1
|
Zaafan MA, Abdelhamid AM. Molecular insight of miRNA-217 role in the pathogenesis of myocardial infarction: Promising diagnostic biomarker and therapeutic target. Noncoding RNA Res 2025; 10:192-197. [PMID: 39430606 PMCID: PMC11490675 DOI: 10.1016/j.ncrna.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 10/22/2024] Open
Abstract
Background Globally, myocardial infarction (MI) is one of the main causes of death. This study aims to investigate the role of miR-217 in the pathogenesis through targeting MAPK and PI3K/AKT signaling pathways in experimental model of myocardial infarction and studying the possible cardioprotective role of dihydromyricetin (DHM) through modulation of this pathway. Methods Dihydromyricetin was injected (100 mg/kg; p.o.) in isoprenaline induced myocardial infarction rat model for 14 days. Rats were anaesthetized and blood samples were taken for serum separation, estimation of creatine kinase-MB (CK-MB), and troponin-I levels after 24 h had passed since the last isoprenaline injection. In addition, the hearts were also used for the other biochemical studies and the histological evaluation. Results DHM resulted in a significant suppression of the elevated levels miR-217 and MAPK compared to the MI control group and restored the normal level of serum CK-MB. Furthermore, DHM successfully restored the oxidative balance and halted the pro-inflammatory mediators in the cardiac tissue. Conclusion Accordingly, our experiment emphasizes the anti-ischemic property that has been demonstrated through modulation of expression level of miR-217 and consequent deactivation of MAPK and PI3K/AKT signaling pathways, and this was assured by halting downstream pro-inflammatory markers.
Collapse
Affiliation(s)
- Mai A. Zaafan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Egypt
| | - Amr M. Abdelhamid
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Egypt
| |
Collapse
|
2
|
Li L, Zhu H, Liu S. EP-0108A is a moderation selectively BRD4 BD2 inhibitor with potential AML tumor suppression. Anticancer Drugs 2025; 36:28-38. [PMID: 39259687 DOI: 10.1097/cad.0000000000001655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Acute myeloid leukemia is the most common type of acute leukemia in adults. The epigenetic molecule BRD4 is a member of the bromodomain and extra-terminal family and plays an important role in the occurrence and development of tumors. BRD4 is essential for oncogene expression, including c-Myc. So, BRD4 inhibition is considered as an effective strategy for the treatment of hematological and solid malignancies. In recent years, several small molecule inhibitors targeting BRD4 have been developed. However, these inhibitors had excessive hematological toxicity due to the lack of specific binding to BD1 and BD2 domains of BRD4, while other inhibitors with high selectivity lose their antitumor efficacy. To balance the relationship between efficacy and safety, we developed EP-0108A, a BRD4 inhibitor with moderate selectivity for the BD2 domain over BD1 domain of BRD4. Our results show that EP-0108A has antitumor effects in MV4-11 and Kasumi-1 cell line-derived xenograft mouse models without significant effects on heart or breathing safe in rats and Beagle dogs. In repeated dose toxicity studies, EP-0108A showed reversible hematological and gastrointestinal toxicity in both rats and dogs. Our findings indicate that EP-0108A has the potential to be a new therapeutic agent for the treatment of cancer.
Collapse
Affiliation(s)
- Li Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China
- Drug Screening Department, Chengdu Easton Biopharmaceuticals Co., Ltd., Chengdu, China
| | - Hui Zhu
- Drug Screening Department, Chengdu Easton Biopharmaceuticals Co., Ltd., Chengdu, China
| | - Shuang Liu
- Drug Screening Department, Chengdu Easton Biopharmaceuticals Co., Ltd., Chengdu, China
| |
Collapse
|
3
|
Jiang L, Ma X, Yan Q, Pu D, Fu X, Zhang D. Dihydromyricetin/montmorillonite intercalation compounds ameliorates DSS-induced colitis: Role of intestinal epithelial barrier, NLRP3 inflammasome pathway and gut microbiota. Int J Pharm 2024:125155. [PMID: 39746581 DOI: 10.1016/j.ijpharm.2024.125155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Dihydromyricetin (DHM), the primary active compound in vine tea possesses various pharmacological effects such as anti-inflammatory and antioxidant properties, along with high biosafety. However, its oral delivery remains a significant challenge. Montmorillonite (MMT), the primary component of bentonite, is a commonly used drug in the clinical treatment of gastrointestinal diseases and serves as an excellent drug carrier due to its intercalation capability. In this study, we intercalated DHM into the interlayer spaces of MMT via solution intercalation method combined with rotary evaporation and used it to treat ulcerative colitis in mice. SEM, XRD, and FTIR analyses confirmed the successful synthesis of the DHM/MMT intercalation compound. In vitro studies shown that DHM/MMT eliminated intracellular ROS and suppressed inflammatory genes IL-1β, IL-6, and TNF-α. Moreover, DHM/MMT demonstrated notable therapeutic effects in ulcerative colitis (UC) mice, significantly restoring the intestinal mucosa. Importantly, the therapeutic mechanism of DHM/MMT is closely linked to the inhibition of the NLRP3 signaling pathway. Additionally, this strategy modulated gut microbiota by increasing probiotics and suppressing harmful bacteria, thereby maintaining intestinal homeostasis. In conclusion, DHM/MMT presents a promising strategy for UC treatment.
Collapse
Affiliation(s)
- Luxia Jiang
- Department of Cardiac Surgery ICU, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Key Laboratory of Digestive Diseases, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Cuiying Biomedical Research Center, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xueni Ma
- Department of Gastroenterology, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Key Laboratory of Digestive Diseases, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Qi Yan
- Department of Neurology Department, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Dan Pu
- Department of Gastroenterology, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Key Laboratory of Digestive Diseases, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| | - Dekui Zhang
- Department of Gastroenterology, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Key Laboratory of Digestive Diseases, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Rodriguez-Garcia D, Uceda C, Barahona L, Ruiz-Nuñez M, Ballesteros AO, Desmet T, Sanz-Aparicio J, Fernandez-Lobato M, Gonzalez-Alfonso JL, Plou FJ. Enzymatic modification of dihydromyricetin by glucosylation and acylation, and its effect on the solubility and antioxidant activity. Org Biomol Chem 2024. [PMID: 39688129 DOI: 10.1039/d4ob01682c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Although dihydromyricetin exhibits strong potential for pharmaceutical applications, its limited aqueous solubility, permeability and stability restrict its use. In this work, we have synthesized a series of glucosides and acyl-glucosides of dihydromyricetin that could increase the bioavailability of this molecule. First, the R134A variant of sucrose phosphorylase from Thermoanaerobacterium thermosaccharolyticum catalyzed the formation of three monoglucosides, and the major one was identified as dihydromyricetin 4'-O-α-D-glucopyranoside (>75% conversion yield). The molecular features that define this specificity for the 4'-OH phenolic group were investigated through induced-fit docking analysis of each potential derivative. Furthermore, the acylation of the 4'-monoglucoside with fatty acid vinyl esters (C8, C12, and C16) was performed with high efficiency using the lipase from Thermomyces lanuginosus. Three novel acyl derivatives of dihydromyricetin were characterized. Furthermore, the water solubility and antioxidant activity (ABTS, DPPH) of the synthesized compounds were measured, concluding that the location of the glucosyl moiety may affect their physicochemical properties and, as a result, their bioactivity.
Collapse
Affiliation(s)
| | - Carlos Uceda
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain.
| | - Laura Barahona
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Marta Ruiz-Nuñez
- Instituto de Química Física Blas Cabrera, CSIC, 28006 Madrid, Spain
| | | | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | | | - Maria Fernandez-Lobato
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | - Francisco J Plou
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain.
| |
Collapse
|
5
|
Yang Y, Shu X, Javed HU, Wu Q, Liu H, Han J, Zhou H. Dietary supplementation of poly-dihydromyricetin-fused zinc nanoparticles alleviates fatty liver hemorrhagic syndrome by improving antioxidant capacity, intestinal health and lipid metabolism of laying hens. Poult Sci 2024; 103:104301. [PMID: 39306955 PMCID: PMC11447411 DOI: 10.1016/j.psj.2024.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
Fatty liver hemorrhagic syndrome is the main cause of noninfectious death of laying hens and results in substantial economic losses to the poultry industry. This study focused on evaluating the effects of Poly-dihydromyricetin-fused zinc nanoparticles (PDMY-Zn NPs) on antioxidant capacity, liver lipid metabolism, and intestinal health in laying hens. A total of 288 Jingfen laying hens (52 wk old) with similar body weights were randomly divided into 4 dietary groups with 6 replicates in each group for 8 wk. The control group received a basal diet, while the treatment groups were supplemented with PDMY-Zn NPs at levels of 200, 400, and 600 mg/kg, respectively. The results indicate that PDMY-Zn NPs supplementation can enhance antioxidant parameters (P < 0.05) in the blood and liver of laying hens. Simultaneously, it can mitigate vacuolar degeneration and inflammatory necrosis in hepatocytes, improve the relative expression level of related parameters associated with liver lipid metabolism and key regulatory genes (P < 0.05). Furthermore, it has been observed to reshape the composition and diversity of cecum microbes by increasing beneficial probiotics such as Lactobacillus and Prevotella, while also enhancing villi height and villi/crypt ratio in the duodenum and ileum (P < 0.05). Additionally, it elevates liver bile acid content along with the relative expression of key genes involved in liver synthesis (P < 0.05). In summary, PDMY-Zn NPs showed potential to alleviate fatty liver hemorrhagic syndrome by enhancing antioxidant capacity, regulating liver lipid metabolism, and maintaining intestinal health.
Collapse
Affiliation(s)
- Yuanting Yang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Xugang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou 510225, China
| | - Hafiz Umer Javed
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Qun Wu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Hu Liu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Jiancheng Han
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China.
| |
Collapse
|
6
|
Sun Z, Zhang X, Li M, Yang Q, Xiao X, Chen X, Liang W. Targeting ferroptosis in treating traumatic brain injury: Harnessing the power of traditional Chinese medicine. Biomed Pharmacother 2024; 180:117555. [PMID: 39413616 DOI: 10.1016/j.biopha.2024.117555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Traumatic brain injury (TBI) exhibits high prevalence and mortality, but current treatments remain suboptimal. Traditional Chinese medicine (TCM) has long been effectively used for TBI intervention. Moreover, the recently discovered iron-dependent cell death pathway, known as ferroptosis, characterized by lipid peroxidation, as a key target in TCM-based treatments for TBI. This review provides a comprehensive overview of the latest advancements in TCM strategies targeting ferroptosis in TBI therapy, covering natural product monomers, classic formulas, and acupuncture/moxibustion. The review also addresses current challenges and outlines future research directions to further advance the development and application of TBI management strategies.
Collapse
Affiliation(s)
- Zhongjie Sun
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Yang K, Lv Z, Zhao W, Lai G, Zheng C, Qi F, Zhao C, Hu K, Chen X, Fu F, Li J, Xie G, Wang H, Wu X, Zheng W. The potential of natural products to inhibit abnormal aggregation of α-Synuclein in the treatment of Parkinson's disease. Front Pharmacol 2024; 15:1468850. [PMID: 39508052 PMCID: PMC11537895 DOI: 10.3389/fphar.2024.1468850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Parkinson's disease (PD), as a refractory neurological disorder with complex etiology, currently lacks effective therapeutic agents. Natural products (NPs), derived from plants, animals, or microbes, have shown promising effects in PD models through their antioxidative and anti-inflammatory properties, as well as the enhancement of mitochondrial homeostasis and autophagy. The misfolding and deposition of α-Synuclein (α-Syn), due to abnormal overproduction and impaired clearance, being central to the death of dopamine (DA) neurons. Thus, inhibiting α-Syn misfolding and aggregation has become a critical focus in PD discovery. This review highlights NPs that can reduce α-Syn aggregation by preventing its overproduction and misfolding, emphasizing their potential as novel drugs or adjunctive therapies for PD treatment, thereby providing further insights for clinical translation.
Collapse
Affiliation(s)
- Kaixia Yang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyue Lv
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wen Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guogang Lai
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cheng Zheng
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Feiteng Qi
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cui Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaikai Hu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiao Chen
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fan Fu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiayi Li
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Haifeng Wang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiping Wu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wu Zheng
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Wang Y, Li S, Zhang T, Wang J, Zhang X, Li M, Gao Y, Zhang M, Chen H. Effects of myricetin and its derivatives on nonenzymatic glycation: A mechanism study based on proteomic modification and fluorescence spectroscopy analysis. Food Chem 2024; 455:139880. [PMID: 38852282 DOI: 10.1016/j.foodchem.2024.139880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Myricetin and its derivatives, myricitrin and dihydromyricetin, are flavonoids widely presented in foods and phytomedicine that possess tremendous health potential. In this study, we compared the antiglycation activity of myricetin and its derivatives, then investigated the underlying mechanism using proteomic modification and fluorescence spectroscopy analysis. All three compounds exhibited thorough inhibition on nonenzymatic glycation process, with the inhibitory effects on AGEs reaching 85% at 40 μmol/L. They effectively protected bovine serum albumin (BSA) structure by inhibiting protein oxidation, preventing the conversion from α-helix to β-sheet, and reducing amyloid-like cross-β structure formation. Among the three compounds, myricetin showed a predominant antiglycation activity. Proteomic analysis identified the early glycated sites that were protected by myricetin, including lysine K235, 256, 336, 421, 420, 489, etc. Additionally, fluorescence spectroscopy revealed spontaneous interactions between BSA and myricetin. Overall, myricetin holds promise as an antiglycation agent in both the food and drug industries.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Yan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
9
|
Xu L, Sun X, Han X, Li H, Li X, Zhu L, Wang X, Li J, Sun H. Dihydromyricetin ameliorate postmenopausal osteoporosis in ovariectomized mice: Integrative microbiomic and metabolomic analysis. Front Pharmacol 2024; 15:1452921. [PMID: 39415843 PMCID: PMC11479887 DOI: 10.3389/fphar.2024.1452921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
The gut microbiota may help mitigate bone loss linked to postmenopausal osteoporosis by affecting the immune and inflammatory responses and the gut-bone axis. Dihydromyricetin (DMY), a natural flavonoid, has some anti-inflammatory and antioxidant properties. This study aimed to investigate the mechanisms underlying the amelioration of bone loss in ovariectomized (OVX) mice treated with various doses of DMY. Eight-week-old C57/BL6 mice underwent ovariectomy and received varying DMY doses over 8 weeks. Thereafter, femoral bone microarchitecture, serum biomarker levels, and colon samples were analyzed to assess bone metabolism and inflammatory and hormonal responses. Fecal samples were subjected to 16S rDNA sequencing, and short-chain fatty acids were quantified. An untargeted metabolomics approach was applied to both serum and fecal samples to investigate alterations in the intestinal microbiota and metabolic profiles following DMY treatment in the OVX mice. The results show high-dose DMY has anti-osteoporotic effects. Compared to the OVX group, the DMY-treated group showed enhanced bone mineral density and reduced inflammation and colonic damage levels. The DMY treatment altered the gut microbiota composition, including the relative abundances at both the phylum and genus levels. In addition, DMY treatment increased the production of acetate and propionate. Metabolomic analysis revealed differential regulation of 37 and 70 metabolites in the serum and feces samples, respectively, in the DMY-treated group compared to those in the OVX group, affecting the serotonergic signaling, arachidonic acid metabolism, and unsaturated fatty acid biosynthesis pathways. In conclusion, these findings indicate that DMY can ameliorate bone loss in OVX mice via the gut-bone axis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xianze Sun
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Xiaoqiang Han
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui Li
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haibiao Sun
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2024:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
11
|
Wang X, Li H, Qu D. Dihydromyricetin protects sevoflurane-induced mitochondrial dysfunction in HT22 hippocampal cells. Clin Exp Pharmacol Physiol 2024; 51:e13912. [PMID: 39103220 DOI: 10.1111/1440-1681.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Sevoflurane (Sev) is a commonly used inhalation anaesthetic that has been shown to cause hippocampus dysfunction through multiple underlying molecular processes, including mitochondrial malfunction, oxidative stress and inflammation. Dihydromyricetin (DHM) is a 2,3-dihydroflavonoid with various biological properties, such as anti-inflammation and anti-oxidative stress. The purpose of this study was to investigate the effect of DHM on Sev-induced neuronal dysfunction. HT22 cells were incubated with 10, 20 and 30 μM of DHM for 24 h, and then stimulated with 4% Sev for 6 h. The effects and mechanism of DHM on inflammation, oxidative stress and mitochondrial dysfunction were explored in Sev-induced HT22 cells by Cell Counting Kit-8, flow cytometry, enzyme-linked immunosorbent assay, reverse transcription-quantitative polymerase chain reaction, colorimetric detections, detection of the level of reactive oxygen species (ROS), mitochondrial ROS and mitochondrial membrane potential (MMP), immunofluorescence and western blotting. Our results showed that DHM increased Sev-induced cell viability of HT22 cells. Pretreatment with DHM attenuated apoptosis, inflammation, oxidative stress and mitochondrial dysfunction in Sev-elicited HT22 cells by remedying the abnormality of the indicators involved in these progresses, including apoptosis rate, the cleaved-caspase 3 expression, as well as the level of tumour necrosis factor α, interleukin (IL)-1β, IL-6, malondialdehyde, superoxide dismutase, catalase, ROS, mitochondrial ROS and MMP. Mechanically, pretreatment with DHM restored the Sev-induced the expression of SIRT1/FOXO3a pathway in HT22 cells. Blocking of SIRT1 counteracted the mitigatory effect of DHM on apoptosis, inflammation, oxidative stress and mitochondrial dysfunction in Sev-elicited HT22 cells. Collectively, pretreatment with DHM improved inflammation, oxidative stress and mitochondrial dysfunction via SIRT1/FOXO3a pathway in Sev-induced HT22 cells.
Collapse
Affiliation(s)
- Xinyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haoyi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dongchao Qu
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Emad D, Bayoumi AMA, Gebril SM, Ali DME, Waz S. Modulation of keap-1/Nrf2/HO-1 and NF-ĸb/caspase-3 signaling pathways by dihydromyricetin ameliorates sodium valproate-induced liver injury. Arch Biochem Biophys 2024; 758:110084. [PMID: 38971420 DOI: 10.1016/j.abb.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Nuclear factor erythroid factor 2 (Nrf2) is the key regulatory of the antioxidant response elements. Also, Nrf2 interacts with nuclear factor kappa B (NF-ĸB) to inhibit subsequent inflammatory cascade. Activation of Nrf2 signaling ameliorates drug-induced liver injury. Sodium valproate (SVP) is an anti-epilepsy drug with a hepatotoxic adverse effect that restricts its clinical use. In this study, coadministration of Dihydromyricetin (DHM), a natural flavonoid, with SVP to rats upregulated gene expression of Nrf2 and its downstream gene, heme oxygenase 1 (HO-1), while suppressed the Nrf2 repressor, Keap-1. Additionally, DHM led to downregulation of proinflammatory factors in liver tissues, including NF-ĸB, interleukin 1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α). This was accompanied by a decrease in the proapoptotic protein (cleaved caspase-3) expression level. Furthermore, biochemical and histopathological studies showed that DHM treatment improved liver function and lipid profile while decreased inflammatory cell infiltration, congestion, and hepatocellular damage. According to our knowledge, prior research has not examined the protective effect of DHM on the liver injury induced by SVP. Consequently, this study provides DHM as a promising herbal medication that, when used with SVP, can prevent its induced hepatotoxicity owing to its potential anti-oxidative, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Doaa Emad
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511, Egypt.
| | - Sahar M Gebril
- Department of Histology and Cell biology, Faculty of Medicine, Sohag University, Sohag, Egypt.
| | | | - Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511, Egypt.
| |
Collapse
|
13
|
Banerjee T, Sarkar A, Ali SZ, Bhowmik R, Karmakar S, Halder AK, Ghosh N. Bioprotective Role of Phytocompounds Against the Pathogenesis of Non-alcoholic Fatty Liver Disease to Non-alcoholic Steatohepatitis: Unravelling Underlying Molecular Mechanisms. PLANTA MEDICA 2024; 90:675-707. [PMID: 38458248 DOI: 10.1055/a-2277-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), with a global prevalence of 25%, continues to escalate, creating noteworthy concerns towards the global health burden. NAFLD causes triglycerides and free fatty acids to build up in the liver. The excessive fat build-up causes inflammation and damages the healthy hepatocytes, leading to non-alcoholic steatohepatitis (NASH). Dietary habits, obesity, insulin resistance, type 2 diabetes, and dyslipidemia influence NAFLD progression. The disease burden is complicated due to the paucity of therapeutic interventions. Obeticholic acid is the only approved therapeutic agent for NAFLD. With more scientific enterprise being directed towards the understanding of the underlying mechanisms of NAFLD, novel targets like lipid synthase, farnesoid X receptor signalling, peroxisome proliferator-activated receptors associated with inflammatory signalling, and hepatocellular injury have played a crucial role in the progression of NAFLD to NASH. Phytocompounds have shown promising results in modulating hepatic lipid metabolism and de novo lipogenesis, suggesting their possible role in managing NAFLD. This review discusses the ameliorative role of different classes of phytochemicals with molecular mechanisms in different cell lines and established animal models. These compounds may lead to the development of novel therapeutic strategies for NAFLD progression to NASH. This review also deliberates on phytomolecules undergoing clinical trials for effective management of NAFLD.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sk Zeeshan Ali
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur, West Bengal, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| |
Collapse
|
14
|
Koo C, Richter CP, Tan X. Roles of Sirtuins in Hearing Protection. Pharmaceuticals (Basel) 2024; 17:998. [PMID: 39204103 PMCID: PMC11357115 DOI: 10.3390/ph17080998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Hearing loss is a health crisis that affects more than 60 million Americans. Currently, sodium thiosulfate is the only drug approved by the Food and Drug Administration (FDA) to counter hearing loss. Sirtuins were proposed as therapeutic targets in the search for new compounds or drugs to prevent or cure age-, noise-, or drug-induced hearing loss. Sirtuins are proteins involved in metabolic regulation with the potential to ameliorate sensorineural hearing loss. The mammalian sirtuin family includes seven members, SIRT1-7. This paper is a literature review on the sirtuins and their protective roles in sensorineural hearing loss. Literature search on the NCBI PubMed database and NUsearch included the keywords 'sirtuin' and 'hearing'. Studies on sirtuins without relevance to hearing and studies on hearing without relevance to sirtuins were excluded. Only primary research articles with data on sirtuin expression and physiologic auditory tests were considered. The literature review identified 183 records on sirtuins and hearing. After removing duplicates, eighty-one records remained. After screening for eligibility criteria, there were forty-eight primary research articles with statistically significant data relevant to sirtuins and hearing. Overall, SIRT1 (n = 29) was the most studied sirtuin paralog. Over the last two decades, research on sirtuins and hearing has largely focused on age-, noise-, and drug-induced hearing loss. Past and current studies highlight the role of sirtuins as a mediator of redox homeostasis. However, more studies need to be conducted on the involvement of SIRT2 and SIRT4-7 in hearing protection.
Collapse
Affiliation(s)
- Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.K.); (C.-P.R.)
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.K.); (C.-P.R.)
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.K.); (C.-P.R.)
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
15
|
Ramsis T, Refat M Selim HM, Elseedy H, Fayed EA. The role of current synthetic and possible plant and marine phytochemical compounds in the treatment of acne. RSC Adv 2024; 14:24287-24321. [PMID: 39104563 PMCID: PMC11298783 DOI: 10.1039/d4ra03865g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Acne is a long-standing skin condition characterized by plugged hair follicles due to the accumulation of dead skin cells, sebum, and Propionibacterium acnes (P. acnes) bacteria, causing inflammation, and the formation of pimples or lesions. Acne was recognized in the ancient times by the ancient Egyptians, Greeks, and Romans. Since ancient times, folk medicine from different cultures have comprised herbal and natural products for the treatment of acne. Current acne medications include antibiotics, keratolytics, corticosteroids, in addition to hormonal therapy for women. However, these conventional drugs can cause some serious side effects. And therefore, seeking new safe treatment options from natural sources is essential. Plants can be a potential source of medicinal phytochemicals which can be pharmacologically active as antibacterial, antioxidant, anti-inflammatory, keratolytic and sebum-reducing. Organic acids, obtained from natural sources, are commonly used as keratolytics in dermatology and cosmetology. Most of the promising phytochemicals in acne treatment belong to terpenes, terpenoids, flavonoids, alkaloids, phenolic compounds, saponins, tannins, and essential oils. These can be extracted from leaves, bark, roots, rhizomes, seeds, and fruits of plants and may be incorporated in different dosage forms to facilitate their penetration through the skin. Additionally, medicinal compounds from marine sources can also contribute to acne treatment. This review will discuss the pathogenesis, types and consequences of acne, side effects of conventional treatment, current possible treatment options from natural sources obtained from research and folk medicine and possible applied dosage forms.
Collapse
Affiliation(s)
- Triveena Ramsis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University - Kantara Branch Ismailia 41636 Egypt
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University P.O. Box 71666 Riyadh 11597 Saudi Arabia
- Microbiology and Immunology Department, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 35527 Egypt
| | - Howida Elseedy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo Egypt
| | - Eman A Fayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt +20 201221330523
| |
Collapse
|
16
|
Khan S, Jatala FH, Muti A, Afza N, Noor A, Mumtaz S, Zafar S. Therapeutic Potential of Nitrogen-Doped Rutin-Bound Glucose Carbon Dots for Alzheimer's Disease. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:153-164. [PMID: 38947101 PMCID: PMC11202111 DOI: 10.59249/ewoi2166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The blood-brain barrier (BBB) prevents the use of many drugs for the treatment of neurological disorders. Recently, nitrogen-doped carbon dots (NCDs) have emerged as promising nanocarriers to cross BBB. The primary focus of our study was to evaluate the effectiveness of NCDs for the symptomatic treatment of Alzheimer's disease (AD). In this study, we developed and characterized NCDs bound to rutin, a flavonoid with known benefits for AD. Despite its benefits, the transportation of rutin via NCDs for AD therapy has not been explored previously. We characterized the particles using FTIR and UV-visible spectroscopy followed by atomic force microscopy. Once the design was optimized and validated, we performed in vivo testing via a hemolytic assay to optimize the dosage. Preliminary in vitro testing was performed in AlCl3-induced rat models of AD whereby a single dose of 10 mg/kg NCDs-rutin was administered intraperitoneally. Interestingly, this single dose of 10 mg/kg NCDs-rutin produced the same behavioral effects as 50 mg/kg rutin administered intraperitoneally for 1 month. Similarly, histological and biomarker profiles (SOD2 and TLR4) also presented significant protective effects of NCDs-rutin against neuronal loss, inflammation, and oxidative stress. Hence, NCDs-rutin are a promising approach for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Sana Khan
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Faria Hasan Jatala
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Alveena Muti
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Noor Afza
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Aneeqa Noor
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Sara Mumtaz
- Department of Biological Sciences, National University
of Medical Sciences, Rawalpindi, Pakistan
| | - Saima Zafar
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
- Clinical Department of Neurology, University Medical
Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE),
Göttingen, Germany
| |
Collapse
|
17
|
Razola-Díaz MDC, Aznar-Ramos MJ, Benítez G, Gómez-Caravaca AM, Verardo V. Exploring the potential of phenolic and antioxidant compounds in new Rosaceae fruits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3705-3718. [PMID: 38160248 DOI: 10.1002/jsfa.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Rosaceae fruits have been used in traditional medicine for the prevention and treatment of diseases. However, these fruits have not extensively been studied regarding their phenolic composition. Thus, this research focuses on the determination of phenolic compounds by high-performance liquid chromatography electrospray ionization time-of-flight mass spectrometry, flavan-3-ols by high-performance liquid chromatography with fluorescence detection, and the antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and ferric reducing antioxidant power of the fruits of five species of genera Crataegus and Sorbus (Rosaceae). RESULTS We found a total of 71 phenolic compounds from which 30 were identified in these berries for the first time. Crataegus monogyna and Crataegus laciniata revealed higher total phenolic and flavan-3-ol contents than the other species and the highest antioxidant activities. CONCLUSIONS Therefore, the fruits evaluated have demonstrated to be important sources of bioactive compounds with huge potential for being used in nutraceutical or food scopes. Additional studies could be needed to evaluate the influence of the different production areas on the phenolic content. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Guillermo Benítez
- Department of Botany, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Centre, University of Granada, Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Centre, University of Granada, Granada, Spain
| |
Collapse
|
18
|
Chen P, Huang M, Cui H, Feng L, Hayat K, Zhang X, Ho CT. Mechanism of Dihydromyricetin-Induced Reduction of Furfural Derived from the Amadori Compound: Formation of Adducts between Dihydromyricetin and Furfural or Its Precursors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6554-6564. [PMID: 38498924 DOI: 10.1021/acs.jafc.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Dihydromyricetin (DMY) was employed to reduce the yield of furfural derived from the Amadori rearrangement product of l-threonine and d-xylose (Thr-ARP) by trapping Thr-ARP, 3-deoxyxyosone (3-DX), and furfural to form adducts. The effect of different concentrations of DMY at different pH values and temperatures on the reduction of furfural production was studied, and the results showed that DMY could significantly reduce furfural production at higher pH (pH 5-7) and lower temperature (110 °C). Through the surface electrostatic potential analysis by Gaussian, a significant enhancement of the C6 nucleophilic ability at higher pH (pH ≥ 5) was observed on DMY with hydrogen-dissociated phenol hydroxyl. The nucleophilic ability of DMY led to its trapping of Thr-ARP, 3-DX, and furfural with the generation of the adducts DMY-Thr-ARP, DMY-3-DX, and DMY-furfural. The formation of the DMY-Thr-ARP adduct slowed the degradation of Thr-ARP, caused the decrease of the 3-DX yield, and thereby inhibited the conversion of 3-DX to furfural. Therefore, DMY-Thr-ARP was purified, and the structure was identified by nuclear magnetic resonance (NMR). The results confirmed that C6 or C8 of DMY and carbonyl carbon in Thr-ARP underwent a nucleophilic addition reaction to form the DMY-Thr-ARP adduct. In combination with the analysis results of Gaussian, most of the DMY-Thr-ARP adducts were calculated to be C6-DMY-Thr-ARP. Furthermore, the formation of DMY-furfural caused furfural consumption. The formation of the adducts also shunted the pathway of both Thr-ARP and 3-DX conversion to furfural, resulting in a decrease in the level of furfural production.
Collapse
Affiliation(s)
- Pusen Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Meigui Huang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Heping Cui
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Linhui Feng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
19
|
Hao B, Yang Z, Liu H, Liu Y, Wang S. Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives. Curr Issues Mol Biol 2024; 46:2884-2925. [PMID: 38666911 PMCID: PMC11049524 DOI: 10.3390/cimb46040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
At present, the occurrence of a large number of infectious and non-communicable diseases poses a serious threat to human health as well as to drug development for the treatment of these diseases. One of the most significant challenges is finding new drug candidates that are therapeutically effective and have few or no side effects. In this respect, the active compounds in medicinal plants, especially flavonoids, are potentially useful compounds with a wide range of pharmacological activities. They are naturally present in nature and valuable in the treatment of many infectious and non-communicable diseases. Flavonoids are divided into fourteen categories and are mainly derived from plant extraction, chemical synthesis and structural modification, and biosynthesis. The structural modification of flavonoids is an important way to discover new drugs, but biosynthesis is currently considered the most promising research direction with the potential to revolutionize the new production pipeline in the synthesis of flavonoids. However, relevant problems such as metabolic pathway analyses and cell synthesis protocols for flavonoids need to be addressed on an urgent basis. In the present review, new research techniques for assessing the biological activities of flavonoids and the mechanisms of their biological activities are elucidated and their modes of interaction with other drugs are described. Moreover, novel drug delivery systems, such as nanoparticles, bioparticles, colloidals, etc., are gradually becoming new means of addressing the issues of poor hydrophilicity, lipophilicity, poor chemical stability, and low bioavailability of flavonoids. The present review summarizes the latest research progress on flavonoids, existing problems with their therapeutic efficacy, and how these issues can be solved with the research on flavonoids.
Collapse
Affiliation(s)
| | | | | | | | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (B.H.); (Z.Y.); (H.L.); (Y.L.)
| |
Collapse
|
20
|
Wang Y, Jiang W, Li C, Wang Z, Lu C, Cheng J, Wei S, Yang J, Yang Q. Integrated transcriptomic and metabolomic analyses elucidate the mechanism of flavonoid biosynthesis in the regulation of mulberry seed germination under salt stress. BMC PLANT BIOLOGY 2024; 24:132. [PMID: 38383312 PMCID: PMC10880279 DOI: 10.1186/s12870-024-04804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Seed propagation is the main method of mulberry expansion in China, an important economic forest species. However, seed germination is the most sensitive stage to various abiotic stresses, especially salinity stress. To reveal the molecular regulatory mechanism of mulberry seed germination under salt stress, flavonoid metabolomics and transcriptomics analyses were performed on mulberry seeds germinated under 50 and 100 mmol/L NaCl stress. Analysis of the flavonoid metabolome revealed that a total of 145 differential flavonoid metabolites (DFMs) were classified into 9 groups, 40 flavonols, 32 flavones, 16 chalcones and 14 flavanones. Among them, 61.4% (89) of the DFMs accumulated continuously with increasing salt concentration, reaching the highest level at a 100 mmol/L salt concentration; these DFMs included quercetin-3-O-glucoside (isoquercitrin), kaempferol (3,5,7,4'-tetrahydroxyflavone), quercetin-7-O-glucoside, taxifolin (dihydroquercetin) and apigenin (4',5,7-trihydroxyflavone), indicating that these flavonoids may be key metabolites involved in the response to salt stress. Transcriptional analysis identified a total of 3055 differentially expressed genes (DEGs), most of which were enriched in flavonoid biosynthesis (ko00941), phenylpropanoid biosynthesis (ko00940) and biosynthesis of secondary metabolites (ko01110). Combined analysis of flavonoid metabolomic and transcriptomic data indicated that phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), flavonol synthase (FLS), bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR) and anthocyanidin reductase (ANR) were the key genes involved in flavonoid accumulation during mulberry seed germination under 50 and 100 mmol/L NaCl stress. In addition, three transcription factors, MYB, bHLH and NAC, were involved in the regulation of flavonoid accumulation under salt stress. The results of quantitative real-time PCR (qRT‒PCR) validation showed that the expression levels of 11 DEGs, including 7 genes involved in flavonoid biosynthesis, under different salt concentrations were consistent with the transcriptomic data, and parallel reaction monitoring (PRM) results showed that the expression levels of 6 key enzymes (proteins) involved in flavonoid synthesis were consistent with the accumulation of flavonoids. This study provides a new perspective for investigating the regulatory role of flavonoid biosynthesis in the regulation of mulberry seed germination under salt stress at different concentrations.
Collapse
Affiliation(s)
- Yi Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| | - Wei Jiang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Chenlei Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Zhenjiang Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, China
| | - Can Lu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Junsen Cheng
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Shanglin Wei
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Jiasong Yang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Qiang Yang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| |
Collapse
|
21
|
Huang J, Feng X, Wang Q, Liu D, Zhang S, Chu L. Fabrication and characterization of dihydromyricetin-loaded microcapsules stabilized by glyceryl monostearate and whey protein-xanthan gum. Int J Biol Macromol 2024; 254:128039. [PMID: 37956807 DOI: 10.1016/j.ijbiomac.2023.128039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Dihydromyricetin (DMY) is a lipophilic nutrient with various potential health benefits; however, its poor storage stability and low solubility and bioavailability limit its applications. This study aims to encapsulate DMY in microcapsules by membrane emulsification and freeze-drying methods to overcome these issues. Glyceryl monostearate (GMS, solid lipid) and octyl and decyl glycerate (ODO, liquid lipid) were applied as the inner cores. Whey protein and xanthan gum (XG) were used as wall materials. The prepared microcapsules had an irregular blocky aggregated structure with rough surfaces. All the microcapsules had a DMY loading of 0.85 %-1.1 % and encapsulation efficiency (EE) >85 %. GMS and XG increased the DMY loading and EE. The addition of GMS and an increased XG concentration led to a decrease in the rehydration rate. The in vitro release and digestion studies revealed that GMS and XG controlled the release and digestion of DMY. The chemical stability results indicated that GMS and XG protected DMY against oxidation. An antioxidant capacity study showed that GMS and XG helped DMY in the microcapsules exert antioxidant effects. This research study provides a platform for designing microcapsules with good stability and high bioavailability to deliver lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Juan Huang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Xuan Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Qingding Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Dongchen Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Shuo Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Lanling Chu
- Faculty of Food Science and Engineering, School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
22
|
Zhang S, Shi YN, Gu J, He P, Ai QD, Zhou XD, Wang W, Qin L. Mechanisms of dihydromyricetin against hepatocellular carcinoma elucidated by network pharmacology combined with experimental validation. PHARMACEUTICAL BIOLOGY 2023; 61:1108-1119. [PMID: 37462387 DOI: 10.1080/13880209.2023.2234000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/03/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
CONTEXT Dihydromyricetin (DMY) is extracted from vine tea, a traditional Chinese herbal medicine with anti-cancer, liver protection, and cholesterol-lowering effects. OBJECTIVE This study investigated the mechanism of DMY against hepatocellular carcinoma (HCC). MATERIALS AND METHODS Potential DMY, HCC, and cholesterol targets were collected from relevant databases. PPI networks were created by STRING. Then, the hub genes of co-targets, screened using CytoHubba. GO and KEGG pathway enrichment, were performed by Metascape. Based on the above results, a series of in vitro experiments were conducted by using 40-160 μM DMY for 24 h, including transwell migration/invasion assay, western blotting, and Bodipy stain assay. RESULTS Network pharmacology identified 98 common targets and 10 hub genes of DMY, HCC, and cholesterol, and revealed that the anti-HCC effect of DMY may be related to the positive regulation of lipid rafts. Further experiments confirmed that DMY inhibits the proliferation, migration, and invasion of HCC cells and reduces their cholesterol levels in vitro. The IC50 is 894.4, 814.4, 467.8, 1,878.8, 151.8, and 156.9 μM for 97H, Hep3B, Sk-Hep1, SMMC-7721, HepG2, and Huh7 cells, respectively. In addition, DMY downregulates the expression of lipid raft markers (CAV1, FLOT1), as well as EGFR, PI3K, Akt, STAT3, and Erk. DISCUSSION AND CONCLUSION The present study reveals that DMY suppresses EGFR and its downstream pathways by reducing cholesterol to disrupt lipid rafts, thereby inhibiting HCC, which provides a promising candidate drug with low toxicity for the treatment of HCC.
Collapse
Affiliation(s)
- Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ya-Ning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Peng He
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qi-Di Ai
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xu-Dong Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
23
|
Lu M, Liu R, Chen Z, Su C, Pan L. Effects of dietary dihydromyricetin on growth performance, antioxidant capacity, immune response and intestinal microbiota of shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109086. [PMID: 37722436 DOI: 10.1016/j.fsi.2023.109086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 09/20/2023]
Abstract
A 56-day culture trial was conducted to evaluate the effects of dietary dihydromyricetin (DMY) on growth performance, antioxidant capacity, immune response and intestinal microbiota of shrimp (Litopenaeus vannamei). 840 healthy shrimp (1.60 ± 0.21 g) in total were fed with four different levels of DMY diets at 0 (Control), 100 (D1), 200 (D2), and 300 (D3) mg/kg, respectively. Samples were collected after the culture trial, and then, a 7-day challenge experiment against Vibrio parahaemolyticus was conducted. The results demonstrated that DMY significantly enhanced the activity of protease, amylase and lipase as well as the expression of lipid and protein transport-related genes (P < 0.05). The results of plasma lipid parameters indicated that DMY reduced lipid deposition, manifested by significantly (P < 0.05) decreased plasma total cholesterol (T-CHO), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C). The expression of genes involved in fatty acid β-oxidation and triglyceride catabolism was significantly up-regulated (P < 0.05), and genes involved in triglyceride synthesis were significantly down-regulated in DMY groups when compared to control group (P < 0.05). Moreover, dietary DMY also significantly (P < 0.05) increased the total antioxidant capacity (T-AOC), antioxidant enzymes activity and glutathione (GSH) content of shrimp, and a significant increase of total hemocytes count (THC), phagocytic rate (PR), antibacterial activity (AA) and bacteriolytic activity (BA) was observed in DMY groups (P < 0.05). The addition of DMY to the diet significantly augmented immune response by up-regulating the expression of genes related to toll-like receptors (Toll) signaling pathway, immune deficiency (IMD) signaling pathway and intestinal mucin. Furthermore, dietary DMY could modulate the composition and abundance of intestinal microbiota. In conclusion, DMY showed promising potential as a functional feed additive for shrimp to improve the growth performance and physiological health.
Collapse
Affiliation(s)
- Mingxiang Lu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Renzhi Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Zhifei Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Chen Su
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
24
|
Kumar G, Engle K. Natural products acting against S. aureus through membrane and cell wall disruption. Nat Prod Rep 2023; 40:1608-1646. [PMID: 37326041 DOI: 10.1039/d2np00084a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Covering: 2015 to 2022Staphylococcus aureus (S. aureus) is responsible for several community and hospital-acquired infections with life-threatening complications such as bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi and the treatment of nonmicrobial diseases have led to the rapid emergence of multidrug-resistant pathogens. The bacterial wall is a complex structure consisting of the cell membrane, peptidoglycan cell wall, and various associated polymers. The enzymes involved in bacterial cell wall synthesis are established antibiotic targets and continue to be a central focus for antibiotic development. Natural products play a vital role in drug discovery and development. Importantly, natural products provide a starting point for active/lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. Notably, microorganisms and plant metabolites have contributed as antibiotics for noninfectious diseases. In this study, we have summarized the recent advances in understanding the activity of the drugs or agents of natural origin that directly inhibit the bacterial membrane, membrane components, and membrane biosynthetic enzymes by targeting membrane-embedded proteins. We also discussed the unique aspects of the active mechanisms of established antibiotics or new agents.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
25
|
Ding H, Cheng Q, Fang X, Wang Z, Fang J, Liu H, Zhang J, Chen C, Zhang W. Dihydromyricetin Alleviates Ischemic Brain Injury by Antagonizing Pyroptosis in Rats. Neurotherapeutics 2023; 20:1847-1858. [PMID: 37603215 PMCID: PMC10684453 DOI: 10.1007/s13311-023-01425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 08/22/2023] Open
Abstract
Ischemic stroke is a worldwide disease that seriously threatens human health, and there are few effective drugs to treat it. Dihydromyricetin (DHM) has anti-inflammatory, antioxidant, and antiapoptotic functions. We identified pyroptosis following ischemic stroke. Here, we investigated the effect of DHM on ischemic stroke and pyroptosis. In the first part of the experiment, Sprague-Dawley rats were randomly divided into the sham group and MCAO group. The MCAO model was established by occlusion of the middle cerebral artery for 90 min using a silica gel suture. The ischemic penumbra was used for mRNA sequencing 1 day after reperfusion. In the second part, rats were divided into the sham group, MCAO group, and DHM group. DHM was injected intraperitoneally at the same time as reperfusion starting 90 min after embolization for 7 consecutive days. The changes in pyroptosis were observed by morphological and molecular methods. The transcriptomics results suggested the presence of NLRP3-mediated pyroptotic death pathway activation after modeling. The Longa score was increased after MCAO and decreased after DHM treatment. 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed that DHM could reduce the infarct volume induced by MCAO. Nissl staining showed disordered neuronal arrangement and few Nissl bodies in the MCAO group, but this effect was reversed by DHM treatment. Analysis of pyroptosis-related molecules showed that the MCAO group had serious pyroptosis, and DHM effectively reduced pyroptosis. Our results demonstrate that DHM has a neuroprotective effect on ischemic stroke that is at least partly achieved by reducing pyroptosis.
Collapse
Affiliation(s)
- Huiru Ding
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Quancheng Cheng
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xuan Fang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ziyuan Wang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jinyu Fang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Huaicun Liu
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Junwei Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chunhua Chen
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Weiguang Zhang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
26
|
Dong J, Wang S, Mao J, Wang Z, Zhao S, Ren Q, Kang J, Ye J, Xu X, Zhu Y, Zhang Q. Preparation of Dihydromyricetin-Loaded Self-Emulsifying Drug Delivery System and Its Anti-Alcoholism Effect. Pharmaceutics 2023; 15:2296. [PMID: 37765265 PMCID: PMC10535266 DOI: 10.3390/pharmaceutics15092296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Intraperitoneal injection of dihydromyricetin (DMY) has shown promising potential in the treatment of alcoholism. However, its therapeutic effect is limited due to its low solubility, poor stability, and high gut-liver first-pass metabolism, resulting in very low oral bioavailability. In this study, we developed a DMY-loaded self-emulsifying drug delivery system (DMY-SEDDS) to enhance the oral bioavailability and anti-alcoholism effect of DMY. DMY-SEDDS improved the oral absorption of DMY by facilitating lymphatic transport. The area under the concentration-time curve (AUC) of DMY in the DMY-SEDDS group was 4.13-fold higher than in the DMY suspension group. Furthermore, treatment with DMY-SEDDS significantly enhanced the activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in the liver of mice (p < 0.05). Interestingly, DMY-SEDDS also increased ADH activity in the stomach of mice with alcoholism (p < 0.01), thereby enhancing ethanol metabolism in the gastrointestinal tract and reducing ethanol absorption into the bloodstream. As a result, the blood alcohol concentration of mice with alcoholism was significantly decreased after DMY-SEDDS treatment (p < 0.01). In the acute alcoholism mice model, compared to saline treatment, DMY-SEDDS prolonged the onset of LORR (loss of righting reflex) (p < 0.05) and significantly shortened the duration of LORR (p < 0.01). Additionally, DMY-SEDDS treatment significantly reduced gastric injury in acute alcoholism mice. Collectively, these findings demonstrate the potential of DMY-SEDDS as a treatment in the treatment of alcoholism.
Collapse
Affiliation(s)
- Jianxia Dong
- Department of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (J.D.); (S.W.)
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (J.K.)
| | - Shu Wang
- Department of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (J.D.); (S.W.)
| | - Jiamin Mao
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Zhidan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (J.K.)
| | - Shiying Zhao
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Qiao Ren
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Jialing Kang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (J.K.)
| | - Jing Ye
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Xiaohong Xu
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Yujin Zhu
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
| | - Quan Zhang
- Institute of Materia Medica, Structure-Specific Small Molecule Drugs Key Laboratory of Sichuan Provincial Universities, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (S.Z.); (Q.R.); (J.Y.); (X.X.); (Y.Z.)
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, China
- Chengdu Nature’s Grace Biological Technology Co., Ltd., Chengdu 610213, China
| |
Collapse
|
27
|
Zhu X, Liu S, Pei H, Chen W, Zong Y, Zhao Y, Li J, Du R, He Z. Study on Dihydromyricetin Improving Aflatoxin Induced Liver Injury Based on Network Pharmacology and Molecular Docking. TOXICS 2023; 11:760. [PMID: 37755770 PMCID: PMC10535947 DOI: 10.3390/toxics11090760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
Aflatoxin B1 (AFB1) is a toxic food/feed contaminant and the liver is its main target organ, thus it poses a great danger to organisms. Dihydromyricetin (DHM), a natural flavonoid compound, can be used as a food additive with high safety and has been shown to have strong hepatoprotective effects. In this experiment, PPI network and KEGG pathway analysis were constructed by network pharmacological analysis technique using software and platforms such as Swiss, String, and David and Cytoscape. We screened AFB1 and DHM cross-targets and pathways of action, followed by molecular docking based on the strength of binding affinity of genes to DHM. In addition, we exposed AFB1 (200 μg/kg) to mice to establish a liver injury model. Histological observation, biochemical assay, oxidative stress indicator assay, TUNEL staining and Western blot were used to evaluate the liver injury. Network pharmacological results were screened to obtain 25 cross-targets of action and 20 pathways of action. It was found that DHM may exert anti-hepatic injury effects by inhibiting the overexpression of Caspase-3 protein and increasing the expression of Bcl-2 protein. DHM (200 mg/kg) was found to reduce AFB1-induced liver indices such as alanine aminotransferase (ALT) and aspartate acyltransferase (AST), and attenuate hepatic histopathological damage through animal models. Importantly, DHM inhibited malondialdehyde (MDA) formation in liver tissue and attenuated AFB1-induced oxidative stress injury by increasing glutathione-S-transferase (GST) glutathione (GPX) catalase (CAT) and superoxide dismutase (SOD). Meanwhile, DHM also restored the expression of anti-apoptotic protein Bcl-2 and antioxidant proteins, Nrf2, Keap1 and its downstream HO-1, and down-regulated the expression of pro-apoptotic proteins Bax and Caspase-3 in AFB1-induced liver tissues. The results confirmed that liver injury caused by AFB1 exposure could be alleviated by DHM, providing valuable guidance for in-depth study of DHM in the treatment of liver-related diseases, and laying the foundation for in-depth development and utilization of DHM.
Collapse
Affiliation(s)
- Xiaoying Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (X.Z.); (S.L.); (Y.Z.); (Y.Z.)
| | - Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (X.Z.); (S.L.); (Y.Z.); (Y.Z.)
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (X.Z.); (S.L.); (Y.Z.); (Y.Z.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (X.Z.); (S.L.); (Y.Z.); (Y.Z.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (X.Z.); (S.L.); (Y.Z.); (Y.Z.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (X.Z.); (S.L.); (Y.Z.); (Y.Z.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (X.Z.); (S.L.); (Y.Z.); (Y.Z.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (X.Z.); (S.L.); (Y.Z.); (Y.Z.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Safety, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (X.Z.); (S.L.); (Y.Z.); (Y.Z.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Safety, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
28
|
Wang Z, Cao Z, Yue Z, Yang Z. Research progress of dihydromyricetin in the treatment of diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1216907. [PMID: 37732125 PMCID: PMC10507363 DOI: 10.3389/fendo.2023.1216907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Diabetic Mellitus (DM), a chronic metabolic disorder disease characterized by hyperglycemia, is mainly caused by the absolute or relative deficiency of insulin secretion or decreased insulin sensitivity in target tissue cells. Dihydromyricetin (DMY) is a flavonoid compound of dihydroflavonol that widely exists in Ampelopsis grossedentata. This review aims to summarize the research progress of DMY in the treatment of DM. A detailed summary of related signaling induced by DMY are discussed. Increasing evidence implicates that DMY display hypoglycemic effects in DM via improving glucose and lipid metabolism, attenuating inflammatory responses, and reducing oxidative stress, with the signal transduction pathways underlying the regulation of AMPK or mTOR/autophagy, and relevant downstream cascades, including PGC-1α/SIRT3, MEK/ERK, and PI3K/Akt signal pathways. Hence, the mechanisms underlying the therapeutic implications of DMY in DM are still obscure. In this review, following with a brief introduction of the absorption, metabolism, distribution, and excretion characteristics of DMY, we summarized the current pharmacological developments of DMY as well as possible molecular mechanisms in the treatment of DM, aiming to push the understanding about the protective role of DMY as well as its preclinical assessment of novel application.
Collapse
Affiliation(s)
| | | | | | - Zhengfeng Yang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Alattar A, Alshaman R, Althobaiti YS, Soliman GM, Ali HS, Khubrni WS, Koh PO, Rehman NU, Shah FA. Quercetin Alleviated Inflammasome-Mediated Pyroptosis and Modulated the mTOR/P70S6/P6/eIF4E/4EBP1 Pathway in Ischemic Stroke. Pharmaceuticals (Basel) 2023; 16:1182. [PMID: 37631097 PMCID: PMC10459024 DOI: 10.3390/ph16081182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Stroke ranks as the world's second most prevalent cause of mortality, and it represents a major public health concern with profound economic and social implications. In the present study, we elucidated the neuroprotective role of quercetin on NLRP3-associated pyroptosis, Nrf2-coupled anti-inflammatory, and mTOR-dependent downstream pathways. Male Sprague Dawley rats were subjected to 72 h of transient middle cerebral artery ischemia, followed by the administration of 10 mg/kg of quercetin. Our findings demonstrated that MCAO induced elevated ROS which were coupled to inflammasome-mediated pyroptosis and altered mTOR-related signaling proteins. We performed ELISA, immunohistochemistry, and Western blotting to unveil the underlying role of the Nrf2/HO-1 and PDK/AKT/mTOR pathways in the ischemic cortex and striatum. Our results showed that quercetin post-treatment activated the Nrf2/HO-1 cascade, reversed pyroptosis, and modulated the autophagy-related pathway PDK/AKT/mTOR/P70S6/P6/eIF4E/4EBP1. Further, quercetin enhances the sequestering effect of 14-3-3 and reversed the decrease in interaction between p-Bad and 14-3-3 and p-FKHR and 14-3-3. Our findings showed that quercetin exerts its protective benefits and rescues neuronal damage by several mechanisms, and it might be a viable neuroprotective drug for ischemic stroke therapy.
Collapse
Affiliation(s)
- Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia; (R.A.); (W.S.K.)
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia; (R.A.); (W.S.K.)
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 21944, Taif 21944, Saudi Arabia;
- Addiction and Neuroscience Research Unit, Taif University, Taif 21944, Saudi Arabia
| | - Ghareb M. Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia;
| | - Howaida S. Ali
- Department of Pharmacology, Faculty of Medicine, Assuit University, Assuit 71515, Egypt;
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Waleed Salman Khubrni
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 47713, Saudi Arabia; (R.A.); (W.S.K.)
| | - Phil Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sttam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Fawad Ali Shah
- Department of Anatomy and Histology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| |
Collapse
|
30
|
Zhu J, Liu X, Lu Y, Yue D, He X, Deng W, Zhao S, Xi D. Exploring the Impact of Ampelopsis Grossedentata Flavonoids on Growth Performance, Ruminal Microbiota, and Plasma Physiology and Biochemistry of Kids. Animals (Basel) 2023; 13:2454. [PMID: 37570263 PMCID: PMC10417322 DOI: 10.3390/ani13152454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
This study was conducted to evaluate the influences of supplementing Ampelopsis grossedentata flavonoids (AGF) on the rumen bacterial microbiome, plasma physiology and biochemistry, and growth performance of goats. Twenty-four Nubian kids were randomly allocated to three dietary treatments: the control (CON, basal diet), the 1.0 g/kg AGF treatment (AGF), and the 12.5 mg/kg monensin treatment (MN). This trial consisted of 10 days for adaptation and 90 days for data and sample collection. The results reveal that Bacteroidetes, Firmicutes, and Proteobacteria are the dominant phyla in kids' rumen. Compared with the CON group, the alpha diversity in the MN and AGF groups significantly increased (p < 0.01). Beta-diversity shows that rumen microbial composition is more similar in the MN and AGF groups. LEfSe analysis shows that Prevotella_1 in the AGF group were significantly higher than those in the MN and CON group. The high-density lipoprotein cholesterol and glucose levels in the AGF group were significantly higher than those in the CON group (p < 0.05), whereas the low-density lipoprotein cholesterol, glutamic-pyruvic transaminase, and alkaline phosphatase levels exhibited the opposite trend. The average daily gains in the AGF and MN groups significantly increased, while the feed-to-gain ratios were significantly decreased (p < 0.05). The results suggest that adding AGF to the diet improves microbial composition and has important implications for studying juvenile livestock growth and improving economic benefits.
Collapse
Affiliation(s)
- Junhong Zhu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
| | - Xingneng Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
- Institute of Animal Husbandry, Yunnan Vocational College of Agriculture, Kunming 650201, China
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
| | - Dan Yue
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
| | - Xiaoming He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
| | - Sumei Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
| |
Collapse
|
31
|
Wahnou H, Liagre B, Sol V, El Attar H, Attar R, Oudghiri M, Duval RE, Limami Y. Polyphenol-Based Nanoparticles: A Promising Frontier for Enhanced Colorectal Cancer Treatment. Cancers (Basel) 2023; 15:3826. [PMID: 37568642 PMCID: PMC10416951 DOI: 10.3390/cancers15153826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) poses a significant challenge in healthcare, necessitating the exploration of novel therapeutic strategies. Natural compounds such as polyphenols with inherent anticancer properties have gained attention as potential therapeutic agents. This review highlights the need for novel therapeutic approaches in CRC, followed by a discussion on the synthesis of polyphenols-based nanoparticles. Various synthesis techniques, including dynamic covalent bonding, non-covalent bonding, polymerization, chemical conjugation, reduction, and metal-polyphenol networks, are explored. The mechanisms of action of these nanoparticles, encompassing passive and active targeting mechanisms, are also discussed. The review further examines the intrinsic anticancer activity of polyphenols and their enhancement through nano-based delivery systems. This section explores the natural anticancer properties of polyphenols and investigates different nano-based delivery systems, such as micelles, nanogels, liposomes, nanoemulsions, gold nanoparticles, mesoporous silica nanoparticles, and metal-organic frameworks. The review concludes by emphasizing the potential of nanoparticle-based strategies utilizing polyphenols for CRC treatment and highlights the need for future research to optimize their efficacy and safety. Overall, this review provides valuable insights into the synthesis, mechanisms of action, intrinsic anticancer activity, and enhancement of polyphenols-based nanoparticles for CRC treatment.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Vincent Sol
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | | | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Istanbul 34280, Turkey;
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | | | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (M.O.)
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco
| |
Collapse
|
32
|
Chen Y, Song Z, Chang H, Guo Y, Wei Z, Sun Y, Gong L, Zheng Z, Zhang G. Dihydromyricetin inhibits African swine fever virus replication by downregulating toll-like receptor 4-dependent pyroptosis in vitro. Vet Res 2023; 54:58. [PMID: 37438783 DOI: 10.1186/s13567-023-01184-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/27/2023] [Indexed: 07/14/2023] Open
Abstract
African swine fever (ASF), caused by ASF virus (ASFV) infection, poses a huge threat to the pork industry owing to ineffective preventive and control measures. Hence, there is an urgent need to develop strategies, including antiviral drugs targeting ASFV, for preventing ASFV spread. This study aimed to identify novel compounds with anti-ASFV activity. To this end, we screened a small chemical library of 102 compounds, among which the natural flavonoid dihydromyricetin (DHM) exhibited the most potent anti-ASFV activity. DHM treatment inhibited ASFV replication in a dose- and time-dependent manner. Furthermore, it inhibited porcine reproductive and respiratory syndrome virus and swine influenza virus replication, which suggested that DHM exerts broad-spectrum antiviral effects. Mechanistically, DHM treatment inhibited ASFV replication in various ways in the time-to-addition assay, including pre-, co-, and post-treatment. Moreover, DHM treatment reduced the levels of ASFV-induced inflammatory mediators by regulating the TLR4/MyD88/MAPK/NF-κB signaling pathway. Meanwhile, DHM treatment reduced the ASFV-induced accumulation of reactive oxygen species, further minimizing pyroptosis by inhibiting the ASFV-induced NLRP3 inflammasome activation. Interestingly, the effects of DHM on ASFV were partly reversed by treatment with polyphyllin VI (a pyroptosis agonist) and RS 09 TFA (a TLR4 agonist), suggesting that DHM inhibits pyroptosis by regulating TLR4 signaling. Furthermore, targeting TLR4 with resatorvid (a specific inhibitor of TLR4) and small interfering RNA against TLR4 impaired ASFV replication. Taken together, these results reveal the anti-ASFV activity of DHM and the underlying mechanism of action, providing a potential compound for developing antiviral drugs targeting ASFV.
Collapse
Affiliation(s)
- Yang Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Zebu Song
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| | - Hao Chang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Yanchen Guo
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Zhi Wei
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Yankuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| | - Zezhong Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China.
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China.
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China.
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
33
|
Yan Q, Li M, Dong L, Luo J, Zhong X, Shi F, Ye G, Zhao L, Fu H, Shu G, Zhao X, Zhang W, Yin H, Li Y, Tang H. Preparation, characterization and protective effect of chitosan - Tripolyphosphate encapsulated dihydromyricetin nanoparticles on acute kidney injury caused by cisplatin. Int J Biol Macromol 2023; 245:125569. [PMID: 37369257 DOI: 10.1016/j.ijbiomac.2023.125569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Dihydromyricetin (DMY) is a natural dihydroflavonol compound known for its diverse pharmacological benefits. However, its limited stability and bioavailability posed significant challenges for further applications. To address these issues, in this study, an ion crosslinking method was utilized to prepare chitosan nanoparticles that were loaded with DMY. The synthesized chitosan nanoparticles (CS-DMY-NPs) were spherical in shape with particle size and ζ potential of 198.7 nm and 45.05 mV, respectively. Furthermore, in vitro release experiments demonstrated that CS-DMY-NPs had sustained release and protective effects in simulated gastric and intestinal fluids. CS-DMY-NPs exhibited better antioxidant activity by ABTS and DPPH radical scavenging activity than free DMY. In vivo study showed that CS-DMY-NPs alleviated cisplatin-induced kidney damage by inhibiting oxidative stress and proinflammatory cytokines, and had better activity compared to DMY (free). Immunofluorescence data showed that CS-DMY-NPs activated the Nrf2 signaling pathways in a dose-dependent manner to combat cisplatin-induced kidney damage. Our results demonstrate that CS-TPP has good compatibility with DMY, and CS-DMY-NPs exhibited better protective effects against cisplatin-induced acute kidney injury (AKI) than free DMY.
Collapse
Affiliation(s)
- Qiaohua Yan
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Meiqing Li
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Liying Dong
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Luo
- Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China
| | - Xiaohui Zhong
- The Disease Prevention and Control Center of Cuipin District, Yibin 644000, China
| | - Fei Shi
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhao
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Hualin Fu
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Shu
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinghong Zhao
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Zhang
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongmei Yin
- School of Animal Science, Xichang University, Xichang 615000, Sichuan Province, China
| | - Yinglun Li
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Huaqiao Tang
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
34
|
Xia Y, Lu Y, Qian S, Zhang J, Gao Y, Wei Y, Heng W. An efficient cocrystallization strategy for separation of dihydromyricetin from vine tea and enhanced its antibacterial activity for food preserving application. Food Chem 2023; 426:136525. [PMID: 37321122 DOI: 10.1016/j.foodchem.2023.136525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/17/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
The objective of this study was to optimize the separation and purification of dihydromyricetin (DMY) from vine tea to obtain high purity, antibacterial and antioxidant crystal forms. We developed a cocrystallization approach for separation of DMY from vine tea with easy operation and high efficiency. The type and concentration of co-formers as well as solvent for separation have been investigated in detail. Under the optimal conditions, DMY with a purity of 92.41% and its two co-crystal forms (purity >97%) can be obtained. Three DMY crystal forms had consistent and good antioxidant activities according to DPPH radical scavenging results. DMY had effective antibacterial activity against the two kinds of drug-resistant bacteria including CRAB and MRSA, and DMY co-crystals had a greater advantage than DMY itself on CRAB. This work implies that cocrystallization can be used for the DMY separation and enhanced its anti-drug-resistant bacteria activity in food preservation.
Collapse
Affiliation(s)
- Yanming Xia
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yan Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
35
|
Wen Y, Wang Y, Zhao C, Zhao B, Wang J. The Pharmacological Efficacy of Baicalin in Inflammatory Diseases. Int J Mol Sci 2023; 24:ijms24119317. [PMID: 37298268 DOI: 10.3390/ijms24119317] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Baicalin is one of the most abundant flavonoids found in the dried roots of Scutellaria baicalensis Georgi (SBG) belonging to the genus Scutellaria. While baicalin is demonstrated to have anti-inflammatory, antiviral, antitumor, antibacterial, anticonvulsant, antioxidant, hepatoprotective, and neuroprotective effects, its low hydrophilicity and lipophilicity limit the bioavailability and pharmacological functions. Therefore, an in-depth study of baicalin's bioavailability and pharmacokinetics contributes to laying the theoretical foundation for applied research in disease treatment. In this view, the physicochemical properties and anti-inflammatory activity of baicalin are summarized in terms of bioavailability, drug interaction, and inflammatory conditions.
Collapse
Affiliation(s)
- Yongqiang Wen
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
36
|
Du B, Wang S, Zhu S, Li Y, Huang D, Chen S. Antioxidant Activities of Dihydromyricetin Derivatives with Different Acyl Donor Chain Lengths Synthetized by Lipozyme TL IM. Foods 2023; 12:foods12101986. [PMID: 37238804 DOI: 10.3390/foods12101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Dihydromyricetin (DHM) is a phytochemical with multiple bioactivities. However, its poor liposolubility limits its application in the field. In this study, DHM was acylated with different fatty acid vinyl esters to improve its lipophilicity, and five DHM acylated derivatives with different carbon chain lengths (C2-DHM, C4-DHM, C6-DHM, C8-DHM, and C12-DHM) and different lipophilicity were synthesized. The relationship between the lipophilicity and antioxidant activities of DHM and its derivatives was evaluated with oil and emulsion models using chemical and cellular antioxidant activity (CAA) tests. The capacity of DHM derivatives to scavenge 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS+•) was similar to that of DHM, except for C12-DHM. The antioxidant activity of DHM derivatives was lower than that of DHM in sunflower oil, while C4-DHM exhibited better antioxidant capacity in oil-in-water emulsion. In CAA tests, C8-DHM (median effective dose (EC50) 35.14 μmol/L) exhibited better antioxidant activity than that of DHM (EC50: 226.26 μmol/L). The results showed that in different antioxidant models, DHM derivatives with different lipophilicity had various antioxidant activities, which has guiding significance for the use of DHM and its derivatives.
Collapse
Affiliation(s)
- Baoshuang Du
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shan Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yue Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore
| | - Shangwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
37
|
Jung UJ. Sarcopenic Obesity: Involvement of Oxidative Stress and Beneficial Role of Antioxidant Flavonoids. Antioxidants (Basel) 2023; 12:antiox12051063. [PMID: 37237929 DOI: 10.3390/antiox12051063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenic obesity, which refers to concurrent sarcopenia and obesity, is characterized by decreased muscle mass, strength, and performance along with abnormally excessive fat mass. Sarcopenic obesity has received considerable attention as a major health threat in older people. However, it has recently become a health problem in the general population. Sarcopenic obesity is a major risk factor for metabolic syndrome and other complications such as osteoarthritis, osteoporosis, liver disease, lung disease, renal disease, mental disease and functional disability. The pathogenesis of sarcopenic obesity is multifactorial and complicated, and it is caused by insulin resistance, inflammation, hormonal changes, decreased physical activity, poor diet and aging. Oxidative stress is a core mechanism underlying sarcopenic obesity. Some evidence indicates a protective role of antioxidant flavonoids in sarcopenic obesity, although the precise mechanisms remain unclear. This review summarizes the general characteristics and pathophysiology of sarcopenic obesity and focuses on the role of oxidative stress in sarcopenic obesity. The potential benefits of flavonoids in sarcopenic obesity have also been discussed.
Collapse
Affiliation(s)
- Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
38
|
Zhang R, Shi H, Li S, Zhang H, Zhang D, Wu A, Zhang C, Li C, Fu X, Chen S, Shi J, Tian Y, Wang S, Wang Y, Liu H. A double-layered gastric floating tablet for zero-order controlled release of dihydromyricetin: Design, development, and in vitro/in vivo evaluation. Int J Pharm 2023; 638:122929. [PMID: 37028570 DOI: 10.1016/j.ijpharm.2023.122929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023]
Abstract
Dihydromyricetin (DHM) is an important natural flavonoid. However, most of DHM preparations have shown shortcomings such as low drug loading, poor drug stability, and/or large fluctuations in blood concentration. This study aimed to develop a gastric floating tablet with a double-layered structure for zero-order controlled release of DHM (DHM@GF-DLT). The final product DHM@GF-DLT showed a high average cumulative drug release at 24 h that best fit the zero-order model, and had a good floating ability in the stomach of the rabbit with a gastric retention time of over 24 h. The FTIR, DSC, and XRPD analyses indicated the good compatibility among the drug and the excipients in DHM@GF-DLT. The pharmacokinetic study revealed that DHM@GF-DLT could prolong the retention time of DHM, reduce the fluctuation of blood drug concentration, and enhance the bioavailability of DHM. The pharmacodynamic studies demonstrated that DHM@GF-DLT had a potent and long-term therapeutic effect on systemic inflammation in rabbits. Therefore, DHM@GF-DLT had the potential to serve as a promising anti-inflammatory agent and may develop into a once-a-day preparation, which was favorable to maintain a steady blood drug concentration and a long-term drug efficacy. Our research provided a promising development strategy for DHM and other natural products with a similar structure to DHM for improving their bioavailability and therapeutic effect.
Collapse
Affiliation(s)
- Ruirui Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Sifang Li
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Hao Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Ailing Wu
- Department of Anesthesiology, The First People's Hospital of Neijiang, Neijiang, Sichuan, PR China
| | - Chun Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Chunhong Li
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Xiujuan Fu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Jiaoyue Shi
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Yang Tian
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Sihan Wang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Yu Wang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, PR China.
| |
Collapse
|
39
|
Chitosan nanoparticles efficiently enhance the dispersibility, stability and selective antibacterial activity of insoluble isoflavonoids. Int J Biol Macromol 2023; 232:123420. [PMID: 36708890 DOI: 10.1016/j.ijbiomac.2023.123420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Natural isoflavonoids have attracted much attention in the treatment of oral bacterial infections and other diseases due to their excellent antibacterial activity and safety. However, their poor water solubility, instability and low bioavailability seriously limited the practical application. In this study, licoricidin-loaded chitosan nanoparticles (LC-CSNPs) were synthesized by self-assembly for improving the dispersion of licoricidin (LC) and strengthening antibacterial and anti-biofilm performance. Compared to free LC, the minimum inhibitory concentration of LC-CSNPs against Streptococcus mutans decreased >2-fold to 26 μg/mL, and LC-CSNPs could ablate 70 % biofilms at this concentration. The enhanced antibacterial activity was mainly attributed to the spontaneous surface adsorption of LC-CSNPs on cell membranes through electrostatic interactions. More valuably, LC-CSNPs had no inhibitory effect on the growth of probiotic. Mechanism study indicated that LC-CSNPs altered the transmembrane potential to cause bacterial cells in a hyperpolarized state, generating ROS to cause cells damage and eventually apoptosis. This work demonstrated that the chitosan-based nanoparticles have great potential in enhancing the dispersibility and antibacterial activity of insoluble isoflavonoids, offering a promising therapeutic strategy for oral infections.
Collapse
|
40
|
Ruan S, Gao X, Li B, Tian J. The synergic effects and mechanism of KGM-DMY complex in the prevention of obesity and enhancement of fatigue resistance in mice. Food Funct 2023; 14:2607-2620. [PMID: 36810428 DOI: 10.1039/d2fo03677k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Dietary fibers (DFs) are normally consumed together with polyphenols. Further, both of them are two kinds of popular functional ingredients. However, studies have shown that the soluble DFs and polyphenols are antagonistic to their bioactivity due to the potential loss of the physical properties that drive their benefits. In this study, konjac glucomannan (KGM), dihydromyricetin (DMY), and KGM-DMY complex were fed to mice on normal chow diet (NCD) and high fat diet (HFD). The body fat content, serum lipid metabolites and time to exhaustion in swimming were compared. It was found that KGM-DMY had synergistic effects on the reduction of serum triglyceride, total glycerol content in HFD-fed mice, and extension of time to exhaustion in swimming in NCD-fed mice. The underlying mechanism was explored by antioxidant enzyme activity measurement, energy production quantification, and gut microbiota 16S rDNA profiling. KGM-DMY synergistically reduced the lactate dehydrogenase activity, malondialdehyde production, and alanine aminotransferase activities after swimming. Moreover, superoxide dismutase activities, glutathione peroxidase activities, glycogen and adenosine triphosphate contents were synergistically enhanced by KGM-DMY complex. In addition, according to gut microbiota gene expression analyses, KGM-DMY enhanced the ratio of Bacteroidota/Firmicutes and the abundance of Oscillospiraceae and Romboutsia. The abundance of Desulfobacterota was also reduced. To our knowledge, this was the first experiment that indicated that the complex of polyphenols and DF have synergistic effects in obesity prevention and fatigue resistance. The study provided a perspective for the formulation of obese preventive nutritional supplement in the food industry.
Collapse
Affiliation(s)
- Shulan Ruan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Xuefeng Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
- Functional Food Engineering & Technology Research Center of Hubei Province, China
| | - Jing Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
- Functional Food Engineering & Technology Research Center of Hubei Province, China
| |
Collapse
|
41
|
Liu X, Li Y, Chen S, Yang J, Jing J, Li J, Wu X, Wang J, Wang J, Zhang G, Tang Z, Nie H. Dihydromyricetin attenuates intracerebral hemorrhage by reversing the effect of LCN2 via the system Xc- pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154756. [PMID: 37130481 DOI: 10.1016/j.phymed.2023.154756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND The limited understanding of the pathological mechanisms of intracerebral hemorrhage (ICH) and the absence of successful therapies lead to poor prognoses for patients with ICH. Dihydromyricetin (DMY) has many physiological functions, such as regulating lipid and glucose metabolism and modulating tumorigenesis. Moreover, DMY has been proven to be an effective treatment of neuroprotection. However, no reports to date have been made regarding the impact of DMY on ICH. PURPOSE This investigation aimed to identify the role of DMY on ICH in mice and the underlying mechanisms. METHODS/RESULTS This study demonstrated that DMY treatment effectively reduced hematoma size and cell apoptosis of brain tissue, and improved neurobehavioral outcomes in mice with ICH. Transcriptional and network pharmacological analyses revealed that lipocalin-2 (LCN2) was a potential target of DMY in ICH. After ICH, LCN2 mRNA and protein expression in brain tissue increased and DMY could inhibit the expression of LCN2. The rescue experiment with the implementation of LCN2 overexpression verified these observations. Furthermore, after DMY treatment, there was a significant decrease in cyclooxygenase 2 (COX2), phospho-extracellular regulated protein kinase (P-ERK), iron deposition, and the number of abnormal mitochondria, which were reversed by the overexpression of LCN2. Proteomics analysis suggests that SLC3A2 may be the downstream target of LCN2, promoting ferroptosis. Finally, LCN2 was shown to bind to SLC3A2 and regulate the downstream glutathione (GSH) synthesis and Glutathione Peroxidase 4 (GPX4) expression and glutathione (GSH) synthesis, as determined by molecular docking and co-immunoprecipitation analysis. CONCLUSION Our study confirmed for the first time that DMY might offer a favorable treatment for ICH through its action on LCN2. The possible mechanism for this could be that DMY reverses the inhibitory effect of LCN2 on the system Xc-, lessening ferroptosis in brain tissue. The findings of this study offer a greater understanding of how DMY affects ICH at a molecular level and could be conducive to developing therapeutic targets for ICH.
Collapse
Affiliation(s)
- Xia Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Yunjie Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Jingfei Yang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Jie Jing
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Jiahui Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Ge Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China.
| | - Hao Nie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, China.
| |
Collapse
|
42
|
Sun J, Wang Y, Tang W, Gong J. Enantioselectivity of chiral dihydromyricetin in multicomponent solid solutions regulated by subtle structural mutation. IUCRJ 2023; 10:164-176. [PMID: 36692859 PMCID: PMC9980384 DOI: 10.1107/s2052252523000118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Multicomponent crystals of a chiral drug with non-chiral components have attracted increasing attention in the application of enantiomer purification and regulation of the physicochemical properties of crystalline materials. Crystalline solid solutions provide opportunities for fine-tuning material properties because of continuously adjustable component stoichiometry ratios. The synthesis, crystal structure, thermodynamics and solid-state enantioselectivity of a series of multicomponent crystals of chiral dihydromyricetin (DMY) with caffeine (CAF) or theophylline (THE) were investigated and the results reveal how the subtle change of molecular structure of the coformer dictates the enantiomer selectivity in multicomponent cocrystals. A series of multicomponent cocrystal solvates of chiral DMY with CAF and THE were synthesized by the slurry cocrystallization method in acetonitrile. Although most racemic mixtures crystallize as racemic compounds or conglomerates, both DMY-CAF and DMY-THE crystallize as chiral solid solutions, unveiled by pseudo-binary melt phase diagrams and pseudo-ternary solution phase diagrams. Crystal structures of Rac-DMY-CAF, R,R-DMY-CAF, Rac-DMY-THE and R,R-DMY-THE are reported for the first time via single-crystal X-ray diffraction, displaying two distinct types of solid solution differing in mixing scale of enantiomers spanning several orders of magnitude. Surprisingly, this remarkable impact on enantiomer discrimination was simply achieved by the reduction of a methyl group of CAF to the THE coformer, which was further rationalized from their crystal structures and intermolecular interactions. Collectively, this work has demonstrated that a subtle change in the molecular structure of a coformer can regulate enantioselectivity in crystalline materials, guiding the purification of chiral racemic compounds via the cocrystallization method and the design of solid-solution crystalline materials.
Collapse
Affiliation(s)
- Jie Sun
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Weijin Road, Tianjin 300072, People’s Republic of China
| | - Yaoguo Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Weijin Road, Tianjin 300072, People’s Republic of China
| | - Weiwei Tang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Weijin Road, Tianjin 300072, People’s Republic of China
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Weijin Road, Tianjin 300072, People’s Republic of China
| |
Collapse
|
43
|
Kumar G, Kiran Tudu A. Tackling multidrug-resistant Staphylococcus aureus by natural products and their analogues acting as NorA efflux pump inhibitors. Bioorg Med Chem 2023; 80:117187. [PMID: 36731248 DOI: 10.1016/j.bmc.2023.117187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Staphylococcus aureus (S. aureus) is a pathogen responsible for various community and hospital-acquired infections with life-threatening complications like bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. Antibiotics have been used to treat microbial infections since the introduction of penicillin in 1940. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi, including the treatment of non-microbial diseases, have led to the rapid emergence of multidrug-resistant pathogens with increased virulence. Bacteria have developed several complementary mechanisms to avoid the effects of antibiotics. These mechanisms include chemical transformations and enzymatic inactivation of antibiotics, modification of antibiotics' target site, and reduction of intracellular antibiotics concentration by changes in membrane permeability or by the overexpression of efflux pumps (EPs). The strategy to check antibiotic resistance includes synthesis of the antibiotic analogues, or antibiotics are given in combination with the adjuvant. The inhibitors of multidrug EPs are considered promising alternative therapeutic options with the potential to revive the effects of antibiotics and reduce bacterial virulence. Natural products played a vital role in drug discovery and significantly contributed to the area of infectious diseases. Also, natural products provide lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. This review discusses natural products and their derived compounds as NorA efflux pump inhibitors (EPIs).
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, Telangana 500037, India.
| | - Asha Kiran Tudu
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, Telangana 500037, India
| |
Collapse
|
44
|
An investigation on pickering nano-emulsions stabilized by dihydromyricetin/high-amylose corn starch composite particles: Preparation conditions and carrier properties. Curr Res Food Sci 2023; 6:100458. [PMID: 36815998 PMCID: PMC9929674 DOI: 10.1016/j.crfs.2023.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
With dihydromyricetin (DMY)/high-amylose corn starch (HCS) composite particles as the emulsifier, Pickering nano-emulsions were fabricated by combining high-speed shearing and high-pressure homogenization. The effect of particle properties and processing conditions on the formation and physicochemical properties of the Pickering nano-emulsions was then investigated systematically. The results showed that the DMY content of the composite particles, the oil phase volume fraction of the emulsion, and the homogenization conditions had obvious effects on the droplet size of the emulsion, where appropriate DMY content in the composite particles (5-20%) contributed to the formation of stable Pickering nano-emulsions. The oil phase of the obtained emulsions exhibited good stability during high-temperature storage, and their β-carotene protecting performance against UV irradiation was superior to the emulsion stabilized by Tween 20. The in vitro simulated digestion analysis indicated that the nano-emulsions developed by the composite particles could enhance the bioaccessibility of β-carotene and inhibit starch hydrolysis.
Collapse
|
45
|
Dihydromyricetin Inhibits Pseudorabies Virus Multiplication In Vitro by Regulating NF-κB Signaling Pathway and Apoptosis. Vet Sci 2023; 10:vetsci10020111. [PMID: 36851415 PMCID: PMC9961748 DOI: 10.3390/vetsci10020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Pseudorabies virus (PRV) infections have caused huge economic losses to the breeding industry worldwide, especially pig husbandry. PRV could threaten human health as an easily ignored zoonotic pathogen. The emergence of new mutants significantly reduced the protective effect of vaccination, indicating an urgent need to develop specific therapeutic drugs for PRV infection. In this study, we found that dihydromyricetin (DMY) could dose-dependently restrain PRV infection in vitro with an IC50 of 161.34 μM; the inhibition rate of DMY at a concentration of 500 μM was 92.16 %. Moreover, the mode of action showed that DMY directly inactivated PRV virion and inhibited viral adsorption and cellular replication. DMY treatment could improve PRV-induced abnormal changes of the NF-κB signaling pathway and excessive inflammatory response through regulation of the contents of IκBα and p-P65/P65 and the transcriptional levels of cytokines (TNF-α, IL-1β and IL-6). Furthermore, DMY promoted the apoptosis of PRV-infected cells through the regulation of the expressions of Bax and Bcl-xl and the transcriptional levels of Caspase-3, Bax, Bcl-2 and Bcl-xl, thereby limiting the production of progeny virus. These findings indicated that DMY could be a candidate drug for the treatment of PRV infection.
Collapse
|
46
|
Liu S, Chen Z, Zhang H, Li Y, Maierhaba T, An J, Zhou Z, Deng L. Comparison of eugenol and dihydromyricetin loaded nanofibers by electro-blowing spinning for active packaging. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Tao S, Fan W, Liu J, Wang T, Zheng H, Qi G, Chen Y, Zhang H, Guo Z, Zhou F. NLRP3 Inflammasome: An Emerging Therapeutic Target for Alzheimer's Disease. J Alzheimers Dis 2023; 96:1383-1398. [PMID: 37980662 DOI: 10.3233/jad-230567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Alzheimer's disease (AD) is currently the most prevalent neurological disease, and no effective and practical treatments and therapies exist. The nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain- containing receptor 3 (NLRP3) inflammasome is vital in the human innate immune response. However, when the NLRP3 inflammasome is overactivated by persistent stimulation, several immune-related diseases, including AD, atherosclerosis, and obesity, result. This review will focus on the composition and activation mechanism of the NLRP3 inflammasome, the relevant mechanisms of involvement in the inflammatory response to AD, and AD treatment targeting NLRP3 inflammasome. This review aims to reveal the pathophysiological mechanism of AD from a new perspective and provide the possibility of more effective and novel strategies for preventing and treating AD.
Collapse
Affiliation(s)
- Shuqi Tao
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Wenyuan Fan
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Jinmeng Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| | - Tong Wang
- Department of Neurosurgery, Wei Fang People's Hospital, Weifang, Shandong Province, China
| | - Haoning Zheng
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Gaoxiu Qi
- Department of Pathology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong Province, China
| | - Yanchun Chen
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Haoyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| | - Zhangyu Guo
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| | - Fenghua Zhou
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
48
|
Li S, Yin S, Ding H, Shao Y, Zhou S, Pu W, Han L, Wang T, Yu H. Polyphenols as potential metabolism mechanisms regulators in liver protection and liver cancer prevention. Cell Prolif 2023; 56:e13346. [PMID: 36229407 DOI: 10.1111/cpr.13346] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Liver cancer is one of the common malignancies. The dysregulation of metabolism is a driver of accelerated tumourigenesis. Metabolic changes are well documented to maintain tumour growth, proliferation and survival. Recently, a variety of polyphenols have been shown to have a crucial role both in liver disease prevention and metabolism regulation. METHODS We conducted a literature search and combined recent data with systematic analysis to comprehensively describe the molecular mechanisms that link polyphenols to metabolic regulation and their contribution in liver protection and liver cancer prevention. RESULTS Targeting metabolic dysregulation in organisms prevents and resists the development of liver cancer, which has important implications for identifying new therapeutic strategies for the management and treatment of cancer. Polyphenols are a class of complex compounds composed of multiple phenolic hydroxyl groups and are the main active ingredients of many natural plants. They mediate a broad spectrum of biological and pharmacological functions containing complex lipid metabolism, glucose metabolism, iron metabolism, intestinal flora imbalance, as well as the direct interaction of their metabolites with key cell-signalling proteins. A large number of studies have found that polyphenols affect the metabolism of organisms by interfering with a variety of intracellular signals, thereby protecting the liver and reducing the risk of liver cancer. CONCLUSION This review systematically illustrates that various polyphenols, including resveratrol, chlorogenic acid, caffeic acid, dihydromyricetin, quercetin, catechins, curcumin, etc., improve metabolic disorders through direct or indirect pathways to protect the liver and fight liver cancer.
Collapse
Affiliation(s)
- Shuangfeng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shuangshuang Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Hui Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingying Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shiyue Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
49
|
Nie H, Ji T, Fu Y, Chen D, Tang Z, Zhang C. Molecular mechanisms and promising role of dihydromyricetin in cardiovascular diseases. Physiol Res 2022. [DOI: 10.33549/physiolres.934915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vine tea, a Chinese herbal medicine, is widely used in traditional Asian medicine to treat common health problems. Dihydromyricetin (DMY) is the main functional flavonoid compound extracted from vine tea. In recent years, preclinical studies have focused on the potential beneficial effects of dihydromyricetin, including glucose metabolism regulation, lipid metabolism regulation, neuroprotection, and anti-tumor effects. In addition, DMY may play a role in cardiovascular disease by resisting oxidative stress and participating in the regulation of inflammation. This review is the first review that summaries the applications of dihydromyricetin in cardiovascular diseases, including atherosclerosis, myocardial infarction, myocardial hypertrophy, and diabetic cardiomyopathy. We also clarified the underlying mechanisms and signaling pathways involved in the above process. The aim of this review is to provide a better understanding and quick overview for future researches of dihydromyricetin in the field of cardiovascular diseases, and more detailed and robust researches are needed for evaluation and reference.
Collapse
Affiliation(s)
| | | | | | | | | | - C Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
50
|
Zhang ZY, Liu C, Wang PX, Han YW, Zhang YW, Hao ML, Song ZX, Zhang XY. Dihydromyricetin Alleviates H9C2 Cell Apoptosis and Autophagy by Regulating CircHIPK3 Expression and PI3K/AKT/mTOR Pathway. Chin J Integr Med 2022; 29:434-440. [PMID: 36474083 DOI: 10.1007/s11655-022-3687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the effect and potential mechanism of dihydromyricetin (Dmy) on H9C2 cell proliferation, apoptosis, and autophagy. METHODS H9C2 cells were randomly divided into 7 groups, namely control, model, EV (empty pCDH-CMV-MCS-EF1-CopGFP-T2A-Puro vector), IV (circHIPK3 interference), Dmy (50 µ mol/L), Dmy+IV, and Dmy+EV groups. Cell proliferation and apoptosis were detected by cell counting kit-8 assay and flow cytometry, respectivley. Western blot was used to evaluate the levels of light chain 3 II/I (LC3II/I), phospho-phosphoinositide 3-kinase (p-PI3K), protein kinase B (p-AKT), and phospho-mammalian target of rapamycin (p-mTOR). The level of circHIPK3 was determined using reverse transcriptase polymerase chain reaction. Electron microscopy was used to observe autophagosomes in H9C2 cells. RESULTS Compared to H9C2 cells, the expression of circHIPK in H9C2 hypoxia model cells increased significantly (P<0.05). Compared to the control group, the cell apoptosis and autophagosomes increased, cell proliferation rate decreased significantly, and the expression of LC3 II/I significantly increased (all P<0.05). Compared to the model group, the rate of apoptosis and autophagosomes in IV, Dmy, and Dmy+IV group decreased, the cell proliferation rate increased, and the expression of LC3 II/I decreased significantly (all P<0.05). Compared to the control group, the expressions of p-PI3K, p-AKT, and p-mTOR in the model group significantly reduced (P<0.05), whereas after treatment with Dmy and sh-circHIPK3, the above situation was reversed (P<0.05). CONCLUSION Dmy plays a protective role in H9C2 cells by inhibiting circHIPK expression and cell apoptosis and autophagy, and the mechanism may be related to PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Zhi-Ying Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
| | - Chao Liu
- School of Finance Economics, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
| | - Peng-Xiang Wang
- School of Information Engineering, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
| | - Yi-Wei Han
- School of Finance Economics, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
| | - Yi-Wen Zhang
- School of Finance Economics, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
| | - Mei-Li Hao
- School of Finance Economics, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
| | - Zi-Xu Song
- School of Finance Economics, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
| | - Xiao-Ying Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China.
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China.
| |
Collapse
|