1
|
Leticevscaia O, Brandman T, Peelen MV. Scene context and attention independently facilitate MEG decoding of object category. Vision Res 2024; 224:108484. [PMID: 39260230 DOI: 10.1016/j.visres.2024.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Many of the objects we encounter in our everyday environments would be hard to recognize without any expectations about these objects. For example, a distant silhouette may be perceived as a car because we expect objects of that size, positioned on a road, to be cars. Reflecting the influence of such expectations on visual processing, neuroimaging studies have shown that when objects are poorly visible, expectations derived from scene context facilitate the representations of these objects in visual cortex from around 300 ms after scene onset. The current magnetoencephalography (MEG) study tested whether this facilitation occurs independently of attention and task relevance. Participants viewed degraded objects alone or within scene context while they either attended the scenes (attended condition) or the fixation cross (unattended condition), also temporally directing attention away from the scenes. Results showed that at 300 ms after stimulus onset, multivariate classifiers trained to distinguish clearly visible animate vs inanimate objects generalized to distinguish degraded objects in scenes better than degraded objects alone, despite the added clutter of the scene background. Attention also modulated object representations at this latency, with better category decoding in the attended than the unattended condition. The modulatory effects of context and attention were independent of each other. Finally, data from the current study and a previous study were combined (N = 51) to provide a more detailed temporal characterization of contextual facilitation. These results extend previous work by showing that facilitatory scene-object interactions are independent of the specific task performed on the visual input.
Collapse
Affiliation(s)
- Olga Leticevscaia
- University of Reading, Centre for Integrative Neuroscience and Neurodynamics, United Kingdom
| | - Talia Brandman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Marius V Peelen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Kvasova D, Coll L, Stewart T, Soto-Faraco S. Crossmodal semantic congruence guides spontaneous orienting in real-life scenes. PSYCHOLOGICAL RESEARCH 2024; 88:2138-2148. [PMID: 39105825 DOI: 10.1007/s00426-024-02018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
In real-world scenes, the different objects and events are often interconnected within a rich web of semantic relationships. These semantic links help parse information efficiently and make sense of the sensory environment. It has been shown that, during goal-directed search, hearing the characteristic sound of an everyday life object helps finding the affiliate objects in artificial visual search arrays as well as in naturalistic, real-life videoclips. However, whether crossmodal semantic congruence also triggers orienting during spontaneous, not goal-directed observation is unknown. Here, we investigated this question addressing whether crossmodal semantic congruence can attract spontaneous, overt visual attention when viewing naturalistic, dynamic scenes. We used eye-tracking whilst participants (N = 45) watched video clips presented alongside sounds of varying semantic relatedness with objects present within the scene. We found that characteristic sounds increased the probability of looking at, the number of fixations to, and the total dwell time on semantically corresponding visual objects, in comparison to when the same scenes were presented with semantically neutral sounds or just with background noise only. Interestingly, hearing object sounds not met with an object in the scene led to increased visual exploration. These results suggest that crossmodal semantic information has an impact on spontaneous gaze on realistic scenes, and therefore on how information is sampled. Our findings extend beyond known effects of object-based crossmodal interactions with simple stimuli arrays and shed new light on the role that audio-visual semantic relationships out in the perception of everyday life scenarios.
Collapse
Affiliation(s)
- Daria Kvasova
- Center for Brain and Cognition, Department of Communication and Information Technologies, Universitat Pompeu Fabra, Carrer de Ramón Trias i Fargas 25-27, Barcelona, 08005, Spain
| | - Llucia Coll
- Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Travis Stewart
- Center for Brain and Cognition, Department of Communication and Information Technologies, Universitat Pompeu Fabra, Carrer de Ramón Trias i Fargas 25-27, Barcelona, 08005, Spain
| | - Salvador Soto-Faraco
- Center for Brain and Cognition, Department of Communication and Information Technologies, Universitat Pompeu Fabra, Carrer de Ramón Trias i Fargas 25-27, Barcelona, 08005, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain.
| |
Collapse
|
3
|
Carter AA, Kaiser D. An object numbering task reveals an underestimation of complexity for typically structured scenes. Psychon Bull Rev 2024:10.3758/s13423-024-02577-2. [PMID: 39289240 DOI: 10.3758/s13423-024-02577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Our visual environments are composed of an abundance of individual objects. The efficiency with which we can parse such rich environments is remarkable. Previous work suggests that this efficiency is partly explained by grouping mechanisms, which allow the visual system to process the objects that surround us as meaningful groups rather than individual entities. Here, we show that the grouping of objects in typically and meaningfully structured environments directly relates to a reduction of perceived complexity. In an object numerosity discrimination task, we showed participants pairs of schematic scene miniatures, in which objects were structured in typical or atypical ways and asked them to judge which scene consisted of more individual objects. Critically, participants underestimated the number of objects in typically structured compared with atypically structured scenes, suggesting that grouping based on typical object configurations reduces the perceived numerical complexity of a scene. In two control experiments, we show that this overestimation also occurs when the objects are presented on textured backgrounds, and that it is specific to upright scenes, indicating that it is not related to basic visual feature differences between typically and atypically structured scenes. Together, our results suggest that our visual surroundings appear less complex to the visual system than the number of objects in them makes us believe.
Collapse
Affiliation(s)
- Alex A Carter
- Department of Psychology, University of York, York, UK
| | - Daniel Kaiser
- Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-Universität Gießen, Arndtstraße 2, 35392, Gießen, Germany.
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus-Liebig-Universität Gießen, and Technische Universität Darmstadt, Hans-Meerwein-Straße 6, 35032, Marburg, Germany.
| |
Collapse
|
4
|
Rhodes D, Bridgewater T, Ayache J, Riemer M. Rapid calibration to dynamic temporal contexts. Q J Exp Psychol (Hove) 2024; 77:1923-1935. [PMID: 38017605 PMCID: PMC11373159 DOI: 10.1177/17470218231219507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The prediction of future events and the preparation of appropriate behavioural reactions rely on an accurate perception of temporal regularities. In dynamic environments, temporal regularities are subject to slow and sudden changes, and adaptation to these changes is an important requirement for efficient behaviour. Bayesian models have proven a useful tool to understand the processing of temporal regularities in humans; yet an open question pertains to the degree of flexibility of the prior that is required for optimal modelling of behaviour. Here we directly compare dynamic models (with continuously changing prior expectations) and static models (a stable prior for each experimental session) with their ability to describe regression effects in interval timing. Our results show that dynamic Bayesian models are superior when describing the responses to slow, continuous environmental changes, whereas static models are more suitable to describe responses to sudden changes. In time perception research, these results will be informative for the choice of adequate computational models and enhance our understanding of the neuronal computations underlying human timing behaviour.
Collapse
Affiliation(s)
| | - Tyler Bridgewater
- NTU Psychology, Nottingham Trent University, Nottingham, UK
- School of Psychology, Cardiff University, UK
| | - Julia Ayache
- NTU Psychology, Nottingham Trent University, Nottingham, UK
| | - Martin Riemer
- Biological Psychology and Neuroergonomics, Technical University Berlin, Berlin, Germany
| |
Collapse
|
5
|
Matyjek M, Kita S, Torralba Cuello M, Soto Faraco S. Multisensory integration of speech and gestures in a naturalistic paradigm. Hum Brain Mapp 2024; 45:e26797. [PMID: 39041175 PMCID: PMC11263810 DOI: 10.1002/hbm.26797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Speech comprehension is crucial for human social interaction, relying on the integration of auditory and visual cues across various levels of representation. While research has extensively studied multisensory integration (MSI) using idealised, well-controlled stimuli, there is a need to understand this process in response to complex, naturalistic stimuli encountered in everyday life. This study investigated behavioural and neural MSI in neurotypical adults experiencing audio-visual speech within a naturalistic, social context. Our novel paradigm incorporated a broader social situational context, complete words, and speech-supporting iconic gestures, allowing for context-based pragmatics and semantic priors. We investigated MSI in the presence of unimodal (auditory or visual) or complementary, bimodal speech signals. During audio-visual speech trials, compared to unimodal trials, participants more accurately recognised spoken words and showed a more pronounced suppression of alpha power-an indicator of heightened integration load. Importantly, on the neural level, these effects surpassed mere summation of unimodal responses, suggesting non-linear MSI mechanisms. Overall, our findings demonstrate that typically developing adults integrate audio-visual speech and gesture information to facilitate speech comprehension in noisy environments, highlighting the importance of studying MSI in ecologically valid contexts.
Collapse
Affiliation(s)
- Magdalena Matyjek
- Center for Brain and CognitionUniversitat Pompeu FabraBarcelonaSpain
- Humboldt‐Universität zu BerlinBerlinGermany
| | | | | | - Salvador Soto Faraco
- Center for Brain and CognitionUniversitat Pompeu FabraBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| |
Collapse
|
6
|
Bravo F, Glogowski J, Stamatakis EA, Herfert K. Dissonant music engages early visual processing. Proc Natl Acad Sci U S A 2024; 121:e2320378121. [PMID: 39008675 PMCID: PMC11287129 DOI: 10.1073/pnas.2320378121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
The neuroscientific examination of music processing in audio-visual contexts offers a valuable framework to assess how auditory information influences the emotional encoding of visual information. Using fMRI during naturalistic film viewing, we investigated the neural mechanisms underlying the effect of music on valence inferences during mental state attribution. Thirty-eight participants watched the same short-film accompanied by systematically controlled consonant or dissonant music. Subjects were instructed to think about the main character's intentions. The results revealed that increasing levels of dissonance led to more negatively valenced inferences, displaying the profound emotional impact of musical dissonance. Crucially, at the neuroscientific level and despite music being the sole manipulation, dissonance evoked the response of the primary visual cortex (V1). Functional/effective connectivity analysis showed a stronger coupling between the auditory ventral stream (AVS) and V1 in response to tonal dissonance and demonstrated the modulation of early visual processing via top-down feedback inputs from the AVS to V1. These V1 signal changes indicate the influence of high-level contextual representations associated with tonal dissonance on early visual cortices, serving to facilitate the emotional interpretation of visual information. Our results highlight the significance of employing systematically controlled music, which can isolate emotional valence from the arousal dimension, to elucidate the brain's sound-to-meaning interface and its distributive crossmodal effects on early visual encoding during naturalistic film viewing.
Collapse
Affiliation(s)
- Fernando Bravo
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen72076, Germany
- Cognition and Consciousness Imaging Group, Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0SP, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0SP, United Kingdom
- Institut für Kunst- und Musikwissenschaft, Division of Musicology, Technische Universität Dresden, Dresden01219, Germany
| | - Jana Glogowski
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin12489, Germany
| | - Emmanuel Andreas Stamatakis
- Cognition and Consciousness Imaging Group, Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0SP, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0SP, United Kingdom
| | - Kristina Herfert
- Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen72076, Germany
| |
Collapse
|
7
|
Chapman AF, Störmer VS. Representational structures as a unifying framework for attention. Trends Cogn Sci 2024; 28:416-427. [PMID: 38280837 PMCID: PMC11290436 DOI: 10.1016/j.tics.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/29/2024]
Abstract
Our visual system consciously processes only a subset of the incoming information. Selective attention allows us to prioritize relevant inputs, and can be allocated to features, locations, and objects. Recent advances in feature-based attention suggest that several selection principles are shared across these domains and that many differences between the effects of attention on perceptual processing can be explained by differences in the underlying representational structures. Moving forward, it can thus be useful to assess how attention changes the structure of the representational spaces over which it operates, which include the spatial organization, feature maps, and object-based coding in visual cortex. This will ultimately add to our understanding of how attention changes the flow of visual information processing more broadly.
Collapse
Affiliation(s)
- Angus F Chapman
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
| | - Viola S Störmer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
8
|
EskandariNasab M, Raeisi Z, Lashaki RA, Najafi H. A GRU-CNN model for auditory attention detection using microstate and recurrence quantification analysis. Sci Rep 2024; 14:8861. [PMID: 38632246 PMCID: PMC11024110 DOI: 10.1038/s41598-024-58886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Attention as a cognition ability plays a crucial role in perception which helps humans to concentrate on specific objects of the environment while discarding others. In this paper, auditory attention detection (AAD) is investigated using different dynamic features extracted from multichannel electroencephalography (EEG) signals when listeners attend to a target speaker in the presence of a competing talker. To this aim, microstate and recurrence quantification analysis are utilized to extract different types of features that reflect changes in the brain state during cognitive tasks. Then, an optimized feature set is determined by employing the processes of significant feature selection based on classification performance. The classifier model is developed by hybrid sequential learning that employs Gated Recurrent Units (GRU) and Convolutional Neural Network (CNN) into a unified framework for accurate attention detection. The proposed AAD method shows that the selected feature set achieves the most discriminative features for the classification process. Also, it yields the best performance as compared with state-of-the-art AAD approaches from the literature in terms of various measures. The current study is the first to validate the use of microstate and recurrence quantification parameters to differentiate auditory attention using reinforcement learning without access to stimuli.
Collapse
Affiliation(s)
| | - Zahra Raeisi
- Department of Computer Science, University of Fairleigh Dickinson, Vancouver Campus, Vancouver, Canada
| | - Reza Ahmadi Lashaki
- Department of Computer Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Hamidreza Najafi
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
9
|
Salsano I, Tain R, Giulietti G, Williams DP, Ottaviani C, Antonucci G, Thayer JF, Santangelo V. Negative emotions enhance memory-guided attention in a visual search task by increasing frontoparietal, insular, and parahippocampal cortical activity. Cortex 2024; 173:16-33. [PMID: 38354670 DOI: 10.1016/j.cortex.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/18/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
Previous literature demonstrated that long-term memory representations guide spatial attention during visual search in real-world pictures. However, it is currently unknown whether memory-guided visual search is affected by the emotional content of the picture. During functional magnetic resonance imaging (fMRI), participants were asked to encode the position of high-contrast targets embedded in emotional (negative or positive) or neutral pictures. At retrieval, they performed a visual search for targets presented at the same location as during encoding, but at a much lower contrast. Behaviorally, participants detected more accurately targets presented in negative pictures compared to those in positive or neutral pictures. They were also faster in detecting targets presented at encoding in emotional (negative or positive) pictures than in neutral pictures, or targets not presented during encoding (i.e., memory-guided attention effect). At the neural level, we found increased activation in a large circuit of regions involving the dorsal and ventral frontoparietal cortex, insular and parahippocampal cortex, selectively during the detection of targets presented in negative pictures during encoding. We propose that these regions might form an integrated neural circuit recruited to select and process previously encoded target locations (i.e., memory-guided attention sustained by the frontoparietal cortex) embedded in emotional contexts (i.e., emotional contexts recollection supported by the parahippocampal cortex and emotional monitoring supported by the insular cortex). Ultimately, these findings reveal that negative emotions can enhance memory-guided visual search performance by increasing neural activity in a large-scale brain circuit, contributing to disentangle the complex relationship between emotion, attention, and memory.
Collapse
Affiliation(s)
- Ilenia Salsano
- Functional Neuroimaging Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy; PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy.
| | - Rongwen Tain
- Campus Center of Neuroimaging, University of California, Irvine, CA, USA
| | - Giovanni Giulietti
- Functional Neuroimaging Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy; SAIMLAL Department, Sapienza University of Rome, Rome, Italy
| | - DeWayne P Williams
- Department of Psychological Science, University of California, Irvine, Irvine, USA
| | | | - Gabriella Antonucci
- Department of Psychology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Julian F Thayer
- Department of Psychological Science, University of California, Irvine, Irvine, USA
| | - Valerio Santangelo
- Functional Neuroimaging Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Philosophy, Social Sciences & Education, University of Perugia, Perugia, Italy.
| |
Collapse
|
10
|
Zhuo L, Jin Z, Xie K, Li S, Lin F, Zhang J, Li L. Identifying individual's distractor suppression using functional connectivity between anatomical large-scale brain regions. Neuroimage 2024; 289:120552. [PMID: 38387742 DOI: 10.1016/j.neuroimage.2024.120552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
Distractor suppression (DS) is crucial in goal-oriented behaviors, referring to the ability to suppress irrelevant information. Current evidence points to the prefrontal cortex as an origin region of DS, while subcortical, occipital, and temporal regions are also implicated. The present study aimed to examine the contribution of communications between these brain regions to visual DS. To do it, we recruited two independent cohorts of participants for the study. One cohort participated in a visual search experiment where a salient distractor triggering distractor suppression to measure their DS and the other cohort filled out a Cognitive Failure Questionnaire to assess distractibility in daily life. Both cohorts collected resting-state functional magnetic resonance imaging (rs-fMRI) data to investigate function connectivity (FC) underlying DS. First, we generated predictive models of the DS measured in visual search task using resting-state functional connectivity between large anatomical regions. It turned out that the models could successfully predict individual's DS, indicated by a significant correlation between the actual and predicted DS (r = 0.32, p < 0.01). Importantly, Prefrontal-Temporal, Insula-Limbic and Parietal-Occipital connections contributed to the prediction model. Furthermore, the model could also predict individual's daily distractibility in the other independent cohort (r = -0.34, p < 0.05). Our findings showed the efficiency of the predictive models of distractor suppression encompassing connections between large anatomical regions and highlighted the importance of the communications between attention-related and visual information processing regions in distractor suppression. Current findings may potentially provide neurobiological markers of visual distractor suppression.
Collapse
Affiliation(s)
- Lei Zhuo
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Zhenlan Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| | - Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Simeng Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Feng Lin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| |
Collapse
|
11
|
Gayet S, Battistoni E, Thorat S, Peelen MV. Searching near and far: The attentional template incorporates viewing distance. J Exp Psychol Hum Percept Perform 2024; 50:216-231. [PMID: 38376937 PMCID: PMC7616437 DOI: 10.1037/xhp0001172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
According to theories of visual search, observers generate a visual representation of the search target (the "attentional template") that guides spatial attention toward target-like visual input. In real-world vision, however, objects produce vastly different visual input depending on their location: your car produces a retinal image that is 10 times smaller when it is parked 50 compared to 5 m away. Across four experiments, we investigated whether the attentional template incorporates viewing distance when observers search for familiar object categories. On each trial, participants were precued to search for a car or person in the near or far plane of an outdoor scene. In "search trials," the scene reappeared and participants had to indicate whether the search target was present or absent. In intermixed "catch-trials," two silhouettes were briefly presented on either side of fixation (matching the shape and/or predicted size of the search target), one of which was followed by a probe-stimulus. We found that participants were more accurate at reporting the location (Experiments 1 and 2) and orientation (Experiment 3) of probe stimuli when they were presented at the location of size-matching silhouettes. Thus, attentional templates incorporate the predicted size of an object based on the current viewing distance. This was only the case, however, when silhouettes also matched the shape of the search target (Experiment 2). We conclude that attentional templates for finding objects in scenes are shaped by a combination of category-specific attributes (shape) and context-dependent expectations about the likely appearance (size) of these objects at the current viewing location. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Surya Gayet
- Experimental Psychology, Helmholtz Institute, Utrecht University
| | | | - Sushrut Thorat
- Donders Institute for Brain, Cognition and Behaviour, Radboud University
| | - Marius V Peelen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University
| |
Collapse
|
12
|
Peelen MV, Berlot E, de Lange FP. Predictive processing of scenes and objects. NATURE REVIEWS PSYCHOLOGY 2024; 3:13-26. [PMID: 38989004 PMCID: PMC7616164 DOI: 10.1038/s44159-023-00254-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 07/12/2024]
Abstract
Real-world visual input consists of rich scenes that are meaningfully composed of multiple objects which interact in complex, but predictable, ways. Despite this complexity, we recognize scenes, and objects within these scenes, from a brief glance at an image. In this review, we synthesize recent behavioral and neural findings that elucidate the mechanisms underlying this impressive ability. First, we review evidence that visual object and scene processing is partly implemented in parallel, allowing for a rapid initial gist of both objects and scenes concurrently. Next, we discuss recent evidence for bidirectional interactions between object and scene processing, with scene information modulating the visual processing of objects, and object information modulating the visual processing of scenes. Finally, we review evidence that objects also combine with each other to form object constellations, modulating the processing of individual objects within the object pathway. Altogether, these findings can be understood by conceptualizing object and scene perception as the outcome of a joint probabilistic inference, in which "best guesses" about objects act as priors for scene perception and vice versa, in order to concurrently optimize visual inference of objects and scenes.
Collapse
Affiliation(s)
- Marius V Peelen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Eva Berlot
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Segraves MA. Using Natural Scenes to Enhance our Understanding of the Cerebral Cortex's Role in Visual Search. Annu Rev Vis Sci 2023; 9:435-454. [PMID: 37164028 DOI: 10.1146/annurev-vision-100720-124033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Using natural scenes is an approach to studying the visual and eye movement systems approximating how these systems function in everyday life. This review examines the results from behavioral and neurophysiological studies using natural scene viewing in humans and monkeys. The use of natural scenes for the study of cerebral cortical activity is relatively new and presents challenges for data analysis. Methods and results from the use of natural scenes for the study of the visual and eye movement cortex are presented, with emphasis on new insights that this method provides enhancing what is known about these cortical regions from the use of conventional methods.
Collapse
Affiliation(s)
- Mark A Segraves
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA;
| |
Collapse
|
14
|
Hickey C, Acunzo D, Dell J. Suppressive Control of Incentive Salience in Real-World Human Vision. J Neurosci 2023; 43:6415-6429. [PMID: 37562963 PMCID: PMC10500998 DOI: 10.1523/jneurosci.0766-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/02/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023] Open
Abstract
Reward-related activity in the dopaminergic midbrain is thought to guide animal behavior, in part by boosting the perceptual and attentional processing of reward-predictive environmental stimuli. In line with this incentive salience hypothesis, studies of human visual search have shown that simple synthetic stimuli, such as lines, shapes, or Gabor patches, capture attention to their location when they are characterized by reward-associated visual features, such as color. In the real world, however, we commonly search for members of a category of visually heterogeneous objects, such as people, cars, or trees, where category examples do not share low-level features. Is attention captured to examples of a reward-associated real-world object category? Here, we have human participants search for targets in photographs of city and landscapes that contain task-irrelevant examples of a reward-associated category. We use the temporal precision of EEG machine learning and ERPs to show that these distractors acquire incentive salience and draw attention, but do not capture it. Instead, we find evidence of rapid, stimulus-triggered attentional suppression, such that the neural encoding of these objects is degraded relative to neutral objects. Humans appear able to suppress the incentive salience of reward-associated objects when they know these objects will be irrelevant, supporting the rapid deployment of attention to other objects that might be more useful. Incentive salience is thought to underlie key behaviors in eating disorders and addiction, among other conditions, and the kind of suppression identified here likely plays a role in mediating the attentional biases that emerge in these circumstances.Significance Statement Like other animals, humans are prone to notice and interact with environmental objects that have proven rewarding in earlier experience. However, it is common that such objects have no immediate strategic use and are therefore distracting. Do these reward-associated real-world objects capture our attention, despite our strategic efforts otherwise? Or are we able to strategically control the impulse to notice them? Here we use machine learning classification of human electrical brain activity to show that we can establish strategic control over the salience of naturalistic reward-associated objects. These objects draw our attention, but do not necessarily capture it, and this kind of control may play an important role in mediating conditions like eating disorder and addiction.
Collapse
Affiliation(s)
- Clayton Hickey
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - David Acunzo
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jaclyn Dell
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
15
|
Barone V, van Dijk JP, Debeij-van Hall MH, van Putten MJ. A Potential Multimodal Test for Clinical Assessment of Visual Attention in Neurological Disorders. Clin EEG Neurosci 2023; 54:512-521. [PMID: 36189613 PMCID: PMC10411032 DOI: 10.1177/15500594221129962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Attention is an important aspect of human brain function and often affected in neurological disorders. Objective assessment of attention may assist in patient care, both for diagnostics and prognostication. We present a compact test using a combination of a choice reaction time task, eye-tracking and EEG for assessment of visual attention in the clinic. The system quantifies reaction time, parameters of eye movements (i.e. saccade metrics and fixations) and event related potentials (ERPs) in a single and fast (15 min) experimental design. We present pilot data from controls, patients with mild traumatic brain injury and epilepsy, to illustrate its potential use in assessing attention in neurological patients. Reaction times and eye metrics such as fixation duration, saccade duration and latency show significant differences (p < .05) between neurological patients and controls. Late ERP components (200-800 ms) can be detected in the central line channels for all subjects, but no significant group differences could be found in the peak latencies and mean amplitudes. Our system has potential to assess key features of visual attention in the clinic. Pilot data show significant differences in reaction times and eye metrics between controls and patients, illustrating its promising use for diagnostics and prognostication.
Collapse
Affiliation(s)
- Valentina Barone
- Clinical Neurophysiology (CNPH), TechMed Centre, University of Twente, Enschede, Netherlands
- Twente Medical System International B.V. (TMSi), Oldenzaal, Netherlands
| | - Johannes P. van Dijk
- Academic Center for Epileptology Kempenhaeghe, Heeze, Netherlands
- Eindhoven University of Technology, Eindhoven, Netherlands
| | | | - Michel J.A.M. van Putten
- Clinical Neurophysiology (CNPH), TechMed Centre, University of Twente, Enschede, Netherlands
- Department of Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, Netherlands
| |
Collapse
|
16
|
Graumann M, Wallenwein LA, Cichy RM. Independent spatiotemporal effects of spatial attention and background clutter on human object location representations. Neuroimage 2023; 272:120053. [PMID: 36966853 PMCID: PMC10112276 DOI: 10.1016/j.neuroimage.2023.120053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
Spatial attention helps us to efficiently localize objects in cluttered environments. However, the processing stage at which spatial attention modulates object location representations remains unclear. Here we investigated this question identifying processing stages in time and space in an EEG and fMRI experiment respectively. As both object location representations and attentional effects have been shown to depend on the background on which objects appear, we included object background as an experimental factor. During the experiments, human participants viewed images of objects appearing in different locations on blank or cluttered backgrounds while either performing a task on fixation or on the periphery to direct their covert spatial attention away or towards the objects. We used multivariate classification to assess object location information. Consistent across the EEG and fMRI experiment, we show that spatial attention modulated location representations during late processing stages (>150 ms, in middle and high ventral visual stream areas) independent of background condition. Our results clarify the processing stage at which attention modulates object location representations in the ventral visual stream and show that attentional modulation is a cognitive process separate from recurrent processes related to the processing of objects on cluttered backgrounds.
Collapse
Affiliation(s)
- Monika Graumann
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany; Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
| | - Lara A Wallenwein
- Department of Psychology, Universität Konstanz, 78457 Konstanz, Germany
| | - Radoslaw M Cichy
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany; Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| |
Collapse
|
17
|
Deng Y, Wang Y, Xu L, Meng X, Wang L. Do you like it or not? Identifying preference using an electroencephalogram during the viewing of short videos. Psych J 2023. [PMID: 37186458 DOI: 10.1002/pchj.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/08/2023] [Indexed: 05/17/2023]
Abstract
Accurately predicting whether a short video will be liked by viewers is a topic of interest to media researchers. This study used an electroencephalogram (EEG) to record neural activity in 109 participants as they watched short videos (16 clips per person) to see which neural signals reflected viewers' preferences. The results showed that, compared with the short videos they disliked, individuals would experience positive emotions [indexed by a higher theta power, lower (beta - theta)/(beta + theta) score], more relaxed states (indexed by a lower beta power), lower levels of mental engagement and alertness [indexed by a lower beta/(alpha + theta) score], and devote more attention (indexed by lower alpha/theta) when watching short videos they liked. We further used artificial neural networks to classify the neural signals of different preferences induced by short videos. The classification accuracy was the highest when using data from bands over the whole brain, which was 75.78%. These results may indicate the potential of EEG measurement to evaluate the subjective preferences of individuals for short videos.
Collapse
Affiliation(s)
- Yaling Deng
- State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, China
- Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China
| | - Ye Wang
- State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, China
- Neuroscience and Intelligent Media Institute, Communication University of China, Beijing, China
| | - Liming Xu
- School of Journalism, Communication University of China, Beijing, China
| | - Xiangli Meng
- School of International Studies, Communication University of China, Beijing, China
| | - Lingxiao Wang
- School of Animation and Digital Art, Communication University of China, Beijing, China
| |
Collapse
|
18
|
Han B, Zhang Y, Shen L, Mo L, Chen Q. Task demands modulate pre-stimulus alpha frequency and sensory template during bistable apparent motion perception. Cereb Cortex 2023; 33:1679-1692. [PMID: 35512283 DOI: 10.1093/cercor/bhac165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 11/13/2022] Open
Abstract
Despite ambiguous environmental inputs, top-down attention biases our subjective perception toward the preferred percepts, via modulating prestimulus neural activity or inducing prestimulus sensory templates that carry concrete internal sensory representations of the preferred percepts. In contrast to frequent changes of behavioral goals in the typical cue-target paradigm, human beings are often engaged in a prolonged task state with only 1 specific behavioral goal. It remains unclear how prestimulus neural signals and sensory templates are modulated in the latter case. To answer this question in the present electroencephalogram study on human subjects, we manipulated sustained task demands toward one of the 2 possible percepts in the bistable Ternus display, emphasizing either temporal integration or segregation. First, the prestimulus peak alpha frequency, which gated the temporal window of temporal integration, was effectively modulated by task demands. Furthermore, time-resolved decoding analyses showed that task demands biased neural representations toward the preferred percepts after the full presentation of bottom-up stimuli. More importantly, sensory templates resembling the preferred percepts emerged even before the bottom-up sensory evidence were sufficient enough to induce explicit percepts. Taken together, task demands modulate both prestimulus alpha frequency and sensory templates, to eventually bias subjective perception toward the preferred percepts.
Collapse
Affiliation(s)
- Biao Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China.,School of Psychology, South China Normal University, Guangzhou 510631, China.,Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Yanni Zhang
- School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Lu Shen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China.,School of Psychology, South China Normal University, Guangzhou 510631, China.,Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Lei Mo
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China.,School of Psychology, South China Normal University, Guangzhou 510631, China.,Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Qi Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China.,School of Psychology, South China Normal University, Guangzhou 510631, China.,Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
19
|
Botch TL, Garcia BD, Choi YB, Feffer N, Robertson CE. Active visual search in naturalistic environments reflects individual differences in classic visual search performance. Sci Rep 2023; 13:631. [PMID: 36635491 PMCID: PMC9837148 DOI: 10.1038/s41598-023-27896-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Visual search is a ubiquitous activity in real-world environments. Yet, traditionally, visual search is investigated in tightly controlled paradigms, where head-restricted participants locate a minimalistic target in a cluttered array that is presented on a computer screen. Do traditional visual search tasks predict performance in naturalistic settings, where participants actively explore complex, real-world scenes? Here, we leverage advances in virtual reality technology to test the degree to which classic and naturalistic search are limited by a common factor, set size, and the degree to which individual differences in classic search behavior predict naturalistic search behavior in a large sample of individuals (N = 75). In a naturalistic search task, participants looked for an object within their environment via a combination of head-turns and eye-movements using a head-mounted display. Then, in a classic search task, participants searched for a target within a simple array of colored letters using only eye-movements. In each task, we found that participants' search performance was impacted by increases in set size-the number of items in the visual display. Critically, we observed that participants' efficiency in classic search tasks-the degree to which set size slowed performance-indeed predicted efficiency in real-world scenes. These results demonstrate that classic, computer-based visual search tasks are excellent models of active, real-world search behavior.
Collapse
Affiliation(s)
- Thomas L Botch
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - Brenda D Garcia
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Yeo Bi Choi
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Nicholas Feffer
- Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Caroline E Robertson
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
20
|
EEG source derived salience network coupling supports real-world attention switching. Neuropsychologia 2023; 178:108445. [PMID: 36502931 DOI: 10.1016/j.neuropsychologia.2022.108445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
While the brain mechanisms underlying selective attention have been studied in great detail in controlled laboratory settings, it is less clear how these processes function in the context of a real-world self-paced task. Here, we investigated engagement on a real-world computerized task equivalent to a standard academic test that consisted of solving high-school level problems in a self-paced manner. In this task, we used EEG-source derived estimates of effective coupling between brain sources to characterize the neural mechanisms underlying switches of sustained attention from the attentive on-task state to the distracted off-task state. Specifically, since the salience network has been implicated in sustained attention and attention switching, we conducted a hypothesis-driven analysis of effective coupling between the core nodes of the salience network, the anterior insula (AI) and the anterior cingulate cortex (ACC). As per our hypothesis, we found an increase in AI - > ACC effective coupling that occurs during the transitions of attention from on-task focused to off-task distracted state. This research may inform the development of future neural function-targeted brain-computer interfaces to enhance sustained attention.
Collapse
|
21
|
Concurrent contextual and time-distant mnemonic information co-exist as feedback in the human visual cortex. Neuroimage 2023; 265:119778. [PMID: 36462731 PMCID: PMC9878579 DOI: 10.1016/j.neuroimage.2022.119778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Efficient processing of the visual environment necessitates the integration of incoming sensory evidence with concurrent contextual inputs and mnemonic content from our past experiences. To examine how this integration takes place in the brain, we isolated different types of feedback signals from the neural patterns of non-stimulated areas of the early visual cortex in humans (i.e., V1 and V2). Using multivariate pattern analysis, we showed that both contextual and time-distant information, coexist in V1 and V2 as feedback signals. In addition, we found that the extent to which mnemonic information is reinstated in V1 and V2 depends on whether the information is retrieved episodically or semantically. Critically, this reinstatement was independent on the retrieval route in the object-selective cortex. These results demonstrate that our early visual processing contains not just direct and indirect information from the visual surrounding, but also memory-based predictions.
Collapse
|
22
|
Shvadron S, Snir A, Maimon A, Yizhar O, Harel S, Poradosu K, Amedi A. Shape detection beyond the visual field using a visual-to-auditory sensory augmentation device. Front Hum Neurosci 2023; 17:1058617. [PMID: 36936618 PMCID: PMC10017858 DOI: 10.3389/fnhum.2023.1058617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Current advancements in both technology and science allow us to manipulate our sensory modalities in new and unexpected ways. In the present study, we explore the potential of expanding what we perceive through our natural senses by utilizing a visual-to-auditory sensory substitution device (SSD), the EyeMusic, an algorithm that converts images to sound. The EyeMusic was initially developed to allow blind individuals to create a spatial representation of information arriving from a video feed at a slow sampling rate. In this study, we aimed to use the EyeMusic for the blind areas of sighted individuals. We use it in this initial proof-of-concept study to test the ability of sighted subjects to combine visual information with surrounding auditory sonification representing visual information. Participants in this study were tasked with recognizing and adequately placing the stimuli, using sound to represent the areas outside the standard human visual field. As such, the participants were asked to report shapes' identities as well as their spatial orientation (front/right/back/left), requiring combined visual (90° frontal) and auditory input (the remaining 270°) for the successful performance of the task (content in both vision and audition was presented in a sweeping clockwise motion around the participant). We found that participants were successful at a highly above chance level after a brief 1-h-long session of online training and one on-site training session of an average of 20 min. They could even draw a 2D representation of this image in some cases. Participants could also generalize, recognizing new shapes they were not explicitly trained on. Our findings provide an initial proof of concept indicating that sensory augmentation devices and techniques can potentially be used in combination with natural sensory information in order to expand the natural fields of sensory perception.
Collapse
Affiliation(s)
- Shira Shvadron
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
- *Correspondence: Shira Shvadron,
| | - Adi Snir
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Amber Maimon
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Or Yizhar
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck Dahlem Campus of Cognition (MPDCC), Max Planck Institute for Human Development, Berlin, Germany
| | - Sapir Harel
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Keinan Poradosu
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
- Weizmann Institute of Science, Rehovot, Israel
| | - Amir Amedi
- Baruch Ivcher School of Psychology, The Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal, Brain Imaging Center, Reichman University, Herzliya, Israel
| |
Collapse
|
23
|
Isenstein EL, Waz T, LoPrete A, Hernandez Y, Knight EJ, Busza A, Tadin D. Rapid assessment of hand reaching using virtual reality and application in cerebellar stroke. PLoS One 2022; 17:e0275220. [PMID: 36174027 PMCID: PMC9522266 DOI: 10.1371/journal.pone.0275220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
The acquisition of sensory information about the world is a dynamic and interactive experience, yet the majority of sensory research focuses on perception without action and is conducted with participants who are passive observers with very limited control over their environment. This approach allows for highly controlled, repeatable experiments and has led to major advances in our understanding of basic sensory processing. Typical human perceptual experiences, however, are far more complex than conventional action-perception experiments and often involve bi-directional interactions between perception and action. Innovations in virtual reality (VR) technology offer an approach to close this notable disconnect between perceptual experiences and experiments. VR experiments can be conducted with a high level of empirical control while also allowing for movement and agency as well as controlled naturalistic environments. New VR technology also permits tracking of fine hand movements, allowing for seamless empirical integration of perception and action. Here, we used VR to assess how multisensory information and cognitive demands affect hand movements while reaching for virtual targets. First, we manipulated the visibility of the reaching hand to uncouple vision and proprioception in a task measuring accuracy while reaching toward a virtual target (n = 20, healthy young adults). The results, which as expected revealed multisensory facilitation, provided a rapid and a highly sensitive measure of isolated proprioceptive accuracy. In the second experiment, we presented the virtual target only briefly and showed that VR can be used as an efficient and robust measurement of spatial memory (n = 18, healthy young adults). Finally, to assess the feasibility of using VR to study perception and action in populations with physical disabilities, we showed that the results from the visual-proprioceptive task generalize to two patients with recent cerebellar stroke. Overall, we show that VR coupled with hand-tracking offers an efficient and adaptable way to study human perception and action.
Collapse
Affiliation(s)
- E. L. Isenstein
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States of America
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Center for Visual Science, University of Rochester, Rochester, NY, United States of America
| | - T. Waz
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States of America
| | - A. LoPrete
- Center for Visual Science, University of Rochester, Rochester, NY, United States of America
- Center for Neuroscience and Behavior, American University, Washington, DC, United States of America
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Y. Hernandez
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- The City College of New York, CUNY, New York, NY, United States of America
| | - E. J. Knight
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - A. Busza
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - D. Tadin
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States of America
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Center for Visual Science, University of Rochester, Rochester, NY, United States of America
- Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| |
Collapse
|
24
|
Thorat S, Quek GL, Peelen MV. Statistical learning of distractor co-occurrences facilitates visual search. J Vis 2022; 22:2. [PMID: 36053133 PMCID: PMC9440606 DOI: 10.1167/jov.22.10.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Visual search is facilitated by knowledge of the relationship between the target and the distractors, including both where the target is likely to be among the distractors and how it differs from the distractors. Whether the statistical structure among distractors themselves, unrelated to target properties, facilitates search is less well understood. Here, we assessed the benefit of distractor structure using novel shapes whose relationship to each other was learned implicitly during visual search. Participants searched for target items in arrays of shapes that comprised either four pairs of co-occurring distractor shapes (structured scenes) or eight distractor shapes randomly partitioned into four pairs on each trial (unstructured scenes). Across five online experiments (N = 1,140), we found that after a period of search training, participants were more efficient when searching for targets in structured than unstructured scenes. This structure benefit emerged independently of whether the position of the shapes within each pair was fixed or variable and despite participants having no explicit knowledge of the structured pairs they had seen. These results show that implicitly learned co-occurrence statistics between distractor shapes increases search efficiency. Increased efficiency in the rejection of regularly co-occurring distractors may contribute to the efficiency of visual search in natural scenes, where such regularities are abundant.
Collapse
Affiliation(s)
- Sushrut Thorat
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,
| | - Genevieve L Quek
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia.,
| | - Marius V Peelen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,
| |
Collapse
|
25
|
Nicholson DA, Prinz AA. Could simplified stimuli change how the brain performs visual search tasks? A deep neural network study. J Vis 2022; 22:3. [PMID: 35675057 PMCID: PMC9187944 DOI: 10.1167/jov.22.7.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Visual search is a complex behavior influenced by many factors. To control for these factors, many studies use highly simplified stimuli. However, the statistics of these stimuli are very different from the statistics of the natural images that the human visual system is optimized by evolution and experience to perceive. Could this difference change search behavior? If so, simplified stimuli may contribute to effects typically attributed to cognitive processes, such as selective attention. Here we use deep neural networks to test how optimizing models for the statistics of one distribution of images constrains performance on a task using images from a different distribution. We train four deep neural network architectures on one of three source datasets-natural images, faces, and x-ray images-and then adapt them to a visual search task using simplified stimuli. This adaptation produces models that exhibit performance limitations similar to humans, whereas models trained on the search task alone exhibit no such limitations. However, we also find that deep neural networks trained to classify natural images exhibit similar limitations when adapted to a search task that uses a different set of natural images. Therefore, the distribution of data alone cannot explain this effect. We discuss how future work might integrate an optimization-based approach into existing models of visual search behavior.
Collapse
Affiliation(s)
- David A Nicholson
- Emory University, Department of Biology, O. Wayne Rollins Research Center, Atlanta, Georgia
| | - Astrid A Prinz
- Emory University, Department of Biology, O. Wayne Rollins Research Center, Atlanta, Georgia
| |
Collapse
|
26
|
Pedale T, Mastroberardino S, Capurso M, Macrì S, Santangelo V. Developmental differences in the impact of perceptual salience on short-term memory performance and meta-memory skills. Sci Rep 2022; 12:8185. [PMID: 35581267 PMCID: PMC9113989 DOI: 10.1038/s41598-022-11624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
In everyday life, individuals are surrounded by many stimuli that compete to access attention and memory. Evidence shows that perceptually salient stimuli have more chances to capture attention resources, thus to be encoded into short-term memory (STM). However, the impact of perceptual salience on STM at different developmental stages is entirely unexplored. Here we assessed STM performance and meta-memory skills of 6, 10, and 18 years-old participants (total N = 169) using a delayed match-to-sample task. On each trial, participants freely explored a complex (cartoon-like) scene for 4 s. After a retention interval of 4 s, they discriminated the same/different position of a target-object extracted from the area of maximal or minimal salience of the initially-explored scene. Then, they provided a confidence judgment of their STM performance, as an index of meta-memory skills. When taking into account 'confident' responses, we found increased STM performance following targets at maximal versus minimal salience only in adult participants. Similarly, only adults showed enhanced meta-memory capabilities following maximal versus minimal salience targets. These findings documented a late development in the impact of perceptual salience on STM performance and in the improvement of metacognitive capabilities to properly judge the content of one's own memory representation.
Collapse
Affiliation(s)
- Tiziana Pedale
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Serena Mastroberardino
- Department of Psychology, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Michele Capurso
- Department of Philosophy, Social Sciences and Education, University of Perugia, Piazza G. Ermini 1, 06123, Perugia, Italy
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Valerio Santangelo
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy. .,Department of Philosophy, Social Sciences and Education, University of Perugia, Piazza G. Ermini 1, 06123, Perugia, Italy.
| |
Collapse
|
27
|
Doradzińska Ł, Furtak M, Bola M. Perception of semantic relations in scenes: A registered report study of attention hold. Conscious Cogn 2022; 100:103315. [PMID: 35339910 DOI: 10.1016/j.concog.2022.103315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022]
Abstract
To what extent the semantic relations present in scenes guide spatial attention automatically remains a matter of debate. Considering that spatial attention can be understood as a sequence of shifts, engagements, and disengagements, semantic relations might affect each stage of this process differently. Therefore, we investigated whether objects that violate semantic rules engage attention for longer than objects that are expected in a given context. The experiment involved a central presentation of a distractor scene that contained a semantically congruent or incongruent object, and a peripheral presentation of a small target letter. We found that incongruent scenes did not delay responses to the peripheral target, which indicates that they did not hold attention for longer than congruent scenes. Therefore, by showing that violations of semantic relations do not engage attention automatically, our study contributes to a better understanding of how attention operates in naturalistic settings.
Collapse
Affiliation(s)
- Łucja Doradzińska
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Marcin Furtak
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Michał Bola
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
28
|
Mastropasqua A, Vural G, Taylor PCJ. Elements of exogenous attentional cueing preserved during optokinetic motion of the visual scene. Eur J Neurosci 2021; 55:746-761. [PMID: 34964525 DOI: 10.1111/ejn.15582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/27/2022]
Abstract
Navigating through our environment raises challenges for perception by generating salient background visual motion, and eliciting prominent eye movements to stabilise the retinal image. It remains unclear if exogenous spatial attentional orienting is possible during background motion and the eye movements it causes, and whether this compromises the underlying neural processing. To test this, we combined exogenous orienting, visual scene motion, and EEG. 26 participants viewed a background of moving black and grey bars (optokinetic stimulation). We tested for effects of non-spatially predictive peripheral cueing on visual motion discrimination of a target dot, presented either at the same (valid) or opposite (invalid) location as the preceding cue. Valid cueing decreased reaction times not only when participants kept their gaze fixed on a central point (fixation blocks), but even when there was no fixation point, so that participants performed intensive, repetitive tracking eye movements (eye movements blocks). Overall, manual response reaction times were slower during eye movements. Cueing also produced reliable effects on neural activity on either block, including within the first 120 milliseconds of neural processing of the target. The key pattern with larger ERP amplitudes on invalid versus valid trials showed that the neural substrate of exogenous cueing was highly similar during eye movements or fixation. Exogenous peripheral cueing and its neural correlates are robust against distraction from the moving visual scene, important for perceptual cognition during navigation.
Collapse
Affiliation(s)
- Angela Mastropasqua
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Gizem Vural
- Department of Forensic Psychiatry, Psychiatric Hospital of the LMU Munich, Germany
| | - Paul C J Taylor
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Germany.,Department of Psychology, LMU Munich, Germany.,Faculty of Philosophy and Philosophy of Science, LMU Munich, Germany.,Munich Center for Neuroscience, LMU Munich, Germany
| |
Collapse
|
29
|
Rummens K, Sayim B. Broad attention uncovers benefits of stimulus uniformity in visual crowding. Sci Rep 2021; 11:23976. [PMID: 34907221 PMCID: PMC8671468 DOI: 10.1038/s41598-021-03258-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/01/2021] [Indexed: 11/08/2022] Open
Abstract
Crowding is the interference by surrounding objects (flankers) with target perception. Low target-flanker similarity usually yields weaker crowding than high similarity ('similarity rule') with less interference, e.g., by opposite- than same-contrast polarity flankers. The advantage of low target-flanker similarity has typically been shown with attentional selection of a single target object. Here, we investigated the validity of the similarity rule when broadening attention to multiple objects. In three experiments, we measured identification for crowded letters (Experiment 1), tumbling Ts (Experiment 2), and tilted lines (Experiment 3). Stimuli consisted of three items that were uniform or alternating in contrast polarity and were briefly presented at ten degrees eccentricity. Observers reported all items (full report) or only the left, central, or right item (single-item report). In Experiments 1 and 2, consistent with the similarity rule, single central item performance was superior with opposite- compared to same-contrast polarity flankers. With full report, the similarity rule was inverted: performance was better for uniform compared to alternating stimuli. In Experiment 3, contrast polarity did not affect performance. We demonstrated a reversal of the similarity rule under broadened attention, suggesting that stimulus uniformity benefits crowded object recognition when intentionally directing attention towards all stimulus elements. We propose that key properties of crowding have only limited validity as they may require a-priori differentiation of target and context.
Collapse
Affiliation(s)
- Koen Rummens
- Institute of Psychology, University of Bern, Bern, Switzerland.
| | - Bilge Sayim
- Institute of Psychology, University of Bern, Bern, Switzerland
- UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, Université de Lille, CNRS, 59000, Lille, France
| |
Collapse
|
30
|
Srinath R, Ruff DA, Cohen MR. Attention improves information flow between neuronal populations without changing the communication subspace. Curr Biol 2021; 31:5299-5313.e4. [PMID: 34699782 PMCID: PMC8665027 DOI: 10.1016/j.cub.2021.09.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Visual attention allows observers to change the influence of different parts of a visual scene on their behavior, suggesting that information can be flexibly shared between visual cortex and neurons involved in decision making. We investigated the neural substrate of flexible information routing by analyzing the activity of populations of visual neurons in the medial temporal area (MT) and oculo-motor neurons in the superior colliculus (SC) while rhesus monkeys switched spatial attention. We demonstrated that attention increases the efficacy of visuomotor communication: trial-to-trial variability in SC population activity could be better predicted by the activity of the MT population (and vice versa) when attention was directed toward their joint receptive fields. Surprisingly, this improvement in prediction was not explained by changes in the dimensionality of the shared subspace or in the magnitude of local or shared pairwise noise correlations. These results lay a foundation for future theoretical and experimental studies into how visual attention can flexibly change information flow between sensory and decision neurons.
Collapse
Affiliation(s)
- Ramanujan Srinath
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Douglas A Ruff
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marlene R Cohen
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Turoman N, Tivadar RI, Retsa C, Murray MM, Matusz PJ. Towards understanding how we pay attention in naturalistic visual search settings. Neuroimage 2021; 244:118556. [PMID: 34492292 DOI: 10.1016/j.neuroimage.2021.118556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022] Open
Abstract
Research on attentional control has largely focused on single senses and the importance of behavioural goals in controlling attention. However, everyday situations are multisensory and contain regularities, both likely influencing attention. We investigated how visual attentional capture is simultaneously impacted by top-down goals, the multisensory nature of stimuli, and the contextual factors of stimuli's semantic relationship and temporal predictability. Participants performed a multisensory version of the Folk et al. (1992) spatial cueing paradigm, searching for a target of a predefined colour (e.g. a red bar) within an array preceded by a distractor. We manipulated: 1) stimuli's goal-relevance via distractor's colour (matching vs. mismatching the target), 2) stimuli's multisensory nature (colour distractors appearing alone vs. with tones), 3) the relationship between the distractor sound and colour (arbitrary vs. semantically congruent) and 4) the temporal predictability of distractor onset. Reaction-time spatial cueing served as a behavioural measure of attentional selection. We also recorded 129-channel event-related potentials (ERPs), analysing the distractor-elicited N2pc component both canonically and using a multivariate electrical neuroimaging framework. Behaviourally, arbitrary target-matching distractors captured attention more strongly than semantically congruent ones, with no evidence for context modulating multisensory enhancements of capture. Notably, electrical neuroimaging of surface-level EEG analyses revealed context-based influences on attention to both visual and multisensory distractors, in how strongly they activated the brain and type of activated brain networks. For both processes, the context-driven brain response modulations occurred long before the N2pc time-window, with topographic (network-based) modulations at ∼30 ms, followed by strength-based modulations at ∼100 ms post-distractor onset. Our results reveal that both stimulus meaning and predictability modulate attentional selection, and they interact while doing so. Meaning, in addition to temporal predictability, is thus a second source of contextual information facilitating goal-directed behaviour. More broadly, in everyday situations, attention is controlled by an interplay between one's goals, stimuli's perceptual salience, meaning and predictability. Our study calls for a revision of attentional control theories to account for the role of contextual and multisensory control.
Collapse
Affiliation(s)
- Nora Turoman
- The LINE (Laboratory for Investigative Neurophysiology), Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; MEDGIFT Lab, Institute of Information Systems, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Techno-Pôle 3, 3960 Sierre, Switzerland; Working Memory, Cognition and Development lab, Department of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Ruxandra I Tivadar
- The LINE (Laboratory for Investigative Neurophysiology), Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Department of Ophthalmology, Fondation Asile des Aveugles, Lausanne, Switzerland; Cognitive Computational Neuroscience group, Institute of Computer Science, Faculty of Science, University of Bern, Switzerland
| | - Chrysa Retsa
- The LINE (Laboratory for Investigative Neurophysiology), Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Micah M Murray
- The LINE (Laboratory for Investigative Neurophysiology), Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Department of Ophthalmology, Fondation Asile des Aveugles, Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | - Pawel J Matusz
- The LINE (Laboratory for Investigative Neurophysiology), Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; MEDGIFT Lab, Institute of Information Systems, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Techno-Pôle 3, 3960 Sierre, Switzerland; Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
32
|
Goddard E, Carlson TA, Woolgar A. Spatial and Feature-selective Attention Have Distinct, Interacting Effects on Population-level Tuning. J Cogn Neurosci 2021; 34:290-312. [PMID: 34813647 PMCID: PMC7613071 DOI: 10.1162/jocn_a_01796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Attention can be deployed in different ways: When searching for a taxi in New York City, we can decide where to attend (e.g., to the street) and what to attend to (e.g., yellow cars). Although we use the same word to describe both processes, nonhuman primate data suggest that these produce distinct effects on neural tuning. This has been challenging to assess in humans, but here we used an opportunity afforded by multivariate decoding of MEG data. We found that attending to an object at a particular location and attending to a particular object feature produced effects that interacted multiplicatively. The two types of attention induced distinct patterns of enhancement in occipital cortex, with feature-selective attention producing relatively more enhancement of small feature differences and spatial attention producing relatively larger effects for larger feature differences. An information flow analysis further showed that stimulus representations in occipital cortex were Granger-caused by coding in frontal cortices earlier in time and that the timing of this feedback matched the onset of attention effects. The data suggest that spatial and feature-selective attention rely on distinct neural mechanisms that arise from frontal-occipital information exchange, interacting multiplicatively to selectively enhance task-relevant information.
Collapse
Affiliation(s)
- Erin Goddard
- University of New South Wales.,Macquarie University, Sydney, New South Wales, Australia
| | - Thomas A Carlson
- Macquarie University, Sydney, New South Wales, Australia.,University of Sydney
| | - Alexandra Woolgar
- Macquarie University, Sydney, New South Wales, Australia.,University of Cambridge
| |
Collapse
|
33
|
Li W, Guan J, Shi W. Increasing the load on executive working memory reduces the search performance in the natural scenes: Evidence from eye movements. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-02270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Geravanchizadeh M, Zakeri S. Ear-EEG-based binaural speech enhancement (ee-BSE) using auditory attention detection and audiometric characteristics of hearing-impaired subjects. J Neural Eng 2021; 18. [PMID: 34289464 DOI: 10.1088/1741-2552/ac16b4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 07/21/2021] [Indexed: 11/11/2022]
Abstract
Objective. Speech perception in cocktail party scenarios has been the concern of a group of researchers who are involved with the design of hearing-aid devices.Approach. In this paper, a new unified ear-EEG-based binaural speech enhancement system is introduced for hearing-impaired (HI) listeners. The proposed model, which is based on auditory attention detection (AAD) and individual hearing threshold (HT) characteristics, has four main processing stages. In the binaural processing stage, a system based on the deep neural network is trained to estimate auditory ratio masks for each of the speakers in the mixture signal. In the EEG processing stage, AAD is employed to select one ratio mask corresponding to the attended speech. Here, the same EEG data is also used to predict the HTs of listeners who participated in the EEG recordings. The third stage, called insertion gain computation, concerns the calculation of a special amplification gain based on individual HTs. Finally, in the selection-resynthesis-amplification stage, the attended speech signals of the target are resynthesized based on the selected auditory mask and then are amplified using the computed insertion gain.Main results. The detection of the attended speech and the HTs are achieved by classifiers that are trained with features extracted from the scalp EEG or the ear EEG signals. The results of evaluating AAD and HT detection show high detection accuracies. The systematic evaluations of the proposed system yield substantial intelligibility and quality improvements for the HI and normal-hearingaudiograms.Significance. The AAD method determines the direction of attention from single-trial EEG signals without access to audio signals of the speakers. The amplification procedure could be adjusted for each subject based on the individual HTs. The present model has the potential to be considered as an important processing tool to personalize the neuro-steered hearing aids.
Collapse
Affiliation(s)
- Masoud Geravanchizadeh
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 51666-15813, Iran
| | - Sahar Zakeri
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 51666-15813, Iran
| |
Collapse
|
35
|
Abstract
Cognitive processes-from basic sensory analysis to language understanding-are typically contextualized. While the importance of considering context for understanding cognition has long been recognized in psychology and philosophy, it has not yet had much impact on cognitive neuroscience research, where cognition is often studied in decontextualized paradigms. Here, we present examples of recent studies showing that context changes the neural basis of diverse cognitive processes, including perception, attention, memory, and language. Within the domains of perception and language, we review neuroimaging results showing that context interacts with stimulus processing, changes activity in classical perception and language regions, and recruits additional brain regions that contribute crucially to naturalistic perception and language. We discuss how contextualized cognitive neuroscience will allow for discovering new principles of the mind and brain.
Collapse
Affiliation(s)
- Roel M Willems
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Centre for Language Studies, Radboud University, Nijmegen, the Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Marius V Peelen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
36
|
Maaß S, Wolbers T, van Rijn H, Riemer M. Temporal context effects are associated with cognitive status in advanced age. PSYCHOLOGICAL RESEARCH 2021; 86:512-521. [PMID: 33754182 PMCID: PMC8885470 DOI: 10.1007/s00426-021-01502-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
The perception of temporal intervals changes during the life-span, and especially older adults demonstrate specific impairments of timing abilities. Recently, we demonstrated that timing performance and cognitive status are correlated in older adults, suggesting that timing tasks can serve as a behavioral marker for the development of dementia. Easy-to-administer and retest-capable timing tasks therefore have potential as diagnostic tools for tracking cognitive decline. However, before being tested in a clinical cohort study, a further validation and specification of the original findings is warranted. Here we introduce several modifications of the original task and investigated the effects of temporal context on time perception in older adults (> 65 years) with low versus high scores in the Montreal Cognitive Assessment survey (MoCA) and a test of memory functioning. In line with our previous work, we found that temporal context effects were more pronounced with increasing memory deficits, but also that these effects are stronger for realistic compared to abstract visual stimuli. Furthermore, we show that two distinct temporal contexts influence timing behavior in separate experimental blocks, as well as in a mixed block in which both contexts are presented together. These results replicate and extend our previous findings. They demonstrate the stability of the effect for different stimulus material and show that timing tasks can reveal valuable information about the cognitive status of older adults. In the future, these findings could serve as a basis for the development of a diagnostic tool for pathological cognitive decline at an early, pre-clinical stage.
Collapse
Affiliation(s)
- Sarah Maaß
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712-TS, Groningen, The Netherlands.,Behavioral and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands.,Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Thomas Wolbers
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Hedderik van Rijn
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712-TS, Groningen, The Netherlands.,Behavioral and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Martin Riemer
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712-TS, Groningen, The Netherlands. .,Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. .,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
37
|
Lago MA, Jonnalagadda A, Abbey CK, Barufaldi BB, Bakic PR, Maidment ADA, Leung WK, Weinstein SP, Englander BS, Eckstein MP. Under-exploration of Three-Dimensional Images Leads to Search Errors for Small Salient Targets. Curr Biol 2021; 31:1099-1106.e5. [PMID: 33472051 PMCID: PMC8048135 DOI: 10.1016/j.cub.2020.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 10/09/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Advances in 3D imaging technology are transforming how radiologists search for cancer1,2 and how security officers scrutinize baggage for dangerous objects.3 These new 3D technologies often improve search over 2D images4,5 but vastly increase the image data. Here, we investigate 3D search for targets of various sizes in filtered noise and digital breast phantoms. For a Bayesian ideal observer optimally processing the filtered noise and a convolutional neural network processing the digital breast phantoms, search with 3D image stacks increases target information and improves accuracy over search with 2D images. In contrast, 3D search by humans leads to high miss rates for small targets easily detected in 2D search, but not for larger targets more visible in the visual periphery. Analyses of human eye movements, perceptual judgments, and a computational model with a foveated visual system suggest that human errors can be explained by interaction among a target's peripheral visibility, eye movement under-exploration of the 3D images, and a perceived overestimation of the explored area. Instructing observers to extend the search reduces 75% of the small target misses without increasing false positives. Results with twelve radiologists confirm that even medical professionals reading realistic breast phantoms have high miss rates for small targets in 3D search. Thus, under-exploration represents a fundamental limitation to the efficacy with which humans search in 3D image stacks and miss targets with these prevalent image technologies.
Collapse
Affiliation(s)
- Miguel A Lago
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Aditya Jonnalagadda
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Craig K Abbey
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Bruno B Barufaldi
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Predrag R Bakic
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Andrew D A Maidment
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Winifred K Leung
- Ridley-Tree Cancer Center, Sansum Clinic, 540 W. Pueblo Street, Santa Barbara, CA 93105, USA
| | - Susan P Weinstein
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Brian S Englander
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Miguel P Eckstein
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
38
|
Turkileri N, Field DT, Ellis JA, Sakaki M. Emotional arousal enhances the impact of long-term memory in attention. JOURNAL OF COGNITIVE PSYCHOLOGY 2021. [DOI: 10.1080/20445911.2021.1883031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Nilgun Turkileri
- Faculty of Arts and Sciences, Psychology Department, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey
| | - David T. Field
- School of Psychology and Clinical Language Sciences, University of Reading, Earley Gate, Whiteknights, Reading, UK
| | - Judi A. Ellis
- School of Psychology and Clinical Language Sciences, University of Reading, Earley Gate, Whiteknights, Reading, UK
| | - Michiko Sakaki
- School of Psychology and Clinical Language Sciences, University of Reading, Earley Gate, Whiteknights, Reading, UK
- Hector Research Institute of Education Sciences and Psychology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
39
|
Pedale T, Mastroberardino S, Capurso M, Bremner AJ, Spence C, Santangelo V. Crossmodal spatial distraction across the lifespan. Cognition 2021; 210:104617. [PMID: 33556891 DOI: 10.1016/j.cognition.2021.104617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
The ability to resist distracting stimuli whilst voluntarily focusing on a task is fundamental to our everyday cognitive functioning. Here, we investigated how this ability develops, and thereafter declines, across the lifespan using a single task/experiment. Young children (5-7 years), older children (10-11 years), young adults (20-27 years), and older adults (62-86 years) were presented with complex visual scenes. Endogenous (voluntary) attention was engaged by having the participants search for a visual target presented on either the left or right side of the display. The onset of the visual scenes was preceded - at stimulus onset asynchronies (SOAs) of 50, 200, or 500 ms - by a task-irrelevant sound (an exogenous crossmodal spatial distractor) delivered either on the same or opposite side as the visual target, or simultaneously on both sides (cued, uncued, or neutral trials, respectively). Age-related differences were revealed, especially in the extreme age-groups, which showed a greater impact of crossmodal spatial distractors. Young children were highly susceptible to exogenous spatial distraction at the shortest SOA (50 ms), whereas older adults were distracted at all SOAs, showing significant exogenous capture effects during the visual search task. By contrast, older children and young adults' search performance was not significantly affected by crossmodal spatial distraction. Overall, these findings present a detailed picture of the developmental trajectory of endogenous resistance to crossmodal spatial distraction from childhood to old age and demonstrate a different efficiency in coping with distraction across the four age-groups studied.
Collapse
Affiliation(s)
- Tiziana Pedale
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Michele Capurso
- Department of Philosophy, Social Sciences & Education, University of Perugia, Italy
| | | | - Charles Spence
- Department of Experimental Psychology, Oxford University, UK
| | - Valerio Santangelo
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Philosophy, Social Sciences & Education, University of Perugia, Italy.
| |
Collapse
|
40
|
Uchida T, Lair N, Ishiguro H, Dominey PF. A Model of Online Temporal-Spatial Integration for Immediacy and Overrule in Discourse Comprehension. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2021; 2:83-105. [PMID: 37213417 PMCID: PMC10174358 DOI: 10.1162/nol_a_00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/12/2020] [Indexed: 05/23/2023]
Abstract
During discourse comprehension, information from prior processing is integrated and appears to be immediately accessible. This was remarkably demonstrated by an N400 for "salted" and not "in love" in response to "The peanut was salted/in love." Discourse overrule was induced by prior discourse featuring the peanut as an animate agent. Immediate discourse overrule requires a model that integrates information at two timescales. One is over the lifetime and includes event knowledge and word semantics. The second is over the discourse in an event context. We propose a model where both are accounted for by temporal-to-spatial integration of experience into distributed spatial representations, providing immediate access to experience accumulated over different timescales. For lexical semantics, this is modeled by a word embedding system trained by sequential exposure to the entire Wikipedia corpus. For discourse, this is modeled by a recurrent reservoir network trained to generate a discourse vector for input sequences of words. The N400 is modeled as the difference between the instantaneous discourse vector and the target word. We predict this model can account for semantic immediacy and discourse overrule. The model simulates lexical priming and discourse overrule in the "Peanut in love" discourse, and it demonstrates that an unexpected word elicits reduced N400 if it is generally related to the event described in prior discourse, and that this effect disappears when the discourse context is removed. This neurocomputational model is the first to simulate immediacy and overrule in discourse-modulated N400, and contributes to characterization of online integration processes in discourse.
Collapse
Affiliation(s)
- Takahisa Uchida
- Ishiguro Lab, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Nicolas Lair
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
- Robot Cognition Laboratory, Marey Institute, Dijon, France
| | - Hiroshi Ishiguro
- Ishiguro Lab, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | | |
Collapse
|
41
|
Liang Z, Li F, Hu W, Huang G, Oba S, Zhang Z, Ishii S. A Generalized Encoding System for Alpha Oscillations Through Visual Saliency Analysis. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2731-2743. [PMID: 33201825 DOI: 10.1109/tnsre.2020.3038789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
By learning how the brain reacts to external visual stimuli and examining possible triggered brain statuses, we conduct a systematic study on an encoding problem that estimates ongoing EEG dynamics from visual information. A novel generalized system is proposed to encode the alpha oscillations modulated during video viewing by employing the visual saliency involved in the presented natural video stimuli. Focusing on the parietal and occipital lobes, the encoding effects at different alpha frequency bins and brain locations are examined by a real-valued genetic algorithm (GA), and possible links between alpha features and saliency patterns are constructed. The robustness and reliability of the proposed system are demonstrated in a 10-fold cross-validation. The results show that stimuli with different saliency levels can induce significant changes in occipito-parietal alpha oscillations and that alpha at higher frequency bins responded the most in involuntary attention related to bottom-up-based visual processing. This study provides a novel approach to understand the processing of involuntary attention in the brain dynamics and would further be beneficial to the development of brain-computer interfaces and visual design.
Collapse
|
42
|
Ebitz RB, Tu JC, Hayden BY. Rules warp feature encoding in decision-making circuits. PLoS Biol 2020; 18:e3000951. [PMID: 33253163 PMCID: PMC7728226 DOI: 10.1371/journal.pbio.3000951] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 12/10/2020] [Accepted: 11/02/2020] [Indexed: 01/22/2023] Open
Abstract
We have the capacity to follow arbitrary stimulus-response rules, meaning simple policies that guide our behavior. Rule identity is broadly encoded across decision-making circuits, but there are less data on how rules shape the computations that lead to choices. One idea is that rules could simplify these computations. When we follow a rule, there is no need to encode or compute information that is irrelevant to the current rule, which could reduce the metabolic or energetic demands of decision-making. However, it is not clear if the brain can actually take advantage of this computational simplicity. To test this idea, we recorded from neurons in 3 regions linked to decision-making, the orbitofrontal cortex (OFC), ventral striatum (VS), and dorsal striatum (DS), while macaques performed a rule-based decision-making task. Rule-based decisions were identified via modeling rules as the latent causes of decisions. This left us with a set of physically identical choices that maximized reward and information, but could not be explained by simple stimulus-response rules. Contrasting rule-based choices with these residual choices revealed that following rules (1) decreased the energetic cost of decision-making; and (2) expanded rule-relevant coding dimensions and compressed rule-irrelevant ones. Together, these results suggest that we use rules, in part, because they reduce the costs of decision-making through a distributed representational warping in decision-making circuits.
Collapse
Affiliation(s)
- R. Becket Ebitz
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jiaxin Cindy Tu
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin Y. Hayden
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
43
|
Henderson JM, Goold JE, Choi W, Hayes TR. Neural Correlates of Fixated Low- and High-level Scene Properties during Active Scene Viewing. J Cogn Neurosci 2020; 32:2013-2023. [PMID: 32573384 PMCID: PMC11164273 DOI: 10.1162/jocn_a_01599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
During real-world scene perception, viewers actively direct their attention through a scene in a controlled sequence of eye fixations. During each fixation, local scene properties are attended, analyzed, and interpreted. What is the relationship between fixated scene properties and neural activity in the visual cortex? Participants inspected photographs of real-world scenes in an MRI scanner while their eye movements were recorded. Fixation-related fMRI was used to measure activation as a function of lower- and higher-level scene properties at fixation, operationalized as edge density and meaning maps, respectively. We found that edge density at fixation was most associated with activation in early visual areas, whereas semantic content at fixation was most associated with activation along the ventral visual stream including core object and scene-selective areas (lateral occipital complex, parahippocampal place area, occipital place area, and retrosplenial cortex). The observed activation from semantic content was not accounted for by differences in edge density. The results are consistent with active vision models in which fixation gates detailed visual analysis for fixated scene regions, and this gating influences both lower and higher levels of scene analysis.
Collapse
Affiliation(s)
| | | | - Wonil Choi
- Gwangju Institute of Science and Technology
| | | |
Collapse
|
44
|
Shahdloo M, Çelik E, Çukur T. Biased competition in semantic representation during natural visual search. Neuroimage 2020; 216:116383. [DOI: 10.1016/j.neuroimage.2019.116383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022] Open
|
45
|
Archer K, Pammer K, Vidyasagar TR. A Temporal Sampling Basis for Visual Processing in Developmental Dyslexia. Front Hum Neurosci 2020; 14:213. [PMID: 32733217 PMCID: PMC7360833 DOI: 10.3389/fnhum.2020.00213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/11/2020] [Indexed: 11/24/2022] Open
Abstract
Knowledge of oscillatory entrainment and its fundamental role in cognitive and behavioral processing has increasingly been applied to research in the field of reading and developmental dyslexia. Growing evidence indicates that oscillatory entrainment to theta frequency spoken language in the auditory domain, along with cross-frequency theta-gamma coupling, support phonological processing (i.e., cognitive encoding of linguistic knowledge gathered from speech) which is required for reading. This theory is called the temporal sampling framework (TSF) and can extend to developmental dyslexia, such that inadequate temporal sampling of speech-sounds in people with dyslexia results in poor theta oscillatory entrainment in the auditory domain, and thus a phonological processing deficit which hinders reading ability. We suggest that inadequate theta oscillations in the visual domain might account for the many magno-dorsal processing, oculomotor control and visual deficits seen in developmental dyslexia. We propose two possible models of a magno-dorsal visual correlate to the auditory TSF: (1) A direct correlate that involves "bottom-up" magnocellular oscillatory entrainment of the visual domain that occurs when magnocellular populations phase lock to theta frequency fixations during reading and (2) an inverse correlate whereby attending to text triggers "top-down" low gamma signals from higher-order visual processing areas, thereby organizing magnocellular populations to synchronize to a theta frequency to drive the temporal control of oculomotor movements and capturing of letter images at a higher frequency.
Collapse
Affiliation(s)
- Kim Archer
- Applied Psychology and Human Factors Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Kristen Pammer
- Applied Psychology and Human Factors Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Trichur Raman Vidyasagar
- Visual and Cognitive Neuroscience Laboratory, Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
46
|
Kaiser D, Häberle G, Cichy RM. Real-world structure facilitates the rapid emergence of scene category information in visual brain signals. J Neurophysiol 2020; 124:145-151. [PMID: 32519577 DOI: 10.1152/jn.00164.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In everyday life, our visual surroundings are not arranged randomly but structured in predictable ways. Although previous studies have shown that the visual system is sensitive to such structural regularities, it remains unclear whether the presence of an intact structure in a scene also facilitates the cortical analysis of the scene's categorical content. To address this question, we conducted an EEG experiment during which participants viewed natural scene images that were either "intact" (with their quadrants arranged in typical positions) or "jumbled" (with their quadrants arranged into atypical positions). We then used multivariate pattern analysis to decode the scenes' category from the EEG signals (e.g., whether the participant had seen a church or a supermarket). The category of intact scenes could be decoded rapidly within the first 100 ms of visual processing. Critically, within 200 ms of processing, category decoding was more pronounced for the intact scenes compared with the jumbled scenes, suggesting that the presence of real-world structure facilitates the extraction of scene category information. No such effect was found when the scenes were presented upside down, indicating that the facilitation of neural category information is indeed linked to a scene's adherence to typical real-world structure rather than to differences in visual features between intact and jumbled scenes. Our results demonstrate that early stages of categorical analysis in the visual system exhibit tuning to the structure of the world that may facilitate the rapid extraction of behaviorally relevant information from rich natural environments.NEW & NOTEWORTHY Natural scenes are structured, with different types of information appearing in predictable locations. Here, we use EEG decoding to show that the visual brain uses this structure to efficiently analyze scene content. During early visual processing, the category of a scene (e.g., a church vs. a supermarket) could be more accurately decoded from EEG signals when the scene adhered to its typical spatial structure compared with when it did not.
Collapse
Affiliation(s)
- Daniel Kaiser
- Department of Psychology, University of York, York, United Kingdom
| | - Greta Häberle
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Radoslaw M Cichy
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
47
|
Boettcher SEP, Stokes MG, Nobre AC, van Ede F. One Thing Leads to Another: Anticipating Visual Object Identity Based on Associative-Memory Templates. J Neurosci 2020; 40:4010-4020. [PMID: 32284338 PMCID: PMC7219293 DOI: 10.1523/jneurosci.2751-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 11/21/2022] Open
Abstract
Probabilistic associations between stimuli afford memory templates that guide perception through proactive anticipatory mechanisms. A great deal of work has examined the behavioral consequences and human electrophysiological substrates of anticipation following probabilistic memory cues that carry spatial or temporal information to guide perception. However, less is understood about the electrophysiological substrates linked to anticipating the sensory content of events based on recurring associations between successive events. Here, we demonstrate behavioral and electrophysiological signatures of using associative-memory templates to guide perception, while equating spatial and temporal anticipation (experiments 1 and 2), as well as target probability and response demands (experiment 2). By recording the electroencephalogram in the two experiments (N = 55; 24 females), we show that two markers in human electrophysiology implicated in spatial and temporal anticipation also contribute to the anticipation of perceptual identity, as follows: attenuation of alpha-band oscillations and the contingent negative variation (CNV). Together, our results show that memory-guided identity templates proactively impact perception and are associated with anticipatory states of attenuated alpha oscillations and the CNV. Furthermore, by isolating object-identity anticipation from spatial and temporal anticipation, our results suggest a role for alpha attenuation and the CNV in specific visual content anticipation beyond general changes in neural excitability or readiness.SIGNIFICANCE STATEMENT Probabilistic associations between stimuli afford memory templates that guide perception through proactive anticipatory mechanisms. The current work isolates the behavioral benefits and electrophysiological signatures of memory-guided identity-based anticipation, while equating anticipation of space, time, motor responses, and task relevance. Our results show that anticipation of the specific identity of a forthcoming percept impacts performance and is associated with states of attenuated alpha oscillations and the contingent negative variation, extending previous work implicating these neural substrates in spatial and temporal preparatory attention. Together, this work bridges fields of attention, memory, and perception, providing new insights into the neural mechanisms that support complex attentional templates.
Collapse
Affiliation(s)
- Sage E P Boettcher
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Mark G Stokes
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Freek van Ede
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| |
Collapse
|
48
|
Abstract
Working memory bridges perception to action over extended delays, enabling flexible goal-directed behaviour. To date, studies of visual working memory – concerned with detailed visual representations such as shape and colour – have considered visual memory predominantly in the context of visual task demands, such as visual identification and search. Another key purpose of visual working memory is to directly inform and guide upcoming actions. Taking this as a starting point, I review emerging evidence for the pervasive bi-directional links between visual working memory and (planned) action, and discuss these links from the perspective of their common goal of enabling flexible and precise behaviour.
Collapse
Affiliation(s)
- Freek van Ede
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
49
|
Kim JG, Gregory E, Landau B, McCloskey M, Turk-Browne NB, Kastner S. Functions of ventral visual cortex after bilateral medial temporal lobe damage. Prog Neurobiol 2020; 191:101819. [PMID: 32380224 DOI: 10.1016/j.pneurobio.2020.101819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/17/2020] [Accepted: 04/25/2020] [Indexed: 10/24/2022]
Abstract
Repeated stimuli elicit attenuated responses in visual cortex relative to novel stimuli. This adaptation can be considered as a form of rapid learning and a signature of perceptual memory. Adaptation occurs not only when a stimulus is repeated immediately, but also when there is a lag in terms of time and other intervening stimuli before the repetition. But how does the visual system keep track of which stimuli are repeated, especially after long delays and many intervening stimuli? We hypothesized that the hippocampus and medial temporal lobe (MTL) support long-lag adaptation, given that this memory system can learn from single experiences, maintain information over delays, and send feedback to visual cortex. We tested this hypothesis with fMRI in an amnesic patient, LSJ, who has encephalitic damage to the MTL resulting in extensive bilateral lesions including complete hippocampal loss. We measured adaptation at varying time lags between repetitions in functionally localized visual areas that were intact in LSJ. We observed that these areas track information over a few minutes even when the hippocampus and extended parts of the MTL are unavailable. LSJ and controls were identical when attention was directed away from the repeating stimuli: adaptation occurred for lags up to three minutes, but not six minutes. However, when attention was directed toward stimuli, controls now showed an adaptation effect at six minutes but LSJ did not. These findings suggest that visual cortex can support one-shot perceptual memories lasting for several minutes but that the hippocampus and surrounding MTL structures are necessary for adaptation in visual cortex after longer delays when stimuli are task-relevant.
Collapse
Affiliation(s)
- Jiye G Kim
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, United States
| | - Emma Gregory
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Barbara Landau
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Michael McCloskey
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Nicholas B Turk-Browne
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, United States; Department of Psychology, Princeton University, Princeton, NJ, 08544, United States; Department of Psychology, Yale University, New Haven, CT, 06520, United States
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, United States; Department of Psychology, Princeton University, Princeton, NJ, 08544, United States.
| |
Collapse
|
50
|
Holleman GA, Hooge ITC, Kemner C, Hessels RS. The 'Real-World Approach' and Its Problems: A Critique of the Term Ecological Validity. Front Psychol 2020; 11:721. [PMID: 32425850 PMCID: PMC7204431 DOI: 10.3389/fpsyg.2020.00721] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/25/2020] [Indexed: 11/22/2022] Open
Abstract
A popular goal in psychological science is to understand human cognition and behavior in the 'real-world.' In contrast, researchers have typically conducted their research in experimental research settings, a.k.a. the 'psychologist's laboratory.' Critics have often questioned whether psychology's laboratory experiments permit generalizable results. This is known as the 'real-world or the lab'-dilemma. To bridge the gap between lab and life, many researchers have called for experiments with more 'ecological validity' to ensure that experiments more closely resemble and generalize to the 'real-world.' However, researchers seldom explain what they mean with this term, nor how more ecological validity should be achieved. In our opinion, the popular concept of ecological validity is ill-formed, lacks specificity, and falls short of addressing the problem of generalizability. To move beyond the 'real-world or the lab'-dilemma, we believe that researchers in psychological science should always specify the particular context of cognitive and behavioral functioning in which they are interested, instead of advocating that experiments should be more 'ecologically valid' in order to generalize to the 'real-world.' We believe this will be a more constructive way to uncover the context-specific and context-generic principles of cognition and behavior.
Collapse
Affiliation(s)
- Gijs A. Holleman
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
- Department of Developmental Psychology, Utrecht University, Utrecht, Netherlands
| | - Ignace T. C. Hooge
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - Chantal Kemner
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
- Department of Developmental Psychology, Utrecht University, Utrecht, Netherlands
- Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Roy S. Hessels
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
- Department of Developmental Psychology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|