1
|
Liu T, Chen Y, Feng L, Wang F, Shang M, Wang Y, Bao Y, Zheng J. Sustained-release mechanism of β-Cyclodextrin/cationic cellulose-stabilized Pickering emulsions loaded with citrus essential oil. Food Chem 2024; 460:140674. [PMID: 39089025 DOI: 10.1016/j.foodchem.2024.140674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Citrus oil (CO) is a commonly used natural flavor with high volatility, which is not conducive to sustained release under food environmental stress. This study constructed novel β-cyclodextrin/cationic cellulose nanocrystal (β-CD/C-CNC) complexes via noncovalent interaction, which were used to stabilize CO-loaded Pickering emulsions (PEβ-CD/C-CNC). The C-CNC greatly improved the physical stability, droplet dispersion and viscoelasticity of PEβ-CD/C-CNC by forming a tight network structure, as verified by rheological behavior. Moreover, C-CNC improved the wettability of β-CD/C-CNC complexes and enhanced the interaction between adjacent β-CD/C-CNC complexes. C-CNC also contributed to the interfacial viscoelasticity, hydrated mass, and layer thickness via the interfacial dilational modulus and QCM-D. β-CD/C-CNC complexes adsorbed on the oil-water interface gave rise to a dense filling layer as a physical barrier, enhancing the sustained-release performance of PEβ-CD/C-CNC by limiting diffusion of citrus essential oil into the headspace. This study provides new technical approaches for aroma retention in the food industry.
Collapse
Affiliation(s)
- Ting Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuying Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengzhang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengshan Shang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuming Bao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Karaca AC, Boostani S, Assadpour E, Tan C, Zhang F, Jafari SM. Pickering emulsions stabilized by prolamin-based proteins as innovative carriers of bioactive compounds. Adv Colloid Interface Sci 2024; 333:103246. [PMID: 39208623 DOI: 10.1016/j.cis.2024.103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Pickering emulsions (PEs) can be used as efficient carriers for encapsulation and controlled release of different bioactive compounds. Recent research has revealed the potential of prolamins in development of nanoparticle- and emulsion-based carriers which can improve the stability and bioavailability of bioactive compounds. Prolamin-based particles have been effectively used as stabilizers of various PEs including single PEs, high internal phase PEs, multiple PEs, novel triphasic PEs, and PE gels due to their tunable self-assembly behaviors. Prolamin particles can be fabricated via different techniques including anti-solvent precipitation, dissolution followed by pH adjustment, heating, and ion induced aggregation. Particles fabricated from prolamins alone or in combination with other hydrocolloids or polyphenols have also been used for stabilization of different PEs which were shown to be effective carriers for food bioactives, providing improved stability and functionality. This article covers the recent advances in various PEs stabilized by prolamin particles as innovative carriers for bioactive ingredients. Strategies applied for fabrication of prolamin particles and prolamin-based carriers are discussed. Emerging techno-functional applications of prolamin-based PEs and possible challenges are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Tian H, Zhang Z, Li W, Sun X, Yuan L, Yang X. W/O/W Pickering emulsions stabilized by complex modified phycocyanin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9001-9013. [PMID: 39101210 DOI: 10.1002/jsfa.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND A water-in-oil-in-water (W/O/W) double emulsion can simultaneously load hydrophilic and hydrophobic substances due to its unique two-membrane, three-phase structure. However, thermodynamic instability greatly limits the application of double emulsions in food processing. Further development of Pickering emulsions based on proteins, etc., can improve the stability and loading capacity. It is of great significance to promote their practical application. RESULTS Herein, we prepared ultrasound pretreatment complex glycation-modified phycocyanin (UMPC) to stabilize a W/O/W Pickering emulsion for the codelivery of vitamin B12 (VB12) and vitamin E (VE). First, an inner water phase and oil phase containing polyglycerin polyricinoleate were homogenized to prepare a W/O emulsion. Subsequently, the W/O emulsion was homogenized with an outer water phase containing UMPC to obtain a W/O/W Pickering emulsion. A gel-like inner phase emulsion with excellent storage and thermal stabilities was obtained under the condition that the W/O emulsion volume ratio was 80% and the UMPC was stabilized by 10 g kg-1. The double emulsion after loading VB12 and VE showed good encapsulation effect during the storage period, the encapsulation rate could reach more than 90%, it also showed excellent protection effect under long-time storage and UV irradiation and the retention rate increased by more than 65%. In addition, the bioavailability of VB12 and VE significantly increased during simulated gastrointestinal digestion and reached 46.02% and 52.43%, respectively. CONCLUSION These results indicate that the UMPC-stabilized W/O/W Pickering emulsion is an effective carrier for the codelivery of hydrophilic and hydrophobic bioactive molecules and also provides a means for useful exploration of an efficient and stable emulsion system stabilized by biological macromolecules. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongye Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaolin Sun
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
4
|
Zhang L, Hu Y, Jiang L. Advancements in emulsion systems for specialized infant formulas: Research process and formulation proposals for optimizing bioavailability of nutraceuticals. Compr Rev Food Sci Food Saf 2024; 23:e70043. [PMID: 39455164 DOI: 10.1111/1541-4337.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
With the rapid advancements in nutrition and dietary management, infant formulas for special medical purposes (IFSMPs) have been developed to cater to the unique nutraceutical requirements of infants with specific medical conditions or physiological features. However, there are various challenges in effectively preserving and maximizing the health benefits of the specific nutraceuticals incorporated in IFSMPs. This review provides an overview of the nutritional compositions of various IFSMPs and highlights the challenges associated with the effective supplementation of specific nutraceuticals for infants. In addition, it emphasizes the promising potential of emulsion delivery systems, which possess both encapsulation and delivery features, to significantly improve the solubility, stability, oral acceptance, and bioavailability (BA) of nutraceutical bioactives. Based on this information, this work proposes detailed strategies for designing and developing model IFSMP emulsions to enhance the BA of specially required nutraceuticals. Key areas covered include emulsion stabilization, selective release mechanisms, and effective absorption of nutraceuticals. By following these proposals, researchers and industry professionals can design and optimize emulsion-based IFSMPs with enhanced health benefits. This review not only outlines the developmental states of IFSMP formulations but also identifies future research directions aimed at improving the physiological health benefits of IFSMPs. This effort lays the theoretical groundwork for the further development of emulsion-type IFSMP in infant formula (IF) industry, positioning the IF industry to better meet the complex needs of infants requiring specialized nutrition.
Collapse
Affiliation(s)
- Liling Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Yang Hu
- Department of Scientific and Technological Innovation, Future Food (Bai Ma) Research Institute, Nanjing, Jiangsu, China
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Xu C, Guo J, Chang B, Wang Q, Zhang Y, Chen X, Zhu W, Ma J, Qian S, Jiang Z, Hou J. Study on encapsulation of Lactobacillus plantarum 23-1 in W/O/W emulsion stabilized by pectin and zein particle complex. Int J Biol Macromol 2024; 279:135346. [PMID: 39242010 DOI: 10.1016/j.ijbiomac.2024.135346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
This study was conducted to develop a W/O/W emulsion encapsulated Lactobacillus plantarum 23-1 (LP23-1) to significantly enhance the survival rate of LP23-1 under simulated digestion and storage conditions. The zein particles and pectin formed a complex through electrostatic interaction and hydrogen bonding. When the proportion of zein particles to pectin was 1:1, the emulsifying stability index (ESI) was 304.17 %. Additionally, when the proportion of the internal aqueous phase to the oil phase was 1:9, the polyglycerol polyricinoleate (PGPR) concentration was 5 %, the proportion of primary emulsion to the external aqueous phase was 5:5, the zein particles concentration was 4 %, and the proportion of zein particles to pectin was 1:1, the encapsulation rate was the highest at 96.27 %. Cryo-scanning electron microscopy and fluorescence microscopy confirmed the morphology of W/O/W emulsion and successful encapsulation of LP23-1. Furthermore, compared with free LP23-1, the W/O/W emulsion encapsulation significantly improved the survival rate of LP23-1 to 73.36 % after simulated gastrointestinal digestion and maintained a high survival rate of 78.42 % during the 35-day storage. The W/O/W emulsion was found to effectively improve the survival rate of LP23-1 during simulated digestion and storage, which has implications for the development of probiotic functional foods with elevated survival rates.
Collapse
Affiliation(s)
- Cong Xu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, China
| | - Jiahui Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Baoyue Chang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Qingyun Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Yiming Zhang
- Department of Psychiatry and Mental Health, Dalian Medical University, Dalian 116044, China
| | - Xianhui Chen
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Wanyi Zhu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Shanshan Qian
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, China.
| |
Collapse
|
6
|
Wang D, Zhang J, Zhong L, Yang C, Zhang X, Hu Q, Zhang L. Characterization and stability of lycopene-loaded high internal phase emulsion stabilized by ovalbumin-chitosan complexes. Food Chem X 2024; 23:101689. [PMID: 39157656 PMCID: PMC11327432 DOI: 10.1016/j.fochx.2024.101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 08/20/2024] Open
Abstract
Lycopene, a carotenoid with numerous physiological benefits, particularly in its Z-isomer form, faces challenges in its application due to low chemical stability. To address this limitation, high internal phase emulsion was successfully synthesized using ovalbumin-chitosan complexes. The aim was to enhance the stability of lycopene including Z-lycopene. The solubility, particle size, ζ-potential and uniformity of the mixture were dependent on pH value and biopolymer proportion. Notably, optimal ovalbumin-chitosan complex formation occurred at pH 2.5 with a ratio of 4:1 resulting in the highest solubility and optimal uniformity which contributed to its superior emulsification properties. Evaluation of encapsulating efficiency and loading amount revealed 98.19% and 1.7661 mg/g respectively for lycopene in ovalbumin-chitosan stabilized emulsions, inhibiting the transformation from Z-lycopene to (all-E)-lycopene. The encapsulated lycopene possessed UV stability where retention rate remained high at 81.86%. The retention rate was up to 65.37% and 41.82% at 45 °C and 80 °C, respectively.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junmiao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuejian Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuhui Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Shi Z, Wu J, Wang X, Nie T, Zeng Q, Yuan C, Jin R. Development of Pickering water-in-oil emulsions using a dual stabilization of candelilla wax and acylated EGCG derivatives to enhance the survival of probiotics ( Lactobacillus plantarum) powder. Food Funct 2024. [PMID: 39440390 DOI: 10.1039/d4fo01342e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Probiotics have considerable interest due to their inseparable link to human health. However, probiotic products are seriously challenged during processing, preservation, and intake. Food-grade probiotic delivery systems need to be further explored as an effective way to enhance cell viability. In this study, water-in-oil (W/O) Pickering emulsions were fabricated by adding candelilla wax (CLW) as a network stabilizer based on acylated EGCG derivatives in the crystalline form as a Pickering stabilizer. The effects of acylated EGCG derivatives' concentration, CLW concentration, and oil phase volume fraction on the droplet size distribution, microstructure, and physical stability of Pickering emulsions were explored. The presence of CLW reduced the particle size and improved the physical stability of acylated EGCG-based emulsions, and the effect was more positive with increasing concentration. The protective effect of emulsions with different oil phase volume fractions on Lactobacillus plantarum during freeze-thaw cycles, storage, and gastrointestinal digestion was evaluated. The outer-phase physical barrier of W/O emulsions co-stabilized with acylated EGCG derivatives and CLW facilitated the sensitivity of probiotics to ice crystal growth, temperature changes, acidic environments, and digestive enzymes. The emulsions formulated with 40% oil phase volume fractions allowed Lactobacillus plantarum to survive up to 7.75 log CFU g-1 in the harsh gastrointestinal environment. The results offer promising strategies for applying W/O emulsion probiotic delivery systems in food processing, storage, and oral administration.
Collapse
Affiliation(s)
- Zhaojuan Shi
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
- Engineering Research Center of Agricultural Product Biochemicals, Ministry of Education, Hefei 230009, P. R. China
| | - Jun Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
- Engineering Research Center of Agricultural Product Biochemicals, Ministry of Education, Hefei 230009, P. R. China
| | - Xingting Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
- Engineering Research Center of Agricultural Product Biochemicals, Ministry of Education, Hefei 230009, P. R. China
| | - Tongqiao Nie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
- Engineering Research Center of Agricultural Product Biochemicals, Ministry of Education, Hefei 230009, P. R. China
| | - Qingmei Zeng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
- Engineering Research Center of Agricultural Product Biochemicals, Ministry of Education, Hefei 230009, P. R. China
| | - Chuanxun Yuan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
- Engineering Research Center of Agricultural Product Biochemicals, Ministry of Education, Hefei 230009, P. R. China
| | - Risheng Jin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
- Engineering Research Center of Agricultural Product Biochemicals, Ministry of Education, Hefei 230009, P. R. China
| |
Collapse
|
8
|
Liu K, Li Y, Li J, Yu X, Zhong X, Su W, Tan M. Alleviation effect of lutein Pickering emulsion formed by casein-dextran conjugates through Maillard reaction against blue light retinal degeneration. Int J Biol Macromol 2024; 282:136878. [PMID: 39454917 DOI: 10.1016/j.ijbiomac.2024.136878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
With the increasing prevalence of electronic devices, awareness of the risks linked to blue light exposure has significantly heightened. Lutein, a powerful antioxidant, safeguards eye tissue by filtering blue light, while supplementation with docosahexaenoic acid (DHA) enhances retinal function. Adequate intake of these nutrients can help reduce the potential damage from prolonged blue light exposure. The protective effects of lutein and algal oil stabilized with Pickering emulsion were investigated using casein-dextran (CD) conjugates via Maillard reaction. Microstructural analysis revealed a three-dimensional network structure surrounding oil droplets formed by CD conjugates. With the increase of the oil phase ratio from 55 % to 80 %, the average size of Pickering emulsion droplets decreased. Pickering emulsion demonstrated higher viscoelasticity, excellent recovery, thixotropy, and good thermal stability as the oil phase ratio increased. The retention of lutein in CD-75 % Pickering emulsions showed significant improvement under various conditions. Simulated gastrointestinal digestion demonstrated that CD-75 % Pickering emulsions effectively enhanced the lutein bioaccessibility from 19.97 % to 48.99 %. In vivo experiments showed that lutein-loaded Pickering emulsion could effectively relieve blue light-induced retinal degeneration in mice. These findings suggested that Pickering emulsion can serve as a delivery system to protect lutein, offering a nutritional intervention to mitigate blue light-induced retinal degeneration.
Collapse
Affiliation(s)
- Kangjing Liu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Yu Li
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Jiaxuan Li
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Xiaoting Yu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Xu Zhong
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China.
| |
Collapse
|
9
|
Bazzaz S, Abbasi A, Ghotbabad AG, Pourjafar H, Hosseini H. Novel Encapsulation Approaches in the Functional Food Industry: With a Focus on Probiotic Cells and Bioactive Compounds. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10364-7. [PMID: 39367980 DOI: 10.1007/s12602-024-10364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Bioactive substances can enhance host health by modulating biological reactions, but their absorption and utilization by the body are crucial for positive effects. Encapsulation of probiotics is rapidly advancing in food science, with new approaches such as 3D printing, spray-drying, microfluidics, and cryomilling. Co-encapsulation with bioactives presents a cost-effective and successful approach to delivering probiotic components to specific colon areas, improving viability and bioactivity. However, the exact method by which bioactive chemicals enhance probiotic survivability remains uncertain. Co-crystallization as an emerging encapsulation method improves the physical characteristics of active components. It transforms the structure of sucrose into uneven agglomerated crystals, creating a porous network to protect active ingredients. Likewise, electrohydrodynamic techniques are used to generate fibers with diverse properties, protecting bioactive compounds from harsh circumstances at ambient temperature. Electrohydrodynamic procedures are highly adaptable, uncomplicated, and easily expandable, resulting in enhanced product quality and functionality across various food domains. Furthermore, food byproducts offer nutritional benefits and technical potential, aligning with circular economy principles to minimize environmental impact and promote economic growth. Hence, industrialized nations can capitalize on the growing demand for functional foods by incorporating these developments into their traditional cuisine and partnering with businesses to enhance manufacturing and production processes.
Collapse
Affiliation(s)
- Sara Bazzaz
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghafouri Ghotbabad
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Tyowua AT, Harbottle D, Binks BP. 3D printing of Pickering emulsions, Pickering foams and capillary suspensions - A review of stabilization, rheology and applications. Adv Colloid Interface Sci 2024; 332:103274. [PMID: 39159542 DOI: 10.1016/j.cis.2024.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Pickering emulsions and foams as well as capillary suspensions are becoming increasingly more popular as inks for 3D printing. However, a lack of understanding of the bulk rheological properties needed for their application in 3D printing is potentially stifling growth in the area, hence the timeliness of this review. Herein, we review the stability and bulk rheology of these materials as well as the applications of their 3D-printed products. By highlighting how the bulk rheology is tuned, and specifically the inks storage modulus, yield stress and critical balance between the two, we present a rheological performance map showing regions where good prints and slumps are observed thus providing clear guidance for future ink formulations. To further advance this field, we also suggest standard experimental protocols for characterizing the bulk rheology of the three types of ink: capillary suspension, Pickering emulsion and Pickering foam for 3D printing by direct ink writing.
Collapse
Affiliation(s)
- Andrew T Tyowua
- Applied Colloid Science and Cosmeceutical Group, Department of Chemistry, Benue State University, PMB, 102119, Makurdi, Nigeria; School of Chemical Engineering, University of Birmingham, Edgbaston. B15 2TT. UK.
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds. LS2 9JT. UK
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull. HU6 7RX. UK
| |
Collapse
|
11
|
Muhammad AH, Asma M, Hamed YS, Hameed A, Abdullah, Jian W, Peilong S, Kai Y, Ming C. Enhancing cellulose-stabilized multiphase/Pickering emulsions systems: A molecular dynamics perspective. Int J Biol Macromol 2024; 277:134244. [PMID: 39084436 DOI: 10.1016/j.ijbiomac.2024.134244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Cellulose stabilized multiphase systems (CSMS) have garnered significant attention due to their ultra-stabilization mechanism and vast potential across different fields. CSMS have found valuable applications in scientific disciplines, including Food Science, Pharmaceutical Science, Material Science, and related fields, owing to their beneficial attributes such as sustainability, safety, renewability, and non-toxicity. Furthermore, MPS exhibit novel characteristics that enable multiple mechanisms to produce HIPEs, aerogels, and oleogels revealing undiscovered information. Therefore, to explore the undiscovered phenomena of MPS, molecular level insights using advanced simulation/computational approaches are essential. The molecular dynamics simulation (MDS), play a valuable role in analyzing the interactions of ternary interphase. The MDS have successfully quantified the interactions of MPS by generating, visualizing, and analyzing trajectories. Through MDS, researchers have explored CSMS at the molecular level and advanced their applications in 3D printing, packaging, preparation, drug delivery, encapsulation, biosensors, electronic devices, biomaterials, and energy conservation. This review highlights the remarkable advancements in CSMS over the past five years, along with contributions of MDS in evaluating the relationships that dictate the functionality and properties of CSMS. By integrating experimental and computational methods, we underscore the potential to innovate and optimize these multiphase systems for groundbreaking applications.
Collapse
Affiliation(s)
- Ahsan Hafiz Muhammad
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China.
| | - Mumtaz Asma
- College of Resources and Environment, South China University of Technology, Guangzhou 510640, China
| | - Yahya S Hamed
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China; Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Aneela Hameed
- Department of Animal Food Products Technology, Faculty of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60600, Pakistan
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China
| | - Wang Jian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China
| | - Sun Peilong
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China
| | - Yang Kai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China.
| | - Cai Ming
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China.
| |
Collapse
|
12
|
Zhu Q, Qiu Y, Zhang L, Lu W, Pan Y, Liu X, Li Z, Yang H. Encapsulation of lycopene in Pickering emulsion stabilized by complexes of whey protein isolate fibrils and sodium alginate: Physicochemical property, structural characterization and in vitro digestion property. Food Res Int 2024; 191:114675. [PMID: 39059937 DOI: 10.1016/j.foodres.2024.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
In present study, whey protein isolate fibrils and sodium alginate complexes (WPIFs-SA) were prepared and further used to stabilize Pickering emulsions for lycopene delivery. The optimal interaction between WPIFs and SA occurred at pH 3.0, with a mass ratio of 2:1. Increasing the oil fractions and the content of WPIFs-SA complexes significantly improved Pickering emulsions' stability, concurrently reducing droplet size and increasing viscoelasticity. Meanwhile, it facilitated the formation of a thicker protective layer and a compact network structure around the oil droplets, offering better protection for lycopene against thermal and photo degradation. In vitro digestion studies revealed that as the oil fractions and complex contents increased, the lipolysis degree decreased. The engineered WPIFs-SA Pickering emulsion could be used as an innovative delivery system for the protection and delivery of lycopene.
Collapse
Affiliation(s)
- Qiaomei Zhu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Yihua Qiu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lujia Zhang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Wenjing Lu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yijun Pan
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Xuanbo Liu
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg, VA 24061, USA
| | - Zhenjing Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Hua Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Keruiheng Biotechnology Co., Ltd., Tianjin 300450, PR China.
| |
Collapse
|
13
|
Sia CS, Tey BT, Goh BH, Low LE. Controlled assembly of superparamagnetic iron oxide nanoparticle into nanoliposome for Pickering emulsion preparation. Colloids Surf B Biointerfaces 2024; 241:114051. [PMID: 38954935 DOI: 10.1016/j.colsurfb.2024.114051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
There has been a surge in effort in the development of various solid nanoparticles as Pickering emulsion stabilizers in the past decades. Regardless, the exploration of stabilizers that simultaneously stabilize and deliver bioactive has been limited. For this, liposomes with amphiphilic nature have been introduced as Pickering emulsion stabilizers but these nano-sized vesicles lack targeting specificity. Therefore in this study, superparamagnetic iron oxide nanoparticles (SPION) encapsulated within liposomes (MLP) were used as Pickering emulsion stabilizers to prepare pH and magnetic-responsive Pickering emulsions. A stable MLP-stabilized Pickering emulsion formulation was established by varying the MLP pH, concentration, and oil loading during the emulsification process. The primary stabilization mechanism of the emulsion under pH variation was identified to be largely associated with the MLP phosphate group deprotonation. When subjected to sequential pH adjustment to imitate the gastrointestinal digestion pH environment, a recovery in Pickering emulsion integrity was observed as the pH changes from acidic to alkaline. By incorporating SPION, the Pickering emulsion can be guided to the targeted site under the influence of a magnetic field without compromising emulsion stability. Overall, the results demonstrated the potential of MLP-stabilized Pickering emulsion as a dual pH- and magnetic-responsive drug delivery carrier with the ability to co-encapsulate hydrophobic and hydrophilic bioactive.
Collapse
Affiliation(s)
- Chin Siew Sia
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia; Medical Engineering and Technology (MET) Hub, School of Engineering, Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia
| | - Bey-Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo 2007, NSW, Australia; Biofunctional Molecule Exploratory Research (BMEX) Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Liang Ee Low
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia; Medical Engineering and Technology (MET) Hub, School of Engineering, Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia.
| |
Collapse
|
14
|
Hou H, Zhang Y, Liu Y, Zeng Q, Li Q, Fang X, Guo T, Yuan H, Zeng S, Meng T. Pickering emulsion co-delivery system: Stimuli-responsive biomineralized particles act as particulate emulsifiers and bioactive carriers. Colloids Surf B Biointerfaces 2024; 241:114029. [PMID: 38878663 DOI: 10.1016/j.colsurfb.2024.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/29/2024]
Abstract
Pickering emulsions provide a promising platform for the efficient delivery of bioactive. However, co-delivery of fragile bioactives with different physicochemical properties for comprehensive effects still faces practical challenges due to the limited protection for bioactives and the lack of stimuli-responsive property for on-demand release. Herein, a stimuli-responsive co-delivery system is developed based on biomineralized particles stabilized Pickering emulsions. In this tailor co-delivery system, hydrophilic bioactive (pepsin) with the fragile structure is encapsulated and immobilized by biomineralization, the obtained biomineralized particles (PPS@CaCO3) are further utilized as emulsifiers to form O/W Pickering emulsions, in which the hydrophobic oxidizable bioactive (curcumin) is stably trapped into the dispersed phase. The results show that two bioactives are successfully co-encapsulated in Pickering emulsions, and benefiting from the protection capacities of biomineralization and Pickering emulsions, the activity of pepsin and curcumin shows a 7.33-fold and 144.83-fold enhancement compared to the free state, respectively. Moreover, In vitro study demonstrates that Pickering emulsions enable to co-release of two bioactives with high activity retention by the acid-induced hydrolyzation of biomineralized particles. This work provides a powerful stimuli-responsive platform for the co-delivery of multiple bioactive compounds, enabling high activity of bioactives for the comprehensive health effects.
Collapse
Affiliation(s)
- Haoyue Hou
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuli Zhang
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu Liu
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qi Zeng
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qinyuan Li
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xingyuan Fang
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Guo
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hao Yuan
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Sa Zeng
- Guangzhou Ridgepole Biological Technology Co. Ltd., Guangzhou 510800, China
| | - Tao Meng
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
15
|
Wang B, LvYe J, Yang S, Shi Y, Chen Q. Critical Review of Food Colloidal Delivery System for Bioactive Compounds: Physical Characterization and Application. Foods 2024; 13:2596. [PMID: 39200523 PMCID: PMC11353541 DOI: 10.3390/foods13162596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Bioactive compounds (BACs) have attracted much attention due to their potential health benefits. However, such substances have problems such as difficulty dissolving in water, poor stability, and low intestinal absorption, leading to serious limitations in practical applications. Nowadays, food colloidal delivery carriers have become a highly promising solution due to their safety, controllability, and efficiency. The use of natural macromolecules to construct delivery carriers can not only regulate the solubility, stability, and intestinal absorption of BACs but also effectively enhance the nutritional added value of functional foods, improve sensory properties, and extend shelf life. Moreover, smart-responsive colloidal delivery carriers can control the release characteristics of BACs, thus improving their absorption rate in the human body. This review describes the characteristics of several typical food colloid delivery carriers, focuses on their physical properties from static structure to dynamic release, summarizes their applications in delivery systems, and provides an outlook on the future development of food colloid delivery carriers. The different compositions and structures of food colloids tend to affect their stability and release behaviors, and the different surface properties and rheological characteristics of the carriers predestine their different application scenarios. The control of in vivo release properties and the effect on food media should be emphasized in the future exploration of safer and more controllable carrier systems.
Collapse
Affiliation(s)
- Bijie Wang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (B.W.); (J.L.); (Y.S.)
| | - Jiayi LvYe
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (B.W.); (J.L.); (Y.S.)
| | - Shaoming Yang
- Zhejiang Longquan ZhengDa Biotech Co., Ltd., Lishui 323000, China;
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (B.W.); (J.L.); (Y.S.)
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (B.W.); (J.L.); (Y.S.)
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 310000, China
| |
Collapse
|
16
|
Lobel B, Baiocco D, Al-Sharabi M, Routh AF, Zhang Z, Cayre OJ. Current Challenges in Microcapsule Designs and Microencapsulation Processes: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40326-40355. [PMID: 39042830 PMCID: PMC11311140 DOI: 10.1021/acsami.4c02462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
Microencapsulation is an advanced methodology for the protection, preservation, and/or delivery of active materials in a wide range of industrial sectors, such as pharmaceuticals, cosmetics, fragrances, paints, coatings, detergents, food products, and agrochemicals. Polymeric materials have been extensively used as microcapsule shells to provide appropriate barrier properties to achieve controlled release of the encapsulated active ingredient. However, significant limitations are associated with such capsules, including undesired leaching and the nonbiodegradable nature of the typically used polymers. In addition, the energy cost of manufacturing microcapsules is an important factor to be considered when designing microcapsule systems and the corresponding production processes. Recent factors linked to UN sustainability goals are modifying how such microencapsulation systems should be designed in pursuit of "ideal" microcapsules that are efficient, safe, cost-effective and environmentally friendly. This review provides an overview of advances in microencapsulation, with emphasis on sustainable microcapsule designs. The key evaluation techniques to assess the biodegradability of microcapsules, in compliance with recently evolving European Union requirements, are also described. Moreover, the most common methodologies for the fabrication of microcapsules are presented within the framework of their energy demand. Recent promising microcapsule designs are also highlighted for their suitability toward meeting current design requirements and stringent regulations, tackling the ongoing challenges, limitations, and opportunities.
Collapse
Affiliation(s)
- Benjamin
T. Lobel
- School
of Chemical and Process Engineering, University
of Leeds, Woodhouse LS2 9JT, United Kingdom
| | - Daniele Baiocco
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mohammed Al-Sharabi
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Alexander F. Routh
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Zhibing Zhang
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Olivier J. Cayre
- School
of Chemical and Process Engineering, University
of Leeds, Woodhouse LS2 9JT, United Kingdom
| |
Collapse
|
17
|
Jiang L, Zhang Z, Qiu C, Wen J. A Review of Whey Protein-Based Bioactive Delivery Systems: Design, Fabrication, and Application. Foods 2024; 13:2453. [PMID: 39123644 PMCID: PMC11312236 DOI: 10.3390/foods13152453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The efficacy of many edible bioactive agents is limited by their low water dispersibility and chemical instability in foods, as well as by their poor bioaccessibility, low absorption, and metabolism within the human gastrointestinal tract. Whey proteins are amphiphilic molecules that can be used to construct a variety of edible carrier systems that can improve the performance of bioactive ingredients. These carrier systems are being used by the food and biomedical industries to encapsulate, protect, and deliver a variety of bioactive agents. In this article, we begin by providing an overview of the molecular and functional characteristics of whey proteins, and then discuss their interactions with various kinds of bioactive agents. The ability of whey proteins to be used as building blocks to assemble different kinds of carrier systems is then discussed, including nanoparticles, hydrogels, oleogels, bigels, nanofibers, nanotubes, and nanoemulsions. Moreover, applications of these carrier systems are highlighted. Different kinds of whey protein-based carriers can be used to encapsulate, protect, and deliver bioactive agents. Each kind of carrier has its own characteristics, which make them suitable for different application needs in foods and other products. Previous studies suggest that whey protein-based carriers are particularly suitable for protecting chemically labile bioactive agents and for prolonging their release profiles. In the future, it is likely that the applications of whey protein-based carriers in the food and pharmaceutical fields will expand.
Collapse
Affiliation(s)
- Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| |
Collapse
|
18
|
Zhan S, He M, Wu Y, Ouyang J. Improved light and ultraviolet stability of curcumin encapsulated in emulsion gels prepared with corn starch, OSA-starch and whey protein isolate. Food Chem 2024; 446:138803. [PMID: 38412810 DOI: 10.1016/j.foodchem.2024.138803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The objective of this study was to enhance the bioavailability and stability of curcumin (Cur) by encapsulating it in corn starch (CS)/octenylsuccinic acid modified (OSA)-starch-whey protein isolate (WPI) emulsion gels (EGs). As the volume fraction of the oil phase increased, the droplet size and ζ- potential of the EGs decreased. The encapsulation efficiency and bioavailability of Cur in CS/OSA-starch-WPI EGs with a 60% oil ratio were 96.0% and 67.3%, respectively. The release rate of free fatty acid and the bioavailability of Cur from the EGs after digestion were significantly higher compared to Cur dissolved in oil. EGs with an oil phase volume fraction of 75% and 80% demonstrated greater protection against light irradiation but were less effective against UV irradiation compared to EGs with a 60% oil phase volume fraction. Encapsulation in EGs proved to be an effective method for enhancing the bioavailability and stability of Cur.
Collapse
Affiliation(s)
- Siyuan Zhan
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Mohe He
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
19
|
Fan S, Yang Q, Wang D, Zhu C, Wen X, Li X, Richel A, Fauconnier ML, Yang W, Hou C, Zhang D. Zein and tannic acid hybrid particles improving physical stability, controlled release properties, and antimicrobial activity of cinnamon essential oil loaded Pickering emulsions. Food Chem 2024; 446:138512. [PMID: 38428085 DOI: 10.1016/j.foodchem.2024.138512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
Pickering emulsion loading essential oil has demonstrated a promising strategy as delivery system in food preservation, but localization in stability and antimicrobial activity limits application. In this study, Pickering emulsions co-loaded with tannic acid and cinnamon essential oil (ZTC) have been developed based on zein and tannic acid complexes (ZT) mediated interfacial engineering. Fourier transform infrared, fluorescence spectroscopy, and molecular docking results indicated tannic acid altered the structural of zein. Interfacial tension results indicated that tannic acid accelerated the adsorbed speed of zein particles by decreased interfacial tension (11.99-9.96 mN/m). ZT5 formed a viscoelastic and dense layer in oil-water interface than that for other ZTs, which improved stability and control release performance of ZTC. Furthermore, the ZTC showed an effective antimicrobial activity against spoilage organisms Pseudomonad paralactis MN10 and Lactobacillus sakei VMR17. These findings provide new insight for developing co-loaded multiple antimicrobial agents within Pickering emulsion as a delivery system.
Collapse
Affiliation(s)
- Simin Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium; Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium
| | - Qingfeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Debao Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chaoqiao Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiangyuan Wen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium
| | - Wei Yang
- Sunrise Material Co. LTD., Jiangyin 214411, China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
20
|
Zhang Z, Chang R, Yue Q, Liu B, Li Z, Yuan Y, Liang S, Li Y. Nanoparticle delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:51-88. [PMID: 39218508 DOI: 10.1016/bs.afnr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Foodborne functional substances have received much attention for their functional benefits in health and disease. However, these substances are easily affected by the adverse environment during production, transportation, or storage. They will also be damaged by the gastric environment and limited by the mucosal barrier after entering the human body, thus affecting the bioavailability of functional substances in the body. The construction of nanoparticle delivery systems is helpful to protect the biological activity of functional substances and improve their solubility, stability, and absorption of substances. Responsive delivery systems help control the release of functional substances in specific environments and targeted sites to achieve nutritional intervention, disease prevention, and treatment. In this chapter, the main types of foodborne functional substances and their commonly used delivery systems were reviewed, and the application of delivery systems in precision nutrition was described from the aspects of environmental stimuli-responsive delivery systems, site-specific delivery systems, and disease-targeted delivery systems.
Collapse
Affiliation(s)
- Ziyi Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Ruxin Chang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Qing Yue
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, P.R. China
| | - Zekun Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Yu Yuan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Shuang Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, P.R. China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
21
|
Paredes-Toledo J, Herrera J, Morales J, Robert P, Oyarzun-Ampuero F, Giménez B. Bioaccessibility of chlorogenic acid and curcumin co-encapsulated in double emulsions with the inner interface stabilized by functionalized silica nanoparticles. Food Chem 2024; 445:138828. [PMID: 38401311 DOI: 10.1016/j.foodchem.2024.138828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/27/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The aim of this study was to evaluate the bioaccessibility of chlorogenic acid (CA) and curcumin co-encapsulated in Pickering double emulsions (DEs) with the inner interface stabilized by hydrophobically modified silica nanoparticles with myristic acid (SNPs-C14) or tocopherol succinate (SNPs-TS). Both SNPs-C14 and SNPs-TS showed contact angles > 90°. Pickering W1/O emulsions were formulated with 4 % of both types of SNPs. Pickering DEs showed higher creaming stability (5-7 %, day 42) and higher CA encapsulation efficiency (EE; 80 %) than control DE. The EE of curcumin was > 98 % in all the DEs. CA was steadily released from Pickering DEs during digestion, achieving bioaccessibility values of 58-60 %. Curcumin was released during the intestinal phase (∼80 % bioaccessibility in all DEs). Co-loaded DEs showed similar bioaccessibility for CA and curcumin than single-loaded. SNPs-C14 and SNPs-TS were suitable to stabilize the W1:O interface of DEs as co-delivery systems of bioactive compounds with health-promoting properties.
Collapse
Affiliation(s)
- Javier Paredes-Toledo
- Department of Food Science and Technology, Faculty of Technology, University of Santiago of Chile, Av. Víctor Jara 3769, Estación Central, 9170124 Santiago, Chile.
| | - Javier Herrera
- Department of Food Science and Technology, Faculty of Technology, University of Santiago of Chile, Av. Víctor Jara 3769, Estación Central, 9170124 Santiago, Chile.
| | - Javier Morales
- Department of Pharmaceutic Science and Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Independencia, 8380494 Santiago, Chile.
| | - Paz Robert
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Independencia, 8380494 Santiago, Chile.
| | - Felipe Oyarzun-Ampuero
- Department of Pharmaceutic Science and Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Independencia, 8380494 Santiago, Chile.
| | - Begoña Giménez
- Department of Food Science and Technology, Faculty of Technology, University of Santiago of Chile, Av. Víctor Jara 3769, Estación Central, 9170124 Santiago, Chile.
| |
Collapse
|
22
|
Zhang L. Emulsions delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:173-197. [PMID: 39218502 DOI: 10.1016/bs.afnr.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Many functional substances are chemically unstable and exhibit variable water/oil solubility, reducing their bioavailability and efficacy. It is necessary to devise effective measures to improve the unfavorable properties of functional substances and maximize their potential benefits in nutritional interventions. Therefore, the development and application of edible emulsion-based delivery systems for these functional substances using food-grade materials would be highly beneficial for the food industry. In recent years, Pickering emulsions have garnered significant attention in the scientific community due to their characteristic of being free from surfactants. This section focuses on emphasizing the design and preparation of emulsion delivery systems based on functional substances. Additionally, we summarize the current applications of emulsion delivery systems in functional substances. This chapter also discusses the potential advantages of Pickering emulsion systems in the precise nutrition field, including high targeting specificity and nutritional intervention for various diseases. Well-designed Pickering emulsion delivery carriers for functional substances can enhance their stability in food processing and in vivo digestion. To meet the nutritional needs of specific populations for functional foods, utilizing emulsion delivery systems to improve the bioavailability of functional substances will provide a theoretical basis for the precise nutrition of functional substances in functional foods.
Collapse
|
23
|
Boostani S, Sarabandi K, Tarhan O, Rezaei A, Assadpour E, Rostamabadi H, Falsafi SR, Tan C, Zhang F, Jafari SM. Multiple Pickering emulsions stabilized by food-grade particles as innovative delivery systems for bioactive compounds. Adv Colloid Interface Sci 2024; 328:103174. [PMID: 38728772 DOI: 10.1016/j.cis.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
The most common carrier for encapsulation of bioactive components is still simple emulsion. Recently, bio-based novel emulsion systems such as multiple emulsions (MEs) and Pickering emulsions (PEs) have been introduced as innovative colloidal delivery systems for encapsulation and controlled release of bioactive compounds. Multiple PEs (MPEs), which carries both benefit of MEs and PEs could be fabricated by relatively scalable and simple operations. In comparison with costly synthetic surfactants and inorganic particles which are widely used for stabilization of both MEs and PEs, MPEs stabilized by food-grade particles, while having health-promoting aspects, are able to host the "clean label" and "green label" attributes. Nevertheless, in achieving qualified techno-functional attributes and encapsulation properties, the selection of suitable materials is a crucial step in the construction of such complex systems. Current review takes a cue from both MEs and PEs emulsification techniques to grant a robust background for designing various MPEs. Herein, various fabrication methods of MEs and PEs are described comprehensively in a physical viewpoint in order to find key conception of successful formulation of MPEs. This review also highlights the link between the underlying aspects and exemplified specimens of evidence which grant insights into the rational design of MPEs through food-based ingredients to introduces MPEs as novel colloidal/functional materials. Their utilization for encapsulation of bioactive compounds is discussed as well. In the last part, instability behavior of MPEs under various conditions will be discussed. In sum, this review aims to gain researchers who work with food-based components, basics of innovative design of MPEs.
Collapse
Affiliation(s)
- Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khashayar Sarabandi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ozgur Tarhan
- Food Engineering Department, Engineering Faculty, Uşak University, 1 Eylul Campus, Uşak 64100, Türkiye
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
24
|
Chen C, Wang X, Chen W, Liu Q, Wang L. Encapsulation of phenolic acids within food-grade carriers systems: a systematic review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38764436 DOI: 10.1080/10408398.2024.2350616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Phenolic acids are natural compounds with potential therapeutic effects against various diseases. However, their incorporation into food and pharmaceutical products is limited by challenges such as instability, low solubility, and reduced bioavailability. This systematic review summarizes recent advances in phenolic acid encapsulation using food-grade carrier systems, focusing on proteins, lipids, and polysaccharides. Encapsulation efficiency, release behavior, and bioavailability are examined, as well as the potential health benefits of encapsulated phenolic acids in food products. Strategies to address limitations of current encapsulation systems are also proposed. Encapsulation has emerged as a promising method to enhance the stability and bioavailability of phenolic acids in food products, and various encapsulation technologies have been developed for this purpose. The use of proteins, lipids, and carbohydrates as carriers in food-grade encapsulation systems remains a common approach, but it is associated with certain limitations. Future research on phenolic acid encapsulation should focus on developing environmentally friendly, organic solvent-free, low-energy, scalable, and stable encapsulation systems, as well as co-encapsulation methods that combine multiple phenolic acids or phenolic acids with other bioactive substances to produce synergistic effects.
Collapse
Affiliation(s)
- Chao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Sharkawy A, Rodrigues AE. Plant gums in Pickering emulsions: A review of sources, properties, applications, and future perspectives. Carbohydr Polym 2024; 332:121900. [PMID: 38431409 DOI: 10.1016/j.carbpol.2024.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Recently, there has been an increasing research interest in the development of Pickering emulsions stabilized with naturally derived biopolymeric particles. In this regard, plant gums, obtained as plant exudates or from plant seeds, are considered promising candidates for the development of non-toxic, biocompatible, biodegradable and eco-friendly Pickering stabilizers. The main objective of this review article is to provide a detailed overview and assess the latest advances in the formulation of Pickering emulsions stabilized with plant gum-based particles. The plant gum sources, types and properties are outlined. Besides, the current methodologies used in the production of plant gum particles formed solely of plant gums, or through interactions of plant gums with proteins or other polysaccharides are highlighted and discussed. Furthermore, the work compiles and assesses the innovative applications of plant gum-based Pickering emulsions in areas such as encapsulation and delivery of drugs and active agents, along with the utilization of these Pickering emulsions in the development of active packaging films, plant-based products and low-fat food formulations. The last part of the review presents potential future research trends that are expected to motivate and direct research to areas related to other novel food applications, as well as tissue engineering and environmental applications.
Collapse
Affiliation(s)
- Asma Sharkawy
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Alírio E Rodrigues
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
26
|
Qu Z, Shi Y, Zhang X, Luan F, Guo D, Zhai B, Sun J, Zhang D, Zou J, Zhu M. Modified Amber Particles as a Stabilizer to Construct Oil-in-Water Pickering Emulsions for Improved Thermal Stability of Acorus tatarinowii Essential Oil. ACS OMEGA 2024; 9:20773-20790. [PMID: 38764633 PMCID: PMC11097161 DOI: 10.1021/acsomega.3c08110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
Lingzhu Pulvis is a classic formulation for treating febrile convulsions in children. However, Acorus tatarinowii essential oil (AT-EO) in this prescription is prone to volatilization and oxidation, compromising the efficacy and quality control of this formulation. Herein, based on the concept of "combination of medicine and adjuvant", Pickering emulsion technology was applied to enhance the stability of AT-EO using modified amber as a stabilizer. Amber was a resinous medicinal powder in Lingzhu Pulvis and was modified into a suitable stabilizer for Pickering emulsion through surface modification. A thermal stability study indicated that Pickering emulsion, stabilized by modified amber, exhibited a higher retention rate of AT-EO and lower levels of peroxide value and malondialdehyde content compared to those of the pure AT-EO group after heat treatment at 40 °C for 1, 3, and 8 h. Additionally, component analysis in content and composition revealed that the volatile components of AT-EO in the Pickering emulsion were more stable during the thermal treatment process. This study convincingly illustrates the potential of a Pickering emulsion stabilized with modified medicinal powders to improve the thermal stability of the essential oil.
Collapse
Affiliation(s)
- Zhonghuan Qu
- Shaanxi
Province Key Laboratory of New Drugs and Chinese Medicine Foundation
Research, College of Pharmacy, Shaanxi University
of Chinese Medicine, Xianyang 712046, China
| | - Yajun Shi
- Shaanxi
Province Key Laboratory of New Drugs and Chinese Medicine Foundation
Research, College of Pharmacy, Shaanxi University
of Chinese Medicine, Xianyang 712046, China
| | - Xiaofei Zhang
- Shaanxi
Province Key Laboratory of New Drugs and Chinese Medicine Foundation
Research, College of Pharmacy, Shaanxi University
of Chinese Medicine, Xianyang 712046, China
| | - Fei Luan
- Shaanxi
Province Key Laboratory of New Drugs and Chinese Medicine Foundation
Research, College of Pharmacy, Shaanxi University
of Chinese Medicine, Xianyang 712046, China
| | - Dongyan Guo
- Shaanxi
Province Key Laboratory of New Drugs and Chinese Medicine Foundation
Research, College of Pharmacy, Shaanxi University
of Chinese Medicine, Xianyang 712046, China
| | - Bingtao Zhai
- Shaanxi
Province Key Laboratory of New Drugs and Chinese Medicine Foundation
Research, College of Pharmacy, Shaanxi University
of Chinese Medicine, Xianyang 712046, China
| | - Jing Sun
- Shaanxi
Province Key Laboratory of New Drugs and Chinese Medicine Foundation
Research, College of Pharmacy, Shaanxi University
of Chinese Medicine, Xianyang 712046, China
| | - Dingkun Zhang
- College
of Pharmacy, Chengdu University of Traditional
Chinese Medicine, Chengdu 611137, China
| | - Junbo Zou
- Shaanxi
Province Key Laboratory of New Drugs and Chinese Medicine Foundation
Research, College of Pharmacy, Shaanxi University
of Chinese Medicine, Xianyang 712046, China
| | - Maomao Zhu
- China
Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
27
|
Rayees R, Gani A, Noor N, Ayoub A, Ashraf ZU. General approaches to biopolymer-based Pickering emulsions. Int J Biol Macromol 2024; 267:131430. [PMID: 38599428 DOI: 10.1016/j.ijbiomac.2024.131430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Pickering emulsion is a type of emulsion that uses solid particles or colloidal particles as emulsifiers rather than surfactants to adhere at oil-water interface. Pickering emulsions have gathered significant research attention recently due to their excellent stability and wide range of potential uses compared to traditional emulsions. Major advancements have been made in development of innovative Pickering emulsions using different colloidal particles by various techniques including homogenization, emulsification and ultrasonication. Use of biopolymer particles gives Pickering emulsions a more escalating possibilities. In this review paper, we seek to present a critical overview of development in food-grade particles that have been utilized to create Pickering emulsions with a focus on techniques and application of Pickering emulsions. Particularly, we have evaluated protein, lipid, polysaccharide-based particles and microalgal proteins that have emerged in recent years with respect to their potential to stabilize and add novel functionalities to Pickering emulsions. Some preparation methods of Pickering emulsions in brief, applications of Pickering emulsions are also highlighted. Encapsulation and delivery of bioactive compounds, fat substitutes, film formation and catalysis are potential applications of Pickering emulsions. Pickering double emulsions, nutraceutical and bioactive co-delivery, and preparation of porous materials are among research trends of food-grade Pickering emulsions.
Collapse
Affiliation(s)
- Rahiya Rayees
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India.
| | - Nairah Noor
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Aneesa Ayoub
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Zanoor Ul Ashraf
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| |
Collapse
|
28
|
Khorsandi D, Jenson S, Zarepour A, Khosravi A, Rabiee N, Iravani S, Zarrabi A. Catalytic and biomedical applications of nanocelluloses: A review of recent developments. Int J Biol Macromol 2024; 268:131829. [PMID: 38677670 DOI: 10.1016/j.ijbiomac.2024.131829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Nanocelluloses exhibit immense potential in catalytic and biomedical applications. Their unique properties, biocompatibility, and versatility make them valuable in various industries, contributing to advancements in environmental sustainability, catalysis, energy conversion, drug delivery, tissue engineering, biosensing/imaging, and wound healing/dressings. Nanocellulose-based catalysts can efficiently remove pollutants from contaminated environments, contributing to sustainable and cleaner ecosystems. These materials can also be utilized as drug carriers, enabling targeted and controlled drug release. Their high surface area allows for efficient loading of therapeutic agents, while their biodegradability ensures safer and gradual release within the body. These targeted drug delivery systems enhance the efficacy of treatments and minimizes side effects. Moreover, nanocelluloses can serve as scaffolds in tissue engineering due to their structural integrity and biocompatibility. They provide a three-dimensional framework for cell growth and tissue regeneration, promoting the development of functional and biologically relevant tissues. Nanocellulose-based dressings have shown great promise in wound healing and dressings. Their ability to absorb exudates, maintain a moist environment, and promote cell proliferation and migration accelerates the wound healing process. Herein, the recent advancements pertaining to the catalytic and biomedical applications of nanocelluloses and their composites are deliberated, focusing on important challenges, advantages, limitations, and future prospects.
Collapse
Affiliation(s)
- Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Serena Jenson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
29
|
Zeng C, Wang Y, Liu Y, Su S, Lu Y, Qin S, Shi M. Self-constructed water-in-oil Pickering emulsions as a tool for increasing bioaccessibility of betulin. Food Chem X 2024; 21:101056. [PMID: 38187946 PMCID: PMC10770430 DOI: 10.1016/j.fochx.2023.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Self-constructed water-in-oil emulsions can be stabilized by a natural pentacyclic triterpenoid, betulin. A higher betulin concentration (3%) results in smaller emulsion droplet sizes. Microscopy, confocal laser scanning microscopy and rheology indicate that the stabilizing mechanism is attributed to betulin crystals on the emulsion interface and within the continuous phase, thereby enabling excellent freeze/thaw and thermal stability. The betulin Pickering emulsion (1%) significantly increased betulin bioaccessibility (22.4%) compared to betulin alone (0.2%) and betulin-oil physical mixture (7.9%). A higher level of betulin at 3% leads to smaller emulsion particle size, potentially resulting in a greater surface area. This, in return, promotes a higher release of free fatty acids (FFA), contributing to the release and solubilization of betulin from emulsions. Additionally, it leads to the formation of micelles, further increasing betulin bioaccessibility (29.3%). This study demonstrates Pickering emulsions solely stabilized by phytochemical betulin provides an innovative way to improve its bioaccessibility.
Collapse
Affiliation(s)
- Chaoxi Zeng
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuxian Wang
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yugang Liu
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shuxian Su
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuting Lu
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Meng Shi
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
30
|
Arslan B, Xiong YL, Soyer A. Antioxidant properties of bovine liver protein hydrolysates and their practical application in biphasic systems. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2980-2989. [PMID: 38087783 DOI: 10.1002/jsfa.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND The influence of protein hydrolysate produced from bovine liver protein hydrolysate (LPH) by enzymatic hydrolysis, using Alcalase/Protamex (1:1), on lipid dispersions was investigated. LPH production was optimized to maximize the antioxidant activity (at 45, 50, and 55 °C for 12, 18, and 24 h). Different concentrations of LPHs (1, 3, and 5 mg/g) were added to emulsions and to liposomes. Lipid oxidation level and particle size of the lipid dispersions were monitored for 14 days of storage at 25 °C. RESULTS Radical scavenging activity and reducing power were the highest at 45 °C after 24 h of hydrolysis. Electrophoresis pattern showed that the antioxidant activity was arising from the peptides with molecular weight around 10 kDa. Lipid oxidation occurred more rapidly in samples without LPH during storage. In emulsions, lower thiobarbituric acid-reactive substance and conjugated diene values were measured with increasing concentrations of LPH at day 14. Accordingly, particle size of the samples containing 5 mg/g of LPH was smaller than those of other groups. Phase separation was observed only in lecithin emulsion without LPH at day 14. The use of LPH in liposome limited the lipid oxidation and maintained the size of the particles independently from the concentration. CONCLUSION This study highlights the potential applications of animal by-products as natural antioxidants in complex food systems. The results demonstrate that LPH, particularly when hydrolyzed at optimized conditions, can effectively inhibit lipid oxidation. The findings suggest that biphasic systems incorporating LPH have promising prospects for enhancing the stability and quality of food products. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Betul Arslan
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
- Department of Food Engineering, Faculty of Engineering, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Youling L Xiong
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA
| | - Ayla Soyer
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| |
Collapse
|
31
|
Qi L, Hang T, Jiang W, Li S, Zhang H, Liang X, Lei L, Bi Q, Jiang H, Li Y. Proteinaceous Microsphere-Based Water-in-Oil Pickering Emulsions for Preservation of Chlorella Cells. Polymers (Basel) 2024; 16:647. [PMID: 38475330 DOI: 10.3390/polym16050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Microalgae are highly regarded as ideal materials for the creation of liquid biofuels and have substantial potential for growth and utilization. However, traditional storage and culture methods for microalgae are plagued by challenges such as uncontrolled growth, bacterial contamination, and self-shading among algae. These issues severely impede the photosynthetic process and the efficient extraction of biomass energy. This study tackles these problems by utilizing magnetic hydrophobic protein particles to stabilize water-in-oil Pickering emulsions. This allows for the micro-compartment storage and magnetic transfer of algae. Additionally, the successful encapsulation of Chlorella cells in high-internal-phase water-in-oil Pickering emulsions effectively mitigates the settling problem of Chlorella cells in the liquid phase, thereby enabling the potential use of Pickering emulsions for the confined cultivation of microalgae.
Collapse
Affiliation(s)
- Lin Qi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Teng Hang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Weijie Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Sinong Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiang Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Lei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qiangqiang Bi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hang Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
32
|
Ma Y, Morozova SM, Kumacheva E. From Nature-Sourced Polysaccharide Particles to Advanced Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312707. [PMID: 38391153 DOI: 10.1002/adma.202312707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Polysaccharides constitute over 90% of the carbohydrate mass in nature, which makes them a promising feedstock for manufacturing sustainable materials. Polysaccharide particles (PSPs) are used as effective scavengers, carriers of chemical and biological cargos, and building blocks for the fabrication of macroscopic materials. The biocompatibility and degradability of PSPs are advantageous for their uses as biomaterials with more environmental friendliness. This review highlights the progresses in PSP applications as advanced functional materials, by describing PSP extraction, preparation, and surface functionalization with a variety of functional groups, polymers, nanoparticles, and biologically active species. This review also outlines the fabrication of PSP-derived macroscopic materials, as well as their applications in soft robotics, sensing, scavenging, water harvesting, drug delivery, and bioengineering. The paper is concluded with an outlook providing perspectives in the development and applications of PSP-derived materials.
Collapse
Affiliation(s)
- Yingshan Ma
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Sofia M Morozova
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Center of Fluid Physics and Soft Matter, N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, Moscow, 105005, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
33
|
Zhang J, Dong F, Liu C, Nie J, Feng S, Yi T. Progress of Drug Nanocrystal Self-Stabilized Pickering Emulsions: Construction, Characteristics In Vitro, and Fate In Vivo. Pharmaceutics 2024; 16:293. [PMID: 38399347 PMCID: PMC10891687 DOI: 10.3390/pharmaceutics16020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
A drug nanocrystal self-stabilized Pickering emulsion (DNSPE) is a novel Pickering emulsion with drug nanocrystals as the stabilizer. As a promising drug delivery system, DNSPEs have attracted increasing attention in recent years due to their high drug loading capacity and ability to reduce potential safety hazards posed by surfactants or specific solid particles. This paper comprehensively reviews the progress of research on DNSPEs, with an emphasis on the main factors influencing their construction, characteristics and measurement methods in vitro, and fate in vivo, and puts forward issues that need to be studied further. The review contributes to the advancement of DNSPE research and the promotion of their application in the field of drug delivery.
Collapse
Affiliation(s)
- Jifen Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Fangming Dong
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Chuan Liu
- Chengdu Institute of Food Inspection, Chengdu 611130, China;
| | - Jinyu Nie
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Shan Feng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; (J.Z.); (S.F.)
| | - Tao Yi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macau 999078, China
| |
Collapse
|
34
|
Wang S, Wang J, Zhang J, Wu X, Guo Q, Wang Y, Tao L, Shen X, Chen Y. Chitosan-based food-grade Pickering emulsion loading with Rosa roxburghii extract against precancerous lesions of gastric carcinoma. Int J Biol Macromol 2024; 258:128093. [PMID: 37981272 DOI: 10.1016/j.ijbiomac.2023.128093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/09/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Precancerous lesions of gastric carcinoma (PLGC) are the most important stage in the development of gastric cancer, accompanied by significant oxidative stress and inflammatory response. Rosa roxburghii extract (RRE) has unique advantages in anti-PLGC due to its multi-component, high antioxidant and anti-inflammatory activities. However, the astringency and instability of RRE in the digestive tract seriously hinder its clinical application. Herein, we report a chitosan-based food-grade Pickering emulsion (PE) for loading RRE to block unpleasant taste, improve stability, and promote the entry of RRE into gastric epithelial cells through the gastric adhesion of chitosan, thereby enhancing preventive and therapeutic effects against PLGC. This Pickering emulsion is constructed as a water-in-oil (W/O) emulsion stabilized by the food-grade nanoparticles composed of soybean protein isolate (SPI) and chitosan (CS) through electrostatic interaction (defined as RRE@PE). The experimental results showed that RRE@PE performed better efficacy against PLGC than RRE by scavenging or inhibiting reactive oxygen species generation and reducing inflammatory cytokines. This Pickering emulsion enhances the application potential of RRE and is expected to be used for the treatment of clinical patients with PLGC.
Collapse
Affiliation(s)
- Sibu Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Junyu Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Jun Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Xingjie Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Yu'e Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China.
| | - Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China.
| |
Collapse
|
35
|
Zheng XQ, Wang DD, Xue S, Cui ZY, Yu HY, Wei JT, Chen HH, Mu HY, Chen R. Composite formation of whey protein isolate and OSA starch for fabricating high internal phase emulsion: A comparative study at different pH and their application in biscuits. Int J Biol Macromol 2024; 259:129094. [PMID: 38159690 DOI: 10.1016/j.ijbiomac.2023.129094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The composites formed by whey protein isolate (WPI) and octenyl succinate anhydride (OSA)-modified starch were characterized with a focus on the effect of pH, and their potential in fabricating high internal phase emulsions (HIPEs) as fat substitutes was evaluated. The particles obtained at pH 3.0, 6.0, 7.0, and 8.0 presented a nanosized distribution (122.04 ± 0.84 nm-163.24 ± 4.12 nm) while those prepared at pH 4.0 and 5.0 were remarkably larger. Results from the shielding agent reaction and Fourier transform infrared spectroscopy (FT-IR) showed that the interaction between WPI and OSA starch was mainly hydrophobic at pH 3.0-5.0, while there was a strong electrostatic repulsion at pH 6.0-8.0. A quartz crystal microbalance with dissipation (QCM-D) study showed that remarkably higher ΔD and lower Δf/n were observed at pH 3.0-5.0 after successive deposition of WPI and OSA starch, whereas slight changes were noted for those made at higher pH values. The WPI-OSA starch (W-O) composite-based HIPEs made at pH 3.0 and 6.0-8.0 were physically stable after long-term storage, thermal treatment, or centrifugation. Incorporation of HIPE into the biscuit formula yielded products with a desirable sensory quality.
Collapse
Affiliation(s)
- Xiao-Qing Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - De-Da Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Sophia Xue
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Canada
| | - Zi-Yan Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Yang Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jian-Teng Wei
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Hua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hong-Yan Mu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
| | - Run Chen
- Think Ingredients Inc., Burlington, Canada
| |
Collapse
|
36
|
Du X, Chen Z, Zhao R, Hu B. Salt-Promoted Fibrillation of Legume Proteins Enhanced Interfacial Modulus for Stabilization of HIPEs Encapsulating Carotenoids with Improved Nutritional Performance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:690-703. [PMID: 38117687 DOI: 10.1021/acs.jafc.3c08434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The thermal acidic-treatment-induced fibrillation of legume proteins isolated from cowpea and mung bean was demonstrated to be promoted by salt. Worm-like thin prefibrilar intermediates were formed in low salt concentrations (0-75 mM), which twisted to be the thick and mature amyloid-like fibrils with multistrands as the salt content was elevated (150-300 mM). Absorption of the fibrils fabricated in high salt concentrations to the oil/water interface constructed the protein layer with a significantly higher interfacial modulus compared with the one formed by the fibrils fabricated in low salt concentrations. Consequently, they showed the superiority in stabilizing high internal phase emulsions (HIPEs) with oil volume fraction ratios higher than 74%. HIPEs stabilized by the high salt-concentration-induced legume protein fibrils had stronger capabilities not only in encapsulating liposoluble carotenoids but also in protecting their stability against heating, ultraviolet, and iron ion stimulus, compared with the one stabilized by the low-salt-concentration-induced legume protein fibrils. Bioaccessibilities of the carotenoids in simulating gastrointestinal (GI) digestion were significantly improved after encapsulation by the HIPEs, which were interestingly increased with the elevation of salt concentrations utilized for preparing the legume protein fibrils. Furthermore, the carotenoids-loading-HIPEs were injectable and showed in vivo nutritional functions of mitigating colitis.
Collapse
Affiliation(s)
- Xinyu Du
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Zhengzhi Chen
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Ran Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| | - Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
37
|
Zhang Q, Kong B, Liu H, Du X, Sun F, Xia X. Nanoscale Pickering emulsion food preservative films/coatings: Compositions, preparations, influencing factors, and applications. Compr Rev Food Sci Food Saf 2024; 23:e13279. [PMID: 38284612 DOI: 10.1111/1541-4337.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
Pickering emulsion (PE) technology effectively addresses the issues of poor compatibility and low retention of hydrophobic active ingredients in food packaging. Nonetheless, it is important to recognize that each stage of the preparation process for PE films/coatings (PEFCs) can significantly influence their functional properties. With the fundamental considerations of environmental friendliness and human safety, this review extensively explores the potential of raw materials for PEFC and introduces the preparation methods of nanoparticles, emulsification technology, and film-forming techniques. The critical factors that impact the performance of PEFC during the preparation process are analyzed to enhance food preservation effectiveness. Moreover, the latest advancements in PE packaging across diverse food applications are summarized, along with prospects for innovative food packaging materials. Finally, the preservation mechanism and application safety have been systematically elucidated. The study revealed that the PEFCs provide structural flexibility, where designable nanoparticles offer unique functional properties for intelligent control over active ingredient release. The selection of the dispersed and continuous phases, along with component proportions, can be customized for specific food characteristics and storage conditions. By employing suitable preparation and emulsification techniques, the stability of the emulsion can be improved, thereby enhancing the effectiveness of the films/coatings in preserving food. Including additional substances broadens the functionality of degradable materials. The PE packaging technology provides a safe and innovative solution for extending the shelf life and enhancing the quality of food products by protecting and releasing active components.
Collapse
Affiliation(s)
- Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
38
|
Wang K, Ni J, Tian X, Xiang S, Li H, Shang W, Liu B, Tan M, Su W. Survivability of probiotics in Pickering emulsion gels stabilized by salmon by-product protein / sodium alginate soluble complexes at neutral pH. Int J Biol Macromol 2024; 255:128190. [PMID: 37979738 DOI: 10.1016/j.ijbiomac.2023.128190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Adequate amounts of live probiotics reaching the gut are necessary to maintain host health. However, the harsh environment during processing, the low pH of human gastric acid, and the high concentration of bile salts in the gut can significantly reduce survivability of probiotics. In this work, we propose a simple Pickering emulsion gels strategy to encapsulate Lactobacillus plantarum Lp90 into oil droplets filled in calcium alginate gels to improve its viability under pasteurization and gastrointestinal conditions. The emulsion gels were stabilized by the soluble complexes of salmon by-product protein (SP) and sodium alginate (ALG), and the aqueous phase was solidified by the addition of calcium. The interaction between SP and ALG and the effect of ALG concentration on emulsifying ability and emulsion stability were studied. The results from optical imaging, nuclear magnetic resonance, and rheological properties showed that the stability and viscosity of the emulsions gradually increased with the increased ALG concentration, while the droplet size of the emulsions and the content of free water in the system decreased significantly. Especially when the concentration of ALG was 1 %, the emulsion system was stable under the environment of high temperature and high ionic strength, and the water holding capacity was the highest. Through pasteurization and gastrointestinal digestion experiments, it was found that the survival rate of probiotics encapsulated in emulsion gels was significantly higher than that encapsulated in emulsions or hydrogels, which benefited from the dual action of oil droplets and calcium alginate gels network. These results provide a new strategy for the processing of probiotics and the high-value utilization of marine fish by-products.
Collapse
Affiliation(s)
- Kuiyou Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jialu Ni
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xueying Tian
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Xiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Hongliang Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wenbo Shang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Bo Liu
- Dalian Rich Foods Co.,Ltd, Dalian 116113, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
39
|
Yuan Y, Chen C, Guo X, Li B, He N, Wang S. Noncovalent interactions between biomolecules facilitated their application in food emulsions' construction: A review. Compr Rev Food Sci Food Saf 2024; 23:e13285. [PMID: 38284579 DOI: 10.1111/1541-4337.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024]
Abstract
The use of biomolecules, such as proteins, polysaccharides, saponins, and phospholipids, instead of synthetic emulsifiers in food emulsion creation has generated significant interest among food scientists due to their advantages of being nontoxic, harmless, edible, and biocompatible. However, using a single biomolecule may not always meet practical needs for food emulsion applications. Therefore, biomolecules often require modification to achieve ideal interfacial properties. Among them, noncovalent interactions between biomolecules represent a promising physical modification method to modulate their interfacial properties without causing the health risks associated with forming new chemical bonds. Electrostatic interactions, hydrophobic interactions, and hydrogen bonding are examples of noncovalent interactions that facilitate biomolecules' effective applications in food emulsions. These interactions positively impact the physical stability, oxidative stability, digestibility, delivery characteristics, response sensitivity, and printability of biomolecule-based food emulsions. Nevertheless, using noncovalent interactions between biomolecules to facilitate their application in food emulsions still has limitations that need further improvement. This review introduced common biomolecule emulsifiers, the promotion effect of noncovalent interactions between biomolecules on the construction of emulsions with different biomolecules, their positive impact on the performance of emulsions, as well as their limitations and prospects in the construction of biomolecule-based emulsions. In conclusion, the future design and development of food emulsions will increasingly rely on noncovalent interactions between biomolecules. However, further improvements are necessary to fully exploit these interactions for constructing biomolecule-based emulsions.
Collapse
Affiliation(s)
- Yi Yuan
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Congrong Chen
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Xinyi Guo
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Ni He
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
40
|
Chen Z, Liang G, Ru Y, Weng H, Zhang Y, Chen J, Xiao Q, Xiao A. Media-milled agar particles as a novel emulsifier for food Pickering emulsion. Int J Biol Macromol 2023; 253:127185. [PMID: 37797859 DOI: 10.1016/j.ijbiomac.2023.127185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Pickering emulsions was successfully fabricated using ball-milled agar particles with sizes and sulfate content around 7 μm and 0.62 %, respectively. These particles were obtained through a simple media-milling process using agar powders initially sized at 120 μm. The lamellated agar is aggregated into a mass after the milling process. The surface charge and hydrophobicity of the ball-milled agar particles were characterized through zeta potential and contact angle measurements, respectively. The droplet size of Pickering emulsions was related to oil fraction and particle concentration, ranging from approximately 45 μm to 80 μm. Ball-milled agar stabilized emulsions were sensitive to pH and salt conditions. The results of confocal laser scanning microscopy and cryo-SEM showed that at low particle concentrations and oil fractions, ball-milled agar stabilized the emulsions by dispersing particles on the surface of the oil droplets through electrostatic repulsion. Conversely, ball-milled agar stabilized the emulsions under high particle concentrations and oil fractions by forming a gel network structure to bind the oil droplets. In this research, this developed method provides the basis for the high-value application of agar and a new idea for preparing stable food-grade Pickering emulsion-based functional foods using raw-food material without surface wettability.
Collapse
Affiliation(s)
- Zizhou Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Guanglin Liang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Yi Ru
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Huifen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Yonghui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Jun Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| |
Collapse
|
41
|
Yang J, Gu Z, Cheng L, Li Z, Li C, Hong Y, Qian JY. Formation Mechanism of Starch-Based Double Emulsions from the Interfacial Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17154-17164. [PMID: 37974415 DOI: 10.1021/acs.langmuir.3c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Double emulsions are of significant practical value in protecting the core material owing to their multicomponent structure and have thus been applied in various fields, such as food, cosmetics, and drugs. However, the mechanism of double emulsion formation by native starch is not well established. Herein, we demonstrate a facile route to develop type-A, type-B, and type-C double emulsions using native starch and develop an innovative design for a carrier. Interfacial interaction, enthalpy changes of starch, and interfacial properties are key factors governing the formation of double emulsions and controlling the type of double emulsions formed. Therefore, the results of this study provide a better understanding of how and what type of starch-based double emulsions are formed.
Collapse
Affiliation(s)
- Jie Yang
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhengbiao Gu
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Engineering, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
42
|
Gao T, Wu X, Gao Y, Teng F, Li Y. Co-Delivery System of Vitamin B 12 and Vitamin E Using a Binary W/O/W Emulsion Based on Soybean Isolate Protein-Xanthan Gum/Carrageenan: Emulsification Properties, Rheological Properties, Structure, Stability, and Digestive Characteristics. Foods 2023; 12:4361. [PMID: 38231848 DOI: 10.3390/foods12234361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, the soybean protein isolate (SPI)-xanthan gum (XG) or carrageenan (CA) W/O/W emulsions for the co-delivery of vitamin B12 and vitamin E were prepared. The effects of XG and CA concentrations on the physicochemical properties and digestive characteristics of the emulsions were also investigated. The addition of XG and CA improved the SPI aggregation and increased its electrostatic repulsion so that more SPI was adsorbed at the phase interface. The emulsifying activity index and emulsifying stability index increased to 24.09 (XG 0.4%) and 14.00 (CA 0.5%) and 151.08 (XG 0.4%) and 135.34 (CA 0.5%), respectively. The adsorbed protein content increased to 88.90% (XG 0.4%) and 88.23% (CA 0.5%), respectively. Moreover, the encapsulation efficiencies of vitamin B12 and vitamin E were increased to 86.72% (XG 0.4%) and 86.47 (CA 0.5%) and 86.31% (XG 0.4%) and 85.78% (CA 0.5%), respectively. The bioaccessibility of vitamin B12 and vitamin E increased to 73.53% (XG 0.4%) and 71.32% (CA 0.5%) and 68.86% (XG 0.4%) and 68.74% (CA 0.5%). The best properties of the emulsions were obtained at a 0.4% concentration of XG and 0.5% of CA. This study offers a novel system for delivering bioactive substances, which is favorable for the advancement of food with delivery capability in food processing.
Collapse
Affiliation(s)
- Tian Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xixi Wu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yiting Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
43
|
Cao Y, Zang Z, Zhang L, Han G, Yu Q, Han L. Hydroxypropyl methyl cellulose/soybean protein isolate nanoparticles incorporated broccoli leaf polyphenol to effectively improve the stability of Pickering emulsions. Int J Biol Macromol 2023; 250:126269. [PMID: 37567542 DOI: 10.1016/j.ijbiomac.2023.126269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
This study prepared SPI-Pol-HPMC (SPH) nanoparticles from soybean protein isolate (SPI), hydroxypropyl methyl cellulose (HPMC), and broccoli leaf polyphenol (Pol) and used them as a stabilizer for the Pickering emulsion. The SPH (2:1) nanoparticles have the best ability to encapsulate broccoli leaf polyphenols, with uniform particle size distribution, and a more dense and stable structure. The chemical and hydrogen bonding forces between the SPH nanoparticle components were enhanced. Additionally, the 1.5 % SPH nanoparticle-stabilized emulsions exhibited good physical stability, manifesting as small particle droplets with good rheological properties and uniform dispersion. The volume fraction of the emulsified phase of the 1.5 % SPH nanoparticle-stabilized emulsions was the greatest after 21 days of storage. Interestingly, SPH nanoparticles also improved the oxidative stability of the emulsions, as evidenced through their lower peroxide values and thiobarbituric acid active substances. The aforementioned results suggest that SPH nanoparticles may be used as food-grade emulsifiers that stabilize emulsions and inhibit their lipid oxidation.
Collapse
Affiliation(s)
- Yinjuan Cao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Zhixuan Zang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Guangxing Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China; Shandong Lvrun Food Co. Ltd, Linyi, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
44
|
Jiang H, Wang X, Han L, Tang C, He J, Min D. Intestine-targeted high internal phase Pickering emulsion formulated using silkworm pupa protein via ultrasonic treatment. Int J Biol Macromol 2023; 246:125620. [PMID: 37392913 DOI: 10.1016/j.ijbiomac.2023.125620] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) stabilized by food grade particles have received much attention as deliver vehicles for bioactives in recent years. In this study, ultrasonic treatment was conducted to regulate the size of silkworm pupa protein (SPP) particles, fabricating oil-in-water (O/W) HIPPEs with intestinal releasability. Briefly, the pretreated SPP and SPP-stabilized HIPPEs were characterized, and the targeting release was investigated using in vitro gastrointestinal simulations and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Results revealed ultrasonic treatment time was the key factor regulating emulsification performance and stability of HIPPEs. Optimized SPP particles were obtained based on their size and zeta potential of 152.67 nm and 26.77 mV, respectively. With ultrasonic treatment, the hydrophobic groups in the secondary structure of SPP were exposed, facilitating the formation of a stable oil-water interface for HIPPEs. Additionally, SPP-stabilized HIPPE showed high stable against the gastric digestion. The SPP with 70 kDa molecular weight, which was the major interfacial proteins of the HIPPE, can be hydrolyzed by intestinal digestive enzymes, enabling the intestine-targeted release of the emulsion. Overall, in the present study, a facile method was developed to stabilize HIPPEs using solo SPP with ultrasonic treatment to protect and deliver hydrophobic bioactive ingredients.
Collapse
Affiliation(s)
- Hongrui Jiang
- College of Light Industry and Food Engineering, Guangxi University, 53004 Nanning, China.
| | - Xiaoyi Wang
- College of Light Industry and Food Engineering, Guangxi University, 53004 Nanning, China
| | - Lishu Han
- College of Light Industry and Food Engineering, Guangxi University, 53004 Nanning, China
| | - Chengjiang Tang
- College of Light Industry and Food Engineering, Guangxi University, 53004 Nanning, China
| | - Jie He
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, 530007, Guangxi Province, China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi University, 53004 Nanning, China.
| |
Collapse
|
45
|
Weng Y, Yang G, Li Y, Xu L, Chen X, Song H, Zhao CX. Alginate-based materials for enzyme encapsulation. Adv Colloid Interface Sci 2023; 318:102957. [PMID: 37392664 DOI: 10.1016/j.cis.2023.102957] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Enzymes are widely used in industry due to their high efficiency and selectivity. However, their low stability during certain industrial processes can result in a significant loss of catalytic activity. Encapsulation is a promising technique that can stabilize enzymes by protecting them from environmental stresses such as extreme temperature and pH, mechanical force, organic solvents, and proteases. Alginate and alginate-based materials have emerged as effective carriers for enzyme encapsulation due to their biocompatibility, biodegradability, and ability to form gel beads through ionic gelation. This review presents various alginate-based encapsulation systems for enzyme stabilization and explores their applications in different industries. We discuss the preparation methods of alginate encapsulated enzymes and analyze the release mechanisms of enzymes from alginate materials. Additionally, we summarize the characterization techniques used for enzyme-alginate composites. This review provides insights into the use of alginate encapsulation as a means of stabilizing enzymes and highlights the potential benefits for various industrial applications.
Collapse
Affiliation(s)
- Yilun Weng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangze Yang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Letao Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
46
|
Tong H, Wang J, Qi L, Gao Q. Starch-based Janus particle: Fabrication, characterization and interfacial properties in stabilizing Pickering emulsion. Carbohydr Polym 2023; 313:120867. [PMID: 37182958 DOI: 10.1016/j.carbpol.2023.120867] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Janus particles (J-OSPs) based on the composite of chitosan nanoparticles (CSNPs) and octadecenyl succinic anhydride starch (OSPs) were tailor-made by Pickering emulsion method and electrostatic interaction. With different positions of OSPs embedded in the oil phase of Pickering emulsion template and the diversified shapes of starch particles, J-OSPs exhibited various asymmetric structures, which was verified by scanning electron microscope (SEM) and confocal laser microscope (CLSM). By characterizing the interfacial characteristics of J-OSPs, directional distribution of CSNPs was found to enhance the hydrophobicity of J-OSPs and changed its surface charges from positive to negative as pH increased. When J-OSPs were taken as stabilizers, the formed Pickering emulsion had the highest emulsion index and viscosity compared with OSPs and OSPs fully covered by CSNPs (F-OSPs), which was attributed to the self-assembly property of Janus particles that enabled them to form larger aggregates to hinder the collapse of droplets. This study provides a new idea for the construction of plant-derived Janus particles, and its superiority in stabilizing the Pickering emulsion will broaden the application of Janus particles in the field of storage and delivery of active substances.
Collapse
|
47
|
Dhal S, Pal A, Gramza-Michalowska A, Kim D, Mohanty B, Sagiri SS, Pal K. Formulation and Characterization of Emulgel-Based Jelly Candy: A Preliminary Study on Nutraceutical Delivery. Gels 2023; 9:466. [PMID: 37367137 DOI: 10.3390/gels9060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
The development of consumer-friendly nutraceutical dosage forms is highly important for greater acceptance. In this work, such dosage forms were prepared based on structured emulsions (emulgels), where the olive oil phase was filled within the pectin-based jelly candy. The emulgel-based candies were designed as bi-modal carriers, where oil-soluble curcumin and water-soluble riboflavin were incorporated as the model nutraceuticals. Initially, emulsions were prepared by homogenizing varied concentrations (10% to 30% (w/w)) of olive oil in a 5% (w/w) pectin solution that contained sucrose and citric acid. Herein, pectin acted as a structuring agent-cum-stabilizer. Physico-chemical properties of the developed formulations were thoroughly analyzed. These studies revealed that olive oil interferes with the formation of polymer networks of pectin and the crystallization properties of sugar in candies. This was confirmed by performing FTIR spectroscopy and DSC studies. In vitro disintegration studies showed an insignificant difference in the disintegration behavior of candies, although olive oil concentration was varied. Riboflavin and curcumin were then incorporated into the jelly candy formulations to analyze whether the developed formulations could deliver both hydrophilic and hydrophobic nutraceutical agents. We found that the developed jelly candy formulations were capable of delivering both types of nutraceutical agents. The outcome of the present study may open new directions for designing and developing oral nutraceutical dosage forms.
Collapse
Affiliation(s)
- Somali Dhal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Anupam Pal
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack 754202, India
| | - Anna Gramza-Michalowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Gangwon-do, Seoul 25354, Republic of Korea
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack 754202, India
| | - Sai S Sagiri
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Science, Agricultural Research Organization, The Volcani Institute, Rishon Lezion 7505101, Israel
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| |
Collapse
|
48
|
Kim SH, Bae IS, Lee HU, Moon JY, Lee YC. A Bioactive Compound-Loaded Zinc-Aminoclay Encapsulated, Pickering Emulsion System for Treating Acne-Inducing Microbes. Int J Mol Sci 2023; 24:9669. [PMID: 37298619 PMCID: PMC10253637 DOI: 10.3390/ijms24119669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Acne is a common skin condition caused by the growth of certain bacteria. Many plant extracts have been investigated for their potential to combat acne-inducing microbes, and one such plant extract is microwave-assisted Opuntia humifusa extract (MA-OHE). The MA-OHE was loaded onto zinc-aminoclay (ZnAC) and encapsulated in a Pickering emulsion system (MA-OHE/ZnAC PE) to evaluate its therapeutic potential against acne-inducing microbes. Dynamic light scattering and scanning electron microscopy were used to characterize MA-OHE/ZnAC PE with a mean particle diameter of 353.97 nm and a PDI of 0.629. The antimicrobial effect of MA-OHE/ZnAC was evaluated against Staphylococcus aureus (S. aureus) and Cutibacterium acnes (C. acnes), which contribute to acne inflammation. The antibacterial activity of MA-OHE/ZnAC was 0.1 and 0.025 mg/mL to S. aureus and C. acnes, respectively, which were close to naturally derived antibiotics. Additionally, the cytotoxicity of MA-OHE, ZnAC, and MA-OHE/ZnAC was tested, and the results showed that they had no cytotoxic effects on cultured human keratinocytes in a range of 10-100 μg/mL. Thus, MA-OHE/ZnAC is suggested to be a promising antimicrobial agent for treating acne-inducing microbes, while MA-OHE/ZnAC PE is a potentially advantageous dermal delivery system.
Collapse
Affiliation(s)
- Seong-Hyeon Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - In-Sun Bae
- Swsonaki Inc., Gwangyang Frontier-Valley 3rd, 30 Gaseok-ro, Incheon 22827, Republic of Korea;
| | - Hyun Uk Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea;
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116, Samseongyo-ro 16gil, Seoul 02876, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
49
|
Ma Q, Nie C, Bu X, Liu B, Li W, Zhang X, Tan Y, Wu P, Fan G, Wang J. Properties of Pickering emulsions stabilized by cellulose nanocrystals extracted from litchi peels. Int J Biol Macromol 2023; 242:124879. [PMID: 37192711 DOI: 10.1016/j.ijbiomac.2023.124879] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
The development of Pickering emulsions which are applicable to the food industry still remains challenges due to the limited availability for biocompatible, edible and natural emulsifiers. The purpose of this study was to extract cellulose nanocrystals from litchi peels (LP-CNCs), and evaluate their emulsifying properties. The results showed that the LP-CNCs were needle-like and they possessed high crystallinity (72.34 %) and aspect ratio. When the concentrations of LP-CNCs were >0.7 wt% or the contents of oil were no >0.5, stable Pickering emulsions were obtained. The microstructures of emulsions confirmed that LP-CNCs formed dense interfacial layers on the surface of oil droplets, which functioned as barriers to prevent aggregation and flocculation among droplets. Rheological results showed that the emulsions exhibited typical shear thinning behavior. The elastic of emulsions was dominant, and their gel strength could be enhanced by regulating the contents of emulsifiers or oil. Additionally, the Pickering emulsions stabilized by LP-CNCs showed extremely high pH, ionic strength, and temperature tolerance. This strategy provides an innovative alternative to tackle the dilemma of preparing highly stable Pickering emulsions using natural particles in food products.
Collapse
Affiliation(s)
- Qin Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunling Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xianpan Bu
- Ankang R&D Center for Se-enriched Products, Ankang, Shaanxi 725000, China
| | - Bingqian Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Weilong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaowan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yinfeng Tan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengrui Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guangsen Fan
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Jianguo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
50
|
Zhang B, Wang Y, Lu R. Pickering emulsion stabilized by casein-caffeic acid covalent nanoparticles to enhance the bioavailability of curcumin in vitro and in vivo. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3579-3591. [PMID: 36637046 DOI: 10.1002/jsfa.12447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In recent years, the design of food-grade Pickering emulsion delivery systems has become an effective strategy for improving the low bioavailability of bioactive substances. Protein-based Pickering emulsions have received extensive attention because of a high biocompatibility and loading capacity. The bioavailability of active substances is mainly evaluated by simulating in vitro gastrointestinal digestion. As a model organism for antioxidation and anti-aging, Caenorhabditis elegans can provide additional biological information for the in vivo utilization of active substances. RESULTS After the introduction of caffeic acid, the average particle size and Zeta potential of the casein-caffeic acid covalent complex nanoparticles (CCP) were 171.11 nm and - 37.73 mV, respectively. The three-phase contact angle was also increased to 89.8°. By using CCP to stabilize Pickering emulsion (CCE), the retention quantity of the embedded curcumin increased by 2.19-fold after 28 days. In the simulated gastric digestion, curcumin degradation in CCE was reduced by 61.84%, released slowly in the intestinal environment, and the final bioaccessibility was increased by 1.90-fold. In C. elegans, CCE significantly reduced ROS accumulation, increased SOD activity by 2.01-fold and CAT activity by 2.30-fold, decreased MDA content by 36.76%, prolonging the lifespan of nematodes by 13.33% under H2 O2 stimulation and improving bioavailability in vivo. CONCLUSION The results indictae that CCP-stabilized Pickering emulsion can efficiently implement the physiological activities of bioactive compounds in vitro digestion and C. elegans, and thus it can be regarded as a reliable delivery system for food and medicine. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bingyan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yunping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Rongrong Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|