1
|
Jia Z, Duan J, Yu S, Song Z, He F, Wang Z. Hydrogel Embedding Enables Enhanced Leaf Deposition and Bioavailability of Fe-Based Engineered Nanoparticles. ACS NANO 2024; 18:28712-28723. [PMID: 39380455 DOI: 10.1021/acsnano.4c07002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Nanofertilizers comprising engineered nanoparticles (ENPs) have great potential in sustainable agriculture due to their strong capabilities of improving crop yields. As an effective fertilization strategy, foliar spraying could lead to broken and splashed ENP droplets, resulting in inaccurate leaf targeting and potential environmental contamination. Herein, we propose embedding Fe-based ENPs into a supramolecular hydrogel to effectively enhance the deposition amount on leaves and thus the bioavailability. The proper rheological properties of the hydrogel droplets and their robust interaction with soybean leaf simultaneously reduce the droplet rebound and fragmentation, especially under elevated impact speeds, resulting in up to 168.9% more droplet deposition compared to the ENP suspension. Computational fluid dynamics simulation analysis suggests that the contact angle is a key sensitive factor influencing the dynamic deposition behavior of the hydrogel droplet. A 15% reduction in the contact angle results in a 14% reduction of the highest bouncing height. The incorporation of ENPs enhances the viscous dissipation rate by 7.4% in comparison with pure hydrogel droplets. The hydrogel embedding also causes a 1.5-fold increase in ENP uptake compared to that of the ENP suspension. The hydrogel embedding delivers a reduction of 80% in the ENP application amount, compared to ENP suspensions, while achieving a 28% increase in the fresh weight of soybean seedlings. This work provides an effective method to enhance the deposition of ENPs during foliar application.
Collapse
Affiliation(s)
- Zhemin Jia
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Jinfu Duan
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Shikang Yu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhekai Song
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Wang J, Gao W, Jin Y, Tian W, Zhang Y, Hu C, Wang B, Dong S, Yuan L. Water-dispersible macromolecular antioxidants for toughening and strengthening cellulose membranes. Carbohydr Polym 2024; 339:122246. [PMID: 38823914 DOI: 10.1016/j.carbpol.2024.122246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Biodegradable packaging materials from cellulose are eco-friendly alternatives to traditional petroleum-based plastics. Balancing its mechanical properties as well as protective values (antioxidation, oxygen barrier, etc.) is critical. However, most studies to improve its antioxidation performance were accompanied by sacrificed mechanical properties. In the current work, a series of linear -COOH functionalized phenolic polymers were prepared from phenolic compounds (vanillin, 3,4-dihydroxy benzaldehyde) through a facile tri-component thiol-aldehyde polycondensation. While circumventing the cumbersome protection-deprotection of phenol groups, the one-pot strategy also affords water dispersible polymers for fabricating composites with cellulose nanofibers in an aqueous medium. After introducing 5-10 wt% of the copolymers, a minor soft phase was formed inside the composites, contributing to enhanced mechanical strength, toughness, antioxidation capability, and ultra-violet blocking performance, while its oxygen barrier property was well maintained.
Collapse
Affiliation(s)
- Jie Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Wei Gao
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yu Jin
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Wangmao Tian
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yutao Zhang
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Chengcheng Hu
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Baoxia Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Shuqi Dong
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| | - Liang Yuan
- Anhui Provincial Engineering Center for High Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| |
Collapse
|
3
|
Hossain MT, Shahid MA, Mahmud N, Habib A, Rana MM, Khan SA, Hossain MD. Research and application of polypropylene: a review. DISCOVER NANO 2024; 19:2. [PMID: 38168725 PMCID: PMC10761633 DOI: 10.1186/s11671-023-03952-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Polypropylene (PP) is a versatile polymer with numerous applications that has undergone substantial changes in recent years, focusing on the demand for next-generation polymers. This article provides a comprehensive review of recent research in PP and its advanced functional applications. The chronological development and fundamentals of PP are mentioned. Notably, the incorporation of nanomaterial like graphene, MXene, nano-clay, borophane, silver nanoparticles, etc., with PP for advanced applications has been tabulated with their key features and challenges. The article also conducts a detailed analysis of advancements and research gaps within three key forms of PP: fiber, membrane, and matrix. The versatile applications of PP across sectors like biomedical, automotive, aerospace, and air/water filtration are highlighted. However, challenges such as limited UV resistance, bonding issues, and flammability are noted. The study emphasizes the promising potential of PP while addressing unresolved concerns, with the goal of guiding future research and promoting innovation in polymer applications.
Collapse
Affiliation(s)
- Md Tanvir Hossain
- Department of Textile Engineering, Bangladesh University of Business and Technology (BUBT), Dhaka, 1216, Bangladesh
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Md Abdus Shahid
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh.
| | - Nadim Mahmud
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Ahasan Habib
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Md Masud Rana
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Shadman Ahmed Khan
- Department of Textile Engineering, Bangladesh University of Business and Technology (BUBT), Dhaka, 1216, Bangladesh
| | - Md Delwar Hossain
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| |
Collapse
|
4
|
Bu N, Wang L, Zhang D, Xiao H, Liu X, Chen X, Pang J, Ma C, Mu R. Highly Hydrophobic Gelatin Nanocomposite Film Assisted by Nano-ZnO/(3-Aminopropyl) Triethoxysilane/Stearic Acid Coating for Liquid Food Packaging. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37881864 DOI: 10.1021/acsami.3c10757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Biodegradable gelatin (G) food packaging films are in increasing demand as the substitution of petroleum-based preservative materials. However, G packaging films universally suffer from weak hydrophobicity in practical applications. Constructing a hydrophobic micro/nanocoating with low surface energy is an effective countermeasure. However, the poor compatibility with the hydrophilic G substrate often leads to the weak interfacial adhesion and poor durability of the hydrophobic coating. To overcome this obstacle, we used (3-aminopropyl) triethoxysilane (APS) as an interfacial bridging agent to prepare a highly hydrophobic, versatile G nanocomposite film. Specifically, tannic acid (TA)-modified nanohydroxyapatite (n-HA) particles (THA) were introduced in G matrix (G-THA) to improve the mechanical properties. Micro/nanostructure with low surface energy composed of nanozinc oxide (Nano-ZnO)/APS/stearic acid (SA) (NAS) was constructed on the surface of G-THA film (G-THA/NAS) through one-step spray treatment. Consequently, as-prepared G-THA/NAS film presented excellent mechanics (tensile strength: 7.6 MPa, elongation at break: 292.7%), water resistance ability (water contact angle: 150.4°), high UV-shielding (0% transmittance at 200 nm), degradability (100% degradation rate after buried in the natural soil for 15 days), antioxidant (78.8% of 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity), and antimicrobial (inhibition zone against Escherichia coli: 15.0 mm and Staphylococcus aureus: 16.5 mm) properties. It should be emphasized that the bridging function of APS significantly improves the interfacial adhesion ability of the NAS coating with more than 95% remaining area after the cross-cut adhesion test. Meanwhile, the G-THA/NAS film could maintain stable and long-lasting hydrophobic surfaces against UV radiation, high temperature, and abrasion. Based on these multifunctional properties, the G-THA/NAS film was successfully applied as a liquid packaging material. To sum up, we provide a feasible and effective method to prepare high-performance green packaging films.
Collapse
Affiliation(s)
- Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huimin Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoman Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Ma
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
He Y, Khaleed A, Lo PS, Ahmad I, Ching Ng AM, Djurišić AB. Iron-Based Oxygen Scavengers on Mesoporous Silica Nanospheres. ACS OMEGA 2023; 8:21689-21695. [PMID: 37360418 PMCID: PMC10285951 DOI: 10.1021/acsomega.3c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Iron-based materials are among the most commonly used oxygen scavengers. Here, we investigated the mesoporous silica nanosphere (MSN)-supported iron-based scavengers, such as FeOx nanoparticles and different atomic layer deposition (ALD) coatings (FeOx and Fe). We found that the scavenger performance is a result of a complex interplay between available Brunauer-Emmett-Teller surface area and the scavenger composition, with the combination of infiltrated nanoparticles and Fe-ALD coating resulting in the best performance. When the glucose-based treatment of MSN is used to further enhance oxygen scavenging capacity, Fe-ALD coating yields the best performance, with a high oxygen adsorption capacity of 126.8 mL/g. ALD deposition of Fe represents a versatile method to introduce Fe-based oxygen scavengers onto different supports, and it can facilitate the integration of scavengers with different types of packaging, as the deposition can be performed at a low temperature of 150 °C.
Collapse
Affiliation(s)
- Yanling He
- Department
of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, China
| | - Abdul Khaleed
- Department
of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, China
| | - Po Shan Lo
- Department
of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, China
| | - Ishaq Ahmad
- Department
of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, China
| | - Alan Man Ching Ng
- Core
Research Facilities, Southern University
of Science and Technology, No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, P. R. China
| | - Aleksandra B. Djurišić
- Department
of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Traxler I, Kaineder H, Fischer J. Simultaneous Modification of Properties Relevant to the Processing and Application of Virgin and Post-Consumer Polypropylene. Polymers (Basel) 2023; 15:polym15071717. [PMID: 37050331 PMCID: PMC10097265 DOI: 10.3390/polym15071717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Post-consumer recyclates often have a property profile that results from mixing a variety of products, which are made from different materials, produced by different processing methods, and coming from applications with different lifetimes. This usually leads to a mixture of all these material properties in the recycling process. In contrast, virgin materials are specifically designed for applications and thus offer all the necessary properties for the intended products. In order to be able to use recycled materials for specific and demanding applications, not only the viscosity, which is important for processing and often varies greatly with recyclates, but also the mechanical properties, particularly the tensile modulus and impact strength, must be adjusted. For this purpose, various virgin materials of polypropylene homopolymers, random copolymers, and block copolymers with different flowabilities were mixed in different proportions and their properties were determined. The flowability of homopolymers and random copolymers in the blend behaved very similarly, while block copolymers exhibited a different behavior in some cases. By incorporating homopolymers into blends, the stiffness of the resulting material blend can be very well adjusted. The addition of random copolymers can increase strain at break, and the addition of block copolymers results in a significant increase in impact strength. In numbers, the maximum adjustment range for tensile modulus, yield stress, strain at break, and impact strength are 880 MPa, 14 MPa, 185%, and 6.9 kJ/m2, respectively. While a good and reliable prediction of property profile is possible for polymer blends with different virgin materials, the resulting material properties for polymer blends of virgin and recycled materials are also influenced by impurities. In this work, however, a good prediction was also achieved for recyclate blends.
Collapse
Affiliation(s)
- Ines Traxler
- Competence Center CHASE GmbH, Altenberger Strasse 69, 4040 Linz, Austria
| | - Hannes Kaineder
- Institute of Polymeric Materials and Testing, Johannes Kepler University, Altenberger Strasse 69, 4040 Linz, Austria
| | - Joerg Fischer
- Institute of Polymeric Materials and Testing, Johannes Kepler University, Altenberger Strasse 69, 4040 Linz, Austria
| |
Collapse
|
7
|
Muzata TS, Gebrekrstos A, Orasugh JT, Ray SS. An overview of recent advances in polymer composites with improved
UV
‐shielding properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Tanyaradzwa S. Muzata
- Department of Polymer Technology and Engineering Harare Institute of Technology Harare Zimbabwe
| | - Amanuel Gebrekrstos
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
| | - Jonathan Tersur Orasugh
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
- Centre for Nanostructures and Advanced Materials DSI‐CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria South Africa
| |
Collapse
|
8
|
Wang S, Muiruri JK, Soo XYD, Liu S, Thitsartarn W, Tan BH, Suwardi A, Li Z, Zhu Q, Loh XJ. Bio-Polypropylene and Polypropylene-based Biocomposites: Solutions for a Sustainable Future. Chem Asian J 2023; 18:e202200972. [PMID: 36461701 DOI: 10.1002/asia.202200972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Polypropylene (PP) is among the most widely used commodity plastics in our everyday life due to its low cost, lightweight, easy processability, and exceptional chemical, thermo-mechanical characteristics. The growing awareness on energy and environmental crisis has driven global efforts for creating a circular economy via developing sustainable and eco-friendly alternatives to traditional plastics produced from fossil fuels for a variety of end-use applications. This review paper presents a brief outline of the emerging bio-based PP derived from renewable natural resources, covering its production routes, market analysis and potential utilizations. This contribution also provides a comprehensive review of the PP-based biocomposites produced with diverse green fillers generated from agro-industrial wastes, with particular emphasis on the structural modification, processing techniques, mechanical properties, and practical applications. Furthermore, given that the majority of PP products are currently destined for landfills, research progress on enhancing the degradation of PP and its biocomposites is also presented in light of the environmental concerns. Finally, a brief conclusion with discussions on challenges and future perspectives are provided.
Collapse
Affiliation(s)
- Suxi Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Joseph Kinyanjui Muiruri
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Xiang Yun Debbie Soo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Songlin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Ady Suwardi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore.,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.,Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore, 117575, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore.,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore.,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.,Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore, 117575, Singapore
| |
Collapse
|
9
|
Góral D, Marczuk A, Góral-Kowalczyk M, Koval I, Andrejko D. Application of Iron Nanoparticle-Based Materials in the Food Industry. MATERIALS (BASEL, SWITZERLAND) 2023; 16:780. [PMID: 36676517 PMCID: PMC9862918 DOI: 10.3390/ma16020780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Due to their different properties compared to other materials, nanoparticles of iron and iron oxides are increasingly used in the food industry. Food technologists have especially paid attention to their ease of separation by magnetic fields and biocompatibility. Unfortunately, the consumption of increasing amounts of nanoparticles has raised concerns about their biotoxicity. Hence, knowledge about the applicability of iron nanoparticle-based materials in the food industry is needed not only among scientists, but also among all individuals who are involved in food production. The first part of this article describes typical methods of obtaining iron nanoparticles using chemical synthesis and so-called green chemistry. The second part of this article describes the use of iron nanoparticles and iron nanoparticle-based materials for active packaging, including the ability to eliminate oxygen and antimicrobial activity. Then, the possibilities of using the magnetic properties of iron nano-oxides for enzyme immobilization, food analysis, protein purification and mycotoxin and histamine removal from food are described. Other described applications of materials based on iron nanoparticles are the production of artificial enzymes, process control, food fortification and preserving food in a supercooled state. The third part of the article analyzes the biocompatibility of iron nanoparticles, their impact on the human body and the safety of their use.
Collapse
Affiliation(s)
- Dariusz Góral
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Andrzej Marczuk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Góral-Kowalczyk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Iryna Koval
- Department of Physical, Analytical and General Chemistry, Lviv Polytechnic National University, 79013 Lviv, Ukraine
| | - Dariusz Andrejko
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
10
|
Mihelčič M, Oseli A, Huskić M, Slemenik Perše L. Influence of Stabilization Additive on Rheological, Thermal and Mechanical Properties of Recycled Polypropylene. Polymers (Basel) 2022; 14:polym14245438. [PMID: 36559809 PMCID: PMC9785811 DOI: 10.3390/polym14245438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
To decrease the amount of plastic waste, the use of recycling techniques become a necessity. However, numerous recycling cycles result in the mechanical, thermal, and chemical degradation of the polymer, which leads to an inefficient use of recycled polymers for the production of plastic products. In this study, the effects of recycling and the improvement of polymer performance with the incorporation of an additive into recycled polypropylene was studied by spectroscopic, rheological, optical, and mechanical characterization techniques. The results showed that after 20 recycling steps of mechanical processing of polypropylene, the main degradation processes of polypropylene are chain scission of polymer chains and oxidation, which can be improved by the addition of a stabilizing additive. It was shown that a small amount of an additive significantly improves the properties of the recycled polypropylene up to the 20th reprocessing cycle. The use of an additive improves the rheological properties of the recycled melt, surface properties, and time-dependent mechanical properties of solid polypropylene since it was shown that the additive acts as a hardener and additionally crosslinks the recycled polymer chains.
Collapse
Affiliation(s)
- Mohor Mihelčič
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva Ulica 6, 1000 Ljubljana, Slovenia
| | - Alen Oseli
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva Ulica 6, 1000 Ljubljana, Slovenia
| | - Miroslav Huskić
- Faculty of Polymer Technology, Ozare 19, 2380 Slovenj Gradec, Slovenia
| | - Lidija Slemenik Perše
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva Ulica 6, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
11
|
Zheng X, He L, Yu G, Li Y. Effect of Tea Polyphenols on the Melt Grafting of Glycidyl Methacrylate onto Polypropylene. Polymers (Basel) 2022; 14:polym14235253. [PMID: 36501646 PMCID: PMC9735711 DOI: 10.3390/polym14235253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
It is considered to be one of the most effective strategies to prepare functionalized polypropylene (PP) materials via the melt grafting of polar monomers onto PP chains. However, the grafting efficiency of functional monomers is generally low. To achieve a high grafting efficiency, we explored the effect of tea polyphenols (C), which are good free radical scavengers, on the melt grafting of glycidyl methacrylate (GMA) onto PP chains initiated by dicumyl peroxide (DCP). Specifically, 0.5~3 wt% of tea polyphenols (C) were introduced to the PP/DCP/GMA melt blending system. The morphology, melt flow rate (MFR), thermal and mechanical properties of tea polyphenols (C) incorporated PP/DCP/GMA blends were investigated systematically. The results showed that the proper amount of tea polyphenols (C) (0.5~2 wt%) promoted the grafting of GMA. Unexpectedly, the PP backbone suffered from more severe degradation with the addition of tea polyphenols (C). The phenomena were ascribed to the reaction between phenolic hydroxyl groups of tea polyphenols (C) and epoxy groups of grafted GMA, which was revealed by the FTIR results. In addition, according to DSC and the tensile test, the co-grafting of GMA and tea polyphenols (C) improved the crystallization ability, yield strength and Young's modulus of the PP matrix.
Collapse
Affiliation(s)
- Xin Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Lina He
- Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Correspondence: (G.Y.); (Y.L.); Tel.: +86-731-8883-6961 (G.Y.); +86-571-2886-7026 (Y.L.)
| | - Yongjin Li
- Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (G.Y.); (Y.L.); Tel.: +86-731-8883-6961 (G.Y.); +86-571-2886-7026 (Y.L.)
| |
Collapse
|
12
|
Nano clays and its composites for food packaging applications. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Cheng C, Chen S, Su J, Zhu M, Zhou M, Chen T, Han Y. Recent advances in carrageenan-based films for food packaging applications. Front Nutr 2022; 9:1004588. [PMID: 36159449 PMCID: PMC9503319 DOI: 10.3389/fnut.2022.1004588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022] Open
Abstract
In order to solve the increasingly serious environmental problems caused by plastic-based packaging, carrageenan-based films are drawing much attentions in food packaging applications, due to low cost, biodegradability, compatibility, and film-forming property. The purpose of this article is to present a comprehensive review of recent developments in carrageenan-based films, including fabrication strategies, physical and chemical properties and novel food packaging applications. Carrageenan can be extracted from red algae mainly by hydrolysis, ultrasonic-assisted and microwave-assisted extraction, and the combination of multiple extraction methods will be future trends in carrageenan extraction methods. Carrageenan can form homogeneous film-forming solutions and fabricate films mainly by direct coating, solvent casting and electrospinning, and mechanism of film formation was discussed in detail. Due to the inherent limitations of the pure carrageenan film, physical and chemical properties of carrageenan films were enhanced by incorporation with other compounds. Therefore, carrageenan-based films can be widely used for extending the shelf life of food and monitoring the food freshness by inhibiting microbial growth, reducing moisture loss and the respiration, etc. This article will provide useful guidelines for further research on carrageenan-based films.
Collapse
Affiliation(s)
- Cheng Cheng
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan, China
| | - Jiaqi Su
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ming Zhu
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Mingrui Zhou
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Tianming Chen
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Yahong Han
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Amenorfe LP, Agorku ES, Sarpong F, Voegborlo RB. Innovative exploration of additive incorporated biopolymer-based composites. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Iversen LJL, Rovina K, Vonnie JM, Matanjun P, Erna KH, ‘Aqilah NMN, Felicia WXL, Funk AA. The Emergence of Edible and Food-Application Coatings for Food Packaging: A Review. Molecules 2022; 27:5604. [PMID: 36080371 PMCID: PMC9457879 DOI: 10.3390/molecules27175604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
Food packaging was not as important in the past as it is now, because the world has more people but fewer food resources. Food packaging will become more prevalent and go from being a nice-to-have to an essential feature of modern life. Food packaging has grown to be an important industry sector in today's world of more people and more food. Food packaging innovation faces significant challenges in extending perishable food products' shelf life and contributing to meeting daily nutrient requirements as people nowadays are searching for foods that offer additional health advantages. Modern food preservation techniques have two objectives: process viability and safe, environmentally friendly end products. Long-term storage techniques can include the use of edible coatings and films. This article gives a succinct overview of the supplies and procedures used to coat food products with conventional packaging films and coatings. The key findings summarizing the biodegradable packaging materials are emphasized for their ability to prolong the freshness and flavor of a wide range of food items; films and edible coatings are highlighted as viable alternatives to traditional packaging methods. We discuss the safety concerns and opportunities presented by applying edible films and coatings, allowing it to be used as quality indicators for time-sensitive foods.
Collapse
Affiliation(s)
- Luk Jun Lam Iversen
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Patricia Matanjun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kana Husna Erna
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nasir Md Nur ‘Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Andree Alexander Funk
- Rural Development Corporation, Level 2, Wisma Pertanian, Locked Bag 86, Kota Kinabalu 88998, Sabah, Malaysia
| |
Collapse
|
16
|
Alp-Erbay E. Nanomaterials Utilized in Food Packaging: State-of-the-Art. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Wu W, Liu L, Goksen G, Demir D, Shao P. Multidimensional (0D-3D) nanofillers: fascinating materials in the field of bio-based food active packaging. Food Res Int 2022; 157:111446. [DOI: 10.1016/j.foodres.2022.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
|
18
|
Magnetic Core-Shell Iron Oxides-Based Nanophotocatalysts and Nanoadsorbents for Multifunctional Thin Films. MEMBRANES 2022; 12:membranes12050466. [PMID: 35629792 PMCID: PMC9144956 DOI: 10.3390/membranes12050466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023]
Abstract
In recent years, iron oxides-based nanostructured composite materials are of particular interest for the preparation of multifunctional thin films and membranes to be used in sustainable magnetic field adsorption and photocatalysis processes, intelligent coatings, and packing or bio-medical applications. In this paper, superparamagnetic iron oxide (core)-silica (shell) nanoparticles suitable for thin films and membrane functionalization were obtained by co-precipitation and ultrasonic-assisted sol-gel methods. The comparative/combined effect of the magnetic core co-precipitation temperature (80 and 95 °C) and ZnO-doping of the silica shell on the photocatalytic and nano-sorption properties of the resulted composite nanoparticles were investigated by ultraviolet-visible (UV-VIS) spectroscopy monitoring the discoloration of methylene blue (MB) solution under ultraviolet (UV) irradiation and darkness, respectively. The morphology, structure, textural, and magnetic parameters of the investigated powders were evidenced by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Brunauer–Emmett–Teller (BET) measurements, and saturation magnetization (vibrating sample magnetometry, VSM). The intraparticle diffusion model controlled the MB adsorption. The pseudo- and second-order kinetics described the MB photodegradation. When using SiO2-shell functionalized nanoparticles, the adsorption and photodegradation constant rates are three–four times higher than for using starting core iron oxide nanoparticles. The obtained magnetic nanoparticles (MNPs) were tested for films deposition.
Collapse
|
19
|
A Review of Nonbiodegradable and Biodegradable Composites for Food Packaging Application. J CHEM-NY 2022. [DOI: 10.1155/2022/7670819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The dependency on nonbiodegradable-based food packaging, increase in population growth, and persistent environmental problems are some of the driving forces in considering the development of biodegradable food packaging. This effort of green packaging has the potential to solve issues on plastic wastes through the combination of biodegradable composite-based food packaging with plant extracts, nanomaterials, or other types of polymer. Modified biodegradable materials have provided numerous alternatives for producing green packaging with mechanical strength, thermal stability, and barrier performance that are comparable to the conventional food packaging. To the best of our knowledge, the performance of nonbiodegradable and biodegradable composites as food packaging in terms of the above properties has not yet been reviewed. In this context, the capability of biodegradable polymers to substitute the nonbiodegradable polymers was emphasized to enhance the packaging biodegradation while retaining the mechanical strength, thermal stability, barrier properties, and antioxidant and antimicrobial or antibacterial activity. These are the ultimate goal in the food industry. This review will impart useful information on the properties of food packaging developed from different polymers and future outlook toward the development of green food packaging.
Collapse
|
20
|
Azari A, Ahari H, Anvar AA. Increased shelf life of Oncorhynchus mykiss (Rainbow trout) through Cu-Clay nanocomposites. Food Sci Biotechnol 2022; 31:295-309. [PMID: 35273820 PMCID: PMC8885968 DOI: 10.1007/s10068-022-01031-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 11/04/2022] Open
Abstract
Microbial growth is widely responsible for shortened shelf life of cold water-living fish products. So, it seems that current chemical-based food packaging has no acceptable efficacy, and food industrialists tend to the usage of more novel approaches like active food packaging. Among them, there is a great research interest in nanotechnology-emerging approaches. This study aimed to investigate the anti-microbial efficacies of Polyethylene/CuNP/nanoclay nanocomposites to enhance the shelf life and physiochemical features of rainbow trout. Three main nanocomposites with various concentrations of Cu and clay nanoparticles were examined. SEM, XRD, and EDX (as physiochemical analysis), disk diffusion (as antimicrobial assays), total volatile nitrogen (TVB-N), and peroxide value (PV) (as biochemical parameters) were measured. Based on the results, nanocomposites could reduce the microorganism growth rate by reducing the number of colonies (33.3%), inhibitory activities against both gram-positive (8 mm) and gram-negative bacteria (10 mm), maintenance of TVB-N (42% reduction), and PV (44% reduction) below the standard range. To sum up, these new nanocomposites can be a good candidate to enhance the shelf life of Rainbow Trout. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01031-0.
Collapse
Affiliation(s)
- Armin Azari
- grid.411463.50000 0001 0706 2472Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- grid.411463.50000 0001 0706 2472Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Ali Anvar
- grid.411463.50000 0001 0706 2472Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
21
|
Vidakis N, Petousis M, Michailidis N, Grammatikos S, David CN, Mountakis N, Argyros A, Boura O. Development and Optimization of Medical-Grade Multi-Functional Polyamide 12-Cuprous Oxide Nanocomposites with Superior Mechanical and Antibacterial Properties for Cost-Effective 3D Printing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:534. [PMID: 35159879 PMCID: PMC8838813 DOI: 10.3390/nano12030534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023]
Abstract
In the current study, nanocomposites of medical-grade polyamide 12 (PA12) with incorporated copper (I) oxide (cuprous oxide-Cu2O) were prepared and fully characterized for their mechanical, thermal, and antibacterial properties. The investigation was performed on specimens manufactured by fused filament fabrication (FFF) and aimed to produce multi-purpose geometrically complex nanocomposite materials that could be employed in medical, food, and other sectors. Tensile, flexural, impact and Vickers microhardness measurements were conducted on the 3D-printed specimens. The fractographic inspection was conducted utilizing scanning electron microscopy (SEM), to determine the fracture mechanism and qualitatively evaluate the process. Moreover, the thermal properties were determined by thermogravimetric analysis (D/TGA). Finally, their antibacterial performance was assessed through a screening method of well agar diffusion. The results demonstrate that the overall optimum performance was achieved for the nanocomposites with 2.0 wt.% loading, while 0.5 wt.% to 4.0 wt.% loading was concluded to have discrete improvements of either the mechanical, the thermal, or the antibacterial performance.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Mechanical Engineering Department, Hellenic Mediterranean University, 71004 Heraklion, Crete, Greece; (N.V.); (M.P.); (N.M.)
| | - Markos Petousis
- Mechanical Engineering Department, Hellenic Mediterranean University, 71004 Heraklion, Crete, Greece; (N.V.); (M.P.); (N.M.)
| | - Nikolaos Michailidis
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (N.M.); (A.A.)
- Centre for Research & Development of Advanced Materials (CERDAM), Center for Interdisciplinary Research and Innovation, Balkan Center, 57001 Thessaloniki, Macedonia, Greece
| | - Sotirios Grammatikos
- Group of Sustainable Composites, Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, 2815 Gjøvik, Norway;
| | - Constantine N. David
- Manufacturing Technology & Production Systems Laboratory, School of Engineering, International Hellenic University (Serres Campus), 62124 Serres, Macedonia, Greece;
| | - Nikolaos Mountakis
- Mechanical Engineering Department, Hellenic Mediterranean University, 71004 Heraklion, Crete, Greece; (N.V.); (M.P.); (N.M.)
| | - Apostolos Argyros
- Physical Metallurgy Laboratory, Mechanical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (N.M.); (A.A.)
- Centre for Research & Development of Advanced Materials (CERDAM), Center for Interdisciplinary Research and Innovation, Balkan Center, 57001 Thessaloniki, Macedonia, Greece
| | - Orsa Boura
- Group of Sustainable Composites, Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, 2815 Gjøvik, Norway;
| |
Collapse
|
22
|
Pushparaj K, Liu WC, Meyyazhagan A, Orlacchio A, Pappusamy M, Vadivalagan C, Robert AA, Arumugam VA, Kamyab H, Klemeš JJ, Khademi T, Mesbah M, Chelliapan S, Balasubramanian B. Nano- from nature to nurture: A comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the food sector. ENERGY 2022; 240:122732. [DOI: 10.1016/j.energy.2021.122732] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
|
23
|
Guo X, Xu X, Bai Z, Chen X, Qin J. Non‐isothermal crystallization kinetics of polypropylene/layered double hydroxide composites. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xincheng Guo
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Key Laboratory of Karst Environment and Geohazard, Ministry of Land and Resources Guizhou University Guiyang China
| | - Xiaoyu Xu
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
| | - Zhuyu Bai
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xiaolang Chen
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
| | - Jun Qin
- Key Laboratory of Karst Environment and Geohazard, Ministry of Land and Resources Guizhou University Guiyang China
| |
Collapse
|
24
|
Chung MMS, Bao Y, Zhang BY, Le TM, Huang JY. Life Cycle Assessment on Environmental Sustainability of Food Processing. Annu Rev Food Sci Technol 2021; 13:217-237. [PMID: 34936816 DOI: 10.1146/annurev-food-062420-014630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Food processing represents a critical part of the food supply chain that converts raw materials into safe and nutritious food products with high quality. However, the fast-growing food processing industry has imposed enormous burdens on the environment. Life cycle assessment (LCA) is widely used for evaluating the sustainability of food systems; nonetheless, current attention mainly concentrates on the agricultural production stage. This article reviews recent LCA studies on dairy, fruits and vegetables, and beverage products, with a particular emphasis on their processing stage. The environmental impacts of various foods are summarized, and the hotspots in their processing lines as well as potential remediation strategies are highlighted. Moreover, an outlook on the environmental performance of nonthermal processing, modified atmosphere packaging, and active packaging is provided, and future research directions are recommended. This review enables quantitative assessments and comparisons to be made by food manufacturers that are devoted to implementing sustainable processing technologies. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Yiwen Bao
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA;
| | - Bruce Yizhe Zhang
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA;
| | - Thanh Minh Le
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA;
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA; .,Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
25
|
Zhou YH, Mujumdar AS, Vidyarthi SK, Zielinska M, Liu H, Deng LZ, Xiao HW. Nanotechnology for Food Safety and Security: A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yu-Hao Zhou
- College of Engineering, China Agricultural University, Beijing, China
| | - Arun S. Mujumdar
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Sriram K. Vidyarthi
- Department of Biological and Agricultural Engineering, University of California, Davis, California, USA
| | - Magdalena Zielinska
- Department of Systems Engineering, University of Warmia and Mazury in Olsztyn, Poland
| | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Li-Zhen Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Paidari S, Tahergorabi R, Anari ES, Nafchi AM, Zamindar N, Goli M. Migration of Various Nanoparticles into Food Samples: A Review. Foods 2021; 10:foods10092114. [PMID: 34574224 PMCID: PMC8466665 DOI: 10.3390/foods10092114] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology has provided new opportunities for the food industry with its applications in food packaging. The addition of nanoparticles, such as clay, silver and copper, can improve the mechanical and antimicrobial properties of food packaging. However, nanoparticles may have an adverse impact on human health. This has led to legislative and regulatory concerns. The inhibitory effects of nano packaging on different microorganisms, such as Salmonella, E. coli, and molds, have been studied. Nanoparticles, like other materials, may have a diverse set of properties that need to be determined. In this review, different features of silver, clay and copper nanoparticles, such as their anti-microbial, cell toxicity, genetic toxicity, mechanical properties, and migration, are critically evaluated in the case of food packaging. Specifically, the viewpoints of WHO, FDA, and ESFA, concerning the nano-silver application in food packaging, are discussed as well.
Collapse
Affiliation(s)
- Saeed Paidari
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran; (S.P.); (E.S.A.); (N.Z.); (M.G.)
| | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Correspondence:
| | - Ensieh Sadat Anari
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran; (S.P.); (E.S.A.); (N.Z.); (M.G.)
| | - Abdorezza Moahammdi Nafchi
- Food Biopolymer Research Group, Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
- Food Biopolymer Research Group, Food Science and Technology Department, Damghan Branch, Islamic Azad University, Damghan 36716-39998, Iran
| | - Nafiseh Zamindar
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran; (S.P.); (E.S.A.); (N.Z.); (M.G.)
| | - Mohammad Goli
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran; (S.P.); (E.S.A.); (N.Z.); (M.G.)
- Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| |
Collapse
|
27
|
Tyagi P, Salem KS, Hubbe MA, Pal L. Advances in barrier coatings and film technologies for achieving sustainable packaging of food products – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Jung BN, Jung HW, Kang DH, Kim GH, Shim JK. A Study on the Oxygen Permeability Behavior of Nanoclay in a Polypropylene/Nanoclay Nanocomposite by Biaxial Stretching. Polymers (Basel) 2021; 13:2760. [PMID: 34451298 PMCID: PMC8399966 DOI: 10.3390/polym13162760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/17/2023] Open
Abstract
Polypropylene (PP) has poor oxygen barrier properties, therefore it is manufactured in a multi-layer structure with other plastics and metals, and has been widely used as a packaging material in various industries from food and beverage to pharmaceuticals. However, multi-layered packaging materials are generally low in recyclability and cause serious environmental pollution, therefore we have faced the challenge of improving the oxygen barrier performance as a uni-material. In this work, PP/nanoclay nanocomposites were prepared at nanoclay contents ranging from 0.8 to 6.4 wt% by the biaxial stretching method, performed through a sequential stretching method. It was observed that, as the draw ratio increased, the behavior of the agglomerates of the nanoclay located in the PP matrix changed and the nanoclay was dispersed along the second stretching direction. Oxygen barrier properties of PP/nanoclay nanocomposites are clearly improved due to this dispersion effect. As the biaxial stretching ratio and the content of nanoclay increased, the oxygen permeability value of the PP/nanoclay nanocomposite decreased to 43.5 cc·mm/m2·day·atm, which was reduced by about 64% compared to PP. Moreover, even when the relative humidity was increased from 0% to 90%, the oxygen permeability values remained almost the same without quality deterioration. Besides these properties, we also found that the mechanical and thermal properties were also improved. The biaxially-stretched PP/nanoclay nanocomposite fabricated in this study is a potential candidate for the replacement of the multi-layered packaging material used in the packaging fields.
Collapse
Affiliation(s)
- Bich-Nam Jung
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (B.-N.J.); (D.-H.K.); (G.-H.K.)
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea;
| | - Hyun-Wook Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea;
| | - Dong-Ho Kang
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (B.-N.J.); (D.-H.K.); (G.-H.K.)
| | - Gi-Hong Kim
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (B.-N.J.); (D.-H.K.); (G.-H.K.)
| | - Jin-Kie Shim
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (B.-N.J.); (D.-H.K.); (G.-H.K.)
| |
Collapse
|
29
|
Ahari H, Soufiani SP. Smart and Active Food Packaging: Insights in Novel Food Packaging. Front Microbiol 2021; 12:657233. [PMID: 34305829 PMCID: PMC8299788 DOI: 10.3389/fmicb.2021.657233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/05/2021] [Indexed: 12/02/2022] Open
Abstract
The demand for more healthy foods with longer shelf life has been growing. Food packaging as one of the main aspects of food industries plays a vital role in meeting this demand. Integration of nanotechnology with food packaging systems (FPSs) revealed promising promotion in foods’ shelf life by introducing novel FPSs. In this paper, common classification, functionalities, employed nanotechnologies, and the used biomaterials are discussed. According to our survey, FPSs are classified as active food packaging (AFP) and smart food packaging (SFP) systems. The functionality of both systems was manipulated by employing nanotechnologies, such as metal nanoparticles and nanoemulsions, and appropriate biomaterials like synthetic polymers and biomass-derived biomaterials. “Degradability and antibacterial” and “Indicating and scavenging” are the well-known functions for AFP and SFP, respectively. The main purpose is to make a multifunctional FPS to increase foods’ shelf life and produce environmentally friendly and smart packaging without any hazard to human life.
Collapse
Affiliation(s)
- Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Solmaz P Soufiani
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
30
|
Optimization of the Filler Concentration on Fused Filament Fabrication 3D Printed Polypropylene with Titanium Dioxide Nanocomposites. MATERIALS 2021; 14:ma14113076. [PMID: 34199870 PMCID: PMC8200125 DOI: 10.3390/ma14113076] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Polypropylene (PP) is an engineered thermoplastic polymer widely used in various applications. This work aims to enhance the properties of PP with the introduction of titanium dioxide (TiO2) nanoparticles (NPs) as nanofillers. Novel nanocomposite filaments were produced at 0.5, 1, 2, and 4 wt.% filler concentrations, following a melt mixing extrusion process. These filaments were then fed to a commercially available fused filament fabrication (FFF) 3D printer for the preparation of specimens, to be assessed for their mechanical, viscoelastic, physicochemical, and fractographic properties, according to international standards. Tensile, flexural, impact, and microhardness tests, as well as dynamic mechanical analysis (DMA), Raman, scanning electron microscopy (SEM), melt flow volume index (MVR), and atomic force microscopy (AFM), were conducted, to fully characterize the filler concentration effect on the 3D printed nanocomposite material properties. The results revealed an improvement in the nanocomposites properties, with the increase of the filler amount, while the microstructural effect and processability of the material was not significantly affected, which is important for the possible industrialization of the reported protocol. This work showed that PP/TiO2 can be a novel nanocomposite system in AM applications that the polymer industry can benefit from.
Collapse
|
31
|
Videira-Quintela D, Martin O, Montalvo G. Recent advances in polymer-metallic composites for food packaging applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Azizi‐Lalabadi M, Rafiei L, Divband B, Ehsani A. Active packaging for Salmon stored at refrigerator with Polypropylene nanocomposites containing 4A zeolite, ZnO nanoparticles, and green tea extract. Food Sci Nutr 2020; 8:6445-6456. [PMID: 33312530 PMCID: PMC7723188 DOI: 10.1002/fsn3.1934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/12/2020] [Accepted: 09/19/2020] [Indexed: 12/23/2022] Open
Abstract
In this study, three types of Polypropylene-based (PP) films (two active nanocomposites and one control film) containing zinc oxide nanoparticles (ZnO NPs), 4A zeolite (4A Z), and green tea extract (GTE) were studied as modern active packaging's that can adjust the release of antimicrobial agents. The influence of PP nanocomposite with 3% (w/w) ZnO NPs/4A Z/GTE (treatment 1) and 6% (w/w) ZnO NPs/4A Z/GTE (treatment 2) on controlling microbial growth and preserving the sensory and chemical qualities of Salmon over nine days of storage at 4 ± 1°C was evaluated. The disk diffusion test revealed inhibition zones in the range of 10.98 ± 0.03 to 13.42 ± 0.01 m for treatments 1 and 2, respectively; the nanocomposite film with 6% ZnO NPs/4A Z/GTE had the highest antimicrobial effect against Gram-negative bacteria (p < .05). Chemical analysis revealed that the initial peroxide value of Salmon was 0.68 ± 0.0 mEq/kg, which increased by day 9 to 12.3 ± 0.03 mEq/kg in the control sample, but rising only to 9.9 ± 0.01 and 7.3 ± 0.02 mEq/kg in treatments 1 and 2, respectively (p < .05). The shelf life of Salmon given treatment 2 increased significantly to nine days relative to the control. Accordingly, these nanocomposite films are promising as new active packaging for preventing microbial growth and preserving the quality of salmon.
Collapse
Affiliation(s)
- Maryam Azizi‐Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH)Kermanshah University of Medical SciencesKermanshahIran
| | - Leila Rafiei
- Department of Food Science and TechnologyUrmia University Faculty of AgricultureUrmiaIran
| | - Bahark Divband
- Dental and Periodontal Research CenterTabriz University of Medical SciencesTabrizIran
- Inorganic Chemistry DepartmentFaculty of ChemistryUniversity of TabrizTabrizIran
| | - Ali Ehsani
- Nutrition Research CenterDepartment of Food Sciences and TechnologyFaculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
- Food and Drug safety research centerTabriz University of medical scienceTabrizIran
| |
Collapse
|
33
|
Qu P, Zhang M, Fan K, Guo Z. Microporous modified atmosphere packaging to extend shelf life of fresh foods: A review. Crit Rev Food Sci Nutr 2020; 62:51-65. [PMID: 32856460 DOI: 10.1080/10408398.2020.1811635] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In recent years, microporous modified atmosphere packaging has been widely concerned because of its adjustable air permeability and low processing cost. With the development and increasing demand of fresh food industry, the limited permeability of film in modified atmosphere packaging can't meet the fresh-keeping requirements of fresh foods, especially vegetables and fruits. Microporous film can flexibly adjust the gas permeability according to the physiological metabolic characteristics of fresh foods, which has gradually become a fresh-keeping technology in the domain of vegetables and fruits. This paper reviewed the research progress of microporous modified atmosphere packaging and its extension on shelf life of fresh foods. The latest applied researches were described in a comprehensive manner, particularly fruits and vegetables. Besides, this article also covered theoretical support and analysis, including the perforation mode, air permeability mechanism and mathematical model of microporous film, the characteristics of fresh foods, pore parameters and traits of film materials. This paper payed attention to the application of environmentally friendly degradable film materials (biological film materials, nano materials) in fruits and vegetables preservation. Research has shown that the degradable material can enlarge the fresh-keeping effect of microporous modified atmosphere packaging, which is worthy of further research and development. Finally, the development trends and directions in the future were discussed.
Collapse
Affiliation(s)
- Ping Qu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Kai Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhimei Guo
- R & D Center, Wuxi Haihe Equipment Co, Wuxi, China
| |
Collapse
|
34
|
Ndukwu MC, Ikechukwu-Edeh CE, Nwakuba NR, Okosa I, Horsefall IT, Orji FN. Nanomaterials application in greenhouse structures, crop processing machinery, packaging materials and agro-biomass conversion. MATERIALS SCIENCE FOR ENERGY TECHNOLOGIES 2020; 3:690-699. [PMID: 33604530 PMCID: PMC7416747 DOI: 10.1016/j.mset.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 06/12/2023]
Abstract
The discovery of nanomaterials has flagged off crucial research and innovations in science and engineering. Its unique properties and diverse applications present it as the material for the future. The aim of this study is to presents the relative applications of nanomaterial in some aspects of agriculture production. The study discussed nanotechnology applicability in climate control and photosynthesis in the greenhouse farming, hydroponic systems, solar drying, fabrication of crop processing machine components, oxygen scavengers in crop packaging, and micro-organism stimulant in anaerobic digestion for agro biomass conversion. Some highlights from the review revealed that Nanotechnology can be applied to increase water surface area to volume ratio and heat transfer in the air moving into a greenhouse farming. Water cluster can be changed when treated with nanoparticles through ultraviolet absorption spectrum and nuclear magnetic resonance (NMR) spectroscopy resulting in lower micelles to manipulate water delivery in green house farming. Nano-fluids or Nano-composites can be used to recombine the reactive parts of thermal storage materials after broken at elevated temperature to recover the stored heat for drying purpose during the off-sunshine periods in solar drying of crops. Nanomaterials can be a source of electroluminescence light in hydroponic system and act as coatings and surface hardener in crop processing machinery for post-harvest machines. The reviewed work showed that nanotechnologies has good prospect in adding value in agricultural production in the aspects discussed.
Collapse
Affiliation(s)
- M C Ndukwu
- Department of Agricultural and Bioresources Engineering, Michael Okpara University of Agriculture, Umuahia, Nigeria
| | - C E Ikechukwu-Edeh
- Department of Agricultural and Bioresources Engineering, Michael Okpara University of Agriculture, Umuahia, Nigeria
| | - N R Nwakuba
- Department of Agricultural and Bioresources Engineering, Federal University of Technology, Owerri, Nigeria
| | - I Okosa
- Department of Agricultural and Bioresources Engineering, Michael Okpara University of Agriculture, Umuahia, Nigeria
| | - I T Horsefall
- Department of Agricultural and Bioresources Engineering, Michael Okpara University of Agriculture, Umuahia, Nigeria
| | - F N Orji
- Department of Agricultural and Bioresources Engineering, Michael Okpara University of Agriculture, Umuahia, Nigeria
| |
Collapse
|
35
|
Jafarzadeh S, Jafari SM. Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials. Crit Rev Food Sci Nutr 2020; 61:2640-2658. [DOI: 10.1080/10408398.2020.1783200] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shima Jafarzadeh
- Food Biopolymer Research Group, Food Technology Division, School of Industrial Technology, University Sains Malaysia, Minden, Penang, Malaysia
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
36
|
Mustafa F, Andreescu S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv 2020; 10:19309-19336. [PMID: 35515480 PMCID: PMC9054203 DOI: 10.1039/d0ra01084g] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
The rapid advancement of nanotechnology has provided opportunities for the development of new sensing and food packaging solutions, addressing long-standing challenges in the food sector to extend shelf-life, reduce waste, assess safety and improve the quality of food. Nanomaterials can be used to reinforce mechanical strength, enhance gas barrier properties, increase water repellence, and provide antimicrobial and scavenging activity to food packaging. They can be incorporated in chemical and biological sensors enabling the design of rapid and sensitive devices to assess freshness, and detect allergens, toxins or pathogenic contaminants. This review summarizes recent studies on the use of nanomaterials in the development of: (1) (bio)sensing technologies for detection of nutritional and non-nutritional components, antioxidants, adulterants and toxicants, (2) methods to improve the barrier and mechanical properties of food packaging, and (3) active functional packaging. The environmental, health and safety implications of nanomaterials in the food sector, along with an overview of regulation and consumer perception is also provided.
Collapse
Affiliation(s)
- Fatima Mustafa
- Department of Chemistry and Biomolecular Science, Clarkson University Potsdam New York 13699-5810 USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University Potsdam New York 13699-5810 USA
| |
Collapse
|
37
|
Efficiency of Novel Antimicrobial Coating Based on Iron Nanoparticles for Dairy Products’ Packaging. COATINGS 2020. [DOI: 10.3390/coatings10020156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The main function of food packaging is to maintain food’s quality and safety. The use of active packaging, including antimicrobial materials, can significantly extend the shelf life of food. Many of these packaging solutions are based on the application of polymer films containing metal nanoparticles (e.g., Ag, Au, Cu) or metal oxides (e.g., TiO2, ZnO, MgO). However, the use of iron nanoparticles is rarely mentioned. In the study, polylactide (PLA) films containing zero-valent iron (ZVI) were made by casting method. Pure PLA films and PLA films with the addition of Fe2O3 were used as comparative materials. The composition and structure of ZVI/PLA films were evaluated with scanning electron microscopy. The XRD spectra performed on ZVI/PLA films confirmed the presence of iron in the packaging material and revealed their oxide form (Fe2O3). The addition of zero-valent iron in the concentration 1%, 3%, or 5% resulted in the formation of crystallographic planes measuring 40.8, 33.6, and 28.6 nm, respectively. The color and gloss of the films, and their antimicrobial activity against bacteria (Bacillus subtilis, Escherichia coli, Staphylococcus epidermidis) and fungi (Geotrichum candidum, Rhodotorula rubra) were also examined. The PLA films with addition of 3% of ZVI (w/w) inhibited the growth of all tested organisms in contrast to PLA and PLA/Fe2O3 films. The addition of ZVI to polymer matrix caused changes in its appearance and optical properties. The ZVI/PLA coating used on polyolefin film allowed to extend the shelf life of goat cheese packed in examined material to 6 weeks. Considering the antimicrobial properties of the ZVI/PLA films and PLA biodegradability the obtained material can be successfully applied in the food industry.
Collapse
|
38
|
Araújo EAF, Visconte LLY, da Silva ALN, Sirelli L, Pacheco ÉBA. Effect of clay amount and reprocessing cycles on thermal, morphological, and mechanical properties of polypropylene/organovermiculite nanocomposites. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elvis A. F. Araújo
- Instituto de Macromoléculas Professora Eloisa Mano/Programa em Ciência e Tecnologia de PolímerosUniversidade Federal do Rio de Janeiro, Avenida Horácio Macedo 2.030, Centro de Tecnologia, Bloco J, CEP 21941‐598 Rio de Janeiro Brazil
| | - Leila L. Y. Visconte
- Instituto de Macromoléculas Professora Eloisa Mano/Programa em Ciência e Tecnologia de PolímerosUniversidade Federal do Rio de Janeiro, Avenida Horácio Macedo 2.030, Centro de Tecnologia, Bloco J, CEP 21941‐598 Rio de Janeiro Brazil
- Escola Politécnica/Programa de Engenharia AmbientalUniversidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco A, CEP 21941‐909, Ilha do Fundão Rio de Janeiro Brazil
| | - Ana L. N. da Silva
- Instituto de Macromoléculas Professora Eloisa Mano/Programa em Ciência e Tecnologia de PolímerosUniversidade Federal do Rio de Janeiro, Avenida Horácio Macedo 2.030, Centro de Tecnologia, Bloco J, CEP 21941‐598 Rio de Janeiro Brazil
- Escola Politécnica/Programa de Engenharia AmbientalUniversidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco A, CEP 21941‐909, Ilha do Fundão Rio de Janeiro Brazil
| | - Lys Sirelli
- Instituto de Macromoléculas Professora Eloisa Mano/Programa em Ciência e Tecnologia de PolímerosUniversidade Federal do Rio de Janeiro, Avenida Horácio Macedo 2.030, Centro de Tecnologia, Bloco J, CEP 21941‐598 Rio de Janeiro Brazil
| | - Élen B. A.V. Pacheco
- Instituto de Macromoléculas Professora Eloisa Mano/Programa em Ciência e Tecnologia de PolímerosUniversidade Federal do Rio de Janeiro, Avenida Horácio Macedo 2.030, Centro de Tecnologia, Bloco J, CEP 21941‐598 Rio de Janeiro Brazil
- Escola Politécnica/Programa de Engenharia AmbientalUniversidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco A, CEP 21941‐909, Ilha do Fundão Rio de Janeiro Brazil
| |
Collapse
|
39
|
Kombaya-Touckia-Linin EM, Gaucel S, Sougrati MT, Stievano L, Gontard N, Guillard V. Elaboration and Characterization of Active Films Containing Iron-Montmorillonite Nanocomposites for O 2 Scavenging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1193. [PMID: 31450786 PMCID: PMC6780512 DOI: 10.3390/nano9091193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022]
Abstract
Iron particles of sizes between 6 and 20 nm forming aggregates of 57 ± 17 nm were synthesized by chemical reduction of iron precursors on the surface of montmorillonite (MMT). This active MMT-Fe powder was then uniformly distributed in a linear low-density polyethylene (LLDPE) matrix by extrusion at atmospheric conditions, as confirmed by wide-angle X-ray scattering (WAXS), which also detected a partial exfoliation of the nanoclays. Thermogravimetric analysis (TGA) did not detect any significant modification of the degradation temperature between nanocomposites and active nanocomposites. 57Fe Mössbauer spectroscopy evidenced the formation of a majority of iron boride in MMT-Fe as well as in the active film containing it. The LLDPE.Fu15.MMT-Fe3.75 and LLDPE.Fu15.MMT-Fe6.25 films had oxygen-scavenging capacities of 0.031 ± 0.002 and 0.055 ± 0.009 g(O2)/g(Fe), respectively, while the neat powder had an adsorption capacity of 0.122 g(O2)/g(Fe). This result confirms that the fresh film samples were partially oxidized shortly after thermomechanical processing (60% of oxidized species according to Mössbauer spectroscopy). No significant difference in oxygen permeability was observed when MMT-Fe was added. This was related to the relatively small film surface used for measuring the permeability. The reaction-diffusion model proposed here was able to reproduce the observed data of O2 adsorption in an active nanocomposite, which validated the O2 adsorption model previously developed for dried MMT-Fe powder.
Collapse
Affiliation(s)
| | - Sébastien Gaucel
- UMR, Ingénierie des Agropolymères et Technologies Emergentes, INRA, Univ. Montpellier, Montpellier SupAgro, CIRAD, 34060 Montpellier, France
| | - Moulay T Sougrati
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, 34090 Montpellier, France
| | - Lorenzo Stievano
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, 34090 Montpellier, France
| | - Nathalie Gontard
- UMR, Ingénierie des Agropolymères et Technologies Emergentes, INRA, Univ. Montpellier, Montpellier SupAgro, CIRAD, 34060 Montpellier, France
| | - Valérie Guillard
- UMR, Ingénierie des Agropolymères et Technologies Emergentes, INRA, Univ. Montpellier, Montpellier SupAgro, CIRAD, 34060 Montpellier, France.
| |
Collapse
|
40
|
|
41
|
Marinello F, La Storia A, Mauriello G, Passeri D. Atomic Force microscopy techniques to investigate activated food packaging materials. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.05.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Huang Y, Mei L, Chen X, Wang Q. Recent Developments in Food Packaging Based on Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E830. [PMID: 30322162 PMCID: PMC6215134 DOI: 10.3390/nano8100830] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 01/27/2023]
Abstract
The increasing demand for high food quality and safety, and concerns of environment sustainable development have been encouraging researchers in the food industry to exploit the robust and green biodegradable nanocomposites, which provide new opportunities and challenges for the development of nanomaterials in the food industry. This review paper aims at summarizing the recent three years of research findings on the new development of nanomaterials for food packaging. Two categories of nanomaterials (i.e., inorganic and organic) are included. The synthetic methods, physical and chemical properties, biological activity, and applications in food systems and safety assessments of each nanomaterial are presented. This review also highlights the possible mechanisms of antimicrobial activity against bacteria of certain active nanomaterials and their health concerns. It concludes with an outlook of the nanomaterials functionalized in food packaging.
Collapse
Affiliation(s)
- Yukun Huang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Lei Mei
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Qin Wang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA.
| |
Collapse
|
43
|
Upasen S, Wattanachai P. Packaging to prolong shelf life of preservative-free white bread. Heliyon 2018; 4:e00802. [PMID: 30238066 PMCID: PMC6143692 DOI: 10.1016/j.heliyon.2018.e00802] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/19/2018] [Accepted: 09/13/2018] [Indexed: 11/18/2022] Open
Abstract
This research studied various types of packaging to prolong the shelf life of non-preservative white bread. Three types of blown film packages were used, i.e. a single LDPE layer incorporated with an oxygen scavenger, a single LDPE layer containing an oxygen absorber sachet, and three layers of LDPE laminated with O-nylon. The effects of modified packaging atmosphere, i.e. 5, 10, and 21 vol. % of oxygen in nitrogen balance, on the shelf life was also included. Characterization of the packaging films was carried out using several techniques, such as Oxygen Transmission Rate (OTR) and an optical microscopy. Headspace gases, microbial count, as well as physical appearance were used to evaluate the shelf life. The optical microscopic images showed that incorporating the oxygen scavenger into the plastic film produced small pores, contributing to a passive function of the films as their OTRs were significantly enhanced. However, the microbial growth on bread stored in those packages was suppressed, implying that the intermediate generated from scavenging reaction might act as a fungistatic. Even though the scavenging capability of the oxygen absorber sachet lasted only for 4 days, the fungi and mould development thereafter was still lower compared to the package without the sachet. The prolonging white bread shelf life was found to be primarily dependent on two factors. The package with a high oxygen barrier such three-layer films defeated microorganisms. With a low initial oxygen level of around 5% by volume, the bread shelf life could be prolonged up to 5–7 days.
Collapse
Affiliation(s)
- Settakorn Upasen
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169 Long-Hard Bangsaen Road, Saen Sook, Mueang, Chonburi 20131 Thailand
| | - Piyachat Wattanachai
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169 Long-Hard Bangsaen Road, Saen Sook, Mueang, Chonburi 20131 Thailand
| |
Collapse
|
44
|
Zobaidi S, Abdellah O. Thiacalix[4]arene compound as nucleating agent of β crystals in polypropylene/MMT composites. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-017-2174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
|
46
|
Luzi F, Fortunati E, Giovanale G, Mazzaglia A, Torre L, Balestra GM. Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications. Int J Biol Macromol 2017; 104:43-55. [DOI: 10.1016/j.ijbiomac.2017.05.176] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/12/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
|
47
|
Domínguez Avila JA, Wall Medrano A, Ruiz Pardo CA, Montalvo González E, González Aguilar GA. Use of nonthermal technologies in the production of functional beverages from vegetable ingredients to preserve heat‐labile phytochemicals. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- J. Abraham Domínguez Avila
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, AC, Carretera a la Victoria km 0.6Hermosillo Sonora 83304 Mexico
| | - Abraham Wall Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/nCiudad Juárez Chihuahua 32310 Mexico
| | - Cinthya A. Ruiz Pardo
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, AC, Carretera a la Victoria km 0.6Hermosillo Sonora 83304 Mexico
| | - Efigenia Montalvo González
- Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av Tecnológico No 2595, Lagos del CountryTepic Nayarit 63175 Mexico
| | - Gustavo A. González Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, AC, Carretera a la Victoria km 0.6Hermosillo Sonora 83304 Mexico
| |
Collapse
|
48
|
Riechert V, Quinzani LM, Failla MD. Linear viscoelasticity, extensional viscosity, and oxygen permeability of nanocomposites based on propylene copolymer and organoclay. J Appl Polym Sci 2017. [DOI: 10.1002/app.45840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Verónica Riechert
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET-Camino La Carrindanga km 7; Bahía Blanca 8000 Argentina
- Departamento de Ingeniería Química; Universidad Nacional del Sur (UNS)-Avenida Alem 1253; Bahía Blanca 8000 Argentina
| | - Lidia M. Quinzani
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET-Camino La Carrindanga km 7; Bahía Blanca 8000 Argentina
- Departamento de Ingeniería Química; Universidad Nacional del Sur (UNS)-Avenida Alem 1253; Bahía Blanca 8000 Argentina
| | - Marcelo D. Failla
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET-Camino La Carrindanga km 7; Bahía Blanca 8000 Argentina
- Departamento de Ingeniería; UNS-Avenida Alem 1253; Bahía Blanca 8000 Argentina
| |
Collapse
|
49
|
Jiraroj D, Tungasmita S, Tungasmita DN. Zeolite A-polypropylene and silver-zeolite A-polypropylene composite films for antibacterial and breathable applications. J Appl Polym Sci 2017. [DOI: 10.1002/app.45450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Duangkamon Jiraroj
- Department of Chemistry, Faculty of Science; Chulalongkorn University; Bangkok 10330 Thailand
| | - Sukkanaste Tungasmita
- Department of Physics, Faculty of Science; Chulalongkorn University; Bangkok 10330 Thailand
| | | |
Collapse
|
50
|
Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality. Curr Opin Biotechnol 2016; 44:87-93. [PMID: 27992831 DOI: 10.1016/j.copbio.2016.11.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
Food safety and quality assurance is entering a new era. Interventions along the food supply chain must become more efficient in safeguarding public health and the environment and must address numerous challenges and new consumption trends. Current methods of microbial control to assure the safety of food and minimize microbial spoilage have each shown inefficiencies. Nanotechnology is a rapidly expanding area in the agri/feed/food sector. Nano-enabled approaches such as antimicrobial food-contact surfaces/packaging, nano-enabled sensors for rapid pathogen/contaminant detection and nano-delivered biocidal methods, currently on the market or at a developmental stage, show great potential for the food industry. Concerns on potential risks to human health and the environment posed by use of engineered nanomaterials (ENMs) in food applications must, however, be adequately evaluated at the developmental stage to ensure consumer's acceptance.
Collapse
|