1
|
Janiszewska-Turak E, Wierzbicka A, Rybak K, Pobiega K, Synowiec A, Woźniak Ł, Trych U, Krzykowski A, Gramza-Michałowska A. Studying the Influence of Salt Concentrations on Betalain and Selected Physical and Chemical Properties in the Lactic Acid Fermentation Process of Red Beetroot. Molecules 2024; 29:4803. [PMID: 39459172 PMCID: PMC11510701 DOI: 10.3390/molecules29204803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
This study emphasizes the significance of optimizing salt content during the fermentation of red beetroot to produce healthier and high-quality fermented products. It investigates the impact of different salt levels on fermentation, analyzing various parameters such as pH levels, dry matter content, total acidity, salt content, color changes, pigment content, and lactic acid bacteria count. This study identifies the most favorable salt concentration for bacterial growth during fermentation and storage as 2-3%. It was evaluated that salt levels fluctuated significantly during fermentation, with nearly 50% of the added salt absorbed by the beetroot tissues, mainly when lower salt concentrations were used. The fermentation process had a negative effect on the content of betalain pigments, as well as yellow pigments, including vulgaxanthin-I. It was also found that fermentation and storage affected the proportions of red pigments, with betacyanins proving to be more stable than betaxanthins, and that salt addition affected negatively pH and total acidity while causing an increase in yellow color. The pH was negatively correlated with the duration of the process, the amount of red pigment, and bacterial count. The results indicate that lower salt levels can lead to favorable physicochemical and microbiological parameters, allowing for the production of fermented red beetroot with reduced salt content without compromising quality.
Collapse
Affiliation(s)
- Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159C Nowoursynowska St., 02-787 Warsaw, Poland; (A.W.); (K.R.)
| | - Anna Wierzbicka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159C Nowoursynowska St., 02-787 Warsaw, Poland; (A.W.); (K.R.)
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159C Nowoursynowska St., 02-787 Warsaw, Poland; (A.W.); (K.R.)
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159C Nowoursynowska St., 02-787 Warsaw, Poland; (K.P.); (A.S.)
| | - Alicja Synowiec
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159C Nowoursynowska St., 02-787 Warsaw, Poland; (K.P.); (A.S.)
| | - Łukasz Woźniak
- Department of Food Safety and Chemical Analysis, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland;
| | - Urszula Trych
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland;
| | - Andrzej Krzykowski
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland;
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland;
| |
Collapse
|
2
|
Tzanova MT, Yaneva Z, Ivanova D, Toneva M, Grozeva N, Memdueva N. Green Solvents for Extraction of Natural Food Colorants from Plants: Selectivity and Stability Issues. Foods 2024; 13:605. [PMID: 38397582 PMCID: PMC10887973 DOI: 10.3390/foods13040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Consumers associate the color of food with its freshness and quality. More and more attention is being paid to natural colorants that bring additional health benefits to humans. Such natural substances are the carotenoids (yellow to orange), the anthocyanins (red to blue), and the betalains (red and yellow), which are very sensitive to exposure to light, air, high temperatures, and chemicals. Stability and diversity in terms of color can be optimized by using environmentally friendly and selective extraction processes that provide a balance between efficacy, safety, and stability of the resulting extracts. Green solvents like water, supercritical fluids, natural deep eutectic solvents, and ionic liquids are the most proper green solvents when combined with different extraction techniques like maceration, supercritical extraction, and ultrasound-assisted or microwave-assisted extraction. The choice of the right extracting agent is crucial for the selectivity of the extraction method and the stability of the prepared colorant. The present work reviews the green solvents used for the extraction of natural food colorants from plants and focuses on the issues related to the selectivity and stability of the products extracted.
Collapse
Affiliation(s)
- Milena Tankova Tzanova
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Zvezdelina Yaneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
| | - Donika Ivanova
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
- Medical Faculty, Department of Medicinal Chemistry and Biochemistry, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Monika Toneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
| | - Neli Grozeva
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Neli Memdueva
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| |
Collapse
|
3
|
Babaei M, Thomsen PT, Dyekjær JD, Glitz CU, Pastor MC, Gockel P, Körner JD, Rago D, Borodina I. Combinatorial engineering of betalain biosynthesis pathway in yeast Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:128. [PMID: 37592353 PMCID: PMC10436450 DOI: 10.1186/s13068-023-02374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Betalains, comprising red-violet betacyanins and yellow-orange betaxanthins, are the hydrophilic vacuolar pigments that provide bright coloration to roots, fruits, and flowers of plants of the Caryophyllales order. Betanin extracted from red beets is permitted quantum satis as a natural red food colorant (E162). Due to antioxidant activity, betanin has potential health benefits. RESULTS We applied combinatorial engineering to find the optimal combination of a dozen tyrosine hydroxylase (TyH) and 4,5-dopa-estradiol-dioxygenase (DOD) variants. The best-engineered Saccharomyces cerevisiae strains produced over six-fold higher betaxanthins than previously reported. By genome-resequencing of these strains, we found out that two copies of DOD enzyme from Bougainvillea glabra together with TyH enzymes from Abronia nealleyi, Acleisanthes obtusa, and Cleretum bellidiforme were present in the three high-betaxanthin-producing isolates. Next, we expressed four variants of glucosyltransferases from Beta vulgaris for betanin biosynthesis. The highest titer of betanin (30.8 ± 0.14 mg/L after 48 h from 20 g/L glucose) was obtained when completing the biosynthesis pathway with UGT73A36 glucosyltransferase from Beta vulgaris. Finally, we investigated betalain transport in CEN.PK and S288C strains of Saccharomyces cerevisiae and identified a possible role of transporter genes QDR2 and APL1 in betanin transport. CONCLUSIONS This study shows the potential of combinatorial engineering of yeast cell factories for the biotechnological production of betanin.
Collapse
Affiliation(s)
- Mahsa Babaei
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark
| | - Philip Tinggaard Thomsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark
| | - Jane Dannow Dyekjær
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark
| | - Christiane Ursula Glitz
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark
| | - Marc Cernuda Pastor
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark
| | - Peter Gockel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark
| | - Johann Dietmar Körner
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark
| | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800 Kgs., Lyngby, Denmark.
| |
Collapse
|
4
|
Zannou O, Oussou KF, Chabi IB, Odouaro OBO, Deli MGEP, Goksen G, Vahid AM, Kayodé APP, Kelebek H, Selli S, Galanakis CM. A comprehensive review of recent development in extraction and encapsulation techniques of betalains. Crit Rev Food Sci Nutr 2023; 64:11263-11280. [PMID: 37477284 DOI: 10.1080/10408398.2023.2235695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Betalains are attractive natural pigments with potent antioxidant activity, mainly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi. They constitute a reliable alternative to synthetic dyes used in the food industry and are considered toxic for consumers. In addition, there is convincing evidence of their health benefits for consumers. However, betalains are highly unstable to environment factors, such as light, heat, oxygen, water activity, and pH change which can be degraded during food processing, handling, storage, or delivery. Therefore, newly developed extraction methods and micro/nano-encapsulation techniques are currently applied to enhance the extraction yield, solve their instability problems, and improve their application in the food industry. This article aims to summarize the new advanced extraction methods of betalains, discussing the recent encapsulation techniques concerning the different encapsulating materials utilization. Betalains, natural pigments with potent antioxidant activity, are increasingly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi as safe alternatives to synthetic food dyes used in the food industry. However, their susceptibility to degradation during food processing, storage, and delivery poses challenges. Recent developments in extraction methods (e.g., supercritical fluid, pressurized liquid, ultrasound- and microwave-assisted, and enzyme-assisted) enhance betalain recovery, minimizing degradation. Encapsulation techniques using biopolymers, proteins, lipids, and nanoparticles protect betalains from environmental factors, extending shelf life and enabling controlled release. These advancements offer improved extraction efficiency, reduced solvent use, shorter processing times, and enhanced stability. Integration of these techniques in the food industry presents opportunities for incorporating betalains into various products, including functional foods, beverages, and dietary supplements. By addressing stability challenges, these developments support the production of innovative, healthier food items enriched with betalains. This article provides an overview of recent advancements in betalain extraction and encapsulation, highlighting their potential applications in the food industry.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, Samsun, Türkiye
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Kouame F Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Ifagbémi B Chabi
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Oscar B O Odouaro
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Mahn G E P Deli
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| | - Aïssi M Vahid
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété, Benin
| | - Adéchola P P Kayodé
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Türkiye
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Charis M Galanakis
- Department of Research & Innovation, Galanakis Laboratories, Chania, Greece
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
5
|
Renita AA, Gajaria TK, Sathish S, Kumar JA, Lakshmi DS, Kujawa J, Kujawski W. Progress and Prospective of the Industrial Development and Applications of Eco-Friendly Colorants: An Insight into Environmental Impact and Sustainability Issues. Foods 2023; 12:foods12071521. [PMID: 37048342 PMCID: PMC10093929 DOI: 10.3390/foods12071521] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 04/14/2023] Open
Abstract
Color is the prime feature directly associated with the consumer's attraction and choice of their food. The flavor, safety, and nutritional value of any food product are directly associated with the food color. Natural and synthetic colorants (dyes and pigments) have diversified applications in various sectors such as food, feed, pharmaceutical, textiles, cosmetics, and others. Concerning the food industry, different types of natural and synthetic colorants are available in the market. Synthetic food colorants have gained popularity as they are highly stable and cheaply available. Consumers worldwide prefer delightful foodstuffs but are more concerned about the safety of the food. After its disposal, the colloidal particles present in the synthetic colorants do not allow sunlight to penetrate aquatic bodies. This causes a foul smell and turbidity formation and gives a bad appearance. Furthermore, different studies carried out previously have presented the toxicological, carcinogenic effects, hypersensitivity reactions, and behavioral changes linked to the usage of synthetic colorants. Natural food colorings, however, have nutraceutical qualities that are valuable to human health such as curcumin extracted from turmeric and beta-carotene extracted from carrots. In addition, natural colorants have beneficial properties such as excellent antioxidant properties, antimutagenic, anti-inflammatory, antineoplastic, and antiarthritic effects. This review summarizes the sources of natural and synthetic colorants, their production rate, demand, extraction, and characterization of food colorants, their industrial applications, environmental impact, challenges in the sustainable utilization of natural colorants, and their prospects.
Collapse
Affiliation(s)
- A Annam Renita
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Tejal K Gajaria
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India
| | - S Sathish
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai 600119, India
| | | | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| |
Collapse
|
6
|
Tarte I, Singh A, Dar AH, Sharma A, Altaf A, Sharma P. Unfolding the potential of dragon fruit (
Hylocereus spp
.) for value addition: A review. EFOOD 2023. [DOI: 10.1002/efd2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
7
|
Dewir YH, Habib MM, Alaizari AA, Malik JA, Al-Ali AM, Al-Qarawi AA, Alwahibi MS. Promising Application of Automated Liquid Culture System and Arbuscular Mycorrhizal Fungi for Large-Scale Micropropagation of Red Dragon Fruit. PLANTS (BASEL, SWITZERLAND) 2023; 12:1037. [PMID: 36903898 PMCID: PMC10005386 DOI: 10.3390/plants12051037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Red dragon fruit (Hylocereus polyrhizus) is an economic and promising fruit crop in arid and semi-arid regions with water shortage. An automated liquid culture system using bioreactors is a potential tool for micropropagation and large-scale production. In this study, axillary cladode multiplication of H. polyrhizus was assessed using cladode tips and cladode segments in gelled culture versus continuous immersion air-lift bioreactors (with or without a net). Axillary multiplication using cladode segments (6.4 cladodes per explant) was more effective than cladode tip explants (4.5 cladodes per explant) in gelled culture. Compared with gelled culture, continuous immersion bioreactors provided high axillary cladode multiplication (45.9 cladodes per explant) with a higher biomass and length of axillary cladodes. Inoculation of H. polyrhizus micropropagated plantlets with arbuscular mycorrhizal fungi (Gigaspora margarita and Gigaspora albida) significantly increased the vegetative growth during acclimatization. These findings will improve the large-scale propagation of dragon fruit.
Collapse
Affiliation(s)
- Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Horticulture, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Muhammad M. Habib
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Ali Alaizari
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jahangir A. Malik
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Mohsen Al-Ali
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - AbdulAziz A. Al-Qarawi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mona S. Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| |
Collapse
|
8
|
Salinity Stress Ameliorates Pigments, Minerals, Polyphenolic Profiles, and Antiradical Capacity in Lalshak. Antioxidants (Basel) 2023; 12:antiox12010173. [PMID: 36671036 PMCID: PMC9855230 DOI: 10.3390/antiox12010173] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Previous studies have shown that salinity eustress enhances the nutritional and bioactive compounds and antiradical capacity (ARC) of vegetables and increases the food values for nourishing human diets. Amaranth is a salinity-resistant, rapidly grown C4 leafy vegetable with diverse variability and usage. It has a high possibility to enhance nutritional and bioactive compounds and ARC by the application of salinity eustress. Hence, the present study aimed to evaluate the effects of sodium chloride stress response in a selected Lalshak (A. gangeticus) genotype on minerals, ascorbic acid (AsA), Folin−Ciocalteu reducing capacity, beta-carotene (BC), total flavonoids (TF), pigments, polyphenolic profiles, and ARC. A high-yield, high-ARC genotype (LS6) was grown under conditions of 0, 25, 50, and 100 mM sodium chloride in four replicates following a block design with complete randomization. We recognized nine copious polyphenolic compounds in this accession for the first time. Minerals, Folin−Ciocalteu reducing capacity, AsA, BC, pigments, polyphenolic profiles, and ARC of Lalshak were augmented progressively in the order: 0 < 25 < 50 < 100 mM sodium chloride. At 50 mM and 100 mM salt concentrations, minerals, AsA, Folin−Ciocalteu reducing capacity, BC, TF, pigments, polyphenolic profiles, and ARC of Lalshak were much greater than those of the control. Lalshak could be used as valuable food for human diets as a potent antioxidant. Sodium chloride-enriched Lalshak provided outstanding quality to the final product in terms of minerals, AsA, Folin−Ciocalteu reducing capacity, BC, TF, pigments, polyphenolic profiles, and ARC. We can cultivate it as a promising alternative crop in salinity-prone areas of the world.
Collapse
|
9
|
Carreón-Hidalgo JP, Román-Guerrero A, Navarro-Ocaña A, Gómez-Linton DR, Franco-Vásquez DC, Franco-Vásquez AM, Arreguín-Espinosa R, Pérez-Flores LJ. Chemical characterization of yellow-orange and purple varieties of Opuntia ficus-indica fruits and thermal stability of their betalains. J Food Sci 2023; 88:161-174. [PMID: 36524774 DOI: 10.1111/1750-3841.16421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Betalains are plant pigments with biological properties and can be used instead of synthetic colorants to confer color and functional properties to foods. The objective of this work was to carry out the chemical characterization of two varieties of prickly pear of Opuntia ficus-indica, one of yellow-orange coloration (Mandarina) and the other of purple coloration (Vigor), through measurements of chemical parameters and color in pulp, antioxidant activity, total phenolic compounds, and betalain content. Considering the thermolability of betalains and their potential applications in food, the thermal stability and activation energy of betacyanins from Vigor variety and betaxanthins from the Mandarina variety were also evaluated and compared with those from beetroot, the main source of betalains. Results for chemical characterization agreed with previous prickly pear reports of other regions, while the thermal degradation kinetics of betalains showed a first-order degradation pattern with respect to time and temperature treatment. Betacyanins from Vigor prickly pear showed similar thermal stability to those from beetroot, which was reflected in similar values of activation energy, while betaxanthins from Mandarina prickly pear showed a higher stability, and therefore a higher activation energy, than those from beetroot. Based on the results, the prickly pear varieties used in this study can be considered as a good source of betalains with potential applications in food and, in addition, the methodology for the evaluation of thermostability can be used to compare the stability of betalains from different sources in a temperature range of 50-90°C. PRACTICAL APPLICATION: The varieties of prickly pear used in this study can be considered a good source of red-purple and yellow-orange easily extractable pigments. In addition, we report a methodology that can be used for the evaluation of the thermal stability of these pigments and to compare this stability between different plant sources. Gaining knowledge on betalain thermal stability will make it possible to propose specific applications, for example, in processed foods requiring different pigment stabilities.
Collapse
Affiliation(s)
| | - Angélica Román-Guerrero
- Department of Biotechnology, Universidad Autónoma Metropolitana, Iztapalapa Mexico City, Mexico
| | - Arturo Navarro-Ocaña
- Department of Food and Biotechnology, Universidad Nacional Autónoma de México, Coyoacán Mexico City, Mexico
| | - Darío R Gómez-Linton
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa Mexico City, Mexico
| | | | | | - Roberto Arreguín-Espinosa
- Department of Biomacromolecule Chemistry, Universidad Nacional Autónoma de México, Coyoacán Mexico City, Mexico
| | - Laura J Pérez-Flores
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa Mexico City, Mexico
| |
Collapse
|
10
|
Sokolova DV. Genetic diversity of the table beet (<I>Beta</I> L.) collection at VIR as a potential source for breeding (a review). PROCEEDINGS ON APPLIED BOTANY, GENETICS AND BREEDING 2022. [DOI: 10.30901/2227-8834-2022-4-239-250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review presents brief information about the history of the table beet (Beta vulgaris L. subsp. vulgaris var. conditiva Alef.) collection at the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), its composition, research trends, and significance for domestic breeding. The collection started in 1924 with Vavilov’s collecting activities. Currently, the collection consists of 2512 accessions; the table beet variety is represented by 461 accessions from 45 countries, collected in numerous expeditions, obtained from foreign genebanks through germplasm exchange and seed requests, received from domestic and foreign breeders, plus materials developed by VIR researchers. Table beet is an economically important, high-yielding, ubiquitous crop that has a wide cultivation area and is a valuable biochemical food product with beneficial effects on human health.The information is provided on the genetic diversity of VIR’s table beet collection, including current trends of its study and use in breeding. Characteristics of table beet accessions available in the collection, their morphological features and value, and the names of accessions from different trait groups and genetic sources are described. Presently, 125 cultivars and 38 F1 hybrids of table beet are listed in the State Register of Breeding Achievements of the Russian Federation, 70% of which are products of domestic breeding.
Collapse
Affiliation(s)
- D. V. Sokolova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources
| |
Collapse
|
11
|
Kumar G, Upadhyay S, Yadav DK, Malakar S, Dhurve P, Suri S. Application of ultrasound technology for extraction of color pigments from plant sources and their potential bio‐functional properties: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gaurav Kumar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Srishti Upadhyay
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Dhiraj Kumar Yadav
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Santanu Malakar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
- Department of Food Technology Rajiv Gandhi University Doimukh India
| | - Priyanka Dhurve
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Shweta Suri
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
- Amity Institute of Food Technology (AIFT) Amity University Uttar Pradesh Noida India
| |
Collapse
|
12
|
Sarker U, Ercisli S. Salt Eustress Induction in Red Amaranth ( Amaranthus gangeticus) Augments Nutritional, Phenolic Acids and Antiradical Potential of Leaves. Antioxidants (Basel) 2022; 11:antiox11122434. [PMID: 36552642 PMCID: PMC9774578 DOI: 10.3390/antiox11122434] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Earlier researchers have highlighted the utilization of salt eustress for boosting the nutritional and phenolic acid (PA) profiles and antiradical potential (ARP) of vegetables, which eventually boost food values for nourishing human diets. Amaranth is a rapidly grown, diversely acclimated C4 leafy vegetable with climate resilience and salinity resistance. The application of salinity eustress in amaranth has a great scope to augment the nutritional and PA profiles and ARP. Therefore, the A. gangeticus genotype was evaluated in response to salt eustress for nutrients, PA profile, and ARP. Antioxidant potential and high-yielding genotype (LS1) were grown under four salt eustresses (control, 25 mM, 50 mM, 100 mM NaCl) in a randomized completely block design (RCBD) in four replicates. Salt stress remarkably augmented microelements, proximate, macro-elements, phytochemicals, PA profiles, and ARP of A. gangeticus leaves in this order: control < low sodium chloride stress (LSCS) < moderate sodium chloride stress (MSCS) < severe sodium chloride stress (SSCS). A large quantity of 16 PAs, including seven cinnamic acids (CAs) and nine benzoic acids (BAs) were detected in A. gangeticus genotypes. All the microelements, proximate, macro-elements, phytochemicals, PA profiles, and ARP of A. gangeticus under MSCS, and SSCS levels were much higher in comparison with the control. It can be utilized as preferential food for our daily diets as these antiradical compounds have strong antioxidants. Salt-treated A. gangeticus contributed to excellent quality in the end product in terms of microelements, proximate, macro-elements, phytochemicals, PA profiles, and ARP. A. gangeticus can be cultivated as an encouraging substitute crop in salt-affected areas of the world.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Correspondence:
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
13
|
Zhang L, Liu X, Li J, Meng Y, Zhao GR. Improvement of betanin biosynthesis in Saccharomyces cerevisiae by metabolic engineering. Synth Syst Biotechnol 2022; 8:54-60. [DOI: 10.1016/j.synbio.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
|
14
|
Ghosh S, Sarkar T, Chakraborty R, Shariati MA, Simal-Gandara J. Nature's palette: An emerging frontier for coloring dairy products. Crit Rev Food Sci Nutr 2022; 64:1508-1552. [PMID: 36066466 DOI: 10.1080/10408398.2022.2117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumers all across the world are looking for the most delectable and appealing foods, while also demanding products that are safer, more nutritious, and healthier. Substitution of synthetic colorants with natural colorants has piqued consumer and market interest in recent years. Due to increasing demand, extensive research has been conducted to find natural and safe food additives, such as natural pigments, that may have health benefits. Natural colorants are made up of a variety of pigments, many of which have significant biological potential. Because of the promising health advantages, natural colorants are gaining immense interest in the dairy industry. This review goes over the use of various natural colorants in dairy products which can provide desirable color as well as positive health impacts. The purpose of this review is to provide an in-depth look into the field of food (natural or synthetic) colorants applied in dairy products as well as their potential health benefits, safety, general trends, and future prospects in food science and technology. In this paper, we listed a plethora of applications of natural colorants in various milk-based products.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Mohammad Ali Shariati
- Research Department, K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, E32004, Spain
| |
Collapse
|
15
|
Arunachalam V, Salgaonkar DC, Kevat NV, Walawalkar BV, Das B. Quantification of Betacyanin content variation of amaranth varieties by an Android App, Colorimeter, and Infrared spectroscopy. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Sarker U, Iqbal MA, Hossain MN, Oba S, Ercisli S, Muresan CC, Marc RA. Colorant Pigments, Nutrients, Bioactive Components, and Antiradical Potential of Danta Leaves ( Amaranthus lividus). Antioxidants (Basel) 2022; 11:1206. [PMID: 35740102 PMCID: PMC9219785 DOI: 10.3390/antiox11061206] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
In the Indian subcontinent, danta (stems) of underutilized amaranth are used as vegetables in different culinary dishes. At the edible stage of the danta, leaves are discarded as waste in the dustbin because they are overaged. For the first time, we assessed the colorant pigments, bioactive components, nutrients, and antiradical potential (AP) of the leaves of danta to valorize the by-product (leaf) for antioxidant, nutritional, and pharmacological uses. Leaves of danta were analyzed for proximate and element compositions, colorant pigments, bioactive constituents, AP (DPPH), and AP (ABTS+). Danta leaves had satisfactory moisture, protein, carbohydrates, and dietary fiber. The chosen danta leaves contained satisfactory magnesium, iron, calcium, potassium, manganese, copper, and zinc; adequate bioactive pigments, such as betacyanins, carotenoids, betalains, β-carotene, chlorophylls, and betaxanthins; and copious bioactive ascorbic acid, polyphenols, flavonoids, and AP. The correlation coefficient indicated that bioactive phytochemicals and colorant pigments of the selected danta leaves had good AP as assessed via ABTS+ and DPPH assays. The selected danta leaves had good ROS-scavenging potential that could indicate massive possibilities for promoting the health of the nutraceutical- and antioxidant-deficit public. The findings showed that danta leaves are a beautiful by-product for contributing as an alternate origin of antioxidants, nutrients, and bioactive compounds with pharmacological use.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.A.I.); (M.N.H.)
| | - Md. Asif Iqbal
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.A.I.); (M.N.H.)
| | - Md. Nazmul Hossain
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.A.I.); (M.N.H.)
| | - Shinya Oba
- Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan;
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey;
| | - Crina Carmen Muresan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
17
|
Ríos‐Moreno G, Cruz‐Reyes I, Vargas‐Rodríguez P, Félix‐Flores MG, Quiñones‐Reyes G, Lozada‐Rodríguez L. Mathematical modeling of infrared drying of red pitaya pulp (
Stenocereus queretaroensis
) for potential use of its betalains. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Gustavo Ríos‐Moreno
- Universidad Autónoma de Zacatecas Unidad Académica de Ciencias Químicas Zacatecas Mexico
| | - Ivan Cruz‐Reyes
- Universidad Autónoma de Zacatecas Unidad Académica de Ciencias Químicas Zacatecas Mexico
| | | | | | | | | |
Collapse
|
18
|
Studies on the Storage Stability of Betacyanins from Fermented Red Dragon Fruit (Hylocereus polyrhizus) Drink Imparted by Xanthan Gum and Carboxymethyl Cellulose. Food Chem 2022; 393:133404. [DOI: 10.1016/j.foodchem.2022.133404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/19/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
|
19
|
Oulabbas A, Abderrahmane S, Salcı A, Geçibesler İH, Solmaz R. Adsorption and Corrosion Inhibition of Cactus cladode Extract and Effect of KI Addition on Mild Steel in 0.5 M H
2
SO
4. ChemistrySelect 2022. [DOI: 10.1002/slct.202200212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Amel Oulabbas
- Laboratoire d'Ingénierie des Surfaces (LIS) Université Badji Mokhtar- Annaba (Algérie)
- Research Center In industrial technologies CRTI P.O.Box 64, Cheraga 16014 Algiers Algeria
| | - Sihem Abderrahmane
- Laboratoire d'Ingénierie des Surfaces (LIS) Université Badji Mokhtar- Annaba (Algérie)
| | - Abdullah Salcı
- Bingöl University Science and Letters Faculty Chemistry Department 12000 Bingöl Turkey
| | - İbrahim Halil Geçibesler
- Bingöl University Health Sciences Faculty Occupational Health and Safety Department Bingöl 12000 Turkey
| | - Ramazan Solmaz
- Bingöl University Health Sciences Faculty Occupational Health and Safety Department Bingöl 12000 Turkey
| |
Collapse
|
20
|
Soares DM, Gonçalves LP, Machado CO, Esteves LC, Stevani CV, Oliveira CC, Dörr FA, Pinto E, Adachi FM, Hotta CT, Bastos EL. Reannotation of Fly Amanita l-DOPA Dioxygenase Gene Enables Its Cloning and Heterologous Expression. ACS OMEGA 2022; 7:16070-16079. [PMID: 35571802 PMCID: PMC9097196 DOI: 10.1021/acsomega.2c01365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The l-DOPA dioxygenase of Amanita muscaria (AmDODA) participates in the biosynthesis of betalain- and hygroaurin-type natural pigments. AmDODA is encoded by the dodA gene, whose DNA sequence was inferred from cDNA and gDNA libraries almost 30 years ago. However, reports on its heterologous expression rely on either the original 5'-truncated cDNA plasmid or artificial gene synthesis. We provide unequivocal evidence that the heterologous expression of AmDODA from A. muscaria specimens is not possible by using the coding sequence previously inferred for dodA. Here, we rectify and reannotate the full-length coding sequence for AmDODA and express a 205-aa His-tagged active enzyme, which was used to produce the l-DOPA hygroaurin, a rare fungal pigment. Moreover, AmDODA and other isozymes from bacteria were submitted to de novo folding using deep learning algorithms, and their putative active sites were inferred and compared. The wide catalytic pocket of AmDODA and the presence of the His-His-His and His-His-Asp motifs can provide insight into the dual cleavage of l-DOPA at positions 2,3 and 4,5 as per the mechanism proposed for nonheme dioxygenases.
Collapse
Affiliation(s)
- Douglas
M. M. Soares
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
| | - Letícia
C. P. Gonçalves
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
| | - Caroline O. Machado
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
| | - Larissa C. Esteves
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
| | - Cassius V. Stevani
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
| | - Carla C. Oliveira
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
| | - Felipe A. Dörr
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
| | - Ernani Pinto
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
- Centro
de Energia Nuclear na Agricultura, Universidade
de São Paulo, 13400-970 Piracicaba, São Paulo Brazil
| | - Flávia M.
M. Adachi
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
| | - Carlos T. Hotta
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, São Paulo Brazil
| | - Erick L. Bastos
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São
Paulo, São Paulo Brazil
| |
Collapse
|
21
|
Evaluation of three methods for betanin quantification in fruits from cacti. MethodsX 2022; 9:101746. [PMID: 35707638 PMCID: PMC9189195 DOI: 10.1016/j.mex.2022.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
Abstract
In México, production of cacti fruits has increased. These fruits have high concentration of betalains (pigments), and market has increased interest in food with natural ingredients. In the near future, a sustainable method for betanin quantification in cacti fruits for rural communities will be necessary. Betanin in pulp of garambullo (Myrtillocactus geometrizan), chico fruit (Pachycereus weber), jiotilla (Escontria chiotilla) and pitaya de mayo (Stenocereus pruinosus) were quantified using three different analytical methods. The techniques were of Spectrophotometry UV-Vis (SCC), High-Performance Liquid Chromatography (HPLC) and Spectrophotometry technique using Molar Extinction Coefficient (SEC). The accuracy and intermediate precision were evaluated in SEC, SCC, and HPLC with the four cacti´s fruit. The means betanin concentration in the pulps were 0.68±0.05 (mg/g dry weight) garambullo, 1.28±0.06 (mg/g dry weight) chico fruit, 1.84±0.34 jiotilla and 2.0±0.25 pitaya de mayo (mg/g dry weight). The concentration of betanin in garambullo pulp measured by the three methods did not differ significantly (P >0.05). In this case, SEC method represents the best option to reduce costs, time and solvents in this way this method is aligned with green chemistry. In the three methods, coefficient of variation between measurements obtained are below 15%.Robust method to quantify betanin and evaluate intermediate precision Validation parameters such as LOD, LOQ, accuracy, intermediate precision, and HorRat were considered The developed method enriches the valorization of underutilized national agricultural sources of Mexico
Collapse
|
22
|
Sarker U, Oba S, Ercisli S, Assouguem A, Alotaibi A, Ullah R. Bioactive Phytochemicals and Quenching Activity of Radicals in Selected Drought-Resistant Amaranthus tricolor Vegetable Amaranth. Antioxidants (Basel) 2022; 11:antiox11030578. [PMID: 35326227 PMCID: PMC8944989 DOI: 10.3390/antiox11030578] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/01/2023] Open
Abstract
Leafy vegetables are susceptible to drought stress. Amaranthus tricolor vegetables are resistant to abiotic stress, including drought, and are a source of ample natural phytochemicals of interest to the food industry due to their benefits to consumers’ health. Hence, the selected drought-resistant amaranth genotypes were evaluated for phytochemicals and antioxidant activity in an RCBD study with three replicates. The selected drought-resistant amaranth accessions contained ample carbohydrates, protein, moisture, and dietary fiber. We noticed many macroelements and microelements including iron, copper, manganese, zinc, sodium, molybdenum, boron, potassium, calcium, magnesium, phosphorus, and sulfur; adequate phytopigments, including betacyanins, betalains, betaxanthins, carotenoids, and chlorophylls; plentiful bioactive phytochemicals, including ascorbic acid, flavonoids, polyphenols, and beta-carotene; and antioxidant potential in the selected drought-resistant amaranth accessions. The drought-resistant amaranth accessions VA14 and VA16 were proven to have high ascorbic acid, beta-carotene, and polyphenol levels. The drought-resistant accessions VA12 and VA14 had high flavonoid levels. The drought-resistant accessions VA3, VA14, and VA16 had high AC both in regard to both DPPH and ABTS+. These drought-resistant accessions, VA3, VA14, and VA16, can be utilized as high-yielding varieties with antioxidant profiles for purposes of drinks. The correlation study revealed that bioactive phytopigments and phytochemicals of amaranth accessions had good free radical quenching capacity against 2,2′-azino-bis (3-ethylbenzothiazo-6-sulfonic acid) and diphenyl-1-picrylhydrazyl, equivalent to Trolox. It was revealed in the present study that these drought-resistant accessions contain plentiful proximate, nutraceuticals, phytopigments, bioactive phytochemicals, and antioxidant potentiality. Their drought resistance and quenching of ROS offer huge prospects for the promotion of health benefits and the feeding of communities in drought-prone semiarid and arid areas of the globe, especially those deficient in nutraceuticals, phytopigments, and antioxidants.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Correspondence:
| | - Shinya Oba
- Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan;
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, TR-25240 Erzurum, Turkey;
| | - Amine Assouguem
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, Fez 2202, Morocco;
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
23
|
Khademi M, Nazarian-Firouzabadi F, Ismaili A. Expression of apple MdMYB10 transcription factor in sugar beet with a screenable marker role and antimicrobial activity. 3 Biotech 2022; 12:52. [PMID: 35127307 PMCID: PMC8801000 DOI: 10.1007/s13205-022-03120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 01/14/2022] [Indexed: 02/03/2023] Open
Abstract
Selection of transgenic plants by using genes encoding screenable markers of plant origin with health benefit properties, such as anthocyanin is an important aim in plant genetic engineering. In this study, Malus domestica MYB10 (MdMYB10) gene, was used for Agrobacterium tumefaciens-mediated transformation of two SBS-02 and SBS-04 sugar beet lines. The impact of different light regimes on plant tissue culture from a combination of light, dark/light and dark was investigated. The results of this study showed that the MdMYB10 gene was successfully integrated into the selected purple transgenic lines, suggesting that the expression of MdMYB10 gene in sugar beet shoots can be used as a screenable markers for transformation, possibly replacing antibiotic resistant genes. Furthermore, the results of the antibacterial activity of transgenic plants extracts showed that the total extract obtained from transgenic lines significantly (P < 0.01) inhibited the growth and development of Enterococcus faecium and Enterococcus faecalis bacteria compared to the non-transgenic plants. The results of this study showed that the combination of betalain with vancomycin demonstrated a synergistic antimicrobial effect, also, suggesting that the expression of MdMYB10 may play a dual role by accumulating betalain and exhibiting a screenable markers function. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03120-7.
Collapse
Affiliation(s)
- Mitra Khademi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box: 465, Khorramabad, Iran
| | - Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box: 465, Khorramabad, Iran
| | - Ahmad Ismaili
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box: 465, Khorramabad, Iran
| |
Collapse
|
24
|
Carreón-Hidalgo JP, Franco-Vásquez DC, Gómez-Linton DR, Pérez-Flores LJ. Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Res Int 2022; 151:110821. [PMID: 34980373 DOI: 10.1016/j.foodres.2021.110821] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/20/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022]
Abstract
Betalains are plant pigments with functional properties used mainly as food dyes. However, they have been shown to be unstable to different environmental factors. This paper provides a review of (1) Betalain plant sources within several plant families such as Amaranthaceae, Basellaceae, Cactaceae, Portulacaceae, and Nyctaginaceae, (2) The biosynthesis pathway of betalains for both betacyanins and betaxanthins, (3) Betalain extraction process, including non-conventional technologies like microwave-assisted, ultrasound-assisted, and pulsed electrical field extraction, (4) Factors affecting their stability, mainly temperature, water activity, light incidence, as well as oxygen concentration, metals, and the presence of antioxidants, as well as activation energy as a mean to assess stability, and novel food-processing technologies able to prevent betalain degradation, (5) Methods to increase shelf life, mainly encapsulation by spray drying, freeze-drying, double emulsions, ionic gelation, nanoliposomes, hydrogels, co-crystallization, and unexplored methods such as complex coacervation and electrospraying, (6) Biological properties of betalains such as their antioxidant, hepatoprotective, antitumoral, and anti-inflammatory activities, among others, and (7) Applications in foods and other products such as cosmetics, textiles and solar cells, among others. Additionally, study perspectives for further research are provided for each section.
Collapse
Affiliation(s)
| | | | - Darío R Gómez-Linton
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa, CP 09340 Mexico City, Mexico
| | - Laura J Pérez-Flores
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa, CP 09340 Mexico City, Mexico.
| |
Collapse
|
25
|
VELLANO P, MORAIS R, SOARES C, SOUZA ARD, SANTOS AD, MARTINS GA, DAMIANI C. Extraction and stability of pigments obtained from pitaya bark flour (Hylocereus costaricensis). FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.25421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Rukmi Putri WD, Ramadhani Nurbaya S, Sofia Murtini E. Microencapsulation of Betacyanin Extract from Red Dragon Fruit Peel. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2021. [DOI: 10.12944/crnfsj.9.3.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this research was evaluated the effect of type and ratio of coating materials on characteristics of betacyanin extract microencapsulated by freeze drying. The combination was consisted of maltodextrin+gum arabic (MD+GA), maltodextrin+carboxymethyl cellulose (MD+CMC), maltodextrin+carrageenan (MD+C), and maltodextrin (MD) with ratio 3:1 and 4:1 (w/v) to the extract. Betacyanin microcapsules was analyzed for its characteristics, including encapsulation efficiency and microstructure. The result showed type and ratio of coating materials significantly influenced moisture content, color, and bulk density of the microcapsules (p<0,05). MD+GA coating material had the highest value of encapsulation efficiency (99.41 %). Microstructure analysis of the microcapsules showed it had amorphous shape. Betacyanin microcapsules from red dragon peel was potential to be natural food colorant.
Collapse
Affiliation(s)
- Widya Dwi Rukmi Putri
- 1Agricultural Product Technology Department, Faculty of Agricultural Technology, Universitas Brawijaya, Malang City, East Java, Indonesia
| | - Syarifa Ramadhani Nurbaya
- 2Food Technology Department, Faculty of Science and Technology, Universitas Muhammadiyah Sidoarjo, Sidoarjo City, East Java, Indonesia
| | - Erni Sofia Murtini
- 1Agricultural Product Technology Department, Faculty of Agricultural Technology, Universitas Brawijaya, Malang City, East Java, Indonesia
| |
Collapse
|
27
|
Akan S, Tuna Gunes N, Erkan M. Red beetroot: Health benefits, production techniques, and quality maintaining for food industry. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Selen Akan
- Faculty of Agriculture Department of Horticulture Ankara University Ankara Turkey
| | - Nurdan Tuna Gunes
- Faculty of Agriculture Department of Horticulture Ankara University Ankara Turkey
| | - Mustafa Erkan
- Faculty of Agriculture Department of Horticulture Akdeniz University Antalya Turkey
| |
Collapse
|
28
|
Kumorkiewicz-Jamro A, Świergosz T, Sutor K, Spórna-Kucab A, Wybraniec S. Multi-colored shades of betalains: recent advances in betacyanin chemistry. Nat Prod Rep 2021; 38:2315-2346. [PMID: 34515277 DOI: 10.1039/d1np00018g] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Covering: 2001 to 2021Betacyanins cover a class of remarkable natural red-violet plant pigments with prospective chemical and biological properties for wide-ranging applications in food, pharmaceuticals, and the cosmetic industry. Betacyanins, forming the betalain pigment group together with yellow betaxanthins, have gained much attention due to the increasing social awareness of the positive impact of natural products on human health. Betalains are commercially recognized as natural food colorants with preliminarily ascertained, but to be further investigated, health-promoting properties. In addition, they exhibit a remarkable structural diversity based on glycosylated and acylated varieties. The main research directions for natural plant pigments are focused on their structure elucidation, methods of their separation and analysis, biological activities, bioavailability, factors affecting their stability, industrial applications as a plant-based food, natural colorants, drugs, and cosmetics as well as methods for high-yield production and stabilization. This review covers period of the last two decades of betacyanin research. In the first part of the review, we present an updated classification of all known betacyanins and their derivatives identified by chemical means as well as by mass spectrometric and NMR techniques. In the second part, we review the current research reports focused on the chemical properties of the pigments (decarboxylation, oxidation, conjugation, and chlorination reactions as well as the acyl group migration phenomenon) and describe the semi-synthesis of natural and artificial fluorescent betalamic acid conjugates, showing various prospective research directions.
Collapse
Affiliation(s)
- Agnieszka Kumorkiewicz-Jamro
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| | - Tomasz Świergosz
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| | - Katarzyna Sutor
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| | - Aneta Spórna-Kucab
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| | - Sławomir Wybraniec
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| |
Collapse
|
29
|
Lages LZ, Radünz M, Gonçalves BT, Silva da Rosa R, Fouchy MV, de Cássia dos Santos da Conceição R, Gularte MA, Barboza Mendonça CR, Gandra EA. Microbiological and sensory evaluation of meat sausage using thyme (Thymus vulgaris, L.) essential oil and powdered beet juice (Beta vulgaris L., Early Wonder cultivar). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Janiszewska-Turak E, Rybak K, Grzybowska E, Konopka E, Witrowa-Rajchert D. The Influence of Different Pretreatment Methods on Color and Pigment Change in Beetroot Products. Molecules 2021; 26:3683. [PMID: 34208715 PMCID: PMC8235720 DOI: 10.3390/molecules26123683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Vegetable processing pomace contains valuable substances such as natural colors that can be reused as functional ingredients. Due to a large amount of water, they are an unstable material. The aim of our research was to assess how the pretreatment method (thermal or nonthermal) affects the properties of powders obtained from beet juice and pomace after the freeze-drying process. The raw material was steamed or sonicated for 10 or 15 min, and then squeezed into juice and pomace. Both squeezed products were freeze-dried. The content of dry substance; L*, a*, and b* color parameters; and the content of betalain pigments were analyzed. Pretreatments increased the proportion of red and yellow in the juices. Steam and ultrasound caused a significant reduction in parameter b* in the dried pomace. A significant increase in betanin in lyophilizates was observed after pretreatment with ultrasound and steam for 15 min. As a result of all experiments, dried juices and pomaces can also be used as a colorant source. However, there is higher potential with pomaces due to their additional internal substances as well as better storage properties. After a few hours, juice was sticky and not ready to use.
Collapse
Affiliation(s)
- Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences–SGGW, 02-787 Warsaw, Poland; (K.R.); (E.G.); (E.K.); (D.W.-R.)
| | | | | | | | | |
Collapse
|
31
|
Sarker U, Oba S. Color attributes, betacyanin, and carotenoid profiles, bioactive components, and radical quenching capacity in selected Amaranthus gangeticus leafy vegetables. Sci Rep 2021; 11:11559. [PMID: 34079029 PMCID: PMC8172918 DOI: 10.1038/s41598-021-91157-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 05/21/2021] [Indexed: 02/04/2023] Open
Abstract
Four selected A. gangeticus accessions were evaluated in terms of color attributes, phytopigments, including betaxanthin, betacyanin, and carotenoid profiles, proximate, minerals, and antioxidant capacity (AC). Color attributes, phytopigments, proximate, minerals, and AC of A. gangeticus significantly varied across the accessions. For the first time, we identified four betacyanin compounds, such as amaranthine, iso-amaranthine, betanin, iso-betanin. We also identified five carotenoid compounds zeaxanthin neoxanthin, violaxanthin, lutein, and pro-vitamin A in A. gangeticus accessions. A. gangeticus contained adequate carbohydrates, protein, moisture, and dietary fiber. We found adequate iron, manganese, copper, zinc, sodium, molybdenum, boron, potassium, calcium, magnesium, phosphorus, sulfur in A. gangeticus accessions. The accessions LS7 and LS9 had considerable color attributes, betacyanin, and carotenoid compounds, proximate, nutraceuticals, betalain, betaxanthin, and AC that could be used as preferable potent antioxidant varieties for consumption as sources of phytopigments, nutraceuticals, and antioxidants. The correlation study revealed that antioxidant constituents of A. gangeticus accession were strongly associated with AC. The identified components of betacyanin and carotenoid in A. gangeticus demands detail pharmacological study. The baseline data on color attributes, betacyanin, and carotenoid profiles, betaxanthins, betalains, and AC obtained in this present study could contribute to the scientific evaluation of pharmacologically active principles in A. gangeticus.
Collapse
Affiliation(s)
- Umakanta Sarker
- grid.443108.a0000 0000 8550 5526Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Shinya Oba
- grid.256342.40000 0004 0370 4927Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, Japan
| |
Collapse
|
32
|
Kusznierewicz B, Mróz M, Koss-Mikołajczyk I, Namieśnik J. Comparative evaluation of different methods for determining phytochemicals and antioxidant activity in products containing betalains - Verification of beetroot samples. Food Chem 2021; 362:130132. [PMID: 34082297 DOI: 10.1016/j.foodchem.2021.130132] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 01/03/2023]
Abstract
This study presents methods that can be used to assess the health quality of products containing betalains. The paper compares and verifies data on the phytochemical composition of three different pigmented beetroot cultivars using spectrophotometric, HPLC-DAD, HPTLC and LC-Q-Orbitrap-HRMS techniques. Additionally, we compared the total antioxidant activity in both the cell-free and cellular systems. Betalain contribution to antioxidant activity was also determined using post-column derivatization and it was found that in the case of red beetroot it is about 50%. Photometric measurements are recommended for a simple and inexpensive analysis of the total betacyanin and betaxanthin content. Liquid chromatography techniques produced more precise information on phytochemical composition in the tested samples. The combination of liquid chromatography with high-resolution mass spectrometry produced the largest amount of quantitative and qualitative data; in beetroot samples sixty-four phytochemicals have been identified therefore, this approach is recommended for more detailed metabolomics studies.
Collapse
Affiliation(s)
- Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland.
| | - Marika Mróz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland
| | - Izabela Koss-Mikołajczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland
| |
Collapse
|
33
|
Sadowska-Bartosz I, Bartosz G. Biological Properties and Applications of Betalains. Molecules 2021; 26:2520. [PMID: 33925891 PMCID: PMC8123435 DOI: 10.3390/molecules26092520] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Betalains are water-soluble pigments present in vacuoles of plants of the order Caryophyllales and in mushrooms of the genera Amanita, Hygrocybe and Hygrophorus. Betalamic acid is a constituent of all betalains. The type of betalamic acid substituent determines the class of betalains. The betacyanins (reddish to violet) contain a cyclo-3,4-dihydroxyphenylalanine (cyclo-DOPA) residue while the betaxanthins (yellow to orange) contain different amino acid or amine residues. The most common betacyanin is betanin (Beetroot Red), present in red beets Beta vulgaris, which is a glucoside of betanidin. The structure of this comprehensive review is as follows: Occurrence of Betalains; Structure of Betalains; Spectroscopic and Fluorescent Properties; Stability; Antioxidant Activity; Bioavailability, Health Benefits; Betalains as Food Colorants; Food Safety of Betalains; Other Applications of Betalains; and Environmental Role and Fate of Betalains.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland;
| |
Collapse
|
34
|
Fathordoobady F, Jarzębski M, Pratap-Singh A, Guo Y, Abd-Manap Y. Encapsulation of betacyanins from the peel of red dragon fruit (Hylocereus polyrhizus L.) in alginate microbeads. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106535] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Nirmal NP, Mereddy R, Maqsood S. Recent developments in emerging technologies for beetroot pigment extraction and its food applications. Food Chem 2021; 356:129611. [PMID: 33838608 DOI: 10.1016/j.foodchem.2021.129611] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 11/29/2022]
Abstract
Beetroot is well known for its deep red-purple colouring pigments called betalains. Betalains also found its application in the preparation of functional foods and drinks. Therefore, extraction of pigments with higher recovery and stability is the prime need for the industry. Conventional extraction techniques such as maceration, grinding or pressing have reported low yield of betalains and required large volume of solvent and energy. On the other hand, emerging technologies such as ultrasound, microwave and pulse electric field techniques are highly efficient processes and can achieve higher recovery. In this regard, this review provides an in-depth discussion on the various extraction methods and factors affecting the stability of betalains using conventional and emerging technologies. The recent applications of pigments in various food systems are also presented. Finally, challenges and future prospects of extraction and application of beetroot pigment have been identified and discussed.
Collapse
Affiliation(s)
- Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, salaya, Nakhon Pathom 73170, Thailand
| | - Ram Mereddy
- Queensland Department of Agriculture and Fisheries, 39 Kessels Road, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Sajid Maqsood
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
36
|
Sharma M, Usmani Z, Gupta VK, Bhat R. Valorization of fruits and vegetable wastes and by-products to produce natural pigments. Crit Rev Biotechnol 2021; 41:535-563. [PMID: 33634717 DOI: 10.1080/07388551.2021.1873240] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthetic pigments from petrochemicals have been extensively used in a wide range of food products. However, these pigments have adverse effects on human health that has rendered it obligatory to the scientific community in order to explore for much safer, natural, and eco-friendly pigments. In this regard, exploiting the potential of agri-food wastes presumes importance, extracted mainly by employing green processing and extraction technologies. Of late, pigments market size is growing rapidly owing to their extensive uses. Hence, there is a need for sustainable production of pigments from renewable bioresources. Valorization of vegetal wastes (fruits and vegetables) and their by-products (e.g. peels, seeds or pomace) can meet the demands of natural pigment production at the industrial levels for potential food, pharmaceuticals, and cosmeceuticals applications. These wastes/by-products are a rich source of natural pigments such as: anthocyanins, betalains, carotenoids, and chlorophylls. It is envisaged that these natural pigments can contribute significantly to the development of functional foods as well as impart rich biotherapeutic potential. With a sustainability approach, we have critically reviewed vital research information and developments made on natural pigments from vegetal wastes, greener extraction and processing technologies, encapsulation techniques and potential bioactivities. Designed with an eco-friendly approach, it is expected that this review will benefit not only the concerned industries but also be of use to health-conscious consumers.
Collapse
Affiliation(s)
- Minaxi Sharma
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), Tallinn, Estonia
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, UK.,Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, UK
| | - Rajeev Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
37
|
Sandate-Flores L, Rodríguez-Rodríguez J, Rostro-Alanis M, Urbina JAS, Mayolo-Deloisa K, Melchor-Martínez EM, Sosa-Hernández JE, Parra-Saldívar R, Iqbal HM. Validation of aqueous two-phase extraction method. MethodsX 2021; 8:101421. [PMID: 34430316 PMCID: PMC8374489 DOI: 10.1016/j.mex.2021.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/17/2021] [Indexed: 02/08/2023] Open
Abstract
Nowadays, consumer interest in food with natural ingredients has increased. This need has led to the research of new sources and green extraction methods. Betalains are compounds responsible for giving color to cacti fruits. The aim is to obtain low-sugar betacyanins extracts from jiotilla Escontria chiotilla using aqueous two-phase systems (ATPS) to color food with the extract. The effect of principal parameters of ATPS (Ethyl alcohol- KH2PO4/K2HPO4) as tie-line length (TL;40,50 and 70), phase volume ratios (Vr; 1 and 3) on the partitioning of betacyanins, betaxanthins, total sugars, reducing sugars, and antioxidant activity in the extract was evaluated. The yields were determined from the top and bottom phases of the aforementioned parameters. Multivariate analysis of variance (MANOVA, α = 0.05) showed that TLL and Vr were statistically significant (P < 0.05). The lowest bottom sugar yield (25.78 ± 3.14%) corresponds to TLL = 40, Vr = 3. Under these conditions, the corresponding value for betacyanins yield is 62.98±4.52%. For the first time, the ATPS was used to extract betacyanins from cactus fruit.•Escontria chiotilla, as a biological source, contained a high percent of betalains•Aqueous two-phase systems (ATPS) was statistically optimized•The developed method enriches the valorization of environmentally related plants waste materials.
Collapse
Affiliation(s)
| | | | | | - Jorge Alejandro Santiago Urbina
- Universidad Tecnológica de los Valles Centrales de Oaxaca, Avenida Universidad S/N, San Pablo Huixtepec, Zimatlán de Álvarez, Oaxaca 71270, Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849 Mexico
| | | | | | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849 Mexico
- Corresponding authors.
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849 Mexico
- Corresponding authors.
| |
Collapse
|
38
|
Sarker U, Hossain MN, Iqbal MA, Oba S. Bioactive Components and Radical Scavenging Activity in Selected Advance Lines of Salt-Tolerant Vegetable Amaranth. Front Nutr 2020; 7:587257. [PMID: 33330589 PMCID: PMC7734134 DOI: 10.3389/fnut.2020.587257] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Four selected advance lines of salt-tolerant vegetable amaranth were evaluated for proximate, nutraceuticals, pigments, phytochemicals, and antioxidants components antioxidants activity in completely randomized block design (RCBD) design in three replicates. Salt-tolerant vegetable amaranth contained adequate carbohydrates, protein, moisture, and dietary fiber. The remarkable contents of iron, manganese, copper, zinc, sodium, molybdenum, boron, potassium, calcium, magnesium, phosphorus, sulfur, betacyanins, betalains, betaxanthins, chlorophylls, ascorbic acid, polyphenols, flavonoids, and antioxidant potentiality were found in salt-tolerant vegetable amaranth. The genotypes LS7 and LS9 had abundant proximate, nutraceuticals, pigments, phytochemicals, and antioxidants compared to the genotypes LS3 and LS5. Salt-tolerant vegetable amaranth demonstrated high content of flavonoid compounds including flavonols such as rutin, kaempferol, isoquercetin, myricetin, hyperoside, and quercetin; flavanol, such as catechin; flavone such as apigenin; and flavanone, such as naringenin. For the first time, we identified one flavonol such as myricetin; one flavanol, such as catechin; one flavone such as apigenin; and one flavanone, such as naringenin in salt-tolerant vegetable amaranth. Across six flavonols, rutin and quercetin were identified as the most prominent compounds followed by isoquercetin and myricetin in selected salt-tolerant vegetable amaranths. Across the genotypes, LS7 exhibited the highest flavonols such as rutin, kaempferol, isoquercetin, myricetin, hyperoside, and quercetin as well as the highest flavanols, such as catechin; flavones such as apigenin; and flavanones, such as naringenin. It revealed from the correlation study that antioxidant components of salt-tolerant vegetable amaranth genotypes exhibited good radical quenching capacity of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl equivalent to Trolox. The two genotypes LS7 and LS9 of vegetable amaranth containing excellent sources of proximate, nutraceuticals, pigments, phytochemicals, and antioxidants components could be used as potent antioxidants to attaining nutrients and antioxidant sufficiency in the saline prone area of the globe. We can extract colorful juice from the genotypes LS7 and LS9 as drink purposes for consuming the nutraceuticals and antioxidant deficient community in the saline prone area around the world. However, further detail experimentation is required to confirm the standardization and stabilization of functional components of vegetable amaranth for extraction of juice as drinks.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Nazmul Hossain
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Asif Iqbal
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Shinya Oba
- Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
39
|
Rahayuningsih E, Setiawan FA, Rahman ABK, Siahaan T, Petrus HTBM. Microencapsulation of betacyanin from red dragon fruit ( Hylocereus polyrhizus) peels using pectin by simple coacervation to enhance stability. Journal of Food Science and Technology 2020; 58:3379-3387. [PMID: 34366455 DOI: 10.1007/s13197-020-04910-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 10/23/2022]
Abstract
Betacyanin is a red natural dye pigment widely used in food products. However, the pigment is also unstable and easily degraded by temperature during storage and food processing. This research aims to increase the stability of betacyanin obtained from dragon fruit peels using pectin as a wall medium via the coacervation method. Due to the efficiency and shell integrity, the coacervation method was selected instead of spray drying to enhance betacyanin's stability. Coacervation was conducted in a three-necked round-bottomed flask fitted with a mercury-sealed stirrer and reflux condenser. An accelerated stability test was conducted at 80 °C and 100 °C for 30 min and considered completed after obtaining a stable absorbance. Two full factorials, three-level design, for 80 °C and 100 °C, were analyzed by Response Surface Methodology using Minitab® 19. The core/wall ratio, agitation speed, and pH were the continuous variables, with temperature as the categorical variables. The models were yielded high R-square and low coefficient of variance on the validation process. Simple coacervation is selected because of a superior method such as simplicity, low-cost, high efficiency, and high shell integrity.
Collapse
Affiliation(s)
- Edia Rahayuningsih
- Department of Chemical Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2 Kampus UGM, Yogyakarta, 55281 Indonesia
| | - Felix Arie Setiawan
- Department of Chemical Engineering, Universitas Jember, Jalan Kalimantan No. 37 Kampus Tegalboto, East Java, 68121 Indonesia
| | - Ahmad Badawi Kasyfur Rahman
- Department of Chemical Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2 Kampus UGM, Yogyakarta, 55281 Indonesia
| | - Tomimoto Siahaan
- Department of Chemical Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2 Kampus UGM, Yogyakarta, 55281 Indonesia
| | - Himawan Tri Bayu Murti Petrus
- Department of Chemical Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2 Kampus UGM, Yogyakarta, 55281 Indonesia
| |
Collapse
|
40
|
Skalicky M, Kubes J, Shokoofeh H, Tahjib-Ul-Arif M, Vachova P, Hejnak V. Betacyanins and Betaxanthins in Cultivated Varieties of Beta vulgaris L. Compared to Weed Beets. Molecules 2020; 25:molecules25225395. [PMID: 33218115 PMCID: PMC7698878 DOI: 10.3390/molecules25225395] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022] Open
Abstract
There are 11 different varieties of Beta vulgaris L. that are used in the food industry, including sugar beets, beetroots, Swiss chard, and fodder beets. The typical red coloration of their tissues is caused by the indole-derived glycosides known as betalains that were analyzed in hypocotyl extracts by UV/Vis spectrophotometry to determine the content of betacyanins (betanin) and of betaxanthins (vulgaxanthin I) as constituents of the total betalain content. Fields of beet crops use to be also infested by wild beets, hybrids related to B. vulgaris subsp. maritima or B. macrocarpa Guss., which significantly decrease the quality and quantity of sugar beet yield; additionally, these plants produce betalains at an early stage. All tested B. vulgaris varieties could be distinguished from weed beets according to betacyanins, betaxanthins or total betalain content. The highest values of betacyanins were found in beetroots ‘Monorubra’ (9.69 mg/100 mL) and ‘Libero’ (8.42 mg/100 mL). Other beet varieties contained less betacyanins: Sugar beet ‘Labonita’ 0.11 mg/100 mL; Swiss chard ‘Lucullus,’ 0.09 mg/100 mL; fodder beet ‘Monro’ 0.15 mg/100 mL. In contrast with weed beets and beetroots, these varieties have a ratio of betacyanins to betaxanthins under 1.0, but the betaxanthin content was higher in beetcrops than in wild beet and can be used as an alternative to non-red varieties. Stability tests of selected varieties showed that storage at 22 °C for 6 h, or at 7 °C for 24 h, did not significantly reduce the betalain content in the samples.
Collapse
Affiliation(s)
- Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (J.K.); (P.V.); (V.H.)
- Correspondence: ; Tel.: +420-22438-2520
| | - Jan Kubes
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (J.K.); (P.V.); (V.H.)
| | - Hajihashemi Shokoofeh
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan 47189-63616, Iran;
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (J.K.); (P.V.); (V.H.)
| | - Vaclav Hejnak
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (J.K.); (P.V.); (V.H.)
| |
Collapse
|
41
|
Sarker U, Oba S. Leaf pigmentation, its profiles and radical scavenging activity in selected Amaranthus tricolor leafy vegetables. Sci Rep 2020; 10:18617. [PMID: 33122663 PMCID: PMC7596228 DOI: 10.1038/s41598-020-66376-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023] Open
Abstract
The selected A. tricolor accessions contained abundant color attributes, betacyanin, carotenoids, betalains, betaxanthins, and antioxidants potentiality that varied in terms of genotypes. For the first time, we identified 4 betacyanins, and 5 carotenoid compounds in A. tricolor genotypes. The genotype VA14 and VA16 had abundant color attributes, betacyanin such as amaranthine, iso-amaranthine, betanin, iso-betanin, and antioxidants potentiality. These two genotypes having an excellent source of color attributes, betacyanins, betalains, betaxanthins, and antioxidants potentiality could be used as potent antioxidant varieties. The genotype VA11 and VA16 had abundant carotenoid components, such as zeaxanthin, lutein, violaxanthin, neoxanthin, total xanthophylls, and beta-carotene. The genotype VA11 and VA16 had abundant carotenoid components that could be used as carotenoid enrich varieties. It revealed from the correlation study that pigment profiles of A. tricolor genotypes exhibited high quenching capacity of radicals. These accessions have high antioxidant potentials and great opportunity to make drinks, preservatives, and colorant of food products to feed the community deficient in antioxidants. The identified components of betacyanins and carotenoids in A. tricolor require comprehensive pharmacological study. The baseline data on color attributes, betacyanins profile, carotenoids profile, betaxanthins, betalains and antioxidant potentiality obtained in the present study could contribute to pharmacologists for evaluating these components scientifically in A. tricolor.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Shinya Oba
- Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, Japan
| |
Collapse
|
42
|
Jurić S, Jurić M, Król-Kilińska Ż, Vlahoviček-Kahlina K, Vinceković M, Dragović-Uzelac V, Donsì F. Sources, stability, encapsulation and application of natural pigments in foods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1837862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Slaven Jurić
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy, University of Zagreb, Zagreb, Croatia
| | - Żaneta Król-Kilińska
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Marko Vinceković
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, Department of Food Engineering, University of Zagreb, Zagreb, Croatia
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
43
|
Chen C, Xie F, Hua Q, Tel-Zur N, Zhang L, Zhang Z, Zhang R, Zhao J, Hu G, Qin Y. Integrated sRNAome and RNA-Seq analysis reveals miRNA effects on betalain biosynthesis in pitaya. BMC PLANT BIOLOGY 2020; 20:437. [PMID: 32962650 PMCID: PMC7510087 DOI: 10.1186/s12870-020-02622-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/25/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) and their regulatory functions in anthocyanin, carotenoid, and chlorophyll accumulation have been extensively characterized in many plant species. However, the miRNA regulatory mechanism in betalain biosynthesis remains mostly unknown. RESULTS In this study, 126 conserved miRNAs and 41 novel miRNAs were first isolated from Hylocereus monacanthus, among which 95 conserved miRNAs belonged to 53 miRNA families. Thirty-four candidate miRNAs related to betalain biosynthesis were differentially expressed. The expression patterns of those differential expressed miRNAs were analyzed in various pitaya tissues by RT-qPCR. A significantly negative correlation was detected between the expression levels of half those miRNAs and corresponding target genes. Target genes of miRNAs i.e. Hmo-miR157b-HmSPL6-like, Hmo-miR160a-Hpcyt P450-like3, Hmo-miR6020-HmCYP71A8-like, Hmo-novel-2-HmCYP83B1-like, Hmo-novel-15-HmTPST-like, Hmo-miR828a-HmTT2-like, Hmo-miR858-HmMYB12-like, Hmo-miR858-HmMYBC1-like and Hmo-miR858-HmMYB2-like were verified by 5'RACE and transient expression system in tobacco. CONCLUSIONS Hmo-miR157b, Hmo-miR160a, Hmo-miR6020 Hmo-novel-2, Hmo-novel-15, Hmo-miR828a and Hmo-miR858 play important roles in pitaya fruit coloration and betalain accumulation. Our findings provide new insights into the roles of miRNAs and their target genes of regulatory functions involved in betalain biosynthesis of pitaya.
Collapse
Affiliation(s)
- Canbin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Fangfang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Qingzhu Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Noemi Tel-Zur
- French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Beersheba, Israel
| | - Lulu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Zhike Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Rong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, P. R. China.
| |
Collapse
|
44
|
Hu H, Yao X, Qin Y, Yong H, Liu J. Development of multifunctional food packaging by incorporating betalains from vegetable amaranth (Amaranthus tricolor L.) into quaternary ammonium chitosan/fish gelatin blend films. Int J Biol Macromol 2020; 159:675-684. [DOI: 10.1016/j.ijbiomac.2020.05.103] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
|
45
|
Fernández-López JA, Fernández-Lledó V, Angosto JM. New insights into red plant pigments: more than just natural colorants. RSC Adv 2020; 10:24669-24682. [PMID: 35516216 PMCID: PMC9055186 DOI: 10.1039/d0ra03514a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
Pigments make nature both colorful and attractive. Humans have always incorporated the natural pigments of fruits, vegetables and spices into their dietary requirements. Naturally occurring red pigments in plants are carotenoids, anthocyanins and betacyanins. Natural pigments, apart from colour, provide added properties and are therefore considered to be bioactive constituents. Red natural colorants are one of the most widely used in the food industry. The interest in these pigments lies in the enhancement of the healthy effects of the diet. In this context, attention is given to carotenoids, anthocyanins and betacyanins, with emphasis on the basic chemical and biochemical attributes and wide-ranging health-promoting benefits of these pigments. Thus, in this review, we systematically present the advantages and limitations of these natural pigments as food colorants in relation to their physico-chemical properties, reactivity and bioactivity.
Collapse
Affiliation(s)
- José A Fernández-López
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT) Paseo Alfonso XIII 52 E-30203 Cartagena Murcia Spain
| | - Vicente Fernández-Lledó
- Higher Technical School of Telecommunications, Technical University of Madrid (UPM) Madrid Spain
| | - José M Angosto
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT) Paseo Alfonso XIII 52 E-30203 Cartagena Murcia Spain
| |
Collapse
|
46
|
Chemical characterization, antioxidant capacity, and anti-hyperglycemic effect of Stenocereus stellatus fruits from the arid Mixteca Baja region of Mexico. Food Chem 2020; 328:127076. [PMID: 32480257 DOI: 10.1016/j.foodchem.2020.127076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 11/24/2022]
Abstract
The tunillo (Stenocereus stellatus [Pfeiffer] Riccobono) is a relatively little known cactus fruit with a significant pharmacological potential. However, all currently known variants are identified visually mostly on the basis of pulp color. Differences in chemical composition and pharmacological properties also remain largely unknown. Support vector machine classifiers were applied to UV-Visible spectra of liquid samples to obtain the following, color-based categories of tunillo fruits: A1-white, A2-red, A3-purple, and A4-orange. The spectrum of A2-red could be duplicated by combining those from A3-purple and A4-orange, while UPGMA-based hierarchical clustering of psbA-trnH and matK suggested that certain differences in color might actually have a genetic basis. The pigment quantification established A2-red and A3-purple as the most suitable candidates for the extraction of betalains and complex colored matrices, respectively. A2-red also had the highest content of phenols and flavonoids and displayed a noticeable anti-hyperglycemic effect.
Collapse
|
47
|
Sandate-Flores L, Rodríguez-Rodríguez J, Velázquez G, Mayolo-Deloisa K, Rito-Palomares M, Torres JA, Parra-Saldívar R. Low-sugar content betaxanthins extracts from yellow pitaya (Stenocereus pruinosus). FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Castro-Enríquez DD, Montaño-Leyva B, Del Toro-Sánchez CL, Juaréz-Onofre JE, Carvajal-Millan E, Burruel-Ibarra SE, Tapia-Hernández JA, Barreras-Urbina CG, Rodríguez-Félix F. Stabilization of betalains by encapsulation-a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:1587-1600. [PMID: 32327769 PMCID: PMC7171008 DOI: 10.1007/s13197-019-04120-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 01/14/2023]
Abstract
Betalains are pigments that have properties that benefit health, such as antioxidant, anticancer, and antimicrobial activity, and they also possess a high ability to provide color. However, these pigments, although used as colorants in certain foods, have not been able to be potentialized to diverse areas such as pharmacology, due to their instability to physicochemical factors such as high temperature, pH changes and high water activity. For this reason, different stabilization methods have been reported. The method that has presented best results for diversifying the use of betalains has been encapsulation. Encapsulation is a method of entrapment where the objective is to protect a compound utilizing more stable matrices from encapsulation technologies. This method has been employed to provide greater stability to betalains, using different matrices and encapsulation technologies. However, a review does not exist, to our knowledge, which analyzes the effect of matrices and encapsulation technologies on betalains stabilization. Therefore, the objective of this review article was to evaluate the different matrices and encapsulation techniques that have been employed to stabilize betalains, in order to arrive at specific conclusions concerning the effect of encapsulation on their stabilization and to propose new techniques and matrices that could promote their stabilization.
Collapse
Affiliation(s)
- D. D. Castro-Enríquez
- Depto. Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| | - B. Montaño-Leyva
- Depto. Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| | - C. L. Del Toro-Sánchez
- Depto. Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| | - J. E. Juaréz-Onofre
- Depto. Física, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| | - E. Carvajal-Millan
- Centro de Investigación en Alimentos y Desarrollo, A.C. Biopolímeros-CTAOA, Carretera a la Victoria Km. 0.6, 83304 Hermosillo, Sonora Mexico
| | - S. E. Burruel-Ibarra
- Depto. de Investigación en Polímeros y Materiales, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| | - J. A. Tapia-Hernández
- Depto. Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| | - C. G. Barreras-Urbina
- Depto. Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| | - F. Rodríguez-Félix
- Depto. Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| |
Collapse
|
49
|
Grown to be Blue-Antioxidant Properties and Health Effects of Colored Vegetables. Part II: Leafy, Fruit, and Other Vegetables. Antioxidants (Basel) 2020; 9:antiox9020097. [PMID: 31979214 PMCID: PMC7070715 DOI: 10.3390/antiox9020097] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/21/2023] Open
Abstract
The current trend for substituting synthetic compounds with natural ones in the design and production of functional and healthy foods has increased the research interest about natural colorants. Although coloring agents from plant origin are already used in the food and beverage industry, the market and consumer demands for novel and diverse food products are increasing and new plant sources are explored. Fresh vegetables are considered a good source of such compounds, especially when considering the great color diversity that exists among the various species or even the cultivars within the same species. In the present review we aim to present the most common species of colored vegetables, focusing on leafy and fruit vegetables, as well as on vegetables where other plant parts are commercially used, with special attention to blue color. The compounds that are responsible for the uncommon colors will be also presented and their beneficial health effects and antioxidant properties will be unraveled.
Collapse
|
50
|
Mennah-Govela YA, Keppler S, Januzzi-Guerreiro F, Follador-Lemos C, Vilpont K, Bornhorst GM. Acid and Moisture Uptake into Red Beets during in Vitro Gastric Digestion as Influenced by Gastric pH. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-019-09623-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|