1
|
Abstract
Consciousness is a fascinating field of neuroscience research where questions often outnumber the answers. We advocate an open and optimistic approach where converging mechanisms in neuroscience may eventually provide a satisfactory understanding of consciousness. We first review several characteristics of conscious neural activity, including the involvement of dedicated systems for content and levels of consciousness, the distinction and overlap of mechanisms contributing to conscious states and conscious awareness of transient events, nonlinear transitions and involvement of large-scale networks, and finally the temporal nexus where conscious awareness of discrete events occurs when mechanisms of attention and memory meet. These considerations and recent new experimental findings lead us to propose an inclusive hypothesis involving four phases initiated shortly after an external sensory stimulus: (1) Detect-primary and higher cortical and subcortical circuits detect the stimulus and select it for conscious perception. (2) Pulse-a transient and massive neuromodulatory surge in subcortical-cortical arousal and salience networks amplifies signals enabling conscious perception to proceed. (3) Switch-networks that may interfere with conscious processing are switched off. (4) Wave-sequential processing through hierarchical lower to higher cortical regions produces a fully formed percept, encoded in frontoparietal working memory and medial temporal episodic memory systems for subsequent report of experience. The framework hypothesized here is intended to be nonexclusive and encourages the addition of other mechanisms with further progress. Ultimately, just as many mechanisms in biology together distinguish living from nonliving things, many mechanisms in neuroscience synergistically may separate conscious from nonconscious neural activity.
Collapse
Affiliation(s)
- Hal Blumenfeld
- Departments of Neurology, Neuroscience, and Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Scheffer M, Borsboom D, Nieuwenhuis S, Westley F. Belief traps: Tackling the inertia of harmful beliefs. Proc Natl Acad Sci U S A 2022; 119:e2203149119. [PMID: 35858376 PMCID: PMC9371746 DOI: 10.1073/pnas.2203149119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Beliefs can be highly resilient in the sense that they are not easily abandoned in the face of counterevidence. This has the advantage of guiding consistent behavior and judgments but may also have destructive consequences for individuals, nature, and society. For instance, pathological beliefs can sustain psychiatric disorders, the belief that rhinoceros horn is an aphrodisiac may drive a species extinct, beliefs about gender or race may fuel discrimination, and belief in conspiracy theories can undermine democracy. Here, we present a unifying framework of how self-amplifying feedbacks shape the inertia of beliefs on levels ranging from neuronal networks to social systems. Sustained exposure to counterevidence can destabilize rigid beliefs but requires organized rational override as in cognitive behavioral therapy for pathological beliefs or institutional control of discrimination to reduce racial biases. Black-and-white thinking is a major risk factor for the formation of resilient beliefs associated with psychiatric disorders as well as prejudices and conspiracy thinking. Such dichotomous thinking is characteristic of a lack of cognitive resources, which may be exacerbated by stress. This could help explain why conspiracy thinking and psychiatric disorders tend to peak during crises. A corollary is that addressing social factors such as poverty, social cleavage, and lack of education may be the most effective way to prevent the emergence of rigid beliefs, and thus of problems ranging from psychiatric disorders to prejudices, conspiracy theories, and posttruth politics.
Collapse
Affiliation(s)
- Marten Scheffer
- Department of Ecology and Evolution, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Denny Borsboom
- Universiteit van Amsterdam, 1012 WX Amsterdam, The Netherlands
| | | | | |
Collapse
|
3
|
Cervantes Constantino F, Garat S, Nicolaisen-Sobesky E, Paz V, Martínez-Montes E, Kessel D, Cabana Á, Gradin VB. Neural processing of iterated prisoner's dilemma outcomes indicates next-round choice and speed to reciprocate cooperation. Soc Neurosci 2020; 16:103-120. [PMID: 33297873 DOI: 10.1080/17470919.2020.1859410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The iterated prisoner's dilemma (iPD) game is a well-established model for testing how people cooperate, and the neural processes that unfold after its distinct outcomes have been partly described. Recent theoretical models suggest evolution favors intuitive cooperation, which raises questions on the behavioral but also neural timelines involved. We studied the outcome/feedback stage of iPD rounds with electroencephalography (EEG) methods. Results showed that neural signals associated with this stage also relate to future choice, in an outcome-dependent manner: (i) after zero-gain "sucker's payoffs" (unreciprocated cooperation), a participant's decision thereafter relates to changes to the feedback-related negativity (FRN); (ii) after one-sided non-cooperation (participant wins at co-player's expense), by the P3; (iii) after mutual cooperation, by late frontal delta-band modulations. Critically, faster reciprocation behavior towards a co-player's choice to cooperate was predicted, on a single-trial basis, by players' P3 and frontal delta modulations at the immediately preceding trial. Delta-band signaling is discussed in relation to homeostatic regulation processing in the literature. The findings relate the early outcome/feedback stage to subsequent decisional processes in the iPD, providing a first neural account of the brief timelines implied in heuristic modes of cooperation.
Collapse
|
4
|
Cell class-specific modulation of attentional signals by acetylcholine in macaque frontal eye field. Proc Natl Acad Sci U S A 2019; 116:20180-20189. [PMID: 31527242 PMCID: PMC6778228 DOI: 10.1073/pnas.1905413116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Attention is critical to high-level cognition, and attentional deficits are a hallmark of cognitive dysfunction. A key transmitter for attentional control is acetylcholine, but its cellular actions in attention-controlling areas remain poorly understood. Here we delineate how muscarinic and nicotinic receptors affect basic neuronal excitability and attentional control signals in different cell types in macaque frontal eye field. We found that broad spiking and narrow spiking cells both require muscarinic and nicotinic receptors for normal excitability, thereby affecting ongoing or stimulus-driven activity. Attentional control signals depended on muscarinic, not nicotinic receptors in broad spiking cells, while they depended on both muscarinic and nicotinic receptors in narrow spiking cells. Cluster analysis revealed that muscarinic and nicotinic effects on attentional control signals were highly selective even for different subclasses of narrow spiking cells and of broad spiking cells. These results demonstrate that cholinergic receptors are critical to establish attentional control signals in the frontal eye field in a cell type-specific manner.
Collapse
|
5
|
Albers AM, Meindertsma T, Toni I, de Lange FP. Decoupling of BOLD amplitude and pattern classification of orientation-selective activity in human visual cortex. Neuroimage 2017; 180:31-40. [PMID: 28951159 DOI: 10.1016/j.neuroimage.2017.09.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 11/15/2022] Open
Abstract
Multivariate pattern analysis (MVPA) of fMRI data has allowed the investigation of neural representations of stimuli on the basis of distributed patterns of activity within a brain region, independently from overall brain activity. For instance, several studies on early visual cortex have reported reliable MVPA decoding of the identity of a stimulus representation that was kept in working memory or internally generated, despite the fact that the overall BOLD response was low or even at baseline levels. Here we ask how it is possible that reliable stimulus information can be decoded from early visual cortex even when the overall BOLD signal remains low. We reanalyzed a data set in which human participants (N = 24) imagined or kept in working memory an oriented visual grating. We divided voxels from V1, V2, and V3 into groups based on orientation preference, and compared the time course of mean BOLD responses to preferred and non-preferred orientations with the time course of the multivariate decoding performance. Decoding accuracy related to a numerically small, but reliable univariate difference in the mean BOLD response to preferred and non-preferred stimuli. The time course of the difference in BOLD responses to preferred and non-preferred orientations was highly similar to the time course of the multivariate pattern classification accuracy. The reliability of the classification strongly correlated with the magnitude of differences in BOLD signal between preferred and non-preferred stimuli. These activity differences were small compared to the large overall BOLD modulations. This suggests that a substantial part of the task-related BOLD response to visual stimulation might not be stimulus-specific. Rather, stimulus-evoked BOLD signals in early visual cortex during a task context may be an amalgam of small stimulus-specific responses and large task-related but non-stimulus-specific responses. The latter are not evident during the maintenance or internal generation of stimulus representations, but provide an explanation of how reliable stimulus information can be decoded from early visual cortex even though its overall BOLD signal remains low.
Collapse
Affiliation(s)
- Anke Marit Albers
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands.
| | - Thomas Meindertsma
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands.
| | - Ivan Toni
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands.
| | - Floris P de Lange
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Wichary S, Magnuski M, Oleksy T, Brzezicka A. Neural Signatures of Rational and Heuristic Choice Strategies: A Single Trial ERP Analysis. Front Hum Neurosci 2017; 11:401. [PMID: 28867996 PMCID: PMC5563328 DOI: 10.3389/fnhum.2017.00401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/20/2017] [Indexed: 01/27/2023] Open
Abstract
In multi-attribute choice, people use heuristics to simplify decision problems. We studied the use of heuristic and rational strategies and their electrophysiological correlates. Since previous work linked the P3 ERP component to attention and decision making, we were interested whether the amplitude of this component is associated with decision strategy use. To this end, we recorded EEG when participants performed a two-alternative choice task, where they could acquire decision cues in a sequential manner and use them to make choices. We classified participants’ choices as consistent with a rational Weighted Additive rule (WADD) or a simple heuristic Take The Best (TTB). Participants differed in their preference for WADD and TTB. Using a permutation-based single trial approach, we analyzed EEG responses to consecutive decision cues and their relation to the individual strategy preference. The preference for WADD over TTB was associated with overall higher signal amplitudes to decision cues in the P3 time window. Moreover, the preference for WADD was associated with similar P3 amplitudes to consecutive cues, whereas the preference for TTB was associated with substantial decreases in P3 amplitudes to consecutive cues. We also found that the preference for TTB was associated with enhanced N1 component to cues that discriminated decision alternatives, suggesting very early attention allocation to such cues by TTB users. Our results suggest that preference for either WADD or TTB has an early neural signature reflecting differences in attentional weighting of decision cues. In light of recent findings and hypotheses regarding P3, we interpret these results as indicating the involvement of catecholamine arousal systems in shaping predecisional information processing and strategy selection.
Collapse
Affiliation(s)
- Szymon Wichary
- Center for Research in Economic Behavior, Wrocław Faculty of Psychology, University of Social Sciences and HumanitiesWrocław, Poland
| | - Mikołaj Magnuski
- Institute of Cognitive and Behavioral Neuroscience, Faculty of Psychology, University of Social Sciences and HumanitiesWarsaw, Poland
| | - Tomasz Oleksy
- Faculty of Psychology, University of WarsawWarsaw, Poland
| | - Aneta Brzezicka
- Institute of Cognitive and Behavioral Neuroscience, Faculty of Psychology, University of Social Sciences and HumanitiesWarsaw, Poland.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los AngelesCA, United States
| |
Collapse
|
7
|
van Steenbergen H, Warren CM, Kühn S, de Wit S, Wiers RW, Hommel B. Representational precision in visual cortex reveals outcome encoding and reward modulation during action preparation. Neuroimage 2017; 157:415-428. [DOI: 10.1016/j.neuroimage.2017.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 11/28/2022] Open
|
8
|
Could LC-NE-Dependent Adjustment of Neural Gain Drive Functional Brain Network Reorganization? Neural Plast 2017; 2017:4328015. [PMID: 28607776 PMCID: PMC5457760 DOI: 10.1155/2017/4328015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 01/21/2023] Open
Abstract
The locus coeruleus-norepinephrine (LC-NE) system is thought to act at synaptic, cellular, microcircuit, and network levels to facilitate cognitive functions through at least two different processes, not mutually exclusive. Accordingly, as a reset signal, the LC-NE system could trigger brain network reorganizations in response to salient information in the environment and/or adjust the neural gain within its target regions to optimize behavioral responses. Here, we provide evidence of the co-occurrence of these two mechanisms at the whole-brain level, in resting-state conditions following a pharmacological stimulation of the LC-NE system. We propose that these two mechanisms are interdependent such that the LC-NE-dependent adjustment of the neural gain inferred from the clustering coefficient could drive functional brain network reorganizations through coherence in the gamma rhythm. Via the temporal dynamic of gamma-range band-limited power, the release of NE could adjust the neural gain, promoting interactions only within the neuronal populations whose amplitude envelopes are correlated, thus making it possible to reorganize neuronal ensembles, functional networks, and ultimately, behavioral responses. Thus, our proposal offers a unified framework integrating the putative influence of the LC-NE system on both local- and long-range adjustments of brain dynamics underlying behavioral flexibility.
Collapse
|