1
|
Yang L, Sun X, Chen J, Zhang J, Li X, Qu S, Wu K, Huang F, Chen A. Simultaneous determination of somatic cell count and total plate count in raw milk based on ATP bioluminescence assay. Anal Chim Acta 2024; 1331:343338. [PMID: 39532422 DOI: 10.1016/j.aca.2024.343338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
The somatic cell count (SCC) and total plate count (TPC) are essential quality indicators for raw milk. Traditional detection methods require separate measurements and rely on complex, large-scale instruments or cultivation techniques, which are both time-consuming and laborious. To address these challenges, this study developed a novel method for the simultaneous detection of SCC and TPC in the same raw milk sample using the ATP bioluminescence assay. This method utilizes oxy-ethylated iso-nonyl phenol (Neonol-10) and cetyltrimethylammonium bromide (CTAB) to selectively lyse somatic cells and microorganisms, respectively. This technique is straightforward to operate and can be completed within 2.5 h, with detection ranges of 1 × 10⁴ to 3 × 10⁶ cells/mL for SCC and 1 × 10⁵ to 5 × 10⁷ CFU/mL for TPC. Importantly, this technique meets the requirements of detection standards in China, European Union, Canada, United States, etc. For SCC or TPC in raw milk. Overall, this innovative approach does not rely on expensive equipment or facilities and the stepwise reagent addition procedure can be easily developed into an automated high-throughput system for rapid on-site testing of SCC and TPC in raw milk.
Collapse
Affiliation(s)
- Longrui Yang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiaoyun Sun
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jiaci Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Juan Zhang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiaoyu Li
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Song Qu
- Sichuan Jule Food Co., Ltd, Chengdu, 610041, China
| | - Kai Wu
- Sichuan Jule Food Co., Ltd, Chengdu, 610041, China.
| | - Fengchun Huang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Ailiang Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
2
|
Kang H, Lee J, Moon J, Lee T, Kim J, Jeong Y, Lim EK, Jung J, Jung Y, Lee SJ, Lee KG, Ryu S, Kang T. Multiplex Detection of Foodborne Pathogens using 3D Nanostructure Swab and Deep Learning-Based Classification of Raman Spectra. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308317. [PMID: 38564785 DOI: 10.1002/smll.202308317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Proactive management of foodborne illness requires routine surveillance of foodborne pathogens, which requires developing simple, rapid, and sensitive detection methods. Here, a strategy is presented that enables the detection of multiple foodborne bacteria using a 3D nanostructure swab and deep learning-based Raman signal classification. The nanostructure swab efficiently captures foodborne pathogens, and the portable Raman instrument directly collects the Raman signals of captured bacteria. a deep learning algorithm has been demonstrated, 1D convolutional neural network with binary labeling, achieves superior performance in classifying individual bacterial species. This methodology has been extended to mixed bacterial populations, maintaining accuracy close to 100%. In addition, the gradient-weighted class activation mapping method is used to provide an investigation of the Raman bands for foodborne pathogens. For practical application, blind tests are conducted on contaminated kitchen utensils and foods. The proposed technique is validated by the successful detection of bacterial species from the contaminated surfaces. The use of a 3D nanostructure swab, portable Raman device, and deep learning-based classification provides a powerful tool for rapid identification (≈5 min) of foodborne bacterial species. The detection strategy shows significant potential for reliable food safety monitoring, making a meaningful contribution to public health and the food industry.
Collapse
Affiliation(s)
- Hyunju Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Junhyeong Lee
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong Moon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06032, USA
| | - Taegu Lee
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jueun Kim
- Department of Energy Resources and Chemical Engineering, Kangwon National University, 346 Jungang-ro, Samcheok, Gangwon-do, 25913, Republic of Korea
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeonwoo Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yongwon Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seok Jae Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyoung G Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
3
|
Liu Q, Yan S, Zhang M, Wang C, Xing D. Air sampling and ATP bioluminescence for quantitative detection of airborne microbes. Talanta 2024; 274:126025. [PMID: 38574539 DOI: 10.1016/j.talanta.2024.126025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Exposure to bioaerosol contamination has detrimental effects on human health. Recent advances in ATP bioluminescence provide more opportunities for the quantitative detection of bioaerosols. Since almost all active organisms can produce ATP, the amount of airborne microbes can be easily measured by detecting ATP-driven bioluminescence. The accurate evaluation of microorganisms mainly relies on following the four key steps: sampling and enrichment of airborne microbes, lysis for ATP extraction, enzymatic reaction, and measurement of luminescence intensity. To enhance the effectiveness of ATP bioluminescence, each step requires innovative strategies and continuous improvement. In this review, we summarized the recent advances in the quantitative detection of airborne microbes based on ATP bioluminescence, which focuses on the advanced strategies for improving sampling devices combined with ATP bioluminescence. Meanwhile, the optimized and innovative strategies for the remaining three key steps of the ATP bioluminescence assay are highlighted. The aim is to reawaken the prosperity of ATP bioluminescence and promote its wider utilization for efficient, real-time, and accurate detection of airborne microbes.
Collapse
Affiliation(s)
- Qing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Saisai Yan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Miao Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Abbasi R, Imanbekova M, Wachsmann-Hogiu S. On-chip bioluminescence biosensor for the detection of microbial surface contamination. Biosens Bioelectron 2024; 254:116200. [PMID: 38518562 DOI: 10.1016/j.bios.2024.116200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Detection of microbial pathogens is important for food safety reasons, and for monitoring sanitation in laboratory environments and health care settings. Traditional detection methods such as culture-based and nucleic acid-based methods are time-consuming, laborious, and require expensive laboratory equipment. Recently, ATP-based bioluminescence methods were developed to assess surface contamination, with commercial products available. In this study, we introduce a biosensor based on a CMOS image sensor for ATP-mediated chemiluminescence detection. The original lens and IR filter were removed from the CMOS sensor revealing a 12 MP periodic microlens/pixel array on an area of 6.5 mm × 3.6 mm. UltraSnap swabs are used to collect samples from solid surfaces including personal electronic devices, and office and laboratory equipment. Samples mixed with chemiluminescence reagents were placed directly on the surface of the image sensor. Close proximity of the sample to the photodiode array leads to high photon collection efficiency. The population of microorganisms can be assessed and quantified by analyzing the intensity of measured chemiluminescence. We report a linear range and limit of detection for measuring ATP in UltraSnap buffer of 10-1000 nM and 225 fmol, respectively. The performance of the CMOS-based device was compared to a commercial luminometer, and a high correlation with a Pearson's correlation coefficient of 0.98589 was obtained. The Bland-Altman plot showed no significant bias between the results of the two methods. Finally, microbial contamination of different surfaces was analyzed with both methods, and the CMOS biosensor exhibited the same trend as the commercial luminometer.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Meruyert Imanbekova
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | | |
Collapse
|
5
|
Liang P, Lv B, Chen K, Li D. Sensitive aptasensing of ATP based on a PAM site-regulated CRISPR/Cas12a activation. Mikrochim Acta 2024; 191:386. [PMID: 38867016 DOI: 10.1007/s00604-024-06477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
The combination of CRISPR/Cas12a and functional DNA provides the possibility of constructing biosensors for detecting non-nucleic-acid targets. In the current study, the duplex protospacer adjacent motif (PAM) in the activator of CRISPR/Cas12a was used as a molecular switch, and a sensitive adenosine triphosphate (ATP) detection biosensor was constructed using an allosteric probe-conjugated PAM site formation in hybridization chain reaction (HCR) integrated with the CRISPR/Cas12a system (APF-CRISPR). In the absence of ATP, an aptamer-containing probe (AP) is in a stem-loop structure, which blocks the initiation of HCR. In the presence of ATP, the structure of AP is changed upon ATP binding, resulting in the release of the HCR trigger strand and the production of long duplex DNA with many PAM sites. Since the presence of a duplex PAM site is crucial for triggering the cleavage activity of CRISPR/Cas12a, the ATP-dependent formation of the PAM site in HCR products can initiate the FQ-reporter cleavage, allowing ATP quantification by measuring the fluorescent signals. By optimizing the sequence elements and detection conditions, the aptasensor demonstrated superior detection performance. The limit of detection (LOD) of the assay was estimated to be 1.16 nM, where the standard deviation of the blank was calculated based on six repeated measurements. The dynamic range of the detection was 25-750 nM, and the whole workflow of the assay was approximately 60 min. In addition, the reliability and practicability of the aptasensor were validated by comparing it with a commercially available chemiluminescence kit for ATP detection in serum. Due to its high sensitivity, specificity, and reliable performance, the APF-CRISPR holds great potential in bioanalytical studies for ATP detection. In addition, we have provided a proof-of-principle for constructing a CRISPR/Cas12a-based aptasensor, in which the PAM is utilized to regulate Cas12a cleavage activity.
Collapse
Affiliation(s)
- Pengda Liang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Bei Lv
- Key Lab of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, 210013, China
| | - Ke Chen
- Key Lab of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, 210013, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
6
|
Papkovsky DB, Kerry JP. Oxygen Sensor-Based Respirometry and the Landscape of Microbial Testing Methods as Applicable to Food and Beverage Matrices. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094519. [PMID: 37177723 PMCID: PMC10181535 DOI: 10.3390/s23094519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
The current status of microbiological testing methods for the determination of viable bacteria in complex sample matrices, such as food samples, is the focus of this review. Established methods for the enumeration of microorganisms, particularly, the 'gold standard' agar plating method for the determination of total aerobic viable counts (TVC), bioluminescent detection of total ATP, selective molecular methods (immunoassays, DNA/RNA amplification, sequencing) and instrumental methods (flow cytometry, Raman spectroscopy, mass spectrometry, calorimetry), are analyzed and compared with emerging oxygen sensor-based respirometry techniques. The basic principles of optical O2 sensing and respirometry and the primary materials, detection modes and assay formats employed are described. The existing platforms for bacterial cell respirometry are then described, and examples of particular assays are provided, including the use of rapid TVC tests of food samples and swabs, the toxicological screening and profiling of cells and antimicrobial sterility testing. Overall, O2 sensor-based respirometry and TVC assays have high application potential in the food industry and related areas. They detect viable bacteria via their growth and respiration; the assay is fast (time to result is 2-8 h and dependent on TVC load), operates with complex samples (crude homogenates of food samples) in a simple mix-and-measure format, has low set-up and instrumentation costs and is inexpensive and portable.
Collapse
Affiliation(s)
- Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, T12 YT20 Cork, Ireland
| | - Joseph P Kerry
- School of Food and Nutritional Sciences, University College Cork, Microbiology Building, College Road, T12 YT20 Cork, Ireland
| |
Collapse
|
7
|
Morozova EP, Smoliarova TE, Lukyanenko KA, Kirillova MA, Volochaev MN, Kichkailo AS, Ranjan R, Kratasyuk VA. Metal-enhanced bioluminescence by detergent stabilized Ag and Au nanoparticles. Talanta 2023; 254:124157. [PMID: 36470014 DOI: 10.1016/j.talanta.2022.124157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
The assessment of microbial contamination is an important aspect of ensuring human food safety. One of the modern methods for the evaluation of microbial contamination is the estimation of the amount of ATP using firefly luciferase. In this case, the choice of an effective composition of the extraction buffer is crucial. In this study, we examined the influence of silver and gold nanoparticles on the firefly bioluminescent system during the ATP extraction process. It was found that gold nanoparticles stabilized with benzalkonium chloride and Triton X-100 enhanced bioluminescent system signal intensity due to metal-enhanced bioluminescence. Moreover, silver and gold nanoparticles could be used as extracting agents. So, using gold nanoparticles stabilized with BAC and Triton X-100 as ATP extraction agents with further detection by a bioluminescent system makes it possible to develop an ATP biosensor with higher sensitivity.
Collapse
Affiliation(s)
- Elizaveta P Morozova
- Siberian Federal University, Krasnoyarsk 660041, Russia; Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia; Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | | | - Kirill A Lukyanenko
- Siberian Federal University, Krasnoyarsk 660041, Russia; Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia; Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | | | | | - Anna S Kichkailo
- Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia; Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Rajeev Ranjan
- Siberian Federal University, Krasnoyarsk 660041, Russia
| | | |
Collapse
|
8
|
Esimbekova EN, Kirillova MA, Kratasyuk VA. Immobilization of Firefly Bioluminescent System: Development and Application of Reagents. BIOSENSORS 2022; 13:47. [PMID: 36671882 PMCID: PMC9855680 DOI: 10.3390/bios13010047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The present study describes the method of preparing reagents containing firefly luciferase (FLuc) and its substrate, D-luciferin, immobilized into gelatin gel separately or together. The addition of stabilizers dithiothreitol (DTT) and bovine serum albumin (BSA) to the reagent is a factor in achieving higher activity of reagents and their stability during storage. The use of immobilized reagents substantially simplifies the procedure of assay for microbial contamination. The mechanism of action of the reagents is based on the relationship between the intensity of the bioluminescent signal and the level of ATP contained in the solution of the lysed bacterial cells. The highest sensitivity to ATP is achieved by using immobilized FLuc or reagents containing separately immobilized FLuc and D-luciferase. The limit of detection of ATP by the developed reagents is 0.3 pM, which corresponds to 20,000 cells·mL-1. The linear response range is between 0.3 pM and 3 nM ATP. The multicomponent reagent, containing co-immobilized FLuc and D-luciferin, shows insignificantly lower sensitivity to ATP-0.6 pM. Moreover, the proposed method of producing an immobilized firefly luciferin-luciferase system holds considerable promise for the development of bioluminescent biosensors intended for the analysis of microbial contamination.
Collapse
Affiliation(s)
- Elena N. Esimbekova
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Avenue, 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Maria A. Kirillova
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Avenue, 660041 Krasnoyarsk, Russia
| | - Valentina A. Kratasyuk
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Avenue, 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| |
Collapse
|
9
|
Trinh KTL, Lee NY. Recent Methods for the Viability Assessment of Bacterial Pathogens: Advances, Challenges, and Future Perspectives. Pathogens 2022; 11:1057. [PMID: 36145489 PMCID: PMC9500772 DOI: 10.3390/pathogens11091057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Viability assessment is a critical step in evaluating bacterial pathogens to determine infectious risks to public health. Based on three accepted viable criteria (culturability, metabolic activity, and membrane integrity), current viability assessments are categorized into three main strategies. The first strategy relies on the culturability of bacteria. The major limitation of this strategy is that it cannot detect viable but nonculturable (VBNC) bacteria. As the second strategy, based on the metabolic activity of bacteria, VBNC bacteria can be detected. However, VBNC bacteria sometimes can enter a dormant state that allows them to silence reproduction and metabolism; therefore, they cannot be detected based on culturability and metabolic activity. In order to overcome this drawback, viability assessments based on membrane integrity (third strategy) have been developed. However, these techniques generally require multiple steps, bulky machines, and laboratory technicians to conduct the tests, making them less attractive and popular applications. With significant advances in microfluidic technology, these limitations of current technologies for viability assessment can be improved. This review summarized and discussed the advances, challenges, and future perspectives of current methods for the viability assessment of bacterial pathogens.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| |
Collapse
|
10
|
Oxidative and Microbial Stability of a Traditional Appetizer: Aubergine Salad. Processes (Basel) 2022. [DOI: 10.3390/pr10071245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An eggplant-based salad, called aubergine salad (AS), is a traditional appetizer and as such, is quite popular in the Mediterranean area. It is widely produced either on a home scale or on an industrial scale and widely consumed. However, there are cases where preservatives (such as sodium benzoate and potassium sorbate) are added in order to extend the shelf life of the product. In the present study, the stability of this delicatessen against oxidation and microbial spoilage was evaluated, with or without preservatives. The physicochemical properties of the salad were evaluated, along with the tocopherol content, resistance to oxidation, and microbial count. According to the results, it is evident that the induction period of AS is 16% (in the case that preservatives were used) and 26% (in the case without preservatives) increased, compared to a control sample (plain soybean oil). This can be attributed to the increased content in tocopherols, and more specifically to α-tocopherol. Furthermore, the addition of preservatives resulted in increased storage days and a reduction of microorganisms. However, in both cases, the AS-prepared salad exhibited a self-stabilization ability after 13 days, negating the need for preservatives.
Collapse
|
11
|
ATP Bioluminescence for Rapid and Selective Detection of Bacteria and Yeasts in Wine. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial contamination may represent a loss of money for wine producers as several defects can arise due to a microorganism’s growth during storage. The aim of this study was to implement a bioluminescence assay protocol to rapidly and simultaneously detect bacteria and yeasts in wines. Different wines samples were deliberately contaminated with bacteria and yeasts at different concentrations and filtered through two serial filters with decreasing mesh to separate bacteria and yeasts. These were resuscitated over 24 h on selective liquid media and analyzed by bioluminescence assay. ATP measurements discriminated the presence of yeasts and bacteria in artificially contaminated wine samples down to 50 CFU/L of yeasts and 1000 CFU/L of bacteria. The developed protocol allowed to detect, rapidly (24 h) and simultaneously, bacteria and yeasts in different types of wines. This would be of great interest for industries, for which an early detection and discrimination of microbial contaminants would help in the decision-making process.
Collapse
|
12
|
Kim KH, Hwang A, Song Y, Lee WS, Moon J, Jeong J, Bae NH, Jung YM, Jung J, Ryu S, Lee SJ, Choi BG, Kang T, Lee KG. 3D Hierarchical Nanotopography for On-Site Rapid Capture and Sensitive Detection of Infectious Microbial Pathogens. ACS NANO 2021; 15:4777-4788. [PMID: 33502164 DOI: 10.1021/acsnano.0c09411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Effective capture and rapid detection of pathogenic bacteria causing pandemic/epidemic diseases is an important task for global surveillance and prevention of human health threats. Here, we present an advanced approach for the on-site capture and detection of pathogenic bacteria through the combination of hierarchical nanostructures and a nuclease-responsive DNA probe. The specially designed hierarchical nanocilia and network structures on the pillar arrays, termed 3D bacterial capturing nanotopographical trap, exhibit excellent mechanical reliability and rapid (<30 s) and irreversible bacterial capturability. Moreover, the nuclease-responsive DNA probe enables the highly sensitive and extremely fast (<1 min) detection of bacteria. The bacterial capturing nanotopographical trap (b-CNT) facilitates the on-site capture and detection of notorious infectious pathogens (Escherichia coli O157:H7, Salmonella enteritidis, Staphylococcus aureus, and Bacillus cereus) from kitchen tools and food samples. Accordingly, the usefulness of the b-CNT is confirmed as a simple, fast, sensitive, portable, and robust on-site capture and detection tool for point-of-care testing.
Collapse
Affiliation(s)
- Kyung Hoon Kim
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Ahreum Hwang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Younseong Song
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jeong Moon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Nam Ho Bae
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jiyoung Jung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seok Jae Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kyoung G Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Campbell VR, Carson MS, Lao A, Maran K, Yang EJ, Kamei DT. Point-of-Need Diagnostics for Foodborne Pathogen Screening. SLAS Technol 2020; 26:55-79. [PMID: 33012245 DOI: 10.1177/2472630320962003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Foodborne illness is a major public health issue that results in millions of global infections annually. The burden of such illness sits mostly with developing countries, as access to advanced laboratory equipment and skilled lab technicians, as well as consistent power sources, is limited and expensive. Current gold standards in foodborne pathogen screening involve labor-intensive sample enrichment steps, pathogen isolation and purification, and costly readout machinery. Overall, time to detection can take multiple days, excluding the time it takes to ship samples to off-site laboratories. Efforts have been made to simplify the workflow of such tests by integrating multiple steps of foodborne pathogen screening procedures into a singular device, as well as implementing more point-of-need readout methods. In this review, we explore recent advancements in developing point-of-need devices for foodborne pathogen screening. We discuss the detection of surface markers, nucleic acids, and metabolic products using both paper-based and microfluidic devices, focusing primarily on developments that have been made between 2015 and mid-2020.
Collapse
Affiliation(s)
- Veronica R Campbell
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Mariam S Carson
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Amelia Lao
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Kajal Maran
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Eric J Yang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Daniel T Kamei
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
14
|
O'Grady J, Cronin U, Tierney J, Piterina AV, O'Meara E, Wilkinson MG. Gaps in the assortment of rapid assays for microorganisms of interest to the dairy industry. ADVANCES IN APPLIED MICROBIOLOGY 2020; 113:1-56. [PMID: 32948264 PMCID: PMC7426214 DOI: 10.1016/bs.aambs.2020.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This review presents the results of a study into the offering of rapid microbial detection assays to the Irish dairy industry. At the outset, a consultation process was undertaken whereby key stakeholders were asked to compile a list of the key microorganisms of interest to the sector. The resultant list comprises 19 organisms/groups of organisms divided into five categories: single pathogenic species (Cronobacter sakazakii, Escherichia coli and Listeria monocytogenes); genera containing pathogenic species (Bacillus, Clostridium, Listeria, Salmonella; Staphylococcus); broad taxonomic groupings (Coliforms, Enterobacteriaceae, fecal Streptococci, sulfite reducing bacteria/sulfite reducing Clostridia [SRBs/SRCs], yeasts and molds); organisms displaying certain growth preferences or resistance as regards temperature (endospores, psychrotrophs, thermodurics, thermophiles); indicators of quality (total plate count, Pseudomonas spp.). A survey of the rapid assays commercially available for the 19 organisms/groups of organisms was conducted. A wide disparity between the number of rapid tests available was found. Four categories were used to summarize the availability of rapid assays per organism/group of organisms: high coverage (>15 assays available); medium coverage (5-15 assays available); low coverage (<5 assays available); no coverage (0 assays available). Generally, species or genera containing pathogens, whose presence is regulated-for, tend to have a good selection of commercially available rapid assays for their detection, whereas groups composed of heterogenous or even undefined genera of mainly spoilage organisms tend to be "low coverage" or "no coverage." Organisms/groups of organisms with "low coverage" by rapid assays include: Clostridium spp.; fecal Streptococci; and Pseudomonas spp. Those with "no coverage" by rapid assays include: endospores; psychrotrophs; SRB/SRCs; thermodurics; and thermophiles. An important question is: why have manufacturers of rapid microbiological assays failed to respond to the necessity for rapid methods for these organisms/groups of organisms? The review offers explanations, ranging from the technical difficulty involved in detecting as broad a group as the thermodurics, which covers the spores of multiple sporeforming genera as well at least six genera of mesophilic nonsporeformers, to the taxonomically controversial issue as to what constitutes a fecal Streptococcus or SRBs/SRCs. We review two problematic areas for assay developers: validation/certification and the nature of dairy food matrices. Development and implementation of rapid alternative test methods for the dairy industry is influenced by regulations relating to both the microbiological quality standards and the criteria alternative methods must meet to qualify as acceptable test methods. However, the gap between the certification of developer's test systems as valid alternative methods in only a handful of representative matrices, and the requirement of dairy industries to verify the performance of alternative test systems in an extensive and diverse range of dairy matrices needs to be bridged before alternative methods can be widely accepted and adopted in the dairy industry. This study concludes that many important dairy matrices have effectively been ignored by assay developers.
Collapse
Affiliation(s)
- John O'Grady
- Dairy Processing Technology Centre, University of Limerick, Limerick, Ireland
| | - Ultan Cronin
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Joseph Tierney
- Glanbia Ingredients Ireland, Ballyragget, Co. Kilkenny, Ireland
| | - Anna V Piterina
- Dairy Processing Technology Centre, University of Limerick, Limerick, Ireland
| | - Elaine O'Meara
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Martin G Wilkinson
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
15
|
Fysun O, Khorshid S, Rauschnabel J, Langowski H. Detection of dairy fouling by cyclic voltammetry and square wave voltammetry. Food Sci Nutr 2020; 8:3070-3080. [PMID: 32724571 PMCID: PMC7382167 DOI: 10.1002/fsn3.1463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 11/08/2022] Open
Abstract
Fouling in food processing environment can cause the increase of production costs due to additional cleaning steps and risk of contamination of food products. There is a demand to introduce advanced techniques to detect fouling in food processing equipment. Cyclic voltammetry (CV) and square wave voltammetry (SWV) were probed in this work to detect the dairy fouling and the reconstructed dairy emulsion by platinum-based interdigitated microelectrodes. The results demonstrated that both methods can potentially be used for the fouling detection, since the attachment of fouling to the microelectrode surface leads to lower current responses compared to the clean microelectrodes.
Collapse
Affiliation(s)
- Olga Fysun
- TUM School of Life Sciences WeihenstephanTechnical University of MunichFreisingGermany
- Robert Bosch Packaging Technology GmbHWaiblingenGermany
- Present address:
Robert Bosch GmbHReutlingenGermany
| | - Sara Khorshid
- Robert Bosch Packaging Technology GmbHWaiblingenGermany
- Department of Mechanical and Process EngineeringUniversity of KaiserslauternKaiserslauternGermany
- Present address:
Sanofi‐Aventis Deutschland GmbHFrankfurtGermany
| | | | - Horst‐Christian Langowski
- TUM School of Life Sciences WeihenstephanTechnical University of MunichFreisingGermany
- Fraunhofer Institute for Process Engineering and Packaging IVVFreisingGermany
| |
Collapse
|
16
|
Tseng CC, Lu YC, Chang KC, Hung CC. Optimization of a Portable Adenosine Triphosphate Bioluminescence Assay Coupled with a Receiver Operating Characteristic Model to Assess Bioaerosol Concentrations on Site. Microorganisms 2020; 8:microorganisms8070975. [PMID: 32610699 PMCID: PMC7409044 DOI: 10.3390/microorganisms8070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022] Open
Abstract
Rapid monitoring of the microbial content in indoor air is an important issue. In this study, we develop a method for applying a Coriolis sampler coupled with a portable ATP luminometer for characterization of the collection efficiency of bioaerosol samplers and then test this approach in field applications. The biological collection efficiencies of the Coriolis sampler and a BioSampler for collecting four different types of bioaerosols, including Escherichia coli, Staphylococcus aureus, Candida famata and endospores of Bacillus subtilis, were compared in a chamber study. The results showed that the ATP assay may indicate the four microbes' viability, and that their defined viabilities were positively correlated with their culturability. In addition, the optimal sampling conditions of the Coriolis sampler were a 200 L/min flow rate and a sampling time of 30 min. Under these conditions, there was no significant difference in sampling performance between the BioSampler and Coriolis sampler. In field applications, the best ATP benchmark that corresponded to culturable levels of < 500 CFU/m3 was 287 RLUs (sensitivity: 100%; specificity: 80%) for bacteria and 370 RLUs (sensitivity: 79%; specificity: 82%) for fungi according to receiver operating characteristic curve analysis. Consequently, an ATP criterion is recommended for indicating whether the corresponding airborne culturable concentrations of microbes meet those of published guidelines.
Collapse
Affiliation(s)
- Chun-Chieh Tseng
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien 97004, Taiwan; (Y.-C.L.); (C.-C.H.)
- Correspondence: ; Tel./Fax: +886-3-8574179
| | - Yi-Chian Lu
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien 97004, Taiwan; (Y.-C.L.); (C.-C.H.)
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chien-Che Hung
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien 97004, Taiwan; (Y.-C.L.); (C.-C.H.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
17
|
Fysun O, Kern H, Wilke B, Langowski H. Formation of dairy fouling deposits on food contact surfaces. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Olga Fysun
- TUM School of Life Sciences Weihenstephan Technical University of Munich Freising Germany
- Robert Bosch Packaging Technology GmbH Waiblingen Germany
| | - Heike Kern
- Robert Bosch Packaging Technology GmbH Waiblingen Germany
- Institute of Food Science and Biotechnology University of Hohenheim Stuttgart Germany
| | - Bernd Wilke
- Robert Bosch Packaging Technology GmbH Waiblingen Germany
| | - Horst‐Christian Langowski
- TUM School of Life Sciences Weihenstephan Technical University of Munich Freising Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV Freising Germany
| |
Collapse
|
18
|
A rapid method for post-antibiotic bacterial susceptibility testing. PLoS One 2019; 14:e0210534. [PMID: 30629681 PMCID: PMC6328127 DOI: 10.1371/journal.pone.0210534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/26/2018] [Indexed: 11/19/2022] Open
Abstract
Antibiotic susceptibility testing is often performed to determine the most effective antibiotic treatment for a bacterial infection, or perhaps to determine if a particular strain of bacteria is becoming drug resistant. Such tests, and others used to determine efficacy of candidate antibiotics during the drug discovery process, have resulted in a demand for more rapid susceptibility testing methods. Here, we have developed a susceptibility test that utilizes chemiluminescent determination of ATP release from bacteria and the overall optical density (OD600) of the bacterial solution. Bacteria release ATP during a growth phase or when they are lysed in the presence of an effective antibiotic. Because optical density increases during growth phase, but does not change during bacterial lysing, an increase in the ATP:optical density ratio after the bacteria have reached the log phase of growth (which is steady) would indicate antibiotic efficacy. Specifically, after allowing a kanamycin-resistant strain of Escherichia coli (E.coli) to pass through the growth phase and reach steady state, the addition of levofloxacin, an antibiotic to which E. coli is susceptible, resulted in a significant increase in the ATP:OD600 ratio in comparison to the use of kanamycin alone (1.80 +/- 0.50 vs. 1.12 +/- 0.28). This difference could be measured 20 minutes after the addition of the antibiotic, to which the bacteria are susceptible, to the bacterial sample. Furthermore, this method also proved useful with gram positive bacteria, as the addition of kanamycin to a chloramphenicol-resistant strain of Bacillus subtilis (B. subtilis) resulted in an ATP:OD600 ratio of 2.14 +/- 0.26 in comparison to 0.62 +/- 0.05 for bacteria not subjected to the antibiotic to which the bacteria are susceptible. Collectively, these results suggest that measurement of the ATP:OD600 ratio may provide a susceptibility test for antibiotic efficacy that is more rapid and quantitative than currently accepted techniques.
Collapse
|
19
|
Evaluation of factors influencing dairy biofilm formation in filling hoses of food-processing equipment. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2018.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Lee KJ, Lee WS, Hwang A, Moon J, Kang T, Park K, Jeong J. Simple and rapid detection of bacteria using a nuclease-responsive DNA probe. Analyst 2018; 143:332-338. [PMID: 29210381 DOI: 10.1039/c7an01384a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate simple and rapid bacterial detection using a nuclease-responsive DNA probe. The probe consisting of a fluorescent dye and a quencher at the 5' and 3' termini, respectively, was designed to be cleaved by nucleases such as endonucleases, exonucleases, and DNases, which are released from bacteria using an optimized lysis buffer. The fluorescence signal of the cleaved DNA probe correlates with the number of Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, and the detection limit was 103 CFU for E. coli and 104 CFU for S. aureus. Moreover, this method is specific for live bacteria and takes just one minute to get the signal including sample collection. These features make the present bacterial detection method a powerful on-site bacterial contamination assay which is simple, rapid, and quantitative.
Collapse
Affiliation(s)
- Kyung Jin Lee
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
21
|
Amalfitano S, Levantesi C, Garrelly L, Giacosa D, Bersani F, Rossetti S. Water Quality and Total Microbial Load: A Double-Threshold Identification Procedure Intended for Space Applications. Front Microbiol 2018; 9:2903. [PMID: 30574126 PMCID: PMC6291452 DOI: 10.3389/fmicb.2018.02903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
During longer-lasting future space missions, water renewal by ground-loaded supplies will become increasingly expensive and unmanageable for months. Space exploration by self-sufficient spacecrafts is thus demanding the development of culture-independent microbiological methods for in-flight water monitoring to counteract possible contamination risks. In this study, we aimed at evaluating total microbial load data assessed by selected early-warning techniques with current or promising perspectives for space applications (i.e., HPC, ATP-metry, qPCR, flow cytometry), through the analysis of water sources with constitutively different contamination levels (i.e., chlorinated and unchlorinated tap waters, groundwaters, river waters, wastewaters). Using a data-driven double-threshold identification procedure, we presented new reference values of water quality based on the assessment of the total microbial load. Our approach is suitable to provide an immediate alert of microbial load peaks, thus enhancing the crew responsiveness in case of unexpected events due to water contamination and treatment failure. Finally, the backbone dataset could help in managing water quality and monitoring issues for both space and Earth-based applications.
Collapse
Affiliation(s)
- Stefano Amalfitano
- Water Research Institute – National Research Council of Italy, Monterotondo, Italy
| | - Caterina Levantesi
- Water Research Institute – National Research Council of Italy, Monterotondo, Italy
| | | | - Donatella Giacosa
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., Turin, Italy
| | - Francesca Bersani
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., Turin, Italy
| | - Simona Rossetti
- Water Research Institute – National Research Council of Italy, Monterotondo, Italy
| |
Collapse
|
22
|
Lee J, Park C, Kim Y, Park S. Signal enhancement in ATP bioluminescence to detect bacterial pathogens via heat treatment. BIOCHIP JOURNAL 2017. [DOI: 10.1007/s13206-017-1404-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Renaud D, Kelton D, LeBlanc S, Haley D, Jalbert A, Duffield T. Validation of commercial luminometry swabs for total bacteria and coliform counts in colostrum-feeding equipment. J Dairy Sci 2017; 100:9459-9465. [DOI: 10.3168/jds.2017-13228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/09/2017] [Indexed: 12/28/2022]
|
24
|
Plasmonic cell nanocoating: a new concept for rapid microbial screening. Anal Bioanal Chem 2017; 409:6305-6314. [PMID: 28905084 DOI: 10.1007/s00216-017-0612-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/18/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
Nanocoating of single microbial cells with gold nanostructures can confer optical, electrical, thermal, and mechanical properties to microorganisms, thus enabling new avenues for their control, study, application, and detection. Cell nanocoating is often performed using layer-by-layer (LbL) deposition. LbL is time-consuming and relies on nonspecific electrostatic interactions, which limit potential applications for microbial diagnostics. Here, we show that, by taking advantage of surface molecules densely present in the microbial outer layers, cell nanocoating with gold nanoparticles can be achieved within seconds using surface molecules, including disulfide- bond-containing (Dsbc) proteins and chitin. A simple activation of these markers and their subsequent interaction with gold nanoparticles allow specific microbial screening and quantification of bacteria and fungi within 5 and 30 min, respectively. The use of plasmonics and fluorescence as transduction methods offers a limit of detection below 35 cfu mL-1 for E. coli bacteria and 1500 cfu mL-1 for M. circinelloides fungi using a hand-held fluorescent reader. Graphical abstract A new concept for rapid microbial screening by targeting disulfide - bond-containing (Dsbc) proteins and chitin with reducing agents and gold nanoparticles.
Collapse
|
25
|
Rahman UU, Shahzad T, Sahar A, Ishaq A, Khan MI, Zahoor T, Aslam S. Recapitulating the competence of novel & rapid monitoring tools for microbial documentation in food systems. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.11.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|