanned using functional magnetic resonance imaging while applying their developed regulation strategies. RESULTS No significant treatment group-by-time interactions in affective or resting-state measures were found. However, we found increases of resting activity in the anterior cingulate cortex and right inferior temporal gyrus as well as improvements in affective characteristics over both groups. Activation corresponding to SCP differentiation in these regions correlated with the affective improvements. A further correlation was found for Rolandic operculum activation corresponding to positive SCP shifts. There were no significant correlations with the respective achieved SCP regulation during NF training. CONCLUSION SCP NF in ASD did not lead to superior improvements in neuronal or affective functioning compared to treatment as usual. However, the affective changes might be related to the individual strategies and their corresponding activation patterns as indicated by significant correlations on the whole-brain level. Trial registration This clinical trial was registered at drks.de (DRKS00012339) on 20th April, 2017.
Collapse
Affiliation(s)
- Manfred Klöbl
- Department of Psychiatry & Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Karin Prillinger
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Robert Diehm
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Kamer Doganay
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry & Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry, Medical University of Göttingen, Göttingen, Germany
| | - Paul Plener
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Ulm, Ulm, Germany
| | - Lilian Konicar
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
13
|
Frohlich J, Chiang JN, Mediano PAM, Nespeca M, Saravanapandian V, Toker D, Dell'Italia J, Hipp JF, Jeste SS, Chu CJ, Bird LM, Monti MM. Neural complexity is a common denominator of human consciousness across diverse regimes of cortical dynamics. Commun Biol 2022; 5:1374. [PMID: 36522453 PMCID: PMC9755290 DOI: 10.1038/s42003-022-04331-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
What is the common denominator of consciousness across divergent regimes of cortical dynamics? Does consciousness show itself in decibels or in bits? To address these questions, we introduce a testbed for evaluating electroencephalogram (EEG) biomarkers of consciousness using dissociations between neural oscillations and consciousness caused by rare genetic disorders. Children with Angelman syndrome (AS) exhibit sleep-like neural dynamics during wakefulness. Conversely, children with duplication 15q11.2-13.1 syndrome (Dup15q) exhibit wake-like neural dynamics during non-rapid eye movement (NREM) sleep. To identify highly generalizable biomarkers of consciousness, we trained regularized logistic regression classifiers on EEG data from wakefulness and NREM sleep in children with AS using both entropy measures of neural complexity and spectral (i.e., neural oscillatory) EEG features. For each set of features, we then validated these classifiers using EEG from neurotypical (NT) children and abnormal EEGs from children with Dup15q. Our results show that the classification performance of entropy-based EEG biomarkers of conscious state is not upper-bounded by that of spectral EEG features, which are outperformed by entropy features. Entropy-based biomarkers of consciousness may thus be highly adaptable and should be investigated further in situations where spectral EEG features have shown limited success, such as detecting covert consciousness or anesthesia awareness.
Collapse
Affiliation(s)
- Joel Frohlich
- Department of Psychology, University of California Los Angeles, 90095, Pritzker Hall, Los Angeles, CA, USA.
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany.
| | - Jeffrey N Chiang
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Mark Nespeca
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
- Department of Neurology, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Vidya Saravanapandian
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Daniel Toker
- Department of Psychology, University of California Los Angeles, 90095, Pritzker Hall, Los Angeles, CA, USA
| | - John Dell'Italia
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| | - Joerg F Hipp
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Shafali S Jeste
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA, USA
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Genetics/Dysmorphology, Rady Children's Hospital - San Diego, San Diego, CA, USA
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, 90095, Pritzker Hall, Los Angeles, CA, USA
- Deptment of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
Zhang H, Yang S, Qiao Y, Ge Q, Tang Y, Northoff G, Zang Y. Default mode network mediates low-frequency fluctuations in brain activity and behavior during sustained attention. Hum Brain Mapp 2022; 43:5478-5489. [PMID: 35903957 PMCID: PMC9704793 DOI: 10.1002/hbm.26024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/02/2022] [Accepted: 07/10/2022] [Indexed: 01/15/2023] Open
Abstract
The low-frequency (<0.1 Hz) fluctuation in sustained attention attracts enormous interest in cognitive neuroscience and clinical research since it always leads to cognitive and behavioral lapses. What is the source of the spontaneous fluctuation in sustained attention in neural activity, and how does the neural fluctuation relate to behavioral fluctuation? Here, we address these questions by collecting and analyzing two independent fMRI and behavior datasets. We show that the neural (fMRI) fluctuation in a key brain network, the default-mode network (DMN), mediate behavioral (reaction time) fluctuation during sustained attention. DMN shows the increased amplitude of fluctuation, which correlates with the behavioral fluctuation in a similar frequency range (0.01-0.1 Hz) but not in the lower (<0.01 Hz) or higher (>0.1 Hz) frequency range. This was observed during both auditory and visual sustained attention and was replicable across independent datasets. These results provide a novel insight into the neural source of attention-fluctuation and extend the former concept that DMN was deactivated in cognitive tasks. More generally, our findings highlight the temporal dynamic of the brain-behavior relationship.
Collapse
Affiliation(s)
- Hang Zhang
- Centre for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentHangzhouZhejiangChina
| | - Shi‐You Yang
- Centre for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentHangzhouZhejiangChina
| | - Yang Qiao
- Centre for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentHangzhouZhejiangChina
| | - Qiu Ge
- Centre for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentHangzhouZhejiangChina
| | - Yi‐Yuan Tang
- College of Health SolutionsArizona State UniversityTempeArizonaUSA
| | - Georg Northoff
- Centre for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Institute of Mental Health ResearchUniversity of OttawaOttawaCanada
| | - Yu‐Feng Zang
- Centre for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouZhejiangChina
- Institute of Psychological ScienceHangzhou Normal UniversityHangzhouZhejiangChina
- Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentHangzhouZhejiangChina
| |
Collapse
|
15
|
Khalilzad Sharghi V, Maltbie EA, Pan WJ, Keilholz SD, Gopinath KS. Selective blockade of rat brain T-type calcium channels provides insights on neurophysiological basis of arousal dependent resting state functional magnetic resonance imaging signals. Front Neurosci 2022; 16:909999. [PMID: 36003960 PMCID: PMC9393715 DOI: 10.3389/fnins.2022.909999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
A number of studies point to slow (0.1–2 Hz) brain rhythms as the basis for the resting-state functional magnetic resonance imaging (rsfMRI) signal. Slow waves exist in the absence of stimulation, propagate across the cortex, and are strongly modulated by vigilance similar to large portions of the rsfMRI signal. However, it is not clear if slow rhythms serve as the basis of all neural activity reflected in rsfMRI signals, or just the vigilance-dependent components. The rsfMRI data exhibit quasi-periodic patterns (QPPs) that appear to increase in strength with decreasing vigilance and propagate across the brain similar to slow rhythms. These QPPs can complicate the estimation of functional connectivity (FC) via rsfMRI, either by existing as unmodeled signal or by inducing additional wide-spread correlation between voxel-time courses of functionally connected brain regions. In this study, we examined the relationship between cortical slow rhythms and the rsfMRI signal, using a well-established pharmacological model of slow wave suppression. Suppression of cortical slow rhythms led to significant reduction in the amplitude of QPPs but increased rsfMRI measures of intrinsic FC in rats. The results suggest that cortical slow rhythms serve as the basis of only the vigilance-dependent components (e.g., QPPs) of rsfMRI signals. Further attenuation of these non-specific signals enhances delineation of brain functional networks.
Collapse
Affiliation(s)
- Vahid Khalilzad Sharghi
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Eric A. Maltbie
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Wen-Ju Pan
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Shella D. Keilholz
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Kaundinya S. Gopinath
- Department of Radiology & Imaging Sciences, Emory University, Atlanta, GA, United States
- *Correspondence: Kaundinya S. Gopinath,
| |
Collapse
|
16
|
Jiang J, Zhao Y, Liu J, Yang Y, Liang P, Huang H, Wu Y, Kang Y, Zhu T, Zhou C. Signatures of Thalamocortical Alpha Oscillations and Synchronization With Increased Anesthetic Depths Under Isoflurane. Front Pharmacol 2022; 13:887981. [PMID: 35721144 PMCID: PMC9204038 DOI: 10.3389/fphar.2022.887981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Electroencephalography (EEG) recordings under propofol exhibit an increase in slow and alpha oscillation power and dose-dependent phase–amplitude coupling (PAC), which underlie GABAA potentiation and the central role of thalamocortical entrainment. However, the exact EEG signatures elicited by volatile anesthetics and the possible neurophysiological mechanisms remain unclear.Methods: Cortical EEG signals and thalamic local field potential (LFP) were recorded in a mouse model to detect EEG signatures induced by 0.9%, 1.5%, and 2.0% isoflurane. Then, the power of the EEG spectrum, thalamocortical coherence, and slow–alpha phase–amplitude coupling were analyzed. A computational model based on the thalamic network was used to determine the primary neurophysiological mechanisms of alpha spiking of thalamocortical neurons under isoflurane anesthesia.Results: Isoflurane at 0.9% (light anesthesia) increased the power of slow and delta oscillations both in cortical EEG and in thalamic LFP. Isoflurane at 1.5% (surgery anesthesia) increased the power of alpha oscillations both in cortical EEG and in thalamic LFP. Isoflurane at 2% (deep anesthesia) further increased the power of cortical alpha oscillations, while thalamic alpha oscillations were unchanged. Thalamocortical coherence of alpha oscillation only exhibited a significant increase under 1.5% isoflurane. Isoflurane-induced PAC modulation remained unchanged throughout under various concentrations of isoflurane. By adjusting the parameters in the computational model, isoflurane-induced alpha spiking in thalamocortical neurons was simulated, which revealed the potential molecular targets and the thalamic network involved in isoflurane-induced alpha spiking in thalamocortical neurons.Conclusion: The EEG changes in the cortical alpha oscillation, thalamocortical coherence, and slow–alpha PAC may provide neurophysiological signatures for monitoring isoflurane anesthesia at various depths.
Collapse
Affiliation(s)
- Jingyao Jiang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoxin Yang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology, West China Second Hospital of Sichuan University, Chengdu, China
| | - Yongkang Wu
- Intelligent Manufacturing Institute, Chengdu Jincheng College, Chengdu, China
| | - Yi Kang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Tao Zhu, ; Cheng Zhou,
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Tao Zhu, ; Cheng Zhou,
| |
Collapse
|
17
|
Revach D, Salti M. Consciousness as the Temporal Propagation of Information. Front Syst Neurosci 2022; 16:759683. [PMID: 35401129 PMCID: PMC8984189 DOI: 10.3389/fnsys.2022.759683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Our ability to understand the mind and its relation to the body is highly dependent on the way we define consciousness and the lens through which we study it. We argue that looking at conscious experience from an information-theory perspective can help obtain a unified and parsimonious account of the mind. Today's dominant models consider consciousness to be a specialized function of the brain characterized by a discrete neural event. Against this background, we consider subjective experience through information theory, presenting consciousness as the propagation of information from the past to the future. We examine through this perspective major characteristics of consciousness. We demonstrate that without any additional assumptions, temporal continuity in perception can explain the emergence of volition, subjectivity, higher order thoughts, and body boundaries. Finally, we discuss the broader implications for the mind-body question and the appeal of embodied cognition.
Collapse
Affiliation(s)
- Daniel Revach
- Department of Neuroscience, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | | |
Collapse
|
18
|
Almeida VN. The neural hierarchy of consciousness. Neuropsychologia 2022; 169:108202. [PMID: 35271856 DOI: 10.1016/j.neuropsychologia.2022.108202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023]
Abstract
The chief undertaking in the studies of consciousness is that of unravelling "the minimal set of neural processes that are together sufficient for the conscious experience of a particular content - the neural correlates of consciousness". To this day, this crusade remains at an impasse, with a clash of two main theories: consciousness may arise either in a graded and cortically-localised fashion, or in an all-or-none and widespread one. In spite of the long-lasting theoretical debates, neurophysiological theories of consciousness have been mostly dissociated from them. Herein, a theoretical review will be put forth with the aim to change that. In its first half, we will cover the hard available evidence on the neurophysiology of consciousness, whereas in its second half we will weave a series of considerations on both theories and substantiate a novel take on conscious awareness: the levels of processing approach, partitioning the conscious architecture into lower- and higher-order, graded and nonlinear.
Collapse
Affiliation(s)
- Victor N Almeida
- Faculdade de Letras, Universidade Federal de Minas Gerais (UFMG), Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
19
|
Golesorkhi M, Gomez-Pilar J, Çatal Y, Tumati S, Yagoub MCE, Stamatakis EA, Northoff G. From temporal to spatial topography: hierarchy of neural dynamics in higher- and lower-order networks shapes their complexity. Cereb Cortex 2022; 32:5637-5653. [PMID: 35188968 PMCID: PMC9753094 DOI: 10.1093/cercor/bhac042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 01/25/2023] Open
Abstract
The brain shows a topographical hierarchy along the lines of lower- and higher-order networks. The exact temporal dynamics characterization of this lower-higher-order topography at rest and its impact on task states remains unclear, though. Using 2 functional magnetic resonance imaging data sets, we investigate lower- and higher-order networks in terms of the signal compressibility, operationalized by Lempel-Ziv complexity (LZC). As we assume that this degree of complexity is related to the slow-fast frequency balance, we also compute the median frequency (MF), an estimation of frequency distribution. We demonstrate (i) topographical differences at rest between higher- and lower-order networks, showing lower LZC and MF in the former; (ii) task-related and task-specific changes in LZC and MF in both lower- and higher-order networks; (iii) hierarchical relationship between LZC and MF, as MF at rest correlates with LZC rest-task change along the lines of lower- and higher-order networks; and (iv) causal and nonlinear relation between LZC at rest and LZC during task, with MF at rest acting as mediator. Together, results show that the topographical hierarchy of lower- and higher-order networks converges with their temporal hierarchy, with these neural dynamics at rest shaping their range of complexity during task states in a nonlinear way.
Collapse
Affiliation(s)
| | | | - Yasir Çatal
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa ON K1Z 7K4, Canada
| | - Shankar Tumati
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa ON K1Z 7K4, Canada
| | - Mustapha C E Yagoub
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa ON K1Z 7K4, Canada
| | - Emanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge CB1 0SP, United Kingdom
| | - Georg Northoff
- Corresponding author: Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada.
| |
Collapse
|
20
|
Bachmann T. Representational 'touch' and modulatory 'retouch'-two necessary neurobiological processes in thalamocortical interaction for conscious experience. Neurosci Conscious 2021; 2021:niab045. [PMID: 34925911 PMCID: PMC8672242 DOI: 10.1093/nc/niab045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 12/01/2022] Open
Abstract
Theories of consciousness using neurobiological data or being influenced by these data have been focused either on states of consciousness or contents of consciousness. These theories have occasionally used evidence from psychophysical phenomena where conscious experience is a dependent experimental variable. However, systematic catalog of many such relevant phenomena has not been offered in terms of these theories. In the perceptual retouch theory of thalamocortical interaction, recently developed to become a blend with the dendritic integration theory, consciousness states and contents of consciousness are explained by the same mechanism. This general-purpose mechanism has modulation of the cortical layer-5 pyramidal neurons that represent contents of consciousness as its core. As a surplus, many experimental psychophysical phenomena of conscious perception can be explained by the workings of this mechanism. Historical origins and current views inherent in this theory are presented and reviewed.
Collapse
Affiliation(s)
- Talis Bachmann
- Department of Penal Law, Laboratory of Cognitive Neuroscience, School of Law, University of Tartu (Tallinn Branch), Kaarli puiestee 3, Tallinn 10119, Estonia
| |
Collapse
|
21
|
Martin CG, He BJ, Chang C. State-related neural influences on fMRI connectivity estimation. Neuroimage 2021; 244:118590. [PMID: 34560268 PMCID: PMC8815005 DOI: 10.1016/j.neuroimage.2021.118590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
The spatiotemporal structure of functional magnetic resonance imaging (fMRI) signals has provided a valuable window into the network underpinnings of human brain function and dysfunction. Although some cross-regional temporal correlation patterns (functional connectivity; FC) exhibit a high degree of stability across individuals and species, there is growing acknowledgment that measures of FC can exhibit marked changes over a range of temporal scales. Further, FC can covary with experimental task demands and ongoing neural processes linked to arousal, consciousness and perception, cognitive and affective state, and brain-body interactions. The increased recognition that such interrelated neural processes modulate FC measurements has raised both challenges and new opportunities in using FC to investigate brain function. Here, we review recent advances in the quantification of neural effects that shape fMRI FC and discuss the broad implications of these findings in the design and analysis of fMRI studies. We also discuss how a more complete understanding of the neural factors that shape FC measurements can resolve apparent inconsistencies in the literature and lead to more interpretable conclusions from fMRI studies.
Collapse
Affiliation(s)
- Caroline G Martin
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Biyu J He
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA; Departments of Neurology, Neuroscience & Physiology, and Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
22
|
Polimeni JR, Lewis LD. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Prog Neurobiol 2021; 207:102174. [PMID: 34525404 PMCID: PMC8688322 DOI: 10.1016/j.pneurobio.2021.102174] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Fast fMRI enables the detection of neural dynamics over timescales of hundreds of milliseconds, suggesting it may provide a new avenue for studying subsecond neural processes in the human brain. The magnitudes of these fast fMRI dynamics are far greater than predicted by canonical models of the hemodynamic response. Several studies have established nonlinear properties of the hemodynamic response that have significant implications for fast fMRI. We first review nonlinear properties of the hemodynamic response function that may underlie fast fMRI signals. We then illustrate the breakdown of canonical hemodynamic response models in the context of fast neural dynamics. We will then argue that the canonical hemodynamic response function is not likely to reflect the BOLD response to neuronal activity driven by sparse or naturalistic stimuli or perhaps to spontaneous neuronal fluctuations in the resting state. These properties suggest that fast fMRI is capable of tracking surprisingly fast neuronal dynamics, and we discuss the neuroscientific questions that could be addressed using this approach.
Collapse
Affiliation(s)
- Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Laura D Lewis
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
23
|
S AA, Ramakrishnan AG. Midline EEG Functional Connectivity As Biomarker for Conscious States in Sleep and Wakefulness. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1924-1927. [PMID: 34891663 DOI: 10.1109/embc46164.2021.9630907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functional connectivity (FC) between different cortical regions of the brain has long been hypothesized to be necessary for conscious states in several modeling and empirical studies. The work presented herein estimates the FC between two bipolar midline electroencephalogram (EEG) recordings to evaluate its utility in discriminating consciousness levels across wakefulness and sleep. Consciousness levels were defined as Low, Medium, and High depending upon the ability of a subject to self-report their experiences at a later stage. The sleep EDF [expanded] dataset available in the Physionet data repository was used for analyses. FC was estimated using the debiased estimator of the squared Weighted Phase Lag Index (dWPLI2) metric. A total of 40 features extracted from the FC spectra for 10 EEG sub-bands were considered. FC trends demonstrated the highest alpha synchrony in the 'Low' conscious state. While the 'Medium' conscious state demonstrated superior phase synchronization in the low-gamma band, the 'High' conscious state was characterized by comparatively lower phase synchronization in all frequency bands. A Multi-Layer Perceptron (MLP) framework using a combination of 7 features yielded the highest cross-validation accuracy of 95.15% in distinguishing these conscious states. The study results provide a pertinent validation for the hypothesis that midline EEG FC is a reliable and robust signature of conscious states in sleep and wakefulness.
Collapse
|
24
|
Schwartz R, Rozier C, Seidel Malkinson T, Lehongre K, Adam C, Lambrecq V, Navarro V, Naccache L, Axelrod V. Comparing stimulus-evoked and spontaneous response of the face-selective multi-units in the human posterior fusiform gyrus. Neurosci Conscious 2021; 2021:niab033. [PMID: 34667640 PMCID: PMC8520048 DOI: 10.1093/nc/niab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/03/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
The stimulus-evoked neural response is a widely explored phenomenon. Conscious awareness is associated in many cases with the corresponding selective stimulus-evoked response. For example, conscious awareness of a face stimulus is associated with or accompanied by stimulus-evoked activity in the fusiform face area (FFA). In addition to the stimulus-evoked response, spontaneous (i.e. task-unrelated) activity in the brain is also abundant. Notably, spontaneous activity is considered unconscious. For example, spontaneous activity in the FFA is not associated with conscious awareness of a face. The question is: what is the difference at the neural level between stimulus-evoked activity in a case that this activity is associated with conscious awareness of some content (e.g. activity in the FFA in response to fully visible face stimuli) and spontaneous activity in that same region of the brain? To answer this question, in the present study, we had a rare opportunity to record two face-selective multi-units in the vicinity of the FFA in a human patient. We compared multi-unit face-selective task-evoked activity with spontaneous prestimulus and a resting-state activity. We found that when activity was examined over relatively long temporal windows (e.g. 100–200 ms), face-selective stimulus-evoked firing in the recorded multi-units was much higher than the spontaneous activity. In contrast, when activity was examined over relatively short windows, we found many cases of high firing rates within the spontaneous activity that were comparable to stimulus-evoked activity. Our results thus indicate that the sustained activity is what might differentiate between stimulus-evoked activity that is associated with conscious awareness and spontaneous activity.
Collapse
Affiliation(s)
- Rina Schwartz
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 52900, Israel
| | - Camille Rozier
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Tal Seidel Malkinson
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Katia Lehongre
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Claude Adam
- Neurology Department, AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit, 47-83 boulevard de l'Hôpital, Paris 75013, France
| | - Virginie Lambrecq
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Vincent Navarro
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Lionel Naccache
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Vadim Axelrod
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
25
|
Similar CNV Neurodynamic Patterns between Sub- and Supra-Second Time Perception. Brain Sci 2021; 11:brainsci11101362. [PMID: 34679426 PMCID: PMC8534208 DOI: 10.3390/brainsci11101362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
In the field of time psychology, the functional significance of the contingent negative variation (CNV) component in time perception and whether the processing mechanisms of sub- and supra-second are similar or different still remain unclear. In the present study, event-related potential (ERP) technology and classical temporal discrimination tasks were used to explore the neurodynamic patterns of sub- and supra-second time perception. In Experiment 1, the standard interval (SI) was fixed at 500 ms, and the comparison interval (CI) ranged from 200 ms to 800 ms. In Experiment 2, the SI was fixed at 2000 ms, and the CI ranged from 1400 ms to 2600 ms. Participants were required to judge whether the CI was longer or shorter than the SI. The ERP results showed similar CNV activity patterns in the two experiments. Specifically, CNV amplitude would be more negative when the CI was longer or closer to the memorized SI. CNV peak latency increased significantly until the CI reached the memorized SI. We propose that CNV amplitude might reflect the process of temporal comparison, and CNV peak latency might represent the process of temporal decision-making. To our knowledge, it is the first ERP task explicitly testing the two temporal scales, sub- and supra-second timing, in one study. Taken together, the present study reveals a similar functional significance of CNV between sub- and supra-second time perception.
Collapse
|
26
|
Golesorkhi M, Gomez-Pilar J, Zilio F, Berberian N, Wolff A, Yagoub MCE, Northoff G. The brain and its time: intrinsic neural timescales are key for input processing. Commun Biol 2021; 4:970. [PMID: 34400800 PMCID: PMC8368044 DOI: 10.1038/s42003-021-02483-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
We process and integrate multiple timescales into one meaningful whole. Recent evidence suggests that the brain displays a complex multiscale temporal organization. Different regions exhibit different timescales as described by the concept of intrinsic neural timescales (INT); however, their function and neural mechanisms remains unclear. We review recent literature on INT and propose that they are key for input processing. Specifically, they are shared across different species, i.e., input sharing. This suggests a role of INT in encoding inputs through matching the inputs' stochastics with the ongoing temporal statistics of the brain's neural activity, i.e., input encoding. Following simulation and empirical data, we point out input integration versus segregation and input sampling as key temporal mechanisms of input processing. This deeply grounds the brain within its environmental and evolutionary context. It carries major implications in understanding mental features and psychiatric disorders, as well as going beyond the brain in integrating timescales into artificial intelligence.
Collapse
Affiliation(s)
- Mehrshad Golesorkhi
- grid.28046.380000 0001 2182 2255School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada ,grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Javier Gomez-Pilar
- grid.5239.d0000 0001 2286 5329Biomedical Engineering Group, University of Valladolid, Valladolid, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain
| | - Federico Zilio
- grid.5608.b0000 0004 1757 3470Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Padua, Italy
| | - Nareg Berberian
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Annemarie Wolff
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Mustapha C. E. Yagoub
- grid.28046.380000 0001 2182 2255School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada ,grid.410595.c0000 0001 2230 9154Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China ,grid.13402.340000 0004 1759 700XMental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| |
Collapse
|
27
|
Baror S, He BJ. Spontaneous perception: a framework for task-free, self-paced perception. Neurosci Conscious 2021; 2021:niab016. [PMID: 34377535 PMCID: PMC8333690 DOI: 10.1093/nc/niab016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
Flipping through social media feeds, viewing exhibitions in a museum, or walking through the botanical gardens, people consistently choose to engage with and disengage from visual content. Yet, in most laboratory settings, the visual stimuli, their presentation duration, and the task at hand are all controlled by the researcher. Such settings largely overlook the spontaneous nature of human visual experience, in which perception takes place independently from specific task constraints and its time course is determined by the observer as a self-governing agent. Currently, much remains unknown about how spontaneous perceptual experiences unfold in the brain. Are all perceptual categories extracted during spontaneous perception? Does spontaneous perception inherently involve volition? Is spontaneous perception segmented into discrete episodes? How do different neural networks interact over time during spontaneous perception? These questions are imperative to understand our conscious visual experience in daily life. In this article we propose a framework for spontaneous perception. We first define spontaneous perception as a task-free and self-paced experience. We propose that spontaneous perception is guided by four organizing principles that grant it temporal and spatial structures. These principles include coarse-to-fine processing, continuity and segmentation, agency and volition, and associative processing. We provide key suggestions illustrating how these principles may interact with one another in guiding the multifaceted experience of spontaneous perception. We point to testable predictions derived from this framework, including (but not limited to) the roles of the default-mode network and slow cortical potentials in underlying spontaneous perception. We conclude by suggesting several outstanding questions for future research, extending the relevance of this framework to consciousness and spontaneous brain activity. In conclusion, the spontaneous perception framework proposed herein integrates components in human perception and cognition, which have been traditionally studied in isolation, and opens the door to understand how visual perception unfolds in its most natural context.
Collapse
Affiliation(s)
- Shira Baror
- Neuroscience Institute, New York University School of Medicine, 435 E 30th Street, New York, NY 10016, USA
| | - Biyu J He
- Neuroscience Institute, New York University School of Medicine, 435 E 30th Street, New York, NY 10016, USA
| |
Collapse
|
28
|
Zhang Q, Gheres KW, Drew PJ. Origins of 1/f-like tissue oxygenation fluctuations in the murine cortex. PLoS Biol 2021; 19:e3001298. [PMID: 34264930 PMCID: PMC8282088 DOI: 10.1371/journal.pbio.3001298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/24/2021] [Indexed: 01/07/2023] Open
Abstract
The concentration of oxygen in the brain spontaneously fluctuates, and the distribution of power in these fluctuations has a 1/f-like spectra, where the power present at low frequencies of the power spectrum is orders of magnitude higher than at higher frequencies. Though these oscillations have been interpreted as being driven by neural activity, the origin of these 1/f-like oscillations is not well understood. Here, to gain insight of the origin of the 1/f-like oxygen fluctuations, we investigated the dynamics of tissue oxygenation and neural activity in awake behaving mice. We found that oxygen signal recorded from the cortex of mice had 1/f-like spectra. However, band-limited power in the local field potential did not show corresponding 1/f-like fluctuations. When local neural activity was suppressed, the 1/f-like fluctuations in oxygen concentration persisted. Two-photon measurements of erythrocyte spacing fluctuations and mathematical modeling show that stochastic fluctuations in erythrocyte flow could underlie 1/f-like dynamics in oxygenation. These results suggest that the discrete nature of erythrocytes and their irregular flow, rather than fluctuations in neural activity, could drive 1/f-like fluctuations in tissue oxygenation.
Collapse
Affiliation(s)
- Qingguang Zhang
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (QZ); (PJD)
| | - Kyle W. Gheres
- Graduate Program in Molecular Cellular and Integrative Biosciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Patrick J. Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Neurosurgery, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (QZ); (PJD)
| |
Collapse
|
29
|
Faramarzi M, Kasten FH, Altaş G, Aleman A, Ćurčić-Blake B, Herrmann CS. Similar EEG Activity Patterns During Experimentally-Induced Auditory Illusions and Veridical Perceptions. Front Neurosci 2021; 15:602437. [PMID: 33867913 PMCID: PMC8047478 DOI: 10.3389/fnins.2021.602437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
Hallucinations and illusions are two instances of perceptual experiences illustrating how perception might diverge from external sensory stimulations and be generated or altered based on internal brain states. The occurrence of these phenomena is not constrained to patient populations. Similar experiences can be elicited in healthy subjects by means of suitable experimental procedures. Studying the neural mechanisms underlying these experiences not only has the potential to expand our understanding of the brain's perceptual machinery but also of how it might get impaired. In the current study, we employed an auditory signal detection task to induce auditory illusions by presenting speech snippets at near detection threshold intensity embedded in noise. We investigated the neural correlates of auditory false perceptions by examining the EEG activity preceding the responses in speech absent (false alarm, FA) trials and comparing them to speech present (hit) trials. The results of the comparison of event-related potentials (ERPs) in the activation period vs. baseline revealed the presence of an early negativity (EN) and a late positivity (LP) similar in both hits and FAs, which were absent in misses, correct rejections (CR) and control button presses (BPs). We postulate that the EN and the LP might represent the auditory awareness negativity (AAN) and centro-parietal positivity (CPP) or P300, respectively. The event-related spectral perturbations (ERSPs) exhibited a common power enhancement in low frequencies (<4 Hz) in hits and FAs. The low-frequency power enhancement has been frequently shown to be accompanied with P300 as well as separately being a marker of perceptual awareness, referred to as slow cortical potentials (SCP). Furthermore, the comparison of hits vs. FAs showed a significantly higher LP amplitude and low frequency power in hits compared to FAs. Generally, the observed patterns in the present results resembled some of the major neural correlates associated with perceptual awareness in previous studies. Our findings provide evidence that the neural correlates associated with conscious perception, can be elicited in similar ways in both presence and absence of externally presented sensory stimuli. The present findings did not reveal any pre-stimulus alpha and beta modulations distinguishing conscious vs. unconscious perceptions.
Collapse
Affiliation(s)
- Maryam Faramarzi
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4All,” Carl von Ossietzky University, Oldenburg, Germany
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Florian H. Kasten
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4All,” Carl von Ossietzky University, Oldenburg, Germany
- Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - Gamze Altaş
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4All,” Carl von Ossietzky University, Oldenburg, Germany
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Branislava Ćurčić-Blake
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence “Hearing4All,” Carl von Ossietzky University, Oldenburg, Germany
- Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
30
|
Ho SS, Nakamura Y, Swain JE. Compassion As an Intervention to Attune to Universal Suffering of Self and Others in Conflicts: A Translational Framework. Front Psychol 2021; 11:603385. [PMID: 33505336 PMCID: PMC7829669 DOI: 10.3389/fpsyg.2020.603385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
As interpersonal, racial, social, and international conflicts intensify in the world, it is important to safeguard the mental health of individuals affected by them. According to a Buddhist notion "if you want others to be happy, practice compassion; if you want to be happy, practice compassion," compassion practice is an intervention to cultivate conflict-proof well-being. Here, compassion practice refers to a form of concentrated meditation wherein a practitioner attunes to friend, enemy, and someone in between, thinking, "I'm going to help them (equally)." The compassion meditation is based on Buddhist philosophy that mental suffering is rooted in conceptual thoughts that give rise to generic mental images of self and others and subsequent biases to preserve one's egoism, blocking the ultimate nature of mind. To contextualize compassion meditation scientifically, we adopted a Bayesian active inference framework to incorporate relevant Buddhist concepts, including mind (buddhi), compassion (karuna), aggregates (skandhas), suffering (duhkha), reification (samaropa), conceptual thoughts (vikalpa), and superimposition (prapañca). In this framework, a person is considered a Bayesian Engine that actively constructs phenomena based on the aggregates of forms, sensations, discriminations, actions, and consciousness. When the person embodies rigid beliefs about self and others' identities (identity-grasping beliefs) and the resulting ego-preserving bias, the person's Bayesian Engine malfunctions, failing to use prediction errors to update prior beliefs. To counter this problem, after recognizing the causes of sufferings, a practitioner of the compassion meditation aims to attune to all others equally, friends and enemies alike, suspend identity-based conceptual thoughts, and eventually let go of any identity-grasping belief and ego-preserving bias that obscure reality. We present a brain model for the Bayesian Engine of three components: (a) Relation-Modeling, (b) Reality-Checking, and (c) Conflict-Alarming, which are subserved by (a) the Default-Mode Network (DMN), (b) Frontoparietal Network (FPN) and Ventral Attention Network (VAN), and (c) Salience Network (SN), respectively. Upon perceiving conflicts, the strengthening or weakening of ego-preserving bias will critically depend on whether the SN up-regulates the DMN or FPN/VAN, respectively. We propose that compassion meditation can strengthen brain regions that are conducive for suspending prior beliefs and enhancing the attunements to the counterparts in conflicts.
Collapse
Affiliation(s)
- S. Shaun Ho
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, United States
| | - Yoshio Nakamura
- Department of Anesthesiology, Division of Pain Medicine, Pain Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - James E. Swain
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
31
|
Konicar L, Radev S, Prillinger K, Klöbl M, Diehm R, Birbaumer N, Lanzenberger R, Plener PL, Poustka L. Volitional modification of brain activity in adolescents with Autism Spectrum Disorder: A Bayesian analysis of Slow Cortical Potential neurofeedback. Neuroimage Clin 2021; 29:102557. [PMID: 33486138 PMCID: PMC7829342 DOI: 10.1016/j.nicl.2021.102557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/18/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022]
Abstract
Autism spectrum disorder is (ASD) characterized by a persisting triad of impairments of social interaction, language as well as inflexible, stereotyped and ritualistic behaviors. Increasingly, scientific evidence suggests a neurobiological basis of these emotional, social and cognitive deficits in individuals with ASD. The aim of this randomized controlled brain self-regulation intervention study was to investigate whether the core symptomatology of ASD could be reduced via an electroencephalography (EEG) based brain self-regulation training of Slow Cortical Potentials (SCP). 41 male adolescents with ASD were recruited and allocated to a) an experimental group undergoing 24 sessions of EEG-based brain training (n1 = 21), or to b) an active control group undergoing conventional treatment (n2 = 20), that is, clinical counseling during a 3-months intervention period. We employed real-time neurofeedback training recorded from a fronto-central electrode intended to enable participants to volitionally regulate their brain activity. Core autistic symptomatology was measured at six time points during the intervention and analyzed with Bayesian multilevel approach to characterize changes in core symptomatology. Additional Bayesian models were formulated to describe the neural dynamics of the training process as indexed by SCP (time-domain) and power density (PSD, frequency-domain) measures. The analysis revealed a substantial improvement in the core symptomatology of ASD in the experimental group (reduction of 21.38 points on the Social Responsiveness Scale, SD = 5.29), which was slightly superior to that observed in the control group (evidence Ratio = 5.79). Changes in SCP manifested themselves as different trajectories depending on the different feedback conditions and tasks. Further, the model of PSD revealed a continuous decrease in delta power, parallel to an increase in alpha power. Most notably, a non-linear (quadratic) model turned out to be better at predicting the data than a linear model across all analyses. Taken together, our analyses suggest that behavioral and neural processes of change related to neurofeedback training are complex and non-linear. Moreover, they have implications for the design of future trials and training protocols.
Collapse
Affiliation(s)
- L Konicar
- Department of Child and Adolescence Psychiatry, Medical University of Vienna, Vienna, Austria.
| | - S Radev
- Department of Child and Adolescence Psychiatry, Medical University of Vienna, Vienna, Austria; Institute of Psychology, University of Heidelberg, Germany
| | - K Prillinger
- Department of Child and Adolescence Psychiatry, Medical University of Vienna, Vienna, Austria
| | - M Klöbl
- Neuroimaging Labs, Department of Psychiatry & Psychotherapy, Medical University of Vienna, Austria
| | - R Diehm
- Department of Child and Adolescence Psychiatry, Medical University of Vienna, Vienna, Austria
| | - N Birbaumer
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - R Lanzenberger
- Neuroimaging Labs, Department of Psychiatry & Psychotherapy, Medical University of Vienna, Austria
| | - P L Plener
- Department of Child and Adolescence Psychiatry, Medical University of Vienna, Vienna, Austria
| | - L Poustka
- Department of Child and Adolescence Psychiatry, Medical University of Göttingen, Göttingen, Germany
| |
Collapse
|
32
|
Zilio F, Gomez-Pilar J, Cao S, Zhang J, Zang D, Qi Z, Tan J, Hiromi T, Wu X, Fogel S, Huang Z, Hohmann MR, Fomina T, Synofzik M, Grosse-Wentrup M, Owen AM, Northoff G. Are intrinsic neural timescales related to sensory processing? Evidence from abnormal behavioral states. Neuroimage 2020; 226:117579. [PMID: 33221441 DOI: 10.1016/j.neuroimage.2020.117579] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/15/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The brain exhibits a complex temporal structure which translates into a hierarchy of distinct neural timescales. An open question is how these intrinsic timescales are related to sensory or motor information processing and whether these dynamics have common patterns in different behavioral states. We address these questions by investigating the brain's intrinsic timescales in healthy controls, motor (amyotrophic lateral sclerosis, locked-in syndrome), sensory (anesthesia, unresponsive wakefulness syndrome), and progressive reduction of sensory processing (from awake states over N1, N2, N3). We employed a combination of measures from EEG resting-state data: auto-correlation window (ACW), power spectral density (PSD), and power-law exponent (PLE). Prolonged neural timescales accompanied by a shift towards slower frequencies were observed in the conditions with sensory deficits, but not in conditions with motor deficits. Our results establish that the spontaneous activity's intrinsic neural timescale is related to the neural capacity that specifically supports sensory rather than motor information processing in the healthy brain.
Collapse
Affiliation(s)
- Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Padua, Italy.
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
| | - Shumei Cao
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Di Zang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaxing Tan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tanigawa Hiromi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Stuart Fogel
- The Brain and Mind Institute, Department of Physiology and Pharmacology and the Department of Psychology, University of Western Ontario, Canada
| | - Zirui Huang
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Matthias R Hohmann
- Department for Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Tatiana Fomina
- Department for Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Matthis Synofzik
- Department of Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Moritz Grosse-Wentrup
- Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, Austria
| | - Adrian M Owen
- The Brain and Mind Institute, Department of Physiology and Pharmacology and the Department of Psychology, University of Western Ontario, Canada
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| |
Collapse
|
33
|
Kolvoort IR, Wainio‐Theberge S, Wolff A, Northoff G. Temporal integration as "common currency" of brain and self-scale-free activity in resting-state EEG correlates with temporal delay effects on self-relatedness. Hum Brain Mapp 2020; 41:4355-4374. [PMID: 32697351 PMCID: PMC7502844 DOI: 10.1002/hbm.25129] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/01/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023] Open
Abstract
The self is a multifaceted phenomenon that integrates information and experience across multiple time scales. How temporal integration on the psychological level of the self is related to temporal integration on the neuronal level remains unclear. To investigate temporal integration on the psychological level, we modified a well-established self-matching paradigm by inserting temporal delays. On the neuronal level, we indexed temporal integration in resting-state EEG by two related measures of scale-free dynamics, the power law exponent and autocorrelation window. We hypothesized that the previously established self-prioritization effect, measured as decreased response times or increased accuracy for self-related stimuli, would change with the insertion of different temporal delays between the paired stimuli, and that these changes would be related to temporal integration on the neuronal level. We found a significant self-prioritization effect on accuracy in all conditions with delays, indicating stronger temporal integration of self-related stimuli. Further, we observed a relationship between temporal integration on psychological and neuronal levels: higher degrees of neuronal integration, that is, higher power-law exponent and longer autocorrelation window, during resting-state EEG were related to a stronger increase in the self-prioritization effect across longer temporal delays. We conclude that temporal integration on the neuronal level serves as a template for temporal integration of the self on the psychological level. Temporal integration can thus be conceived as the "common currency" of neuronal and psychological levels of self.
Collapse
Affiliation(s)
- Ivar R. Kolvoort
- Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health ResearchUniversity of OttawaOttawaOntarioCanada
- Department of Psychology, Programme Group Psychological MethodsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Soren Wainio‐Theberge
- Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health ResearchUniversity of OttawaOttawaOntarioCanada
| | - Annemarie Wolff
- Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health ResearchUniversity of OttawaOttawaOntarioCanada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health ResearchUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
34
|
Dasilva M, Camassa A, Navarro-Guzman A, Pazienti A, Perez-Mendez L, Zamora-López G, Mattia M, Sanchez-Vives MV. Modulation of cortical slow oscillations and complexity across anesthesia levels. Neuroimage 2020; 224:117415. [PMID: 33011419 DOI: 10.1016/j.neuroimage.2020.117415] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 08/15/2020] [Accepted: 09/25/2020] [Indexed: 11/25/2022] Open
Abstract
The ability of different groups of cortical neurons to engage in causal interactions that are at once differentiated and integrated results in complex dynamic patterns. Complexity is low during periods of unconsciousness (deep sleep, anesthesia, unresponsive wakefulness syndrome) in which the brain tends to generate a stereotypical pattern consisting of alternating active and silent periods of neural activity-slow oscillations- and is high during wakefulness. But how is cortical complexity built up? Is it a continuum? An open question is whether cortical complexity can vary within the same brain state. Here we recorded with 32-channel multielectrode arrays from the cortical surface of the mouse and used both spontaneous dynamics (wave propagation entropy and functional complexity) and a perturbational approach (a variation of the perturbation complexity index) to measure complexity at different anesthesia levels. Variations in anesthesia level within the bistable regime of slow oscillations (0.1-1.5 Hz) resulted in a modulation of the slow oscillation frequency. Both perturbational and spontaneous complexity increased with decreasing anesthesia levels, in correlation with the decrease in coherence of the underlying network. Changes in complexity level are related to, but not dependent on, changes in excitability. We conclude that cortical complexity can vary within a single brain state dominated by slow oscillations, building up to the higher complexity associated with consciousness.
Collapse
Affiliation(s)
- Miguel Dasilva
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alessandra Camassa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alvaro Navarro-Guzman
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Pazienti
- Natl. Center for Radioprotection and Computational Physics, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Lorena Perez-Mendez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Maurizio Mattia
- Natl. Center for Radioprotection and Computational Physics, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
35
|
Sasai S, Koike T, Sugawara SK, Hamano YH, Sumiya M, Okazaki S, Takahashi HK, Taga G, Sadato N. Frequency-specific task modulation of human brain functional networks: A fast fMRI study. Neuroimage 2020; 224:117375. [PMID: 32950690 DOI: 10.1016/j.neuroimage.2020.117375] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022] Open
Abstract
How coherent neural oscillations are involved in task execution is a fundamental question in neuroscience. Although several electrophysiological studies have tackled this issue, the brain-wide task modulation of neural coherence remains uncharacterized. Here, with a fast fMRI technique, we studied shifts of brain-wide neural coherence across different task states in the ultraslow frequency range (0.01-0.7 Hz). First, we examined whether the shifts of the brain-wide neural coherence occur in a frequency-dependent manner. We quantified the shift of a region's average neural coherence by the inter-state variance of the mean coherence between the region and the rest of the brain. A clustering analysis based on the variance's spatial correlation between frequency components revealed four frequency bands (0.01-0.15 Hz, 0.15-0.37 Hz, 0.37-0.53 Hz, and 0.53-0.7 Hz) showing band-specific shifts of the brain-wide neural coherence. Next, we investigated the similarity of the inter-state variance's spectra between all pairs of regions. We found that regions showing similar spectra correspond to those forming functional modules of the brain network. Then, we investigated the relationship between identified frequency bands and modules' inter-state variances. We found that modules showing the highest variance are those made up of parieto-occipital regions at 0.01-0.15 Hz, while it is replaced with another consisting of frontal regions above 0.15 Hz. Furthermore, these modules showed specific shifting patterns of the mean coherence across states at 0.01-0.15 Hz and above 0.15 Hz, suggesting that identified frequency bands differentially contribute to neural interactions during task execution. Our results highlight that usage of the fast fMRI enables brain-wide investigation of neural coherence up to 0.7 Hz, which opens a promising track for assessment of the large-scale neural interactions in the ultraslow frequency range.
Collapse
Affiliation(s)
- Shuntaro Sasai
- Department of Psychiatry, University of Wisconsin-Madison, Madison, USA.
| | - Takahiko Koike
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Aichi, Japan; Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa, Japan
| | - Sho K Sugawara
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Aichi, Japan; Neural prosthesis project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuki H Hamano
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Aichi, Japan; Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa, Japan
| | - Motofumi Sumiya
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Aichi, Japan; Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Aichi, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shuntaro Okazaki
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Aichi, Japan
| | - Haruka K Takahashi
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Aichi, Japan
| | - Gentaro Taga
- Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Aichi, Japan; Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa, Japan.
| |
Collapse
|
36
|
Sobczak F, He Y, Sejnowski TJ, Yu X. Predicting the fMRI Signal Fluctuation with Recurrent Neural Networks Trained on Vascular Network Dynamics. Cereb Cortex 2020; 31:826-844. [PMID: 32940658 PMCID: PMC7906791 DOI: 10.1093/cercor/bhaa260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/19/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Resting-state functional MRI (rs-fMRI) studies have revealed specific low-frequency hemodynamic signal fluctuations (<0.1 Hz) in the brain, which could be related to neuronal oscillations through the neurovascular coupling mechanism. Given the vascular origin of the fMRI signal, it remains challenging to separate the neural correlates of global rs-fMRI signal fluctuations from other confounding sources. However, the slow-oscillation detected from individual vessels by single-vessel fMRI presents strong correlation to neural oscillations. Here, we use recurrent neural networks (RNNs) to predict the future temporal evolution of the rs-fMRI slow oscillation from both rodent and human brains. The RNNs trained with vessel-specific rs-fMRI signals encode the unique brain oscillatory dynamic feature, presenting more effective prediction than the conventional autoregressive model. This RNN-based predictive modeling of rs-fMRI datasets from the Human Connectome Project (HCP) reveals brain state-specific characteristics, demonstrating an inverse relationship between the global rs-fMRI signal fluctuation with the internal default-mode network (DMN) correlation. The RNN prediction method presents a unique data-driven encoding scheme to specify potential brain state differences based on the global fMRI signal fluctuation, but not solely dependent on the global variance.
Collapse
Affiliation(s)
- Filip Sobczak
- Translational Neuroimaging and Neural Control Group, High Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany.,Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, 72074 Tuebingen, Germany
| | - Yi He
- Translational Neuroimaging and Neural Control Group, High Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany.,Danish Research Centre for Magnetic Resonance, 2650, Hvidovre, Denmark
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute, Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Yu
- Translational Neuroimaging and Neural Control Group, High Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
37
|
Drew PJ, Mateo C, Turner KL, Yu X, Kleinfeld D. Ultra-slow Oscillations in fMRI and Resting-State Connectivity: Neuronal and Vascular Contributions and Technical Confounds. Neuron 2020; 107:782-804. [PMID: 32791040 PMCID: PMC7886622 DOI: 10.1016/j.neuron.2020.07.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022]
Abstract
Ultra-slow, ∼0.1-Hz variations in the oxygenation level of brain blood are widely used as an fMRI-based surrogate of "resting-state" neuronal activity. The temporal correlations among these fluctuations across the brain are interpreted as "functional connections" for maps and neurological diagnostics. Ultra-slow variations in oxygenation follow a cascade. First, they closely track changes in arteriole diameter. Second, interpretable functional connections arise when the ultra-slow changes in amplitude of γ-band neuronal oscillations, which are shared across even far-flung but synaptically connected brain regions, entrain the ∼0.1-Hz vasomotor oscillation in diameter of local arterioles. Significant confounds to estimates of functional connectivity arise from residual vasomotor activity as well as arteriole dynamics driven by self-generated movements and subcortical common modulatory inputs. Last, methodological limitations of fMRI can lead to spurious functional connections. The neuronal generator of ultra-slow variations in γ-band amplitude, including that associated with self-generated movements, remains an open issue.
Collapse
Affiliation(s)
- Patrick J Drew
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
| | - Celine Mateo
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Xin Yu
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany; MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02114, USA
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
38
|
Bourdillon P, Hermann B, Guénot M, Bastuji H, Isnard J, King JR, Sitt J, Naccache L. Brain-scale cortico-cortical functional connectivity in the delta-theta band is a robust signature of conscious states: an intracranial and scalp EEG study. Sci Rep 2020; 10:14037. [PMID: 32820188 PMCID: PMC7441406 DOI: 10.1038/s41598-020-70447-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022] Open
Abstract
Long-range cortico-cortical functional connectivity has long been theorized to be necessary for conscious states. In the present work, we estimate long-range cortical connectivity in a series of intracranial and scalp EEG recordings experiments. In the two first experiments intracranial-EEG (iEEG) was recorded during four distinct states within the same individuals: conscious wakefulness (CW), rapid-eye-movement sleep (REM), stable periods of slow-wave sleep (SWS) and deep propofol anaesthesia (PA). We estimated functional connectivity using the following two methods: weighted Symbolic-Mutual-Information (wSMI) and phase-locked value (PLV). Our results showed that long-range functional connectivity in the delta-theta frequency band specifically discriminated CW and REM from SWS and PA. In the third experiment, we generalized this original finding on a large cohort of brain-injured patients. FC in the delta-theta band was significantly higher in patients being in a minimally conscious state (MCS) than in those being in a vegetative state (or unresponsive wakefulness syndrome). Taken together the present results suggest that FC of cortical activity in this slow frequency band is a new and robust signature of conscious states.
Collapse
Affiliation(s)
- Pierre Bourdillon
- Department of Neurophysiology, Hospital for Neurology and Neurosurgery, Hospices Civils de Lyon, Lyon, France.
- Faculté de médecine Claude Bernard, Université de Lyon, Lyon, France.
- Brain and Spine Institue, INSERM U1127, CNRS 7225, 47 boulevard de l'Hôpital, 75013, Paris, France.
- Sorbonne Université, Paris, France.
| | - Bertrand Hermann
- Brain and Spine Institue, INSERM U1127, CNRS 7225, 47 boulevard de l'Hôpital, 75013, Paris, France
- Sorbonne Université, Paris, France
- Neuro Intensive Care Unit, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Marc Guénot
- Department of Neurophysiology, Hospital for Neurology and Neurosurgery, Hospices Civils de Lyon, Lyon, France
- Faculté de médecine Claude Bernard, Université de Lyon, Lyon, France
- Neuropain Team, Centre de Recherche en Neurosciences de Lyon, INSERM U1028, Lyon, France
| | - Hélène Bastuji
- Neuropain Team, Centre de Recherche en Neurosciences de Lyon, INSERM U1028, Lyon, France
- Functional Neurology Department and Sleep Center, Hospices Civils de Lyon, Lyon, France
| | - Jean Isnard
- Functional Neurology Department and Sleep Center, Hospices Civils de Lyon, Lyon, France
| | - Jean-Rémi King
- Brain and Spine Institue, INSERM U1127, CNRS 7225, 47 boulevard de l'Hôpital, 75013, Paris, France
| | - Jacobo Sitt
- Brain and Spine Institue, INSERM U1127, CNRS 7225, 47 boulevard de l'Hôpital, 75013, Paris, France
| | - Lionel Naccache
- Brain and Spine Institue, INSERM U1127, CNRS 7225, 47 boulevard de l'Hôpital, 75013, Paris, France.
- Sorbonne Université, Paris, France.
- Department of Neurophysiology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Paris, France.
| |
Collapse
|
39
|
Glim S, Ries A, Sorg C, Wohlschläger AM. The temporal evolution of pre-stimulus slow cortical potentials is associated with an upcoming stimulus' access to visual consciousness. Conscious Cogn 2020; 84:102993. [PMID: 32771954 DOI: 10.1016/j.concog.2020.102993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 01/21/2023]
Abstract
Slow cortical potentials (SCPs) have been proposed to be essential for the formation of conscious experience. To examine their temporal characteristics, we recorded electroencephalography during a visual backward-masking task, which required participants to localize the missing part of a target stimulus. A subsequent confidence rating was used as a proxy for the target's access to consciousness. Event-related potentials (ERPs) of all correct trials were determined relative to a brief period immediately before the target and then compared among consciousness levels. In an interval ranging from 2 s prior to target presentation up to this period, a negative relationship between slowly fluctuating ERP values and the level of consciousness became evident. After target presentation, high conscious awareness was characterized by an enhanced visual awareness negativity, an increased P3 component, and associated positive SCPs. Together, these findings add new evidence to the proposed role of SCPs in the emergence of visual consciousness.
Collapse
Affiliation(s)
- Sarah Glim
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Graduate School of Systemic Neurosciences, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Anja Ries
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Department of Psychiatry, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Afra M Wohlschläger
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Graduate School of Systemic Neurosciences, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
40
|
Oane I, Barborica A, Chetan F, Donos C, Maliia MD, Arbune AA, Daneasa A, Pistol C, Nica AE, Bajenaru OA, Mindruta I. Cingulate cortex function and multi-modal connectivity mapped using intracranial stimulation. Neuroimage 2020; 220:117059. [PMID: 32562780 DOI: 10.1016/j.neuroimage.2020.117059] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/19/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
The cingulate cortex is part of the limbic system. Its function and connectivity are organized in a rostro-caudal and ventral-dorsal manner which was addressed by various other studies using rather coarse cortical parcellations. In this study, we aim at describing its function and connectivity using invasive recordings from patients explored for focal drug-resistant epilepsy. We included patients that underwent stereo-electroencephalographic recordings using intracranial electrodes in the University Emergency Hospital Bucharest between 2012 and 2019. We reviewed all high frequency stimulations (50 Hz) performed for functional mapping of the cingulate cortex. We used two methods to characterize brain connectivity. Effective connectivity was inferred based on the analysis of cortico-cortical potentials (CCEPs) evoked by single pulse electrical stimulation (SPES) (15 s inter-pulse interval). Functional connectivity was estimated using the non-linear regression method applied to 60 s spontaneous electrical brain signal intervals. The effective (stimulation-evoked) and functional (non-evoked) connectivity analyses highlight brain networks in a different way. While non-evoked connectivity evidences areas having related activity, often in close proximity to each other, evoked connectivity highlights spatially extended networks. To highlight in a comprehensive way the cingulate cortex's network, we have performed a bi-modal connectivity analysis that combines the resting-state broadband h2 non-linear correlation with cortico-cortical evoked potentials. We co-registered the patient's anatomy with the fsaverage FreeSurfer template to perform the automatic labeling based on HCP-MMP parcellation. At a group level, connectivity was estimated by averaging responses over stimulated/recorded or recorded sites in each pair of parcels. Finally, for multiple regions that evoked a clinical response during high frequency stimulation, we combined the connectivity of individual pairs using maximum intensity projection. Connectivity was assessed by applying SPES on 2094 contact pairs and recording CCEPs on 3580 contacts out of 8582 contacts of 660 electrodes implanted in 47 patients. Clinical responses elicited by high frequency stimulations in 107 sites (pairs of contacts) located in the cingulate cortex were divided in 10 groups: affective, motor behavior, motor elementary, versive, speech, vestibular, autonomic, somatosensory, visual and changes in body perception. Anterior cingulate cortex was shown to be connected to the mesial temporal, orbitofrontal and prefrontal cortex. In the middle cingulate cortex, we located affective, motor behavior in the anterior region, and elementary motor and somatosensory in the posterior part. This region is connected to the prefrontal, premotor and primary motor network. Finally, the posterior cingulate was shown to be connected with the visual areas, mesial and lateral parietal and temporal cortex.
Collapse
Affiliation(s)
- Irina Oane
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Neurology Department, Medical Faculty, Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Boulevard 8, Bucharest, Romania.
| | - Andrei Barborica
- Physics Department, University of Bucharest, 405 Atomistilor Street, Bucharest, Romania.
| | - Filip Chetan
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania.
| | - Cristian Donos
- Physics Department, University of Bucharest, 405 Atomistilor Street, Bucharest, Romania.
| | - Mihai Dragos Maliia
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Physics Department, University of Bucharest, 405 Atomistilor Street, Bucharest, Romania.
| | - Anca Adriana Arbune
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Neurology Department, Medical Faculty, Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Boulevard 8, Bucharest, Romania.
| | - Andrei Daneasa
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania.
| | - Constantin Pistol
- Physics Department, University of Bucharest, 405 Atomistilor Street, Bucharest, Romania.
| | - Adriana Elena Nica
- Intensive Care Unit Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania.
| | - Ovidiu Alexandru Bajenaru
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Neurology Department, Medical Faculty, Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Boulevard 8, Bucharest, Romania; Brain Research Group, Romanian Academy, 125 Calea Victoriei Street, Bucharest, Romania.
| | - Ioana Mindruta
- Epilepsy Monitoring Unit, Neurology Department, Emergency University Hospital Bucharest, 169 Splaiul Independentei Street, Bucharest, Romania; Neurology Department, Medical Faculty, Carol Davila University of Medicine and Pharmacy Bucharest, 8 Eroii Sanitari Boulevard 8, Bucharest, Romania; Brain Research Group, Romanian Academy, 125 Calea Victoriei Street, Bucharest, Romania.
| |
Collapse
|
41
|
White matter injury and neurodevelopmental disabilities: A cross-disease (dis)connection. Prog Neurobiol 2020; 193:101845. [PMID: 32505757 DOI: 10.1016/j.pneurobio.2020.101845] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
White matter (WM) injury, once known primarily in preterm newborns, is emerging in its non-focal (diffused), non-necrotic form as a critical component of subtle brain injuries in many early-life diseases like prematurity, intrauterine growth restriction, congenital heart defects, and hypoxic-ischemic encephalopathy. While advances in medical techniques have reduced the number of severe outcomes, the incidence of tardive impairments in complex cognitive functions or psychopathology remains high, with lifelong detrimental effects. The importance of WM in coordinating neuronal assemblies firing and neural groups synchronizing within multiple frequency bands through myelination, even mild alterations in WM structure, may interfere with the cognitive performance that increasing social and learning demands would exploit tardively during children growth. This phenomenon may contribute to explaining longitudinally the high incidence of late-appearing impairments that affect children with a history of perinatal insults. Furthermore, WM abnormalities have been highlighted in several neuropsychiatric disorders, such as autism and schizophrenia. In this review, we gather and organize evidence on how diffused WM injuries contribute to neurodevelopmental disorders through different perinatal diseases and insults. An insight into a possible common, cross-disease, mechanism, neuroimaging and monitoring, biomarkers, and neuroprotective strategies will also be presented.
Collapse
|
42
|
Differential neural processing of spontaneous blinking under visual and auditory sensory environments: An EEG investigation of blink-related oscillations. Neuroimage 2020; 218:116879. [PMID: 32422401 DOI: 10.1016/j.neuroimage.2020.116879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 11/22/2022] Open
Abstract
Blink-related oscillations (BROs) are a recently discovered neurophysiological response associated with spontaneous blinking, distinct from the well-known oculomotor and visual suppression effects. BROs strongly activate the bilateral precuneus along with other cortical regions involved in visuospatial processing and associative episodic memory, and are believed to represent environmental monitoring processes that occur following blink-induced visual interruptions. Although these responses have been reported across multiple imaging modalities under both resting and cognitive loading conditions, it is yet unknown whether these responses also exist under external sensory stimulation conditions. To address this, we investigated BRO responses in healthy adults using 64-channel electroencephalography (EEG), while participants underwent passive external auditory and visual stimulation. Our results showed that BRO responses are present under both auditory and visual stimulation conditions (p < 0.05), with similar temporal and spectral features compared to rest. However, visual stimulation did result in decreased BRO amplitude compared to auditory and resting conditions (p < 0.05), suggesting decreased neuronal resources for processing blink-related information in the visual but not auditory environment. There were also additional pre-blink spectral changes in the visual condition compared to rest (p < 0.05), which suggest that passive visual stimulation induces neural preparatory processes occurring in anticipation of the upcoming blink event. Together, these findings provide new and compelling evidence that blink-related neural processes are modulated not only by the internal cognitive loading due to simultaneous task demands, but also by competing external sensory requirements. This highlights the link between blinking and cognition, and further demonstrates the importance of BROs as a new window into brain function.
Collapse
|
43
|
Modolo J, Hassan M, Wendling F, Benquet P. Decoding the circuitry of consciousness: From local microcircuits to brain-scale networks. Netw Neurosci 2020; 4:315-337. [PMID: 32537530 PMCID: PMC7286300 DOI: 10.1162/netn_a_00119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/09/2019] [Indexed: 01/25/2023] Open
Abstract
Identifying the physiological processes underlying the emergence and maintenance of consciousness is one of the most fundamental problems of neuroscience, with implications ranging from fundamental neuroscience to the treatment of patients with disorders of consciousness (DOCs). One major challenge is to understand how cortical circuits at drastically different spatial scales, from local networks to brain-scale networks, operate in concert to enable consciousness, and how those processes are impaired in DOC patients. In this review, we attempt to relate available neurophysiological and clinical data with existing theoretical models of consciousness, while linking the micro- and macrocircuit levels. First, we address the relationships between awareness and wakefulness on the one hand, and cortico-cortical and thalamo-cortical connectivity on the other hand. Second, we discuss the role of three main types of GABAergic interneurons in specific circuits responsible for the dynamical reorganization of functional networks. Third, we explore advances in the functional role of nested oscillations for neural synchronization and communication, emphasizing the importance of the balance between local (high-frequency) and distant (low-frequency) activity for efficient information processing. The clinical implications of these theoretical considerations are presented. We propose that such cellular-scale mechanisms could extend current theories of consciousness.
Collapse
Affiliation(s)
- Julien Modolo
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| | - Mahmoud Hassan
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| | | | - Pascal Benquet
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| |
Collapse
|
44
|
Wang L, Gu Y, Zhao G, Chen A. Error-related negativity and error awareness in a Go/No-go task. Sci Rep 2020; 10:4026. [PMID: 32132619 PMCID: PMC7055303 DOI: 10.1038/s41598-020-60693-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/11/2020] [Indexed: 11/09/2022] Open
Abstract
Error monitoring is crucial for the conscious error perception, however, the role of early error monitoring in error awareness remains unclear. Here, we investigated the relation between the ERN and error-related theta oscillations and the emergence of error awareness by conducting time- and phase-locked averaging analysis based on 4-8 Hz filtered data and phase-locked time frequency analysis. Results showed that while the ERN did not differ significantly between aware and unaware errors, theta power was stronger for aware errors than for unaware errors. Further, when continuous EEG was filtered outside the theta band, the ERN results confirmed this pattern. Additionally, when the non-phase-locked component was removed from continuous EEG, stronger theta power was still observed in aware errors compared to unaware errors. Collectively, these findings may suggest that (1) the ERN emerges from phase-locked component of theta band EEG activities; (2) the ERN engages in conscious error perception and serves the emerging error awareness through the activity of theta oscillations. Thus, early error monitoring is a precursor to error awareness, but this relationship is masked by high-frequency activity in aware errors when the ERN is not filtered outside the theta band in the Go/No-go task.
Collapse
Affiliation(s)
- Lijun Wang
- Institute of cognition, brain and health, School of Education, HeNan University, Kaifeng, 475004, China
| | - Yan Gu
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Guoxiang Zhao
- Faculty of Education, Henan Normal University, Xinxiang, 453007, China
| | - Antao Chen
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
45
|
Chen W, Park K, Pan Y, Koretsky AP, Du C. Interactions between stimuli-evoked cortical activity and spontaneous low frequency oscillations measured with neuronal calcium. Neuroimage 2020; 210:116554. [PMID: 31972283 DOI: 10.1016/j.neuroimage.2020.116554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/07/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Spontaneous brain activity has been widely used to map brain connectivity. The interactions between task-evoked brain responses and the spontaneous cortical oscillations, especially within the low frequency range of ~0.1 Hz, are not fully understood. Trial-to-trial variabilities in brain's response to sensory stimuli and the ability for brain to detect under noisy conditions suggest an appreciable impact of the brain state. Using a multimodality imaging platform, we simultaneously imaged neuronal Ca2+ and cerebral hemodynamics at baseline and in response to single-pulse forepaw stimuli in rat's somatosensory cortex. The high sensitivity of this system enables detection of responses to very weak and strong stimuli and real time determination of low frequency oscillations without averaging. Results show that the ongoing neuronal oscillations inversely modulate Ca2+ transients evoked by sensory stimuli. High intensity stimuli reset the spontaneous neuronal oscillations to an unpreferable excitability following the stimulus. Cerebral hemodynamic responses also inversely interact with the spontaneous hemodynamic oscillations, correlating with the neuronal Ca2+ transient changes. The results reveal competing interactions between spontaneous oscillations and stimulation-evoked brain activities in somatosensory cortex and the resultant hemodynamics.
Collapse
Affiliation(s)
- Wei Chen
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
46
|
Classical-quantum interfaces in living neural tissue supporting conscious functions. ADVANCES IN QUANTUM CHEMISTRY 2020. [DOI: 10.1016/bs.aiq.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Ho SS, Muzik M, Rosenblum KL, Morelen D, Nakamura Y, Swain JE. Potential Neural Mediators of Mom Power Parenting Intervention Effects on Maternal Intersubjectivity and Stress Resilience. Front Psychiatry 2020; 11:568824. [PMID: 33363481 PMCID: PMC7752922 DOI: 10.3389/fpsyt.2020.568824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Stress resilience in parenting depends on the parent's capacity to understand subjective experiences in self and child, namely intersubjectivity, which is intimately related to mimicking other's affective expressions (i. e., mirroring). Stress can worsen parenting by potentiating problems that can impair intersubjectivity, e.g., problems of "over-mentalizing" (misattribution of the child's behaviors) and "under-coupling" (inadequate child-oriented mirroring). Previously we have developed Mom Power (MP) parenting intervention to promote maternal intersubjectivity and reduce parenting stress. This study aimed to elucidate neural mechanisms underlying the effects of MP with a novel Child Face Mirroring Task (CFMT) in functional magnetic-resonance-imaging settings. In CFMT, the participants responded to own and other's child's facial pictures in three task conditions: (1) empathic mirroring (Join), (2) non-mirroring observing (Observe), and (3) voluntary responding (React). In each condition, each child's neutral, ambiguous, distressed, and joyful expressions were repeatedly displayed. We examined the CFMT-related neural responses in a sample of healthy mothers (n = 45) in Study 1, and MP effects on CFMT with a pre-intervention (T1) and post-intervention (T2) design in two groups, MP (n = 19) and Control (n = 17), in Study 2. We found that, from T1 to T2, MP (vs. Control) decreased parenting stress, decreased dorsomedial prefrontal cortex (dmPFC) during own-child-specific voluntary responding (React to Own vs. Other's Child), and increased activity in the frontoparietal cortices, midbrain, nucleus accumbens, and amygdala during own-child-specific empathic mirroring (Join vs. Observe of Own vs. Other's Child). We identified that MP effects on parenting stress were potentially mediated by T1-to-T2 changes in: (1) the left superior-temporal-gyrus differential responses in the contrast of Join vs. Observe of own (vs. other's) child, (2) the dmPFC-PAG (periaqueductal gray) differential functional connectivity in the same contrast, and (3) the left amygdala differential responses in the contrast of Join vs. Observe of own (vs. other's) child's joyful vs. distressed expressions. We discussed these results in support of the notion that MP reduces parenting stress via changing neural activities related to the problems of "over-mentalizing" and "under-coupling." Additionally, we discussed theoretical relationships between parenting stress and intersubjectivity in a novel dyadic active inference framework in a two-agent system to guide future research.
Collapse
Affiliation(s)
- S Shaun Ho
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Maria Muzik
- Departments of Psychiatry, Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, United States
| | - Katherine L Rosenblum
- Departments of Psychiatry, Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, United States
| | - Diana Morelen
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - Yoshio Nakamura
- Department of Anesthesiology, Pain Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - James E Swain
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
48
|
Chaudhuri R, He BJ, Wang XJ. Random Recurrent Networks Near Criticality Capture the Broadband Power Distribution of Human ECoG Dynamics. Cereb Cortex 2019; 28:3610-3622. [PMID: 29040412 DOI: 10.1093/cercor/bhx233] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/01/2017] [Indexed: 12/19/2022] Open
Abstract
Brain electric field potentials are dominated by an arrhythmic broadband signal, but the underlying mechanism is poorly understood. Here we propose that broadband power spectra characterize recurrent neural networks of nodes (neurons or clusters of neurons), endowed with an effective balance between excitation and inhibition tuned to keep the network on the edge of dynamical instability. These networks show a fast mode reflecting local dynamics and a slow mode emerging from distributed recurrent connections. Together, the 2 modes produce power spectra similar to those observed in human intracranial EEG (i.e., electrocorticography, ECoG) recordings. Moreover, such networks convert spatial input correlations across nodes into temporal autocorrelation of network activity. Consequently, increased independence between nodes reduces low-frequency power, which may explain changes observed during behavioral tasks. Lastly, varying network coupling causes activity changes that resemble those observed in human ECoG across different arousal states. The model links macroscopic features of empirical ECoG power to a parsimonious underlying network structure, and suggests mechanisms for changes observed across behavioral and arousal states. This work provides a computational framework to generate and test hypotheses about cellular and network mechanisms underlying whole brain electrical dynamics, their variations across states, and potential alterations in brain diseases.
Collapse
Affiliation(s)
- Rishidev Chaudhuri
- Center for Learning and Memory and Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA.,Center for Neural Science, New York University, New York, NY, USA
| | - Biyu J He
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Departments of Neurology, Neuroscience and Physiology, and Radiology, Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA.,NYU-ECNU Joint Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai, China
| |
Collapse
|
49
|
Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR, Lewis LD. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 2019; 366:628-631. [PMID: 31672896 PMCID: PMC7309589 DOI: 10.1126/science.aax5440] [Citation(s) in RCA: 503] [Impact Index Per Article: 100.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
Sleep is essential for both cognition and maintenance of healthy brain function. Slow waves in neural activity contribute to memory consolidation, whereas cerebrospinal fluid (CSF) clears metabolic waste products from the brain. Whether these two processes are related is not known. We used accelerated neuroimaging to measure physiological and neural dynamics in the human brain. We discovered a coherent pattern of oscillating electrophysiological, hemodynamic, and CSF dynamics that appears during non-rapid eye movement sleep. Neural slow waves are followed by hemodynamic oscillations, which in turn are coupled to CSF flow. These results demonstrate that the sleeping brain exhibits waves of CSF flow on a macroscopic scale, and these CSF dynamics are interlinked with neural and hemodynamic rhythms.
Collapse
Affiliation(s)
- Nina E Fultz
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert A Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
| |
Collapse
|
50
|
Why context matters? Divisive normalization and canonical microcircuits in psychiatric disorders. Neurosci Res 2019; 156:130-140. [PMID: 31628970 DOI: 10.1016/j.neures.2019.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 11/20/2022]
Abstract
Neural activity on cellular, regional, and behavioral levels shows context-dependence. Here we suggest the processing of input-output relationships in terms divisive normalization (DN), including (i) summing/averaging inputs and (ii) normalizing output against input stages, as a computational mechanism to underlie context-dependence. Input summation and output normalization are mediated by input-output relationships in canonical microcircuits (CM). DN/CM are altered in psychiatric disorders like schizophrenia or depression whose various symptoms can be characterized by abnormal context-dependence.
Collapse
|