1
|
Braga LR, Oliveira MG, Pérez LM, Rangel ET, Machado F. Poly(vinyl chloride) Films Incorporated with Antioxidant ZnO-Flavonoid Nanoparticles: A Strategy for Food Preservation. Foods 2024; 13:2745. [PMID: 39272509 PMCID: PMC11395472 DOI: 10.3390/foods13172745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Antioxidant films were prepared using poly(vinyl chloride) (PVC) incorporated with 0.5% or 1.0% zinc oxide (ZnO)-flavonoid (quercetin or morin) nanoparticles (NPZnO-Q% or NPZnO-M%) via the casting method. NP incorporation within the polymer matrix influenced the structural, morphological, optical, and thermal properties of the PVC-based films, as well as their antioxidant activity as assessed using the DPPH radical scavenging method. Our results indicated that increasing ZnO-flavonoid NP concentration increased films thickness, while reducing ultraviolet light (UV) transmittance but conserving transparency. The presence of NPZnO-Q% or NPZnO-M% improved the surface uniformity and thermal stability of the active films. In terms of antioxidant activity, there was an enhancement in the DPPH radical scavenging capacity (PVC/ZnO-Q1.0% > PVC/ZnO-Q0.5% > PVC/ZnO-M0.5% > PVC/ZnO-M1.0% > PVC), suggesting that the packaging can help protect food from oxidative processes. Therefore, these antioxidant films represent an innovative strategy for using as active food packaging material, especially intended for aiding in quality preservation and extending the shelf life of fatty foods.
Collapse
Affiliation(s)
- Lilian R Braga
- Laboratório de Desenvolvimento de Processos Químicos, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília 70904-970, DF, Brazil
| | - Maria Graciele Oliveira
- Laboratório de Desenvolvimento de Processos Químicos, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília 70904-970, DF, Brazil
| | - Leonardo M Pérez
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 570, Rosario S2002LRL, Sant Fe, Argentina
- Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Av. Pellegrini 3314, Rosario S2002QEO, Santa Fe, Argentina
| | - Ellen T Rangel
- Laboratório de Desenvolvimento de Processos Químicos, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília 70904-970, DF, Brazil
| | - Fabricio Machado
- Laboratório de Desenvolvimento de Processos Químicos, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília 70904-970, DF, Brazil
| |
Collapse
|
2
|
Çiçek S, Yilmaz MT, Hadnađev TD, Tadesse EE, Kulawik P, Ozogul F. Definition, detection, and tracking of nanowaste in foods: Challenges and perspectives. Compr Rev Food Sci Food Saf 2024; 23:e13393. [PMID: 39031842 DOI: 10.1111/1541-4337.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 07/22/2024]
Abstract
Commercial applications of nanotechnology in the food industry are rapidly increasing. Accordingly, there is a simultaneous increase in the amount and diversity of nanowaste, which arise as byproducts in the production, use, disposal, or recycling processes of nanomaterials utilized in the food industry. The potential risks of this nanowaste to human health and the environment are alarming. It is of crucial significance to establish analytical methods and monitoring systems for nanowaste to ensure food safety. This review provides comprehensive information on nanowaste in foods as well as comparative material on existing and new analytical methods for the detection of nanowaste. The article is specifically focused on nanowaste in food systems. Moreover, the current techniques, challenges as well as potential use of new and progressive methods are underlined, further highlighting advances in technology, collaborative efforts, as well as future perspectives for effective nanowaste detection and tracking. Such detection and tracking of nanowaste are required in order to effectively manage this type ofwasted in foods. Although there are devices that utilize spectroscopy, spectrometry, microscopy/imaging, chromatography, separation/fractionation, light scattering, diffraction, optical, adsorption, diffusion, and centrifugation methods for this purpose, there are challenges to be overcome in relation to nanowaste as well as food matrix and method characteristics. New technologies such as radio-frequency identification, Internet of things, blockchain, data analytics, and machine learning are promising. However, the cooperation of international organizations, food sector, research, and political organizations is needed for effectively managing nanowaste. Future research efforts should be focused on addressing knowledge gaps and potential strategies for optimizing nanowaste detection and tracking processes.
Collapse
Affiliation(s)
- Semra Çiçek
- Department of Agriculture Biotechnology, Ataturk University, Erzurum, Turkiye
| | - Mustafa Tahsin Yilmaz
- Department of Industrial Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Eskindir Endalew Tadesse
- Department of Animal Products Technology, University of Agriculture in Kraków, Kraków, Poland
- Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Piotr Kulawik
- Department of Animal Products Technology, University of Agriculture in Kraków, Kraków, Poland
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkiye
| |
Collapse
|
3
|
Hao LT, Kim S, Lee M, Park SB, Koo JM, Jeon H, Park J, Oh DX. Next-generation all-organic composites: A sustainable successor to organic-inorganic hybrid materials. Int J Biol Macromol 2024; 269:132129. [PMID: 38718994 DOI: 10.1016/j.ijbiomac.2024.132129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024]
Abstract
This Review presents an overview of all-organic nanocomposites, a sustainable alternative to organic-inorganic hybrids. All-organic nanocomposites contain nanocellulose, nanochitin, and aramid nanofibers as highly rigid reinforcing fillers. They offer superior mechanical properties and lightweight characteristics suitable for diverse applications. The Review discusses various methods for preparing the organic nanofillers, including top-down and bottom-up approaches. It highlights in situ polymerization as the preferred method for incorporating these nanomaterials into polymer matrices to achieve homogeneous filler dispersion, a crucial factor for realizing desired performance. Furthermore, the Review explores several applications of all-organic nanocomposites in diverse fields including food packaging, performance-advantaged plastics, and electronic materials. Future research directions-developing sustainable production methods, expanding biomedical applications, and enhancing resistance against heat, chemicals, and radiation of all-organic nanocomposites to permit their use in extreme environments-are explored. This Review offers insights into the potential of all-organic nanocomposites to drive sustainable growth while meeting the demand for high-performance materials across various industries.
Collapse
Affiliation(s)
- Lam Tan Hao
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Semin Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Minkyung Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Sung Bae Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jun Mo Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials & Chemical Engineering, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Jeyoung Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea.
| | - Dongyeop X Oh
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
4
|
Song SH, Bae M, Oh JK. Durable Surface Modification of Low-Density Polyethylene/Nano-Silica Composite Films with Bacterial Antifouling and Liquid-Repelling Properties for Food Hygiene and Safety. Polymers (Basel) 2024; 16:292. [PMID: 38276700 PMCID: PMC10819097 DOI: 10.3390/polym16020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The growing prevalence of antimicrobial resistance in bacterial strains has increased the demand for preventing biological deterioration on the surfaces of films used in applications involving food contact materials (FCMs). Herein, we prepared superhydrophobic film surfaces using a casting process that involved the combination of low-density polyethylene (LDPE) with solutions containing surface energy-reducing silica (SRS). The bacterial antifouling properties of the modified film surfaces were evaluated using Escherichia coli O157:H7 and Staphylococcus epidermidis via the dip-inoculation technique. The reduction in bacterial populations on the LDPE film embedded with SRS was confirmed to be more than 2 log-units, which equates to over 99%, when compared to the bare LDPE film. Additionally, the modified film demonstrated liquid-repelling properties against food-related contaminants, such as blood, beverages, and sauces. Moreover, the modified film demonstrated enhanced durability and robustness compared to one of the prevalent industry methods, dip-coating. We anticipate that the developed LDPE/nano-silica composite film represents a promising advancement in the multidisciplinary aspects of food hygiene and safety within the food industry, particularly concerning FCMs.
Collapse
Affiliation(s)
- Sang Ha Song
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Republic of Korea;
| | - Michael Bae
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77845, USA
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Republic of Korea;
| |
Collapse
|
5
|
Rathee P, Sehrawat R, Rathee P, Khatkar A, Akkol EK, Khatkar S, Redhu N, Türkcanoğlu G, Sobarzo-Sánchez E. Polyphenols: Natural Preservatives with Promising Applications in Food, Cosmetics and Pharma Industries; Problems and Toxicity Associated with Synthetic Preservatives; Impact of Misleading Advertisements; Recent Trends in Preservation and Legislation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4793. [PMID: 37445107 PMCID: PMC10343617 DOI: 10.3390/ma16134793] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023]
Abstract
The global market of food, cosmetics, and pharmaceutical products requires continuous tracking of harmful ingredients and microbial contamination for the sake of the safety of both products and consumers as these products greatly dominate the consumer's health, directly or indirectly. The existence, survival, and growth of microorganisms in the product may lead to physicochemical degradation or spoilage and may infect the consumer at another end. It has become a challenge for industries to produce a product that is safe, self-stable, and has high nutritional value, as many factors such as physical, chemical, enzymatic, or microbial activities are responsible for causing spoilage to the product within the due course of time. Thus, preservatives are added to retain the virtue of the product to ensure its safety for the consumer. Nowadays, the use of synthetic/artificial preservatives has become common and has not been widely accepted by consumers as they are aware of the fact that exposure to preservatives can lead to adverse effects on health, which is a major area of concern for researchers. Naturally occurring phenolic compounds appear to be extensively used as bio-preservatives to prolong the shelf life of the finished product. Based on the convincing shreds of evidence reported in the literature, it is suggested that phenolic compounds and their derivatives have massive potential to be investigated for the development of new moieties and are proven to be promising drug molecules. The objective of this article is to provide an overview of the significant role of phenolic compounds and their derivatives in the preservation of perishable products from microbial attack due to their exclusive antioxidant and free radical scavenging properties and the problems associated with the use of synthetic preservatives in pharmaceutical products. This article also analyzes the recent trends in preservation along with technical norms that regulate the food, cosmetic, and pharmaceutical products in the developing countries.
Collapse
Affiliation(s)
- Priyanka Rathee
- Faculty of Pharmaceutical Sciences, Baba Mastnath University, Rohtak 124021, India;
| | - Renu Sehrawat
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India;
| | - Pooja Rathee
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey;
| | - Sarita Khatkar
- Vaish Institute of Pharmaceutical Education and Research, Rohtak 124001, India;
| | - Neelam Redhu
- Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, India;
| | - Gizem Türkcanoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Osanloo M, Eskandari Z, Zarenezhad E, Qasemi H, Nematollahi A. Studying the microbial, chemical, and sensory characteristics of shrimp coated with alginate sodium nanoparticles containing Zataria multiflora and Cuminum cyminum essential oils. Food Sci Nutr 2023; 11:2823-2837. [PMID: 37324854 PMCID: PMC10261822 DOI: 10.1002/fsn3.3261] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 08/27/2024] Open
Abstract
Retardation of quality loss of seafood has been a new concept in recent years. This study's main objective was to evaluate the microbial, chemical, and sensory attributes of shrimp coated with alginate sodium nanoparticles containing Zataria multiflora and Cuminum cyminum essential oils (EOs) during refrigerated storage. At the end of storage time (15 days storage at 4°C), the pH, thiobarbituric acid reactive substances (TBARS), and total volatile basic nitrogen (TVBN) amounts in shrimps coated with the alginate nanoparticles were 7.62, 1.14 mg MDA/kg, and 117 mg/100 g which were significantly (p < .05) lower than the control groups. The count of all bacteria groups was also lower in this treatment, which was 2-2.74 Log CFU/mL on day 15 of cold storage. This combined treatment also obtained the highest sensory scores (around 7) and the lowest melanosis score (2.67) due to the effective delaying microbial and oxidation activities. Therefore, this edible coating could substantially retard microbial and chemical changes and improve the organoleptic properties of shrimp under refrigerated storage.
Collapse
Affiliation(s)
- Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in MedicineFasa University of Medical SciencesFasaIran
| | - Zahra Eskandari
- Student Research CommitteeFasa University of Medical SciencesFasaIran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Hajar Qasemi
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of HealthFasa University of Medical SciencesFasaIran
| |
Collapse
|
7
|
Singh R, Dutt S, Sharma P, Sundramoorthy AK, Dubey A, Singh A, Arya S. Future of Nanotechnology in Food Industry: Challenges in Processing, Packaging, and Food Safety. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200209. [PMID: 37020624 PMCID: PMC10069304 DOI: 10.1002/gch2.202200209] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Indexed: 05/27/2023]
Abstract
Over the course of the last several decades, nanotechnology has garnered a growing amount of attention as a potentially valuable technology that has significantly impacted the food industry. Nanotechnology helps in enhancing the properties of materials and structures that are used in various fields such as agriculture, food, pharmacy, and so on. Applications of nanotechnology in the food market have included the encapsulation and distribution of materials to specific locations, the improvement of flavor, the introduction of antibacterial nanoparticles into food, the betterment of prolonged storage, the detection of pollutants, enhanced storage facilities, locating, identifying, as well as consumer awareness. Labeling food goods with nano barcodes helps ensure their security and may also be used to track their distribution. This review article presents a discussion about current advances in nanotechnology along with its applications in the field of food-tech, food packaging, food security, enhancing life of food products, etc. A detailed description is provided about various synthesis routes of nanomaterials, that is, chemical, physical, and biological methods. Nanotechnology is a rapidly improving the field of food packaging and the future holds great opportunities for more enhancement via the development of new nanomaterials and nanosensors.
Collapse
Affiliation(s)
- Rajesh Singh
- Food Craft InstituteDepartment of Skill DevelopmentNagrotaJammuJammu and Kashmir181221India
| | - Shradha Dutt
- School of SciencesCluster University of JammuJammuJammu and Kashmir180001India
| | - Priyanka Sharma
- School of Hospitality and Tourism ManagementUniversity of JammuJammuJammu and Kashmir180006India
| | - Ashok K. Sundramoorthy
- Centre for Nano‐BiosensorsDepartment of ProsthodonticsSaveetha Dental College and HospitalsSaveetha Institute of Medical and Technical SciencesChennaiTamil Nadu600077India
| | - Aman Dubey
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| | - Anoop Singh
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| | - Sandeep Arya
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| |
Collapse
|
8
|
Bazilio FS, dos Santos LMG, Silva CB, Neto SAV, Senna CA, Archanjo BS, do Couto Jacob S, de Mello Pereira Abrantes S. Migration of silver nanoparticles from plastic materials, with antimicrobial action, destined for food contact. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:654-665. [PMID: 36712209 PMCID: PMC9873845 DOI: 10.1007/s13197-022-05650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 12/16/2022]
Abstract
Five materials with antimicrobial function, by adding silver, were investigated to evaluate total silver concentration in the polymers and migration of silver nanoparticles from the materials in contact with food. The migration test was carried out by contacting plastic material with food simulant. Migration concentrations and average silver particle sizes were determined by mass spectrometry with inductively coupled plasma, performed in single particle mode (spICP-MS). Additionally, silver particles size and shape were characterized by scanning electron microscopy (SEM) with chemical identification by energy-dispersive X-ray spectroscopy (EDS). Most of samples showed detectable total silver concentrations and all samples showed migration of silver nanoparticles, with concentrations found between 0.00433 and 1.35 ng kg-1. Indeed, the migration study indicated the presence of silver nanoparticles in all food simulants, with sizes bellow 95 nm. The average particle size determined for acetic acid was greater than that observed in the other simulants. In the images obtained by SEM/EDS also confirmed the presence of spherical silver nanoparticles, between 17 and 80 nm. The findings reported herein will aid the health area concerning of human health risk assessments, aiming at regulating this type of material from a food safety point of view.
Collapse
Affiliation(s)
- Fabio Silvestre Bazilio
- Chemistry Department, National Institute of Quality Control in Health-INCQS/FIOCRUZ, Av Brasil 4365, Rio de Janeiro, RJ CEP: 21040-900 Brazil
| | - Lisia Maria Gobbo dos Santos
- Chemistry Department, National Institute of Quality Control in Health-INCQS/FIOCRUZ, Av Brasil 4365, Rio de Janeiro, RJ CEP: 21040-900 Brazil
| | - Cristiane Barata Silva
- Chemistry Department, National Institute of Quality Control in Health-INCQS/FIOCRUZ, Av Brasil 4365, Rio de Janeiro, RJ CEP: 21040-900 Brazil
| | - Santos Alves Vicentini Neto
- Chemistry Department, National Institute of Quality Control in Health-INCQS/FIOCRUZ, Av Brasil 4365, Rio de Janeiro, RJ CEP: 21040-900 Brazil
| | - Carlos Alberto Senna
- Directorate of Scientific Metrology and Materials Division, National Institute of Metrology, Quality and Technology INMETRO, Duque de Caxias, Brazil
| | - Bráulio Soares Archanjo
- Directorate of Scientific Metrology and Materials Division, National Institute of Metrology, Quality and Technology INMETRO, Duque de Caxias, Brazil
| | - Silvana do Couto Jacob
- Chemistry Department, National Institute of Quality Control in Health-INCQS/FIOCRUZ, Av Brasil 4365, Rio de Janeiro, RJ CEP: 21040-900 Brazil
| | - Shirley de Mello Pereira Abrantes
- Chemistry Department, National Institute of Quality Control in Health-INCQS/FIOCRUZ, Av Brasil 4365, Rio de Janeiro, RJ CEP: 21040-900 Brazil
| |
Collapse
|
9
|
Wypij M, Trzcińska-Wencel J, Golińska P, Avila-Quezada GD, Ingle AP, Rai M. The strategic applications of natural polymer nanocomposites in food packaging and agriculture: Chances, challenges, and consumers' perception. Front Chem 2023; 10:1106230. [PMID: 36704616 PMCID: PMC9871319 DOI: 10.3389/fchem.2022.1106230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Natural polymer-based nanocomposites have received significant attention in both scientific and industrial research in recent years. They can help to eliminate the consequences of application of petroleum-derived polymeric materials and related environmental concerns. Such nanocomposites consist of natural biopolymers (e.g., chitosan, starch, cellulose, alginate and many more) derived from plants, microbes and animals that are abundantly available in nature, biodegradable and thus eco-friendly, and can be used for developing nanocomposites for agriculture and food industry applications. Biopolymer-based nanocomposites can act as slow-release nanocarriers for delivering agrochemicals (fertilizers/nutrients) or pesticides to crop plants to increase yields. Similarly, biopolymer-based nanofilms or hydrogels may be used as direct product coating to extend product shelf life or improve seed germination or protection from pathogens and pests. Biopolymers have huge potential in food-packaging. However, their packaging properties, such as mechanical strength or gas, water or microbial barriers can be remarkably improved when combined with nanofillers such as nanoparticles. This article provides an overview of the strategic applications of natural polymer nanocomposites in food and agriculture as nanocarriers of active compounds, polymer-based hydrogels, nanocoatings and nanofilms. However, the risk, challenges, chances, and consumers' perceptions of nanotechnology applications in agriculture and food production and packaging have been also discussed.
Collapse
Affiliation(s)
- Magdalena Wypij
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Trzcińska-Wencel
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | | | - Avinash P. Ingle
- Department of Agricultural Botany, Biotechnology Centre, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, India
| | - Mahendra Rai
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, India
| |
Collapse
|
10
|
Development of Antimicrobial Paper Coatings Containing Bacteriophages and Silver Nanoparticles for Control of Foodborne Pathogens. Viruses 2022; 14:v14112478. [PMID: 36366576 PMCID: PMC9694718 DOI: 10.3390/v14112478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
In this study, a novel antimicrobial formula that incorporates Listeria bacteriophage P100 and silver nanoparticles into an alginate matrix was successfully developed. Paper coated with the antimicrobial formula inhibited the growth of Listeria monocytogenes. The effects of alginate concentration on the formation of silver nanoparticles, silver concentration on the infectivity of phages, and of low alginate concentrations on the sustained release of silver and phages were explored. The highest antimicrobial activity of the alginate-silver coating was achieved with an alginate concentration of 1%. Adding phage P100 (109 PFU/mL) into the alginate-silver coating led to a synergic effect that resulted in a 5-log reduction in L. monocytogenes. A bioactive paper was then developed by coating a base paper with the antimicrobial formula at different coating weights, followed by infrared drying. The higher coating weight was a crucial factor for the maintenance of phage infectivity throughout the coating and drying processes. Phages incorporated into the alginate matrix remained functional even after high-temperature infrared drying. Taken together, an optimized coating matrix is critical in improving the antimicrobial performance of bioactive paper as well as maintaining phage infectivity during the paper manufacturing process.
Collapse
|
11
|
Amini M, Rasouli M, Ghoranneviss M, Momeni M, Ostrikov KK. Synergistic cellulose-based nanocomposite packaging and cold plasma decontamination for extended saffron preservation. Sci Rep 2022; 12:18275. [PMID: 36316404 PMCID: PMC9619018 DOI: 10.1038/s41598-022-23284-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
Sterilization of saffron packaging and maintaining the quality of saffron content are the main priorities in saffron preservation. Common modalities do not offer lasting saffron preservation and it is urgent to develop novel packaging approaches from renewable resources and prevent packaging waste. Here, simultaneous decontamination and quality maintenance of saffron is demonstrated, for the first time, through the synergistic application of nano-clay-loaded carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) nanocomposites (CNCs) and cold plasmas (CP). Compared to the separate uses of CP and CMC/PVA/nano clay, our results confirm the synergies between CP and CMC/PVA/nano clay cause complete inactivation of Escherichia coli bacteria, while not significantly affecting the concentrations of the essential saffron components (safranal, crocin, and picrocrocin). Overall, the CP-treated CMC/PVA/nano clay fosters saffron preservation, through contamination removal and quality maintenance of the food product. The synergistic application of CP and CMC/PVA/nano clay thus represents a promising strategy for packaging, sterilization, and preservation of high-value food products.
Collapse
Affiliation(s)
- Maryam Amini
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Rasouli
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran ,grid.412265.60000 0004 0406 5813Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
| | - Mahmood Ghoranneviss
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Momeni
- grid.440804.c0000 0004 0618 762XFaculty of Physics, Shahrood University of Technology, Semnan, Iran
| | - Kostya Ken Ostrikov
- grid.1024.70000000089150953School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
12
|
Michael MP, Singh SK, Sahini MG. Facile conglomeration of guar gum/TiO2/Fe3O4 composite materials for photocatalytic antimicrobial activities. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Song X, Song Y, Guo Z, Tan M. Influence of protein coronas between carbon nanoparticles extracted from roasted chicken and pepsin on the digestion of soy protein isolate. Food Chem 2022; 385:132714. [DOI: 10.1016/j.foodchem.2022.132714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 01/18/2023]
|
14
|
Çiçek S, Özoğul F. Nanotechnology-based preservation approaches for aquatic food products: A review with the current knowledge. Crit Rev Food Sci Nutr 2022:1-24. [DOI: 10.1080/10408398.2022.2096563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Semra Çiçek
- Department of Agriculture Biotechnology, Ataturk University, Erzurum, Turkey
| | - Fatih Özoğul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
15
|
Compatibilization strategies and analysis of morphological features of Poly(Butylene Adipate-Co-Terephthalate) (PBAT)/Poly(Lactic Acid) PLA blends: a state-of-art review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Luo X, Zaitoon A, Lim LT. A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Compr Rev Food Sci Food Saf 2022; 21:2489-2519. [PMID: 35365965 DOI: 10.1111/1541-4337.12942] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Intelligent food packaging system exhibits enhanced communication function by providing dynamic product information to various stakeholders (e.g., consumers, retailers, distributors) in the supply chain. One example of intelligent packaging involves the use of colorimetric indicators, which when subjected to external stimuli (e.g., moisture, gas/vapor, electromagnetic radiation, temperature), display discernable color changes that can be correlated with real-time changes in product quality. This type of interactive packaging system allows continuous monitoring of product freshness during transportation, distribution, storage, and marketing phases. This review summarizes the colorimetric indicator technologies for intelligent packaging systems, emphasizing on the types of indicator dyes, preparation methods, applications in different food products, and future considerations. Both food and nonfood indicator materials integrated into various carriers (e.g., paper-based substrates, polymer films, electrospun fibers, and nanoparticles) with material properties optimized for specific applications are discussed, targeting perishable products, such as fresh meat and fishery products. Colorimetric indicators can supplement the traditional "Best Before" date label by providing real-time product quality information to the consumers and retailers, thereby not only ensuring product safety, but also promising in reducing food waste. Successful scale-up of these intelligent packaging technologies to the industrial level must consider issues related to regulatory approval, consumer acceptance, cost-effectiveness, and product compatibility.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, Canada
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, Canada
| |
Collapse
|
17
|
Ayala-Fuentes JC, Chavez-Santoscoy RA. Nanotechnology as a Key to Enhance the Benefits and Improve the Bioavailability of Flavonoids in the Food Industry. Foods 2021; 10:2701. [PMID: 34828981 PMCID: PMC8621120 DOI: 10.3390/foods10112701] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/27/2022] Open
Abstract
Nanotechnology has impacted the food industry, mainly on developing healthier, safer, and high-quality functional food. Flavonoids are valuable compounds present in plants, fruits, grains, roots, stems, tea, and wine, among others; they possess many benefits for health due to their antioxidant properties toward reactive oxygen species, anti-inflammatory, and antiproliferative, among others. These characteristics make flavonoids attractive in various industrial areas such as medicine, nutraceutical, cosmetology, and pharmaceutical. Unfortunately, flavonoids lack long-term stability, are sensitive to light, long periods of darkness with low oxygen concentration, and often present a low water solubility and poor bioavailability. Nanoencapsulation is an alternative to improve bioavailability and sensitivity in the manufacturing process, based on encapsulating substances on a nanoscale. Nanocapsules are a promising strategy in significantly enhancing the delivery of compounds to various sites in the body. The development of biopolymers to encapsulate sensitive compounds is increasing, as well as the search for the non-toxic, biodegradable, natural and biocompatible characteristics of polymers, is fundamental. The present review describes the recent techniques and technologies for the nanoencapsulation of flavonoids. It discusses their potential advantages and possible limitations, compares natural and synthetic biopolymers, and finally, details nanoparticle regulation.
Collapse
|
18
|
Brito J, Hlushko H, Abbott A, Aliakseyeu A, Hlushko R, Sukhishvili SA. Integrating Antioxidant Functionality into Polymer Materials: Fundamentals, Strategies, and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41372-41395. [PMID: 34448558 DOI: 10.1021/acsami.1c08061] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While antioxidants are widely known as natural components of healthy food and drinks or as additives to commercial polymer materials to prevent their degradation, recent years have seen increasing interest in enhancing the antioxidant functionality of newly developed polymer materials and coatings. This paper provides a critical overview and comparative analysis of multiple ways of integrating antioxidants within diverse polymer materials, including bulk films, electrospun fibers, and self-assembled coatings. Polyphenolic antioxidant moieties with varied molecular architecture are in the focus of this Review, because of their abundance, nontoxic nature, and potent antioxidant activity. Polymer materials with integrated polyphenolic functionality offer opportunities and challenges that span from the fundamentals to their applications. In addition to the traditional blending of antioxidants with polymer materials, developments in surface grafting and assembly via noncovalent interaction for controlling localization versus migration of antioxidant molecules are discussed. The versatile chemistry of polyphenolic antioxidants offers numerous possibilities for programmed inclusion of these molecules in polymer materials using not only van der Waals interactions or covalent tethering to polymers, but also via their hydrogen-bonding assembly with neutral molecules. An understanding and rational use of interactions of polyphenol moieties with surrounding molecules can enable precise control of concentration and retention versus delivery rate of antioxidants in polymer materials that are critical in food packaging, biomedical, and environmental applications.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hanna Hlushko
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ashleigh Abbott
- Department of Materials Science & Engineering, Missouri University of Science & Technology, Rolla, Missouri 65409, United States
| | - Aliaksei Aliakseyeu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Raman Hlushko
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
19
|
Tyagi P, Salem KS, Hubbe MA, Pal L. Advances in barrier coatings and film technologies for achieving sustainable packaging of food products – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
|
21
|
Incorporation of silver nanoparticles into active antimicrobial nanocomposites: Release behavior, analyzing techniques, applications and safety issues. Adv Colloid Interface Sci 2021; 293:102440. [PMID: 34022748 DOI: 10.1016/j.cis.2021.102440] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 02/08/2023]
Abstract
Employing new strategies to develop novel composite systems has become a popular area of interest among researchers. Raising people's awareness and their attention to the health and safety issues are key parameters to achieve this purpose. One of the recommended strategies is the utilization of nanoparticles within the matrix of composite materials to improve their physical, mechanical, structural and antimicrobial characteristics. Silver nanoparticles (Ag NPs) have attracted much attention for nanocomposite applications mainly due to their antimicrobial characteristics. Herein, the current review will focus on the different methods for preparing antimicrobial nanocomposites loaded with Ag NPs, the release of Ag NPs from these nanostructures in different media, analyzing techniques for the evaluation of Ag release from nanocomposites, potential applications, and safety issues of nanocomposites containing Ag NPs. The applications of Ag NPs-loaded nanocomposites have been extensively established in food, biomedical, textile, environmental and pharmacological areas mainly due to their antibacterial attributes. Several precautions should be addressed before implementation of Ag NPs in nanocomposites due to the health and safety issues.
Collapse
|
22
|
Versatile nanocellulose-based nanohybrids: A promising-new class for active packaging applications. Int J Biol Macromol 2021; 182:1915-1930. [PMID: 34058213 DOI: 10.1016/j.ijbiomac.2021.05.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
The food packaging industry is rapidly growing as a consequence of the development of nanotechnology and changing consumers' preferences for food quality and safety. In today's globalization of markets, active packaging has achieved many advantages with the capability to absorb or release substances for prolonging the food shelf life over the traditional one. Therefore, it is critical to developing multifunctional active packaging materials from biodegradable polymers with active agents to decrease environmental challenges. This review article addresses the recent advances in nanocelluloses (NCs)- baseds nanohybrids with new function features in packaging, focusing on the various synthesis methods of NCs-based nanohybrids, and their reinforcing effects as active agents on food packaging properties. The applications of NCs-based nanohybrids as antioxidants, antimicrobial agents, and UV blocker absorbers for prolonging food shelf-life are also reviewed. Overall, these advantages make the CNs-based nanohybrids with versatile properties promising in food and packaging industries, which will impact more readership with concern for future research.
Collapse
|
23
|
Trajkovska Petkoska A, Daniloski D, D'Cunha NM, Naumovski N, Broach AT. Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res Int 2021; 140:109981. [PMID: 33648216 DOI: 10.1016/j.foodres.2020.109981] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022]
Abstract
Novel food packaging techniques are an important area of research to promote food quality and safety. There is a trend towards environmentally sustainable and edible forms of packaging. Edible packaging typically uses sustainable, biodegradable material that is applied as a consumable wrapping or coating around the food, which generates no waste. Numerous studies have recently investigated the importance of edible materials as an added value to packaged foods. Nanotechnology has emerged as a promising method to provide use of bioactives, antimicrobials, vitamins, antioxidants and nutrients to potentially increase the functionality of edible packaging. It can act as edible dispensers of food ingredients as encapsulants, nanofibers, nanoparticles and nanoemulsions. In this way, edible packaging serves as an active form of packaging. It plays an important role in packaged foods by desirably interacting with the food and providing technological functions such as releasing scavenging compounds (antimicrobials and antioxidants), and removing harmful gasses such as oxygen and water vapour which all can decrease products quality and shelf life. Active packaging can also contribute to maintaining the nutritive profile of packaged foods. In this review, authors present the latest information on new technological advances in edible food packaging, their novel applications and provide examples of recent studies where edible packaging possesses also an active role.
Collapse
Affiliation(s)
- Anka Trajkovska Petkoska
- Faculty of Technology and Technical Sciences, St. Clement of Ohrid University of Bitola, Dimitar Vlahov, 1400 Veles, Republic of North Macedonia.
| | - Davor Daniloski
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities and College of Health and Biomedicine, Victoria University, Melbourne, VIC 8001, Australia; Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland.
| | - Nathan M D'Cunha
- Faculty of Health, School of Rehabilitation and Exercise Sciences, Department of Food Science and Human Nutrition, University of Canberra, Bruce, ACT 2617, Australia.
| | - Nenad Naumovski
- Faculty of Health, School of Rehabilitation and Exercise Sciences, Department of Food Science and Human Nutrition, University of Canberra, Bruce, ACT 2617, Australia.
| | - Anita T Broach
- CSI: Create.Solve.Innovate. LLC, 2020 Kraft Dr., Suite 3007, Blacksburg, VA 24060, USA.
| |
Collapse
|
24
|
Chakraborty D, Ethiraj KR, Chandrasekaran N, Mukherjee A. Mitigating the toxic effects of CdSe quantum dots towards freshwater alga Scenedesmus obliquus: Role of eco-corona. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116049. [PMID: 33213955 DOI: 10.1016/j.envpol.2020.116049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 05/24/2023]
Abstract
The extensive use of semiconducting nanoparticles such as quantum dots in biomedical and industrial products can lead to their inadvertent release into the freshwater system. Natural exudates in the aquatic system comprising extracellular polymeric substance (EPS) and protein-rich metabolites can eventually adsorb onto the quantum dots (QDs) surface and form an eco-corona. The alterations in the physio-chemical and toxicological behavior of CdSe/ZnS QDs under the influence of eco-corona in the freshwater system have not been explored yet. In the present study, lake water medium conditioned with exudate secreted by Scenedesmus obliquus was utilized as an eco-corona forming matrix. The time-based evolution of the eco-corona on the differently charged CdSe/ZnS QDs was analyzed using transmission electron microscopy and dynamic light scattering. Aging of amine-QDs in algal exudate for 72 h showed enhanced aggregation (Mean Hydrodynamic Diameter- 1969 nm) as compared to carboxyl-QDs (1543 nm). Further, eco-coronation tends to impart an overall negative charge to the QDs. The fluorescence intensity of amine-QDs was quenched by 84% due to the accumulation of higher eco-corona. An integrative effect of surface charge and accumulated eco-corona layer influenced the Cd2+ ion leaching from the QDs. An enhancement in the algal cell viability treated with carboxyl - CdSe/ZnS (90%) and amine- CdSe/ZnS QDs (94%) aged for 72 h suggested that eco-corona can effectively mitigate the inherent toxicity of the QDs. The oxidative stress markers in the algal cells (LPO, SOD, and CAT) were in correlation with the cytotoxicity results. The algal photosynthetic efficiency depended on the deposition of eco-coronated QDs on the cell surface. Cellular uptake results indicated low Cd2+ concentration of nearly 13.9 and 11.5% for carboxyl- and amine- CdSe/ZnS QDs respectively. This suggests that eco-coronation directly influences the bioavailability of engineered nanoparticles.
Collapse
Affiliation(s)
| | - K R Ethiraj
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
25
|
Shi YJ, Wrona M, Hu CY, Nerín C. Copper release from nano‑copper/polypropylene composite films to food and the forms of copper in food simulants. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Gopinath V, MubarakAli D, Vadivelu J, Manjunath Kamath S, Syed A, Elgorban AM. Synthesis of biocompatible chitosan decorated silver nanoparticles biocomposites for enhanced antimicrobial and anticancer property. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Kumar P, Mahajan P, Kaur R, Gautam S. Nanotechnology and its challenges in the food sector: a review. MATERIALS TODAY. CHEMISTRY 2020; 17:100332. [PMID: 32835156 PMCID: PMC7386856 DOI: 10.1016/j.mtchem.2020.100332] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 05/05/2023]
Abstract
Antibacterial activity of nanoparticles has received significant attention worldwide because of their great physical and chemical stability, excellent magnetic properties, and large lattice constant values. These properties are predominate in the food science for enhancing the overall quality, shelf life, taste, flavor, process-ability, etc., of the food. Nanoparticles exhibit attractive antibacterial activity due to their increased specific surface area leading to enhanced surface reactivity. When nanoparticles are suspended in the biological culture, they encounter various biological interfaces, resulting from the presence of cellular moieties like DNA, proteins, lipids, polysaccharides, etc., which helps antibacterial properties in many ways. This paper reviews different methods used for the synthesis of nanoparticles but is specially focusing on the green synthesis methods owing to its non-toxic nature towards the environment. This review highlights their antibacterial application mainly in the food sector in the form of food-nanosensors, food-packaging, and food-additives. The possible mechanism of nanoparticles for their antibacterial behavior underlying the interaction of nano-particles with bacteria, (i) excessive ROS generation including hydrogen peroxide (H2O2), OH- (hydroxyl radicals), and O- 2 2 (peroxide); and (ii) precipitation of nano-particles on the bacterial exterior; which, disrupts the cellular activities, resulting in membranes disturbance. All these phenomena results in the inhibition of bacterial growth. Along with this, their current application and future perspectives in the food sector are also discussed. Nanoparticles help in destroying not only pathogens but also deadly fungi and viruses. Most importantly it is required to focus more on the crop processing and its containment to stop the post-harvesting loss. So, nanoparticles can act as a smart weapon towards the sustainable move.
Collapse
Affiliation(s)
- P Kumar
- Advanced Functional Materials Lab., Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - P Mahajan
- Advanced Functional Materials Lab., Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - R Kaur
- Advanced Functional Materials Lab., Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - S Gautam
- Advanced Functional Materials Lab., Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
28
|
Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. Int J Biol Macromol 2020; 154:1050-1073. [PMID: 32201207 DOI: 10.1016/j.ijbiomac.2020.03.163] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 01/16/2023]
Abstract
Recently, environmental and ecological concerns are increasing due to the usage of petroleum-based products so the synthesis of ultra-fine chemicals and functional materials from natural resources is drawing a tremendous level of attention. Nanocellulose, a unique and promising natural material extracted from native cellulose, may prove to be most ecofriendly materials that are technically and economically feasible in modern times, minimizing the pollution generation. Nanocellulose has gained tremendous attention for its use in various applications, due to its excellent special surface chemistry, physical properties, and remarkable biological properties (biodegradability, biocompatibility, and non-toxicity). Various types of nanocellulose, viz. cellulose nanofibrils (CNFs), cellulose nanocrystals (CNCs), and bacterial nanocellulose (BNC), are deeply introduced and compared in this work in terms of sources, production, structures and properties. The metal and metal oxides especially zinc oxide nanoparticles (ZnO-NPs) are broadly used in various fields due to the diversity of functional properties such as antimicrobial and ultraviolet (UV) properties. Thus, the advancement of nanocellulose and zinc oxide nanoparticles (ZnO-NPs)-based composites materials are summarized in this article in terms of the preparation methods and remarkable properties with the help of recent knowledge and significant findings (especially from the past six years reports). The nanocellulose materials complement zinc oxide nanoparticles, where they impart their functional properties to the nanoparticle composites. As a result hybrid nanocomposite containing nanocellulose/zinc oxide composite has shown excellent mechanical, UV barrier, and antibacterial properties. The nanocellulose based hybrid nanomaterials have huge potential applications in the area of food packaging, biopharmaceuticals, biomedical, and cosmetics. Thus the functional composite materials containing nanocellulose and zinc oxide will determine the potential biomedical application for nanocellulose.
Collapse
|
29
|
Shapi’i RA, Othman SH, Nordin N, Kadir Basha R, Nazli Naim M. Antimicrobial properties of starch films incorporated with chitosan nanoparticles: In vitro and in vivo evaluation. Carbohydr Polym 2020; 230:115602. [DOI: 10.1016/j.carbpol.2019.115602] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 11/24/2022]
|
30
|
Niaz T, Shabbir S, Noor T, Imran M. Antimicrobial and antibiofilm potential of bacteriocin loaded nano-vesicles functionalized with rhamnolipids against foodborne pathogens. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108583] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Cong S, Wang N, Wang K, Wu Y, Li D, Song Y, Prakash S, Tan M. Fluorescent nanoparticles in the popular pizza: properties, biodistribution and cytotoxicity. Food Funct 2019; 10:2408-2416. [PMID: 30957811 DOI: 10.1039/c8fo01944d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food-borne nanoparticles that are generated during the thermal processing of various consumed foods are of great concern due to their unique properties. In this study, the presence of fluorescent nanoparticles (FNPs) in pizza, their biodistribution and cytotoxicity were investigated. The spherical FNPs have a diameter of about 3.33 nm. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis revealed that they contained 68.21% C, 27.44% O, 2.75% N and 1.60% S, and the functional groups on their surface included -OH, -COOH, C[double bond, length as m-dash]C, -NH2 and C[double bond, length as m-dash]O. In vitro and in vivo biodistribution of pizza FNPs was evaluated using normal rat kidney (NRK) cells, onion epidermal cells, Caenorhabditis elegans and mice. The fluorescence microscopy images clearly indicate that the pizza FNPs appear to be localized within the cytoplasm. However, the FNPs remained restricted to the extracellular space of the onion epithelium and did not enter the onion cell cytoplasm because of the cell wall. The FNPs were swallowed by the Caenorhabditis elegans worms when exposed to food OP50 and distributed within the pharynx, intestine and anus. Obvious fluorescence of the FNPs in the stomach, intestine, liver, lung and kidney was observed for the FNPs in mouse organs, but not the brain, heart, and spleen. Furthermore, the produced FNPs were found to cause cell cycle arrest at the G0/G1 phase in NRK cells, and resulted in cell apoptosis at high doses. The outcome of this research offers an important insight into the nature of thermal processing-induced nanoparticles and their in vivo and in vitro biological effects.
Collapse
Affiliation(s)
- Shuang Cong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang S, Cheng S, Jiang X, Zhang J, Bai L, Qin X, Zou Z, Chen C. Gut-brain communication in hyperfunction of 5-hydroxytryptamine induced by oral zinc oxide nanoparticles exposure in young mice. Food Chem Toxicol 2019; 135:110906. [PMID: 31669603 DOI: 10.1016/j.fct.2019.110906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
Zinc oxide nanoparticles (ZnONPs) have been widely used in food storage containers and food additives in daily life. However, the impact of oral intake of ZnONPs on nervous system is extremely limited, especially on children and adolescents. In this study, four weeks old mice were treated with either vehicle or ZnONPs suspension solution at 26 mg/kg by intragastric administration for 30 days. Our results demonstrated that oral ZnONPs exposure could induce pathological changes in gut and abnormal excitement of enteric neurons. Interestingly, we found that ZnONPs caused enhancement of 5-hydroxytryptamine (5-HT) in gut by activation of its biosynthesis, transport and receptors, and subsequently resulting in increased level of 5-HT in brain via gut-brain communication by blood. Our data also showed that there were no apparent changes on the expressions of interleukin (Il)-6, Il-1β, C-C motif chemokine ligand 2 (Ccl2), tumor necrosis factor (Tnf) in gut and zinc chelator Mt2 in gut and cortex. Meanwhile, no significant changes were observed on the expressions of tryptophan hydroxylase type 1, 5-HT receptor 3A (Htr3a) and Htr4 in hippocampus and cortex. Our study indicate that oral ZnONPs exposure causes hyperfunction of 5-HT in gut in young mice which may further spread to brain via gut-brain communication.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lulu Bai
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Dongsheng Lung-Brain Diseases Joint Lab, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Dongsheng Lung-Brain Diseases Joint Lab, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
33
|
Enescu D, Cerqueira MA, Fucinos P, Pastrana LM. Recent advances and challenges on applications of nanotechnology in food packaging. A literature review. Food Chem Toxicol 2019; 134:110814. [PMID: 31520669 DOI: 10.1016/j.fct.2019.110814] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/24/2022]
Abstract
Nanotechnology applied to food and beverage packaging has created enormous interest in recent years, but in the same time there are many controversial issues surrounding nanotechnology and food. The benefits of engineered nanoparticles (ENPs) in food-contact applications are accompanied by safety concerns due to gaps in understanding of their possible toxicology. In case of incorporation in food contact polymers, the first step to consumer exposure is the transfer of ENPs from the polymer to the food. Hence, to improve understanding of risk and benefit, the key questions are whether nanoparticles can be released from food contact polymers and under which conditions. This review has two main goals. Firstly, it will presents the current advancements in the application of ENPs in food and beverage packaging sector to grant active and intelligent properties. A particular focus will be placed on current demands in terms of risk assessment strategies associated with the use ENPs in food contact materials (FCMs), i.e. up-to-date migration/cytotoxicity studies of ENPs which are partly contradictory. Food matrix effects are often ignored, and may have a pronounced impact on the behaviour of ENPs in the gastrointestinal tract (GIT). A standardized food model (SFM) for evaluating the toxicity and fate of ingested ENPs was recently proposed and herein discussed with the aims to offer an overview to the reader. It is therefore clear that further systematic research is needed, which must account for interactions and transformations of ENMs in foods (food matrix effect) and in the gastrointestinal tract (GIT) that are likely to determine nano-biointeractions. Secondly, the review provides an extensive analysis of present market dynamics on ENPs in food/beverage packaging moving beyond concept to current industrial applications.
Collapse
Affiliation(s)
- Daniela Enescu
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| | - Pablo Fucinos
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| |
Collapse
|
34
|
Tarazona A, Gómez JV, Mateo EM, Jiménez M, Mateo F. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation. Int J Food Microbiol 2019; 306:108259. [PMID: 31349113 DOI: 10.1016/j.ijfoodmicro.2019.108259] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 11/28/2022]
Abstract
Cereal grains are essential ingredient in food, feed and industrial processing. One of the major causes of cereal spoilage and mycotoxin contamination is the presence of toxigenic Fusarium spp. Nanoparticles have immense applications in agriculture, nutrition, medicine or health but their possible impact on the management of toxigenic fungi and mycotoxins have been very little explored. In this report, the potential of silver nanoparticles (AgNPs) (size 14-100 nm) against the major toxigenic Fusarium spp. affecting crops and their effect on mycotoxin accumulation is evaluated for the first time. The studied Fusarium spp. (and associated mycotoxins) were F. graminearum and F. culmorum (deoxynivalenol, 3-acetyldeoxynivalenol and zearalenone), F. sporotrichioides and F. langsethiae (T-2 and HT-2 toxins), F. poae (nivalenol), F. verticillioides and F. proliferatum (fumonisins B1 and B2) and F. oxysporum (mycotoxins no detected). The factors fungal species, AgNP dose (range 2-45 μg/mL), exposure time (range 2-30 h) and their interactions significantly influence spore viability, lag period and growth rate (GR) in subsequent cultures in maize-based medium (MBM) of all the studied species. The effective lethal doses (ED50, ED90 and ED100) to control spore viability and GR were in the range 1->45 μg/mL depending on the remaining factors. At high exposure times (20-30 h), the three effective doses ranged 1-30 μg/mL for all the studied species. At the end of the incubation period (10 days) mycotoxin levels in MBM cultures inoculated with fungal spores from treatments were strongly related with the size reached by the colony at that time. None of the treatments produced stimulation in conidia germination, GR or mycotoxin biosynthesis with respect to controls. Thus, the antifungal effect of the assayed AgNPs against the tested Fusarium spp. suggests that AgNPs could be a new antifungal ingredient in bioactive polymers (paints, films or coating) likely to be implemented in the agro-food sector for controlling these important toxigenic Fusarium spp. and their main associated mycotoxins.
Collapse
Affiliation(s)
- Andrea Tarazona
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - José V Gómez
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Eva M Mateo
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Misericordia Jiménez
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain.
| | - Fernando Mateo
- Department of Electronic Engineering, ETSE, University of Valencia, Valencia, Spain
| |
Collapse
|
35
|
Oun AA, Shankar S, Rhim JW. Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Crit Rev Food Sci Nutr 2019; 60:435-460. [PMID: 31131614 DOI: 10.1080/10408398.2018.1536966] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nanocellulose materials are derived from cellulose, the most abundant biopolymer on the earth. Nanocellulose have been extensively used in the field of food packaging materials, wastewater treatment, drug delivery, tissue engineering, hydrogels, aerogels, sensors, pharmaceuticals, and electronic sectors due to their unique chemical structure and excellent mechanical properties. On the other hand, metal and metal oxide nanoparticles (NP) such as Ag NP, ZnO NP, CuO NP, and Fe3O4 NP have a variety of functional properties such as UV-barrier, antimicrobial, and magnetic properties. Recently, nanocelluloses materials have been used as a green template for producing metal or metal oxide nanoparticles. As a result, multifunctional nanocellulose/metal or metal oxide hybrid nanomaterials with high antibacterial properties, ultraviolet barrier properties, and mechanical properties were prepared. This review emphasized recent information on the synthesis, properties, and potential applications of multifunctional nanocellulose-based hybrid nanomaterials with metal or metal oxides such as Ag NP, ZnO NP, CuO NP, and Fe3O4 NP. The nanocellulose-based hybrid nanomaterials have huge potential applications in the area of food packaging, biopharmaceuticals, biomedical, and cosmetics.
Collapse
Affiliation(s)
- Ahmed A Oun
- Food Engineering and Packaging Department, Food Technology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Shiv Shankar
- Center for Humanities and Sciences, BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Whan Rhim
- Center for Humanities and Sciences, BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Rodríguez-Rojas A, Arango Ospina A, Rodríguez-Vélez P, Arana-Florez R. ¿What is the new about food packaging material? A bibliometric review during 1996–2016. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Kim MH, Kim TH, Ko JA, Ko S, Oh JM, Park HJ. Kinetic and thermodynamic studies of silver migration from nanocomposites. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
McGillicuddy E, Morrison L, Cormican M, Dockery P, Morris D. Activated charcoal as a capture material for silver nanoparticles in environmental water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:356-362. [PMID: 30029114 DOI: 10.1016/j.scitotenv.2018.07.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Silver nanoparticles (AgNPs), due to their antibacterial activity, have been incorporated into numerous consumer products. Their environmental impact however, is currently unclear. Uncertainties surround the concentration, fate, and effects of AgNPs in aquatic environments. This study examined the suitability of activated charcoal as a capture material for AgNPs from water. Samples of 100 ppb AgNPs were initially generated and exposed to activated charcoal for 24 h to examine the ability of charcoal to capture AgNPs. The decrease in Ag concentration was measured using ICP-MS. Following initial investigations, the surface area of the charcoal was increased firstly with a pestle and mortar and secondly by milling the charcoal using a ball mill. The increased surface area of the milled charcoal increased the capture of the AgNPs from 11.9% to 63.6% for the 100 ppb samples. Further investigations were carried out examining the effect on the capture of AgNP concentration (with concentration ranging from 10 to 100 ppb), particle coating and the effect of exposure time to the activated charcoal. The capture of AgNP increased with decreasing concentration. A hydrochloric acid (HCl) leaching procedure was also developed which successfully removed the captured silver allowing the fraction captured by the charcoal to be quantified with an average of 94.8% recovery. The results show that milled activated charcoal, can successfully capture AgNPs from water samples, and that therefore, activated charcoal may prove to be a cost effective material for the remediation of waters impacted by AgNP or other nano-wastes.
Collapse
Affiliation(s)
- E McGillicuddy
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - L Morrison
- Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland; Earth and Ocean Sciences, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - M Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - P Dockery
- Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - D Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
39
|
Addo Ntim S, Norris S, Goodwin DG, Breffke J, Scott K, Sung L, Thomas TA, Noonan GO. Effects of consumer use practices on nanosilver release from commercially available food contact materials. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2279-2290. [DOI: 10.1080/19440049.2018.1529437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Susana Addo Ntim
- Office of Regulatory science, US FDA, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Samuel Norris
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - David G. Goodwin
- Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Jens Breffke
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Keana Scott
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Lipiin Sung
- Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Treye A. Thomas
- US Consumer Product Safety Commission, Office of Hazard Identification and Reduction, Bethesda, MD, USA
| | - Gregory O. Noonan
- Office of Regulatory science, US FDA, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| |
Collapse
|
40
|
Duffy LL, Osmond-McLeod MJ, Judy J, King T. Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Vasile C. Polymeric Nanocomposites and Nanocoatings for Food Packaging: A Review. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1834. [PMID: 30261658 PMCID: PMC6213312 DOI: 10.3390/ma11101834] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/10/2018] [Accepted: 09/22/2018] [Indexed: 01/20/2023]
Abstract
Special properties of the polymeric nanomaterials (nanoscale size, large surface area to mass ratio and high reactivity individualize them in food packaging materials. They can be processed in precisely engineered materials with multifunctional and bioactive activity. This review offers a general view on polymeric nanocomposites and nanocoatings including classification, preparation methods, properties and short methodology of characterization, applications, selected types of them used in food packaging field and their antimicrobial, antioxidant, biological, biocatalyst and so forth, functions.
Collapse
Affiliation(s)
- Cornelia Vasile
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry (PPIMC), Romanian Academy, 41A Gr. Ghica Alley, RO 700487 Iasi, Romania.
| |
Collapse
|
42
|
Sportelli MC, Izzi M, Volpe A, Clemente M, Picca RA, Ancona A, Lugarà PM, Palazzo G, Cioffi N. The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials. Antibiotics (Basel) 2018; 7:E67. [PMID: 30060553 PMCID: PMC6164857 DOI: 10.3390/antibiotics7030067] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Silver nanoparticles (AgNPs) are well-known for their antimicrobial effects and several groups are proposing them as active agents to fight antimicrobial resistance. A wide variety of methods is available for nanoparticle synthesis, affording a broad spectrum of chemical and physical properties. In this work, we report on AgNPs produced by laser ablation synthesis in solution (LASiS), discussing the major features of this approach. Laser ablation synthesis is one of the best candidates, as compared to wet-chemical syntheses, for preparing Ag nano-antimicrobials. In fact, this method allows the preparation of stable Ag colloids in pure solvents without using either capping and stabilizing agents or reductants. LASiS produces AgNPs, which can be more suitable for medical and food-related applications where it is important to use non-toxic chemicals and materials for humans. In addition, laser ablation allows for achieving nanoparticles with different properties according to experimental laser parameters, thus influencing antibacterial mechanisms. However, the concentration obtained by laser-generated AgNP colloids is often low, and it is hard to implement them on an industrial scale. To obtain interesting concentrations for final applications, it is necessary to exploit high-energy lasers, which are quite expensive. In this review, we discuss the pros and cons of the use of laser ablation synthesis for the production of Ag antimicrobial colloids, taking into account applications in the food packaging field.
Collapse
Affiliation(s)
- Maria Chiara Sportelli
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
- Institute of Photonics and nanotechnology-National Research Council (IFN-CNR), Physics Department "M. Merlin", Bari, Italy, via Amendola 173, 70126 Bari, Italy.
| | - Margherita Izzi
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
| | - Annalisa Volpe
- Institute of Photonics and nanotechnology-National Research Council (IFN-CNR), Physics Department "M. Merlin", Bari, Italy, via Amendola 173, 70126 Bari, Italy.
| | - Maurizio Clemente
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
| | - Rosaria Anna Picca
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
| | - Antonio Ancona
- Institute of Photonics and nanotechnology-National Research Council (IFN-CNR), Physics Department "M. Merlin", Bari, Italy, via Amendola 173, 70126 Bari, Italy.
| | - Pietro Mario Lugarà
- Institute of Photonics and nanotechnology-National Research Council (IFN-CNR), Physics Department "M. Merlin", Bari, Italy, via Amendola 173, 70126 Bari, Italy.
| | - Gerardo Palazzo
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
| | - Nicola Cioffi
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
43
|
Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Huh YS, Han YK. Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal 2018; 26:1201-1214. [PMID: 30249319 PMCID: PMC9298566 DOI: 10.1016/j.jfda.2018.06.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
The rapid development of nanotechnology has transformed many domains of food science, especially those that involve the processing, packaging, storage, transportation, functionality, and other safety aspects of food. A wide range of nanostructured materials (NSMs), from inorganic metal, metal oxides, and their nanocomposites to nano-organic materials with bioactive agents, has been applied to the food industry. Despite the huge benefits nanotechnology has to offer, there are emerging concerns regarding the use of nanotechnology, as the accumulation of NSMs in human bodies and in the environment can cause several health and safety hazards. Therefore, safety and health concerns as well as regulatory policies must be considered while manufacturing, processing, intelligently and actively packaging, and consuming nano-processed food products. This review aims to provide a basic understanding regarding the applications of nanotechnology in the food packaging and processing industries and to identify the future prospects and potential risks associated with the use of NSMs.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, South Korea
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, South Korea
| | - Dipendra Kumar Mahato
- Department of Agriculture and Food Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Pranjal Chandra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Seung Kyu Hwang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, South Korea.
| |
Collapse
|
44
|
Behavior of silver nanoparticles and ions in food simulants and low fat cow milk under migration conditions. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Hannon JC, Kerry JP, Cruz-Romero M, Azlin-Hasim S, Morris M, Cummins E. Migration assessment of silver from nanosilver spray coated low density polyethylene or polyester films into milk. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Braga LR, Rangel ET, Suarez PAZ, Machado F. Simple synthesis of active films based on PVC incorporated with silver nanoparticles: Evaluation of the thermal, structural and antimicrobial properties. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2017.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Nanotechnology in the food sector and potential applications for the poultry industry. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Song X, Wang H, Zhang R, Yu C, Tan M. Bio-distribution and interaction with dopamine of fluorescent nanodots from roasted chicken. Food Funct 2018; 9:6227-6235. [DOI: 10.1039/c8fo01159a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of a new type of food-borne FNDs with varying particle sizes and different fluorescence properties in chicken roasted at different temperatures, and theirin vitrointeraction with dopamine are reported.
Collapse
Affiliation(s)
- Xunyu Song
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
- National Engineering Research Center of Seafood
| | - Haitao Wang
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
- National Engineering Research Center of Seafood
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane, 4072
- Australia
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering
- Iowa State University
- Ames
- USA
| | - Mingqian Tan
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
- National Engineering Research Center of Seafood
| |
Collapse
|
49
|
Hannon JC, Kerry JP, Cruz-Romero M, Azlin-Hasim S, Morris M, Cummins E. Kinetic desorption models for the release of nanosilver from an experimental nanosilver coating on polystyrene food packaging. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Polat S, Fenercioglu H, Unal Turhan E, Guclu M. Effects of nanoparticle ratio on structural, migration properties of polypropylene films and preservation quality of lemon juice. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13541] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Süleyman Polat
- Department of Food Engineering, Faculty of Agriculture; Cukurova University, Balcalı, 01330; Adana Turkey
| | - Hasan Fenercioglu
- Department of Food Engineering, Faculty of Agriculture; Cukurova University, Balcalı, 01330; Adana Turkey
| | - Emel Unal Turhan
- Kadirli School of Applied Sciences; Osmaniye Korkut Ata University; 80750 Osmaniye Turkey
| | | |
Collapse
|