1
|
Erramuspe IBV, Asafu-Adjaye O, Rojas-Márquez M, Via B, Sastri B, Banerjee S. Enhanced Removal of Brine From Porous Structures by Supercritical CO 2. GROUND WATER 2025; 63:76-79. [PMID: 39045759 DOI: 10.1111/gwat.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
Supercritical CO2 (sCO2) removes water from brine held in pumice stone at levels well above the solubility of water in sCO2. The higher water removal results from a combination of passive emulsification of water in sCO2 and viscous fingering of sCO2 through the saturated pumice. This leads to higher levels of salt deposition than that expected from solubility considerations alone. These deposits could impact the injectivity of sCO2 as well as its movement in the subsurface. The finding that the water concentration in sCO2 is not necessarily capped at the solubility limit should influence the parametrization of injection models.
Collapse
Affiliation(s)
| | - Osei Asafu-Adjaye
- Forest Products Development Center, Auburn University, Auburn, Alabama, 36849, USA
| | | | - Brian Via
- Forest Products Development Center, Auburn University, Auburn, Alabama, 36849, USA
| | - Bhima Sastri
- US Department of Energy, 19901 Germantown Road, Germantown, Maryland, 20874, USA
| | - Sujit Banerjee
- School of Chemical & Biomolecular Engineering, Georgia Tech, Atlanta, Georgia, 30332, USA
| |
Collapse
|
2
|
Can Karaca A, Tan C, Assadpour E, Jafari SM. Recent advances in the plant protein-polyphenol interactions for the stabilization of emulsions. Adv Colloid Interface Sci 2025; 335:103339. [PMID: 39571482 DOI: 10.1016/j.cis.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Proteins from plant sources including legumes, cereals and oilseeds are gaining attention due to their suitability for sustainable production, functionality, and positive consumer perception. On the other hand, polyphenols (PPs) are receiving considerable attention as natural ingredients in the human diet due to their potent antioxidant and anti-inflammatory properties. Recent studies indicate that the emulsifying properties of plant proteins (PLPs) can be improved after modification through covalent and/or non-covalent interactions with PPs due to the changes in the conformation and/or the surface chemistry of the proteins. Complexes formed between PLPs-PPs can serve as innovative ingredients for developing novel food products with modified textural properties. Also, Pickering emulsions, multiple emulsions, multilayer emulsions, nanoemulsions, and high internal phase emulsions can be stabilized by such systems to deliver bioactive compounds. This paper reviews the most recent research on the PLP-PP interactions and their role in the stabilization of various emulsion-based systems. A special emphasis is given to modifying the structure and functionality of PLPs and PPs. The challenges and opportunities of applying PLP-PP interactions in emulsion-based systems are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Mao J, Gao Y, Ye W, Meng Z. Impact of high-intensity ultrasound on interfacial protein adsorption of non-dairy whipping cream: Whipping properties and foam stabilization model. Int J Biol Macromol 2025; 286:138466. [PMID: 39645112 DOI: 10.1016/j.ijbiomac.2024.138466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/21/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
In this paper, the competitive adsorption and practical application characteristics of ultrasound treatment on the oil-water interface in non-dairy whipping cream were explored. The results showed that ultrasound treatment promoted the competitive adsorption of casein, resulting in an increase of interfacial protein loading in the system by 4.82 mg/m2 and a decrease in oil droplet size by 0.20 μm. In addition, due to the increase of interfacial protein in the system, the partial coalescence of the fat globule of systems decreased, which led to a rapid collapse of the foam after 2 days of storage. Ultrasound weakened the strength of the gel network inside emulsions, which weakened the anti-deformation ability of emulsions. Although the LVR of the ultrasonically treated samples narrowed after churning, the G' value increased. In addition, the stress yield point of the foams shifted to higher strains as the ultrasonic power increased, implying better resistance to deformation.
Collapse
Affiliation(s)
- Jixian Mao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yujie Gao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Weihao Ye
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Li Y, Gao Q, Qi L, Nian B. Supramolecular assembly strategy of modified starch chains for achieving recyclable emulsion biocatalysis within a narrow pH range. Carbohydr Polym 2025; 347:122760. [PMID: 39486986 DOI: 10.1016/j.carbpol.2024.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 09/14/2024] [Indexed: 11/04/2024]
Abstract
Stimuli-responsive Pickering emulsions are promising in biocatalysis for their ease of product separation and emulsifier recovery. However, pH responsiveness, though simple and cost-effective, faces challenges in precise control and narrow transition ranges, limiting its use in enzymatic catalysis. Herein we introduced amorphous octenyl succinic anhydride-modified debranched starch chains (Am-OSA-St) to control emulsion properties within a pH range suitable for enzymatic catalysis. By adjusting the OSA group density and molecular weight, Am-OSA-St allowed emulsions to transition reversibly between pH 7.3 and 5.5 and enabled self-recycling through supramolecular self-assembly. Employing molecular dynamics simulations and physicochemical characterization, we elucidated the control mechanism of oil-water interfaces via the microstructure transformation of Am-OSA-St. The findings revealed that protonation of carboxylate groups disrupted the charge balance and polarity of starch chains, leading to strong electrostatic and van der Waals interactions that drove self-assembly. This entanglement caused starch chains in the aqueous phase to "drag" those at the oil-water interface, moving them into the aqueous phase and forming micelles. These micelles, with a hydrophobic interior and hydrophilic exterior, prevented re-adsorption. Testing with Candida antarctica Lipase B (CALB) and N-acetylneuraminic lyase showed that the pH-regulated emulsion system maintained excellent efficiency and cycling stability in mild conditions.
Collapse
Affiliation(s)
- Yang Li
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, 381 Wushan Rd., Tianhe District, Guangzhou 510640, PR China
| | - Qunyu Gao
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, 381 Wushan Rd., Tianhe District, Guangzhou 510640, PR China.
| | - Liang Qi
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, 381 Wushan Rd., Tianhe District, Guangzhou 510640, PR China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517500, PR China.
| | - BinBin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech university, Nanjing 210009, Jiangsu Province, PR China
| |
Collapse
|
5
|
Xu Y, Wang S, Xin L, Zhang L, Liu H. Interfacial mechanisms, environmental influences, and applications of polysaccharide-based emulsions: A review. Int J Biol Macromol 2024; 293:139420. [PMID: 39746414 DOI: 10.1016/j.ijbiomac.2024.139420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/30/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
To develop stable polysaccharide-based emulsions, many studies have focused on the interfacial behavior of adsorbed polysaccharides. This review first discussed the mechanism of polysaccharides self-assembly at the oil-water interface. It can be concluded that polysaccharides can form a thick and strong interfacial membrane that stabilizes emulsions through steric hindrance and electrostatic interactions. In particular, we also investigated the influence of various conditions (i.e., mechanical stress, heating, pH, enzymatic treatment, and ionic strength) on the architecture and properties of polysaccharide-based emulsions. Additionally, the interactions of polysaccharides with other molecules in the emulsion system were summarized, revealing that co-adsorption further changes their properties. Furthermore, current approaches for monitoring the behavior of adsorbed polysaccharides at the oil/water interface were reviewed, highlighting their advantages and limitations. Lastly, we emphasized the potential of polysaccharides for producing environmental-friendly emulsions in the food industry.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Liwen Xin
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Lanxin Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| |
Collapse
|
6
|
Reczyńska-Kolman K, Ochońska D, Brzychczy-Włoch M, Pamuła E. Stearic acid-based nanoparticles loaded with antibacterial peptides - Bacitracin and LL-37: Selection of manufacturing parameters, cytocompatibility, and antibacterial efficacy. Int J Pharm 2024; 667:124876. [PMID: 39477135 DOI: 10.1016/j.ijpharm.2024.124876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Solid lipid nanoparticles are currently one of the most widely investigated types of drug delivery carriers. Considering the fact that their clinical translation boosted after the approval of two COVID-19 mRNA vaccines, it is crucial to fully explain how the processing parameters affect the properties of the obtained nanoparticles and the drug loading efficiency. This study aimed to evaluate the influence of different manufacturing parameters on the properties of stearic acid-based nanoparticles fabricated using the emulsification/solvent diffusion method. It was found that the type of organic solvent used has a major effect on the morphology of the nanoparticles, with chloroform being suitable for the production of spherical nanoparticles. The size and polydispersity of the nanoparticles were affected by the concentration of surfactant in the external aqueous phase, the concentration of stearic acid in the organic phase, and the homogenization amplitude. The optimized nanoparticles were successfully loaded with an antibacterial peptide - LL-37. The presence of LL-37 did not significantly influence nanoparticle morphology or cytocompatibility. The obtained nanoparticles showed antibacterial activity against the reference strain of Streptococcus pyogenes (ATCC 12384). The developed solid lipid nanoparticles are promising drug carries that can be further optimized for the treatment of infected wounds or bacterial infections in the respiratory system.
Collapse
Affiliation(s)
- Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Dorota Ochońska
- Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Kraków, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Kraków, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland
| |
Collapse
|
7
|
Shen Y, Fang C, Huang X, Zhang J, Zhu J, Zhu K, You Y, Yang D. Chitosan-zein-icariin complexes modulate double emulsion phase transitions to potentiate absorption efficiency. Int J Biol Macromol 2024; 287:138516. [PMID: 39647726 DOI: 10.1016/j.ijbiomac.2024.138516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
This study developed a chitosan-zein-icariin ternary complex through reversed-phase precipitation to stabilize double emulsions using one-step emulsification method. Results indicated that icariin and chitosan-zein formed spherical microstructures via the rearrangement of hydrogen bonding networks and hydrophobic interactions. All complexes exhibited pale-yellow color and demonstrated single and uniform size distribution. The thermal stability and interfacial contact angle of the complexes significantly decreased with the incorporation of icariin. The prepared double emulsion microstructures displayed multi-chambered configurations due to polarity differences, solidifying during cold storage as a result of phase shifts in coconut oil, which led to an increased storage modulus. While the double emulsion microstructure showed enhanced storage stability, droplet size increased markedly when subjected to NaCl and temperature variations. Following in-vitro digestion, the double emulsion microstructure disintegrated; average particle size decreased, resulting in the release of icariin from the ternary complex during intestinal phases, thereby enhancing bioaccessibility. Furthermore, it was observed that icariin within the ternary complex influenced absorption efficacy based on its concentration levels, as evidenced by Caco-2 cell studies, though this effect was greater than that observed for the zein-icariin binary complex. The results of this study provide a theoretical foundation for efficient delivery systems involving hydrophobic multivariate complexes.
Collapse
Affiliation(s)
- Yifeng Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Chunyan Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xiaopeng Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Jingyi Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Junlong Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Kun Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Yaodong You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| | - Dongdong Yang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| |
Collapse
|
8
|
Li Y, Zhang C, Li S, Zhu Z, Wang X, Cravotto G. Improving complexation of puerarin with kudzu starch by various ultrasonic pretreatment: Interaction mechanism analysis. ULTRASONICS SONOCHEMISTRY 2024; 111:107095. [PMID: 39388850 PMCID: PMC11490904 DOI: 10.1016/j.ultsonch.2024.107095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
The industrial preparation of kudzu starch (KS) significantly reduces the remaining of flavonoids like puerarin (PU) in the product, weakening its biological activity and making pre-treatments on kudzu crucial. Ultrasonic technique, widely used for modifying biomolecules, can enhance nutrient interactions like those between starch and polyphenols in foods. Thus, a puerarin-kudzu starch (PKS) complex was prepared with the introduction of ultrasonic pretreatment. The results indicated that sonication increased the binding of PU to KS from 0.399 ± 0.01 to 0.609 ± 0.05 mg/g. Particle size analysis and SEM revealed that the particles of the ultrasonic puerarin-kudzu starch complex (UPKS) were larger than those of the untreated complexes. XRD, UV-vis, and FT-IR spectroscopic analyses indicated that hydrogen bonding primarily governs the interaction between PU and KS. Additionally, incorporating PU decreased the starch structure's orderliness, while ultrasonic treatment altered the helical configuration of straight-chain starch, leading to the formation of a new, ordered structure through the creation of new hydrogen bonds. Additionally, gels formed from UPKS exhibited higher viscosity, elasticity, and shear stress, suggesting that ultrasound significantly altered the intermolecular interactions between PKS. In conclusion, the use of ultrasound under optimal conditions has demonstrated its effectiveness in preparing PKS complexes, highlighting its significant potential to produce high value-added kudzu-based products.
Collapse
Affiliation(s)
- Yuheng Li
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Wuhan 430048, China
| | - Chao Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Wuhan 430048, China
| | - Shuyi Li
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Wuhan 430048, China.
| | - Zhenzhou Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Wuhan 430048, China.
| | - Xuehua Wang
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Wuhan 430048, China
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| |
Collapse
|
9
|
Su H, Xie Y, Cheng X, Yang Z, Mao J, Yang H, Xu X, Pan S, Hu H. The effect of dual-frequency ultrasound on synergistic Sonochemical oxidation to degrade aflatoxin B 1. Food Chem 2024; 457:139708. [PMID: 38936135 DOI: 10.1016/j.foodchem.2024.139708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
This study investigated the degradation of aflatoxin B1 (AFB1) in food by using dual-frequency ultrasound (DFUS) and the effects of sonochemical oxidation on the efficacy. It was found that the degradation of AFB1 by bath ultrasound (BU), probe ultrasound (PU), and DFUS were all consistent with first-order kinetics. The use of DFUS significantly increased the AFB1 degradation to 91.3%, and compared with BU and PU, it increased by about 177.0% and 61.5% after 30 min treatment. DFUS could generate a synergistic effect to accelerate the generation of free radicals, which promoted sonochemical oxidation to degrade AFB1. It could be speculated that hydroxyl radical (·OH) probably acted a dominant part in the AFB1 degradation by DFUS, and the hydrogen atoms (·H) might also are contributed. These results indicated that DFUS was an effective method of AFB1 degradation.
Collapse
Affiliation(s)
- Hongchen Su
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Yuxin Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Xi Cheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Zhixuan Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Jin Mao
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Hong Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China.
| |
Collapse
|
10
|
Phyo HM, Al-Maqtari QA, Mi S, Du Y, Khalid MU, Yao W. Ultrasound-assisted fabrication of chitosan-hydroxypropyl methylcellulose nanoemulsions loaded with thymol and cinnamaldehyde: Physicochemical properties, stability, and antifungal activity. Int J Biol Macromol 2024; 281:136278. [PMID: 39368575 DOI: 10.1016/j.ijbiomac.2024.136278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
This study investigated the influence of chitosan (CH) and hydroxypropyl methylcellulose (H), along with ultrasound power, on the physicochemical properties, antifungal activity, and stability of oil-in-water (O/W) nanoemulsions containing thymol and cinnamaldehyde in a 7:3 (v/v) ratio. Eight O/W formulations were prepared using CH, H, and a 1:1 (v/v) blend of CH and H, both with and without ultrasonication (U). Compared to untreated samples, U-treated nanoemulsions had lower droplet sizes (433-301 nm), polydispersity index (0.42-0.47), and zeta potential (-0.42-0.77 mV). The U treatment decreased L* and b* values, increased a* color attribute values, and increased apparent viscosity (0.26-2.17) at the same shear rate. After 28 days, microbiological testing of nanoemulsions treated with U showed counts below the detection limits (< 2 log CFU mL-1). The U-treated nanoemulsions exhibited stronger antifungal effects against R. stolonifer, with the NE/CH-U and NE/CH-H-U formulations demonstrating the lowest minimum inhibitory and fungicidal concentrations, measured at 0.12 and 0.24 μL/mL, respectively. On day 28, U-treated nanoemulsions demonstrated higher ionic, thermal, and physical stability than untreated samples. These findings suggest that the stability and antifungal efficacy of polysaccharide-based nanoemulsions may be improved by ultrasonic treatment. This study paves the way for innovative, highly stable nanoemulsions.
Collapse
Affiliation(s)
- Hsu Mon Phyo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Qais Ali Al-Maqtari
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia; Department of Food Science and Nutrition, Faculty of Agriculture, Food and Environment, Sana'a University, Sana'a, Yemen
| | - Shuna Mi
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yuhang Du
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Muhammad Umair Khalid
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
11
|
Ciarleglio G, Placido M, Toto E, Santonicola MG. Dual-Responsive Alginate/PNIPAM Microspheres Fabricated by Microemulsion-Based Electrospray. Polymers (Basel) 2024; 16:2765. [PMID: 39408475 PMCID: PMC11478996 DOI: 10.3390/polym16192765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Smart materials for drug delivery are designed to offer a precise and controlled release of therapeutic agents. By responding to specific physiological stimuli, such as changes in temperature and pH, these materials improve treatment efficacy and minimize side effects, paving the way for personalized therapeutic solutions. In this study, we present the fabrication of dual-responsive alginate/poly(N-isopropylacrylamide) (PNIPAM) microspheres, having the ability to respond to both pH and temperature variations and embedding the lipophilic bioactive compound Ozoile. Ozoile® Stable Ozonides is obtained from extra virgin olive oil and acts as an inducer, interacting with major biological pathways by means of modulating the systemic redox balance. The dual-responsive microspheres are prepared by electrospray technique without the use of organic solvents. PNIPAM is synthesized by radical polymerization using the APS/TEMED redox initiators. The microspheres are further optimized with a chitosan coating to enhance their stability and modulate the degradation kinetics of the gel matrix. A comprehensive morphological analysis, Fourier transform infrared (FTIR) spectroscopy, and degradation assays are conducted to confirm the structural stability and pH-responsive behavior of the hydrogel microspheres. A study of the volume phase transition temperature (VPTT) by differential scanning calorimetry (DSC) is used to assess the microsphere thermal response. This research introduces a promising methodology for the development of targeted drug delivery systems, which are particularly useful in the context of oxidative stress modulation and inflammation management.
Collapse
Affiliation(s)
- Gianluca Ciarleglio
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy; (G.C.); (M.P.); (E.T.)
- Erbagil s.r.l., Via Luigi Settembrini 13, 82037 Telese Terme, Italy
| | - Monica Placido
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy; (G.C.); (M.P.); (E.T.)
| | - Elisa Toto
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy; (G.C.); (M.P.); (E.T.)
| | - Maria Gabriella Santonicola
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy; (G.C.); (M.P.); (E.T.)
| |
Collapse
|
12
|
Grabowska O, Singh A, Żamojć K, Samsonov SA, Wyrzykowski D. Exploring the Impact of Subtle Differences in the Chemical Structure of 1-Alkylsulfates and 1-Alkylsulfonates on Their Interactions with Human Serum Albumin. Molecules 2024; 29:4598. [PMID: 39407528 PMCID: PMC11478022 DOI: 10.3390/molecules29194598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The objective of this study was to examine the interactions between anionic surfactants, specifically 1-alkylsulfonates (KXS) and 1-alkylsulfates (SXS) ions, with human serum albumin (HSA). A combination of experimental techniques, including isothermal titration calorimetry (ITC), steady-state fluorescence spectroscopy (SF), and molecular dynamics-based approaches was employed to gain a comprehensive understanding of these processes. It has been demonstrated that the subtle variations in the charge distribution on the anionic surfactant headgroups have a significant impact on the number of binding sites, the stoichiometry of the resulting complexes, and the strength of the interactions between the surfactants and the protein. Additionally, we established that the affinity of the investigated ligands to specific regions on the protein surface is governed by both the charge of the surfactant headgroup and the length of the aliphatic hydrocarbon chain. In summary, the findings highlight the crucial role of charge distribution on surfactant functional groups in the binding mode and the thermodynamic stability of surfactant-protein complexes.
Collapse
Affiliation(s)
| | | | | | - Sergey A. Samsonov
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (O.G.); (A.S.); (K.Ż.)
| | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (O.G.); (A.S.); (K.Ż.)
| |
Collapse
|
13
|
Adick A, Hoheisel W, Schneid S, Hester S, Langer K. Development of a screening platform for the formulation of poorly water-soluble drugs as albumin-stabilized nanosuspensions using nab™ technology. Int J Pharm 2024; 662:124491. [PMID: 39032872 DOI: 10.1016/j.ijpharm.2024.124491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The nanoparticle albumin bound™ (nab™) technology generally offers great potential for the formulation of poorly water-soluble drugs as albumin-stabilized nanosuspensions for intravenous use while avoiding solubilizers and cross-linking agents. The nab™ technology is a three-step process consisting of emulsification, high-pressure homogenization and solvent evaporation. Within this work, a screening approach was developed to predict whether active pharmaceutical ingredients are suitable for nab™ formulations. A design of experiments approach was used to investigate the effects of ultrasonic homogenization on an albumin-stabilized itraconazole nanosuspension. Based on this, a screening platform was developed, and subsequently evaluated and applied to a selection of poorly water-soluble drugs. The screening process to produce albumin-stabilized nanosuspensions consists of two process steps: Ultrasonic treatment, which combined emulsification and homogenization, followed by solvent evaporation. The results of the screening process were fully transferable to the standard three-step process of nab™ technology. In addition, based on drug screening, drug properties were highlighted that are important for the development of nab™ formulations. All in all, the nab™ technology is a promising but not universal formulation platform for poorly water-soluble drugs. Nevertheless, for some poorly soluble drugs it offers a valuable approach for the formulation of nanosuspensions for intravenous use.
Collapse
Affiliation(s)
- Annika Adick
- Institute of Pharmaceutical Technology and Biopharmacy, University Muenster, Corrensstraße 48, 48149 Muenster, Germany.
| | - Werner Hoheisel
- Bayer AG, Process Technologies, Chempark, Building E41, 51368 Leverkusen, Germany.
| | - Stefan Schneid
- Bayer AG, Pharmaceuticals, Drug Product Development, Friedrich-Ebert-Straße 217-333, 42117 Wuppertal, Germany.
| | - Sarah Hester
- Institute of Pharmaceutical Technology and Biopharmacy, University Muenster, Corrensstraße 48, 48149 Muenster, Germany.
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University Muenster, Corrensstraße 48, 48149 Muenster, Germany.
| |
Collapse
|
14
|
Maghrabia AE, Boughdady MF, Khater SM, ِِAbu Hashim II, Meshali MM. Quality by design approach of apocynin loaded clove oil based nanostructured lipid carrier as a prophylactic regimen in hemorrhagic cystitis in vitro and in vivo comprehensive study. Sci Rep 2024; 14:19162. [PMID: 39160172 PMCID: PMC11333711 DOI: 10.1038/s41598-024-68721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
Apocynin (APO) is a naturally occurring acetophenone with eminent anti-inflammatory and anti-oxidant peculiarities. It suffers from poor bioavailability due to low aqueous solubility. Herein, APO was loaded in a Clove oil (CO) based Nanostructured lipid carrier (NSLC) system using a simple method (ultrasonic emulsification) guided by a quality-by-design approach (23 full factorial design) to optimize the formulated NSLCs. The prepared NSLCs were evaluated regarding particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE%). The optimal formula (F2) was extensively investigated through transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, Differential scanning calorimetry (DSC), X-ray diffractometry (XRD), in vitro release, and stability studies. Cytotoxicity against human urinary bladder carcinoma (T24) cell line and in vivo activity studies in rats with induced cystitis were also assessed. The results disclosed that the optimal formula (F2) had PS of 214.8 ± 5.8 nm with EE% of 79.3 ± 0.9%. F2 also exhibited a strong cytotoxic effect toward the T24 cancer cells expressed by IC50 value of 5.8 ± 1.3 µg/mL. Pretreatment with the optimal formula (orally) hinted uroprotective effect against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rat models, emphasized by histopathological, immunohistochemical, and biochemical investigations. In consideration of the simple fabrication process, APO-loaded CO-based NSLCs can hold prospective potential in the prophylaxis of oncologic and urologic diseases.
Collapse
Affiliation(s)
- Amir Elsayed Maghrabia
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmacy, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt.
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sherry Mohamed Khater
- Department of Clinical Pathology, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | | | | |
Collapse
|
15
|
Diao X, Wang Y, Jia R, Chen X, Liu G, Liu D, Guan H. Influences of ultrasonic treatment on the physicochemical properties and microstructure of diacylglycerol-loaded emulsion stabilized with soybean protein isolate and sodium alginate. ULTRASONICS SONOCHEMISTRY 2024; 108:106981. [PMID: 38981339 PMCID: PMC11280087 DOI: 10.1016/j.ultsonch.2024.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
This study examined the impacts of ultrasonic power (0, 150, 300, 450, 600, and 750 W) and ultrasonic durations (3, 6, 9, 12, and 15 min) on the physicochemical properties and microstructure of diacylglycerol (DAG)-loaded emulsions stabilized with soybean protein isolate (SPI) and sodium alginate (SA). The findings indicated that the smallest particle size, zeta potential, and contact angle for SPI-SA-DAG emulsions were respectively 5.58 μm, -49.85 mV, and 48.65°, achieved at an ultrasonic power of 450 W. The emulsification properties, loss modulus, storage modulus, and apparent viscosity of the emulsions were optimal at this power setting and at a duration of 9 min. Analytical techniques, including confocal laser scanning-, scanning electron-, and atomic force microscopy, revealed that ultrasonication significantly altered emulsion aggregation state, with the surface roughness (Rq) being minimized at 450 W. These results demonstrated that the stability of SPI-SA-DAG emulsions can be effectively enhanced by an appropriate ultrasonic treatment at 450 W for 9 min. This research provides theoretical support for the broad application of sonication techniques in the food industry.
Collapse
Affiliation(s)
- Xiaoqin Diao
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China
| | - Ying Wang
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China
| | - Ruixin Jia
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China
| | - Xiaodong Chen
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China
| | - Guanhua Liu
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China.
| | - Haining Guan
- College of Food Science and Technology, Bohai University, Meat Innovation Center of Liaoning Province, Jinzhou, Liaoning 121013, PR China.
| |
Collapse
|
16
|
Wang F, Li J, Qi Q, Mao Y, Yan X, Li X, Mu Y, Zhang H, Zhao C, Liu J. Structural, physicochemical and digestive properties of non-covalent and covalent complexes of ultrasound treated soybean protein isolate with soybean isoflavone. Food Res Int 2024; 189:114571. [PMID: 38876583 DOI: 10.1016/j.foodres.2024.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
The non-covalent and covalent complexes of ultrasound treated soybean protein isolate (SPI) and soybean isoflavone (SI) were prepared, and the structure, physicochemical properties and in vitro digestion characteristics of SPI-SI complexes were investigated. Ultrasonic treatment increased the non-covalent and covalent binding degree of SPI with SI, and the 240 W ultrasonic covalent complexes had higher binding efficiency. Appropriate ultrasonic treatment caused more uniform particle size distribution, lower average particle size and higher surface charge, which enhanced the free sulfhydryl groups and surface hydrophobicity, thus improving the stability, solubility and emulsifying properties of complexes. Ultrasonic treatment resulted in more disordered secondary structure, tighter tertiary conformation, higher thermal stability and stronger SPI-SI covalent interactions of complexes. These structural modifications of particles had important effects on the chemical stability and gastrointestinal digestion fate of SI. The ultrasonic covalent complexation had a greater resistance to heat-induced chemical degradation of SI and improved its chemical stability. Furthermore, the 240 W ultrasonic covalent complexes showed lower protein digestibility during digestion, and provided stronger protection for SI, which improved the digestion stability and antioxidant activity. Therefore, appropriate ultrasound promoted SPI-SI interactions to improve the stability and functional properties of complexes, which provided a theoretical basis for the development of new complexes and their applications in functional foods.
Collapse
Affiliation(s)
- Fang Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jinying Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Qi Qi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Yuxuan Mao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Xiaopian Yan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Xinqi Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Yanfei Mu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| |
Collapse
|
17
|
Pi X, Zhu L, Wang Y, Sun F, Zhang B. Effect of the Combined Ultrasound with Other Technologies on Food Allergenicity: Ultrasound before, under, and after Other Technologies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16095-16111. [PMID: 38984512 DOI: 10.1021/acs.jafc.4c03562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Food allergies are a main public health disease in the world. Ultrasound is an environmentally friendly technology that typically leads to protein unfolding and loss of protein structure, which means it has the potential to be combined with other technologies to achieve a great reduction of allergenicity in foods. This review concludes the effects of the combined ultrasound with other technologies on food allergenicity from three combinations: ultrasound before other technologies, ultrasound under other technologies, and ultrasound after other technologies. Each combination affects food allergenicity through different mechanisms: (1) as for ultrasound before other technologies, ultrasound pretreatment can unfold and lose the protein structure to improve the accessibility of other technologies to epitopes; (2) as for ultrasound under other technologies, ultrasound can continuously affect the accessibility of other technologies to epitopes; (3) as for ultrasound after other technologies, ultrasound further induces structural changes to mask and disrupt the epitopes. The reduction of allergenicity is related to the ultrasound/other technologies conditions and food types/cultivars, etc. The comparison of ultrasound before, under, and after other technologies to decrease food allergenicity should be further investigated in the future. The combination of ultrasound with other technologies is promising to produce hypoallergenic foods.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Southwest University, Chongqing 400715, China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Lilin Zhu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yixuan Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Farong Sun
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Binjia Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| |
Collapse
|
18
|
Martínez-Girón J, Cafarella C, Rigano F, Giuffrida D, Mondello L, Baena Y, Osorio C, Ordóñez-Santos LE. Peach Palm Fruit ( Bactris gasipaes) Peel: A Source of Provitamin A Carotenoids to Develop Emulsion-Based Delivery Systems. ACS OMEGA 2024; 9:28738-28753. [PMID: 38973829 PMCID: PMC11223146 DOI: 10.1021/acsomega.4c03095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
The peach palm fruit (Bactris gasipaes) peel is a byproduct after fruit consumption. The peel flour of two varieties (yellow and red) was separately obtained by hot air drying and was subsequently milled. The proximate analysis showed that the red variety exhibited higher protein, fat, and fiber contents than the yellow one. A higher carotenoid (836.5 ± 24.5 μg/g), phenolic compounds (83.17 ± 1.76 mg GAE/100 g), and provitamin A activity (33.10 ± 0.83 μg retinol/g) were found in the cooked red variety. The carotenoid and phenolic compositions were analyzed by HPLC-PDA-MS, finding β-carotene and γ-carotene to be major compounds. The effect of thermal treatment increased the amount of these provitamin A carotenoids and lycopene, which were detected only in the red variety. Among phenolic compounds, procyanidin dimer (isomer I), feruloyl quinic acid, and several apigenin C-hexosides were identified as major constituents of peach palm epicarp. A carotenoid-rich emulsion-based delivery system was obtained after the optimization (RSM model) of carotenoid extraction with ultraturrax and sunflower oil and further development of an ultrasound-assisted emulsion. The best conditions for a stable emulsion were 73.75% water, 25% carotenoid-rich oil extract, 1.25% emulsifiers, and 480 W of ultrasonic power for 5 min. The optimized emulsion had a total carotenoid content of 67.61 μg/g, Provitamin A activity of 3.23 ± 0.56 μg RAE/g, droplet size of 502.23 nm, polydispersity index of 0.170, and zeta potential of -32.26 mV. This emulsion was chemically and physically stable for 35 days at 30 ± 2 °C, showing potential as a food additive with biofunctional properties. The strategy here developed is an economical and environmentally friendly process that allows the reuse of the byproduct of B. gasipaes.
Collapse
Affiliation(s)
- Jader Martínez-Girón
- Facultad
de Ingeniería y Administración, Departamento de Ingeniería, Universidad Nacional de Colombia-Sede Palmira, Palmira, Valle del Cauca 763533, Colombia
- Tecnología
de Procesamiento de Alimentos, Universidad
del Valle-Seccional Palmira, Palmira, Valle del Cauca 763531, Colombia
| | - Cinzia Cafarella
- Messina
Institute of Technology c/o Department of Chemical Biological, Pharmaceutical
and Environmental Sciences, former Veterinary School, University of Messina, Messina 98122, Italy
| | - Francesca Rigano
- Messina
Institute of Technology c/o Department of Chemical Biological, Pharmaceutical
and Environmental Sciences, former Veterinary School, University of Messina, Messina 98122, Italy
| | - Daniele Giuffrida
- Department
of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina 98122, Italy
| | - Luigi Mondello
- Messina
Institute of Technology c/o Department of Chemical Biological, Pharmaceutical
and Environmental Sciences, former Veterinary School, University of Messina, Messina 98122, Italy
- Chromaleont
s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and
Environmental Sciences, former Veterinary School, University of Messina, Messina 98122, Italy
| | - Yolima Baena
- Departamento
de Farmacia, Facultad de Ciencias, Universidad
Nacional de Colombia-Sede Bogotá, Bogotá 111321, Colombia
| | - Coralia Osorio
- Departamento
de Química, Universidad Nacional
de Colombia-Sede Bogotá, Bogotá 111321, Colombia
| | - Luis Eduardo Ordóñez-Santos
- Facultad
de Ingeniería y Administración, Departamento de Ingeniería, Universidad Nacional de Colombia-Sede Palmira, Palmira, Valle del Cauca 763533, Colombia
| |
Collapse
|
19
|
Vannoy KJ, Edwards MQ, Renault C, Dick JE. An Electrochemical Perspective on Reaction Acceleration in Microdroplets. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:149-171. [PMID: 38594942 DOI: 10.1146/annurev-anchem-061622-030919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Analytical techniques operating at the nanoscale introduce confinement as a tool at our disposal. This review delves into the phenomenon of accelerated reactivity within micro- and nanodroplets. A decade of accelerated reactivity observations was succeeded by several years of fundamental studies aimed at mechanistic enlightenment. Herein, we provide a brief historical context for rate enhancement in and around micro- and nanodroplets and summarize the mechanisms that have been proposed to contribute to such extraordinary reactivity. We highlight recent electrochemical reports that make use of restricted mass transfer to enhance electrochemical reactions and/or quantitatively measure reaction rates within droplet-confined electrochemical cells. A comprehensive approach to nanodroplet reactivity is paramount to understanding how nature takes advantage of these systems to provide life on Earth and, in turn, how to harness the full potential of such systems.
Collapse
Affiliation(s)
- Kathryn J Vannoy
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
| | | | - Christophe Renault
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
- 2Current Address: Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Jeffrey E Dick
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
- 3Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
20
|
Zhang Y, Lai Y, Zheng M. Ultrasound-assisted intensification of Pickering interfacial biocatalysis preparation of vitamin A aliphatic esters. ULTRASONICS SONOCHEMISTRY 2024; 107:106929. [PMID: 38820933 PMCID: PMC11179323 DOI: 10.1016/j.ultsonch.2024.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
A novel approach to ultrasound-assisted Pickering interfacial biocatalysis (PIB) has been proposed and implemented for the efficient enzymatic transesterification production of vitamin A fatty acid esters. This is the first instance of exploiting the synergistic effect of ultrasound and the bifunctional modification of enzyme supports to accelerate biocatalytic performance in PIB systems. The optimal conditions were determined to be ultrasound power of 70 W, on/off time of 5 s/5 s, substrate molar ratio of 1:1, enzyme addition of 2 %, and a volume ratio of n-hexane to PBS of 3:1, a temperature of 40 °C, and a time of 30 min. The application of ultrasound technology not only improved lipase activity but also allowed for a reduction in emulsion droplet size to enhance interfacial mass transfer.Bifunctional modification of silica-based supports enhanced stability of immobilized enzymes by increasing hydrogen bonding while maintaining the active interface microenvironment. Compared with a non-ultrasound-assisted PIB system stabilized by mono-modified immobilized enzyme particles, the catalytic efficacy (CE) of the novel system reached 8.18 mmol g-1 min-1, which was enhanced by 3.33-fold, while the interfacial area was found to have increased by 17.5-fold. The results facilitated the conversion of vitamin A palmitate (VAP), vitamin A oleate (VAO), vitamin A linoleate (VAL), and vitamin A linolenate (VALn), with conversion rates of approximately 98.2 %, 97.4 %, 96.1 %, and 94.7 %, respectively. This represents the most efficient example that has been reported to our knowledge. Furthermore, the system demonstrated improved reusability, with a conversion rate of 62.1 % maintained even after 10 cycles. The findings presented in this paper provide valuable insights into an efficient and conveniently promising protocol for the development of PIB systems.
Collapse
Affiliation(s)
- Yufei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| | - Yundong Lai
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
21
|
Jadhav HB, Choudhary P, Gogate P, Ramniwas S, Mugabi R, Ahmad Z, Mohammed Basheeruddin Asdaq S, Ahmad Nayik G. Sonication as a potential tool in the formation of protein-based stable emulsion - Concise review. ULTRASONICS SONOCHEMISTRY 2024; 107:106900. [PMID: 38781674 PMCID: PMC11141282 DOI: 10.1016/j.ultsonch.2024.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Emulsion systems are extensively used in the food processing sector and the use of natural emulsifiers like proteins for stabilizing emulsion has been in demand from consumers due to increased awareness about the consumption of healthy food. Numerous methods are available for the preparation of emulsion, but ultrasound got more attention among common methods owing to its economical and environment-friendly characteristics. The physical effects caused by to bursting of the cavity bubble, result in reduced droplet size, thus forming an emulsion with appreciable stability. Ultrasound ameliorates the emulsifying characteristics of natural emulsifiers like protein and improves the storage stability of the emulsion by positively boosting the rheological, emulsifying characteristics, improving zeta potential, and reducing average droplet size. The stability of protein-based emulsion is affected by environmental stresses hence conjugate of protein with polysaccharide showed good emulsifying characteristics. However, the data on the effect of ultrasound parameters on emulsifier properties is lacking and there is a need to develop a sonication device that can carry out large-scale emulsification operation. The review covers the principles and mechanisms of ultrasound-assisted formation of protein-based and protein-based conjugate emulsions. Further, the effect of ultrasound on various characteristics of protein-based emulsion is also explored. This review will provide concise data to the researchers to extend their experiments in the area of ultrasound emulsification which will help in commercializing the technology at the industrial scale.
Collapse
Affiliation(s)
- Harsh B Jadhav
- PIHM, Unit UMET, INRAE, 369 Rue Jules Guesde 59650 Villeneuve d'Ascq, France; Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Pintu Choudhary
- Department of Food Technology, CBL Government Polytechnic, Bhiwani, Haryana.
| | - Parag Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda.
| | - Zubair Ahmad
- Center of Bee Research and its Products, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Applied College, Mahala Campus, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College Shopian-192303, J&K, India.
| |
Collapse
|
22
|
Li Z, Cao Y, Wang Y, Li Y, Liu Z, Zhu Z, Zhang H, Huang J, Xiong YL. The effects of resonance acoustic mixing modulation on the structural and emulsifying properties of pea protein isolate. Food Chem 2024; 444:138541. [PMID: 38330601 DOI: 10.1016/j.foodchem.2024.138541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
The effects of resonant acoustic mixing (RAM) with different treatment times (0, 5, 10, 15, 20 and 30 min) on the structural and emulsifying properties of pea protein isolate (PPI) were investigated for the first time. Increasing the RAM treatment time from 0 to 20 min decreased the α-helix/β-sheet ratio and particle size of the PPI samples by 37.84 % and 46.44 %, respectively, accompanied by an increase in solubility from 54.79 % to 71.80 % (P < 0.05). Consequently, the emulsifying activity index of PPI (from 10.45 m2/g to 14.2 m2/g) and the physical stability of RAM-PPI emulsions were effectively enhanced, which was confirmed by the small and uniformly distributed oil droplets in the micrographs of the emulsions. However, excessive RAM treatment (30 min) diminished the effectiveness of the aforementioned improvements. Therefore, obviously enhanced solubility and emulsifying properties of PPI can be attained through proper RAM treatment (15-20 min).
Collapse
Affiliation(s)
- Zhaorui Li
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yungang Cao
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yibing Wang
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yingjie Li
- Shenzhen Ramixers Technology Co., LTD, Shenzhen 518000, China
| | - Zhenbin Liu
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhenbao Zhu
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Huan Zhang
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Junrong Huang
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Youling L Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States
| |
Collapse
|
23
|
Easwaran C, Christopher SR, Moorthy G, Mohan P, Marimuthu R, Koothan V, Nallusamy S. Nano hybrid fertilizers: A review on the state of the art in sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172533. [PMID: 38649050 DOI: 10.1016/j.scitotenv.2024.172533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
The advent of Nanohybrid (NH) fertilizers represents a groundbreaking advancement in the pursuit of precision and sustainable agriculture. This review abstract encapsulates the transformative potential of these innovative formulations in addressing key challenges faced by modern farming practices. By incorporating nanotechnology into traditional fertilizer matrices, nanohybrid formulations enable precise control over nutrient release, facilitating optimal nutrient uptake by crops. This enhanced precision not only fosters improved crop yields but also mitigates issues of over-fertilization, aligning with the principles of sustainable agriculture. Furthermore, nanohybrid fertilizers exhibit the promise of minimizing environmental impact. Their controlled release mechanisms significantly reduce nutrient runoff, thereby curbing water pollution and safeguarding ecosystems. This dual benefit of precision nutrient delivery and environmental sustainability positions nanohybrid fertilizers as a crucial tool in the arsenal of precision agriculture practices. The intricate processes of uptake, translocation, and biodistribution of nutrients within plants are examined in the context of nanohybrid fertilizers. The nanoscale features of these formulations play a pivotal role in governing the efficiency of nutrient absorption, internal transport, and distribution within plant tissues. Factors affecting the performance of nanohybrid fertilizers are scrutinized, encompassing aspects such as soil type, crop variety, and environmental conditions. Understanding these variables is crucial for tailoring nanohybrid formulations to specific agricultural contexts, and optimizing their impact on crop productivity and resource efficiency. Environmental considerations are integral to the review, assessing the broader implications of nanohybrid fertilizer application. This review offers a holistic overview of nanohybrid fertilizers in precision and sustainable agriculture. Exploring delivery mechanisms, synthesis methods, uptake dynamics, biodistribution patterns, influencing factors, and environmental implications, it provides a comprehensive understanding of the multifaceted role and implications of nanohybrid fertilizers in advancing modern agricultural practices.
Collapse
Affiliation(s)
- Cheran Easwaran
- Centre for Agricultural Nanotechnology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, 641003, India
| | - Sharmila Rahale Christopher
- Centre for Agricultural Nanotechnology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, 641003, India
| | - Gokulakrishnan Moorthy
- Indian Council of Agricultural Research - Indian Institute of Agricultural Biotechnology, Ranchi 834003, India
| | - Prasanthrajan Mohan
- Centre for Agricultural Nanotechnology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, 641003, India
| | - Raju Marimuthu
- Centre for Water and Geospatial Studies, Tamil Nadu Agricultural University, 641003, India
| | - Vanitha Koothan
- Department of Fruit Science, HC& RI, Tamil Nadu Agricultural University, 641003, India
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, 641003, India
| |
Collapse
|
24
|
Pandita G, de Souza CK, Gonçalves MJ, Jasińska JM, Jamróz E, Roy S. Recent progress on Pickering emulsion stabilized essential oil added biopolymer-based film for food packaging applications: A review. Int J Biol Macromol 2024; 269:132067. [PMID: 38710257 DOI: 10.1016/j.ijbiomac.2024.132067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Nowadays food safety and protection are a growing concern for food producers and food industry. The stability of food-grade materials is key in food processing and shelf life. Pickering emulsions (PEs) have gained significant attention in food regimes owing to their stability enhancement of food specimens. PE can be developed by high and low-energy methods. The use of PE in the food sector is completely safe as it uses solid biodegradable particles to stabilize the oil in water and it also acts as an excellent carrier of essential oils (EOs). EOs are useful functional ingredients, the inclusion of EOs in the packaging film or coating formulation significantly helps in the improvement of the shelf life of the packed food item. The highly volatile nature, limited solubility and ease of oxidation in light of EOs restricts their direct use in packaging. In this context, the use of PEs of EOs is suitable to overcome most of the challenges, Therefore, recently there have been many papers published on PEs of EOs including active packaging film and coatings and the obtained results are promising. The current review amalgamates these studies to inform about the chemistry of PEs followed by types of stabilizers, factors affecting the stability and different high and low-energy manufacturing methods. Finally, the review summarizes the recent advancement in PEs-added packaging film and their application in the enhancement of shelf life of food.
Collapse
Affiliation(s)
- Ghumika Pandita
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | | | | | - Joanna Maria Jasińska
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland; Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Kraków, Poland
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
25
|
Zhou S, Zhang W, Han X, Liu J, Asemi Z. The present state and future outlook of pectin-based nanoparticles in the stabilization of Pickering emulsions. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 38733326 DOI: 10.1080/10408398.2024.2351163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
The stabilization of Pickering emulsions using micro/nanoparticles has gained significant attention due to their wide range of potential applications in industries such as cosmetics, food, catalysis, tissue engineering, and drug delivery. There is a growing demand for the development of environmentally friendly micro/nanoparticles to create stable Pickering emulsions. Naturally occurring polysaccharides like pectin offer promising options as they can assemble at oil/water interfaces. This polysaccharide is considered a green candidate because of its biodegradability and renewable nature. The physicochemical properties of micro/nanoparticles, influenced by fabrication methods and post-modification techniques, greatly impact the characteristics and applications of the resulting Pickering emulsions. This review focuses on recent advancements in Pickering emulsions stabilized by pectin-based micro/nanoparticles, as well as the application of functional materials in delivery systems, bio-based films and 3D printing using these emulsions as templates. The effects of micro/nanoparticle properties on the characteristics of Pickering emulsions and their applications are discussed. Additionally, the obstacles that currently hinder the practical implementation of pectin-based micro/nanoparticles and Pickering emulsions, along with future prospects for their development, are addressed.
Collapse
Affiliation(s)
- Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Wei Zhang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Xiao Han
- Jilin Jinziyuan Biotechnology Co., Ltd, Shuangliao, Jilin, China
| | - Jinhui Liu
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
- Huashikang (Shenyang) Health Industry Group Co., Ltd, Shenyang, Liaoning, China
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| |
Collapse
|
26
|
Wang L, He S, Liu R, Xue Y, Quan Y, Shi R, Yang X, Lin Q, Sun X, Zhang Z, Zhang L. A pH/ROS dual-responsive system for effective chemoimmunotherapy against melanoma via remodeling tumor immune microenvironment. Acta Pharm Sin B 2024; 14:2263-2280. [PMID: 38799639 PMCID: PMC11119573 DOI: 10.1016/j.apsb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 05/29/2024] Open
Abstract
Chemotherapeutics can induce immunogenic cell death (ICD) in tumor cells, offering new possibilities for cancer therapy. However, the efficiency of the immune response generated is insufficient due to the inhibitory nature of the tumor microenvironment (TME). Here, we developed a pH/reactive oxygen species (ROS) dual-response system to enhance chemoimmunotherapy for melanoma. The system productively accumulated in tumors by specific binding of phenylboronic acid (PBA) to sialic acids (SA). The nanoparticles (NPs) rapidly swelled and released quercetin (QUE) and doxorubicin (DOX) upon the stimulation of tumor microenvironment (TME). The in vitro and in vivo results consistently demonstrated that the NPs improved anti-tumor efficacy and prolonged survival of mice, significantly enhancing the effects of the combination. Our study revealed DOX was an ICD inducer, stimulating immune responses and promoting maturation of dendritic cells (DCs). Additionally, QUE served as a TME regulator by inhibiting the cyclooxygenase-2 (COX2)-prostaglandin E2 (PGE2) axis, which influenced various immune cells, including increasing cytotoxic T cells (CLTs) infiltration, promoting M1 macrophage polarization, and reducing regulatory T cells (Tregs) infiltration. The combination synergistically facilitated chemoimmunotherapy efficacy by remodeling the immunosuppressive microenvironment. This work presents a promising strategy to increase anti-tumor efficiency of chemotherapeutic agents.
Collapse
Affiliation(s)
- Leilei Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shanshan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Quan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rongying Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xueying Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
27
|
Zhang H, Du M, Hu H, Zhang H, Song N. A Review of Ultrasonic Treatment in Mineral Flotation: Mechanism and Recent Development. Molecules 2024; 29:1984. [PMID: 38731475 PMCID: PMC11085708 DOI: 10.3390/molecules29091984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Ultrasonic treatment has been widely used in the mineral flotation process due to its advantages in terms of operational simplicity, no secondary pollutant formation, and safety. Currently, many studies have reported the effect of ultrasonic treatment on mineral flotation and shown excellent flotation performance. In this review, the ultrasonic mechanisms are classified into three types: the transient cavitation effect, stable cavitation effect, and acoustic radiation force effect. The effect of the main ultrasonic parameters, including ultrasonic power and ultrasonic frequency, on mineral flotation are discussed. This review highlights the uses of the application of ultrasonic treatment in minerals (such as the cleaning effect, ultrasonic corrosion, and desulfuration), flotation agents (such as dispersion and emulsification and change in properties and microstructure of pharmaceutical solution), and slurry (such formation of microbubbles and coalescence). Additionally, this review discusses the challenges and prospects of using ultrasonic approaches for mineral flotation. The findings demonstrate that the application of the ultrasonic effect yields diverse impacts on flotation, thereby enabling the regulation of flotation behavior through various treatment methods to enhance flotation indices and achieve the desired objectives.
Collapse
Affiliation(s)
- Huan Zhang
- College of Chemistry and Material, Weinan Normal University, Weinan 714099, China; (H.Z.); (N.S.)
| | - Mingming Du
- State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi’an Jiaotong University, Xi’an 710049, China;
| | - Haijie Hu
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China;
| | - Hongli Zhang
- College of Chemistry and Material, Weinan Normal University, Weinan 714099, China; (H.Z.); (N.S.)
| | - Naijian Song
- College of Chemistry and Material, Weinan Normal University, Weinan 714099, China; (H.Z.); (N.S.)
| |
Collapse
|
28
|
Sun Y, Wang Y, Xie Y, Li T, Wang Y, Zhang X, Xia B, Huang J, Wang S, Dong W. Ultra-stable pickering emulsion stabilized by anisotropic pea protein isolate-fucoidan conjugate particles through Maillard reaction. Int J Biol Macromol 2024; 264:130589. [PMID: 38437935 DOI: 10.1016/j.ijbiomac.2024.130589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Bio-based emulsifiers hold significant importance in various industries, particularly in food, cosmetics, pharmaceuticals and other related fields. In this study, pea protein isolate (PPI) and fucoidan (FUD) were conjugated via the Maillard reaction, which is considered safe and widely used in the preparation of food particle. The PPI-FUD conjugated particles exhibit an anisotropic non-spherical structure, thereby possessing a high detachment energy capable of preventing emulsion coalescence and Ostwald ripening. Compared to emulsions previously prepared in other studies (< 500 mM), the Pickering emulsion stabilized by PPI-FUD conjugate particles demonstrates outstanding ionic strength resistance (up to 5000 mM). Furthermore, when encapsulating curcumin, the Pickering emulsion protects the curcumin from oxidation. Additionally, the formulated emulsions demonstrated the capability to incorporate up to 60 % (v/v) oil phase, revealing remarkable performance in terms of storage stability, pH stability, and thermal stability.
Collapse
Affiliation(s)
- Yue Sun
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yijie Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yunpeng Xie
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Bihua Xia
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
29
|
Nemli E, Ozkan G, Gultekin Subasi B, Cavdar H, Lorenzo JM, Zhao C, Capanoglu E. Interactions between proteins and phenolics: effects of food processing on the content and digestibility of phenolic compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2535-2550. [PMID: 38318731 DOI: 10.1002/jsfa.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/03/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
Phenolic compounds have recently become one of the most interesting topics in different research areas, especially in food science and nutrition due to their health-promoting effects. Phenolic compounds are found together with macronutrients and micronutrients in foods and within several food systems. The coexistence of phenolics and other food components can lead to their interaction resulting in complex formation. This review article aims to cover the effects of thermal and non-thermal processing techniques on the protein-phenolic interaction especially focusing on the content and digestibility of phenolics by discussing recently published research articles. It is clear that the processing conditions and individual properties of phenolics and proteins are the most effective factors in the final content and intestinal fates of phenolic compounds. Besides, thermal and non-thermal treatments, such as high-pressure processing, pulsed electric field, cold plasma, ultrasonication, and fermentation may induce alterations in those interactions. Still, new investigations are required for different food processing treatments by using a wide range of food products to enlighten new functional and healthier food product design, to provide the optimized processing conditions of foods for obtaining better quality, higher nutritional properties, and health benefits. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elifsu Nemli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Humeyra Cavdar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| |
Collapse
|
30
|
Upadhyay M, Ravi A, Ranade VV. Dense Oil in Water Emulsions using Vortex-Based Hydrodynamic Cavitation: Effective Viscosity, Sauter Mean Diameter, and Droplet Size Distribution. Ind Eng Chem Res 2024; 63:4977-4990. [PMID: 38525289 PMCID: PMC10958511 DOI: 10.1021/acs.iecr.3c04555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
Vortex-based hydrodynamic cavitation offers an effective platform for producing emulsions. In this work, we have investigated characteristics of dense oil in water emulsions with oil volume fractions up to 60% produced using a vortex-based cavitation device. Emulsions were prepared using rapeseed oil with oil volume fractions of 0.15, 0.3, 0.45, and 0.6. For each of these volume fractions, the pressure drop as a function of the flow rate of emulsions through the cavitation device was measured. These data were used for estimating the effective viscosity of the emulsions. The droplet size distribution of the emulsions was measured using the laser diffraction technique. The influence of the number of passes through the cavitation device on droplet size distributions and the Sauter mean diameter was quantified. It was found that the Sauter mean diameter (d32) decreases with an increase in the number of passes as n-0.2. The Sauter mean diameter was found to be almost independent of oil volume fraction (αo) up to a certain critical volume fraction (αoc). Beyond αoc, d32 was found to be linearly proportional to a further increase in oil volume fraction. As expected, the turbidity of the produced emulsions was found to be linearly proportional to the oil volume fraction. The slope of turbidity versus oil volume fraction can be used to estimate the Sauter mean diameter. A suitable correlation was developed to relate turbidity, volume fraction, and Sauter mean diameter. The droplet breakage efficiency of the vortex-based cavitation device for dense oil in water emulsions was quantified and reported. The breakage efficiency was found to increase linearly with an increase in oil volume fraction up to αoc and then plateau with a further increase in the oil volume fraction. The breakage efficiency was found to decrease with an increase in energy consumption per unit mass (E) as E-0.8. The presented results demonstrate the effectiveness of a vortex-based cavitation device for producing dense oil in water emulsions and will be useful for extending its applications to other dense emulsions.
Collapse
Affiliation(s)
| | | | - Vivek V. Ranade
- Multiphase Reactors and Intensification
Group Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
31
|
Liu Y, Wu Q, Zhang J, Mao X. Effect of synergism of sucrose ester and xanthan gum on the stability of walnut milk. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1909-1919. [PMID: 37884470 DOI: 10.1002/jsfa.13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/06/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Single emulsifiers have an effect on the stability of plant protein drinks, giving some improvement. Emulsifiers are more effective in maintaining emulsion stability when combined with polysaccharides such as xanthan gum. In this paper, we studied the food-grade emulsifier sucrose ester and measured the average particle size, polydispersity value, zeta potential, microrheological properties, microstructure and creaming index related to walnut protein emulsion by constructing a walnut protein emulsion simulation system. SDS-PAGE and low-field NMR were used to analyze the relative molecular masses of emulsions and the water distribution of emulsions, respectively, to further investigate the synergistic effects of sucrose esters and xanthan gum on the ease of emulsification and intrinsic mechanisms of different molecular weight proteins of walnut protein emulsions. RESULTS The results indicate that the synergistic effect of sucrose esters and xanthan gum was to stabilize emulsions better than single emulsifiers. Xanthan gum and protein may form protein-polysaccharide complexes, as well as the hydrophobic interaction between sucrose ester and xanthan gum. The properties of xanthan gum can improve the stability of the emulsion by affecting the mechanical properties of walnut protein emulsion, and the combination of sucrose ester and xanthan gum can better stabilize large protein molecules. CONCLUSION The results not only provide a theoretical basis for the stability of plant protein emulsion systems, but also provide technical support for the production and processing of large-molecule plant proteins into emulsions in this field for improving their stability, and also provide more possibilities for other types of emulsions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuqing Liu
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang, China
| | - Qingzhi Wu
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang, China
| | - Xiaoying Mao
- School of Food Science and Technology, Shihezi University, Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang, China
| |
Collapse
|
32
|
Lv Y, Zhao H, Xu Y, Yi S, Li X, Li J. Diacylglycerol emulsion with different droplet size improves the gelation properties of Nemipterus virgatus myofibrillar protein. Food Chem 2024; 434:137322. [PMID: 37713759 DOI: 10.1016/j.foodchem.2023.137322] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023]
Abstract
Effects of diacylglycerol (DAG) emulsions with different particle sizes on gel properties, microstructures and chemical forces of myofibrillar protein (MP) gels were investigated. DAG emulsions addition significantly improved the whiteness of MP gels. With the decrease of emulsion droplet size, G', G" and immovable water content of MP gels gradually increased, and cooking loss decreased, in which, emulsion prepared under 200 W reduced the cooking loss to the minimum value of 2.57 %. Furthermore, the gel strength and texture properties of MP gels were enhanced as the decreasing emulsion droplet size, and significant improvement (P < 0.05) appeared in gel strength and hardness when ultrasonic power reached 200 W, and then texture indexes tended to be stable as power continued to increase. Reducing the emulsion particle size facilitated the uniform distribution of DAG in the gel network and enhanced the chemical forces of composite gel, forming the more compact network structure.
Collapse
Affiliation(s)
- Yanan Lv
- College of Food Science and Engineering, Institute of Ocean Research, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Honglei Zhao
- College of Food Science and Engineering, Institute of Ocean Research, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Yongxia Xu
- College of Food Science and Engineering, Institute of Ocean Research, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China.
| | - Shumin Yi
- College of Food Science and Engineering, Institute of Ocean Research, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Institute of Ocean Research, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Institute of Ocean Research, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
33
|
Bai L, Geng S, Zhou Y, Ma H, Liu B. Ultrasound-assisted fabrication and stability evaluation of okra seed protein stabilized nanoemulsion. ULTRASONICS SONOCHEMISTRY 2024; 104:106807. [PMID: 38367307 PMCID: PMC10883816 DOI: 10.1016/j.ultsonch.2024.106807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
The structure and functional properties of okra seed protein (OSP) were characterized, the ultrasonic homogenization process of OSP nano-emulsion was optimized by response surface methodology (RSM), and its stability was also evaluated in this study. The results suggested that OSP was a high-quality plant protein, rich in glutamic acid. The molecular weight of its main subunits distributed in the range of 10-55 kDa, and some subunits were connected by disulfide bonds. Although the water and oil holding capacities of OSP were inferior to those of soy protein isolate (SPI), its emulsifying ability was superior to that of SPI. And the OSP concentration, ultrasonic time and ultrasonic power had obvious effects on the droplet size of nanoemulsion. The optimum process of OSP emulsion was determined as follows: OSP concentration 2.4 %, ultrasonic power 600 W, ultrasonic time 340 s. Under these conditions, the median droplet size of the nanoemulsion was 192.03 ± 3.48 nm, close to the predicted value (191.195 nm). And the obtained nano-emulsion exhibited high stability to the changes of pH, temperature and ionic strength in the environment. Our results can provide reference for the application of OSP, and promote the development of plant protein-based nanoemulsions.
Collapse
Affiliation(s)
- Lu Bai
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yingxuan Zhou
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
34
|
Qayum A, Rashid A, Liang Q, Kang L, Ahmed Z, Hussain M, Virk MS, Ekumah JN, Ren X, Ma H, Miao S. Multi-scale ultrasound induced composite coacervates of whey protein and pullulan polysaccharide on emulsion forming and stabilizing mechanisms. Colloids Surf B Biointerfaces 2024; 234:113709. [PMID: 38159329 DOI: 10.1016/j.colsurfb.2023.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
A non-destructive technique known as multi-scale ultrasound (MSU) was employed to modify the emulsion consisting of glycosylated bovine whey protein (WP) and pullulan (Pu). To assess the effect on the structural and emulsifying properties of the WP-Pu, the formulated emulsion, was treated with divergent MSU at (single: 20 kHz, 40 kHz, and 60 kHz; dual: 20-40 kHz, 40-60 kHz, and 20-60 kHz; and tri: 20-40-60 kHz) frequency for a duration of 30 min. The tri-frequency, treated emulsion showed improved emulsifying stability compared to the control and MSU-treated single, and dual-frequency samples, as indicated by the particle size, structural morphology, and adsorbed protein. The molecular docking and numerous spectral analysis provided evidence that WP can undergo successful phenolation. This modified form of WP then interacts with Pu through various forces, including H-bonding and other mechanisms, resulting in the formation of a composite emulsion. The rheological properties revealed that both the control emulsion and the MSU-treated emulsion exhibited non-Newtonian pseudoplastic flow behavior. This behavior is characterized by shear thinning, where the viscosity decreases with increasing shear rate. The shear rates tested ranged from 1 to 300 1/s, additionally, the degree of crystallinity increased from 18.2° to 19.4°. Overall, the tri-frequency effect was most pronounced compared to single and dual-frequency. Ultrasonication, an emerging non-thermal technology, proves to be an efficient approach for the formulation of WP-Pu composites. These composites have significant potential for use in drug delivery systems and functional foods.
Collapse
Affiliation(s)
- Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Zahoor Ahmed
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
35
|
Hong E, Tian F, Glynn C, Tsekov S, Huang S, Zhou S, He Z, Rao S, Wang Q. Biologically Driven In Vivo Occlusion Design Provides a Reliable Experimental Glaucoma Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576306. [PMID: 38328239 PMCID: PMC10849511 DOI: 10.1101/2024.01.18.576306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Fluid flow transport through the trabecular meshwork tissues is a major regulator of intraocular pressure (IOP) modulation in healthy and glaucomatous individuals. Microbead occlusion models of ocular hypertension regulate aqueous humor drainage to induce high IOP to allow for in vivo study of pressure-related glaucomatous pathology. However, the reliability and application of current injectable microbeads are hindered by inadequate design of the beads-tissue interfaces to maintain a stable IOP elevation over the long term. Considering the graded, porous architecture and fluid transport of the trabecular meshwork, we developed a tailored, injectable "viscobeads" technique, which induced a sustained elevation of IOP for at least 8 weeks. These composite viscobeads contain a non-degradable polystyrene (PS) core for structural support and a biodegradable polylactic-co-glycolic acid (PLGA) viscoelastic surface. This approach enhances the obstruction of aqueous humor drainage through heterogeneous sizes of trabecular meshwork fenestrations and reliably modulates the magnitude and duration of ocular hypertension. In a mouse model, a single viscobeads injection resulted in sustained IOP elevation (average 21.4±1.39 mm Hg), leading to a 34% retinal ganglion cell (RGC) loss by 56 days. In an earlier stage of glaucoma progression, we conducted non-invasive electroretinography (ERG) recording and revealed glaucomatous progression by analyzing high-frequency oscillatory potentials. To further explore the application of the viscobeads glaucoma models, we assayed a series of genes through adeno-associated virus (AAV)-mediated screening in mice and assessed the impact of genetic manipulation on RGC survivals. CRISPR mediated disruption of the genes, PTEN, ATF3 and CHOP enhanced RGC survival while LIN 28 disruption negatively impacted RGC survival. This biologically driven viscobeads design provides an accessible approach to investigate chronic intraocular hypertension and glaucoma-like neurodegeneration and ultimately tenders the opportunity to evaluate genetic and pharmacological therapeutics.
Collapse
|
36
|
Hashemi H, Shad E, Ghiasi F, Eskandari MH. Savory and Peppermint Essential Oils-Loaded Emulsions and Nanoemulsions Effects on Enterococcus faecium Isolated from Vacuum-Packed Cured Sausage. Foods 2024; 13:341. [PMID: 38275708 PMCID: PMC10815055 DOI: 10.3390/foods13020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 01/27/2024] Open
Abstract
In this work, Enterococcus faecium, the specific spoilage organism responsible for bloating spoilage of sliced vacuum-packed cured emulsion-type sausage, was isolated and identified through molecular and biochemical techniques, and then the antibacterial activities of savory-loaded nanoemulsion (SNE), savory-loaded emulsion (SE), peppermint-loaded nanoemulsion (PNE), and peppermint-loaded emulsion (PE) were investigated against spoilage microorganisms. Nanoemulsions with average particle sizes in the range of 109.27 to 118.55 nm were developed by sonication and remained more stable than emulsion samples for 2 weeks. Regardless of emulsion type, the highest antimicrobial activity was detected for savory-loaded samples. Moreover, the significant enhancements in the antimicrobial activity of SNE compared to SE were confirmed by increasing the inhibition zone diameter (17.6%) and decreasing MIC (50%) and MBC (50%) due to the higher specific surface area of smaller droplets. The TEM and SEM micrographs confirmed the inhibitory effects of SNE due to the significant changes in the cell wall integrity of Enterococcus faecium.
Collapse
Affiliation(s)
| | | | | | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-13131, Iran; (H.H.); (E.S.); (F.G.)
| |
Collapse
|
37
|
Sokol MB, Beganovskaya VA, Mollaeva MR, Yabbarov NG, Chirkina MV, Belykh DV, Startseva OM, Egorov AE, Kostyukov AA, Kuzmin VA, Lomakin SM, Shilkina NG, Krivandin AV, Shatalova OV, Gradova MA, Abakumov MA, Nikitin AA, Maksimova VP, Kirsanov KI, Nikolskaya ED. Pharmaceutical Approach to Develop Novel Photosensitizer Nanoformulation: An Example of Design and Characterization Rationale of Chlorophyll α Derivative. Pharmaceutics 2024; 16:126. [PMID: 38258135 PMCID: PMC10818748 DOI: 10.3390/pharmaceutics16010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, we described physico-chemical properties of novel nanoformulation of photosensitizer-pyropheophorbide α 17-diethylene glycol ester (XL) (chlorophyll α derivative), revealing insights into antitumor activity and maintaining quality, meeting the pharmaceutical approach of new nanoformulation design. Our formulation, based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles, increased XL solubility and selective tumor-targeted accumulation. In our research, we revealed, for the first time, that XL binding to polyvinyl alcohol (PVA) enhances XL photophysical activity, providing the rationale for PVA application as a stabilizer for nanoformulations. Results of FTIR, DSC, and XRD revealed the physical interactions between XL and excipients, including PVA, indicating that the encapsulation maintained XL binding to PVA. The encapsulated XL exhibited higher photophysical activity compared to non-encapsulated substance, which can be attributed to the influence of residual PVA. Gamma-irradiation led to degradation of XL; however, successful sterilization of the samples was achieved through the filtration. Importantly, the encapsulated and sterilized XL retained cytotoxicity against both 2D and 3D tumor cell models, demonstrating the potential of the formulated NP-XL for photodynamic therapy applications, but lacked the ability to reactivate epigenetically silenced genes. These findings provide valuable insights into the design and characterization of PLGA-based nanoparticles for the encapsulation of photosensitizers.
Collapse
Affiliation(s)
- Maria B. Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Veronika A. Beganovskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Mariia R. Mollaeva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Nikita G. Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Margarita V. Chirkina
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Dmitry V. Belykh
- Institute of Chemistry, Komi Scientific Center, Ural Division of the Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Olga M. Startseva
- Pitirim Sorokin Syktyvkar State University, 167001 Syktyvkar, Russia;
| | - Anton E. Egorov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Alexey A. Kostyukov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Vladimir A. Kuzmin
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
- National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Sergei M. Lomakin
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
- N. N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.S.)
| | - Natalia G. Shilkina
- N. N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.S.)
| | - Alexey V. Krivandin
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Olga V. Shatalova
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| | - Margarita A. Gradova
- N. N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (N.G.S.)
| | - Maxim A. Abakumov
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia; (M.A.A.); (A.A.N.)
| | - Aleksey A. Nikitin
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia; (M.A.A.); (A.A.N.)
| | - Varvara P. Maksimova
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (V.P.M.); (K.I.K.)
| | - Kirill I. Kirsanov
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (V.P.M.); (K.I.K.)
| | - Elena D. Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.B.S.); (V.A.B.); (M.R.M.); (M.V.C.); (A.E.E.); (V.A.K.); (S.M.L.); (A.V.K.); (O.V.S.)
| |
Collapse
|
38
|
Yuan Y, Chen C, Guo X, Li B, He N, Wang S. Noncovalent interactions between biomolecules facilitated their application in food emulsions' construction: A review. Compr Rev Food Sci Food Saf 2024; 23:e13285. [PMID: 38284579 DOI: 10.1111/1541-4337.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024]
Abstract
The use of biomolecules, such as proteins, polysaccharides, saponins, and phospholipids, instead of synthetic emulsifiers in food emulsion creation has generated significant interest among food scientists due to their advantages of being nontoxic, harmless, edible, and biocompatible. However, using a single biomolecule may not always meet practical needs for food emulsion applications. Therefore, biomolecules often require modification to achieve ideal interfacial properties. Among them, noncovalent interactions between biomolecules represent a promising physical modification method to modulate their interfacial properties without causing the health risks associated with forming new chemical bonds. Electrostatic interactions, hydrophobic interactions, and hydrogen bonding are examples of noncovalent interactions that facilitate biomolecules' effective applications in food emulsions. These interactions positively impact the physical stability, oxidative stability, digestibility, delivery characteristics, response sensitivity, and printability of biomolecule-based food emulsions. Nevertheless, using noncovalent interactions between biomolecules to facilitate their application in food emulsions still has limitations that need further improvement. This review introduced common biomolecule emulsifiers, the promotion effect of noncovalent interactions between biomolecules on the construction of emulsions with different biomolecules, their positive impact on the performance of emulsions, as well as their limitations and prospects in the construction of biomolecule-based emulsions. In conclusion, the future design and development of food emulsions will increasingly rely on noncovalent interactions between biomolecules. However, further improvements are necessary to fully exploit these interactions for constructing biomolecule-based emulsions.
Collapse
Affiliation(s)
- Yi Yuan
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Congrong Chen
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Xinyi Guo
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Ni He
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou, P. R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fujian Engineering Research Center of Marine Biological Product Green Manufacturing, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
39
|
Yan S, Regenstein JM, Qi B, Li Y. Construction of protein-, polysaccharide- and polyphenol-based conjugates as delivery systems. Crit Rev Food Sci Nutr 2023:1-19. [PMID: 38108638 DOI: 10.1080/10408398.2023.2293253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Natural polymers, such as polysaccharides and proteins, have been used to prepare several delivery systems owing to their abundance, bioactivity, and biodegradability. They are usually modified or combined with small molecules to form the delivery systems needed to meet different needs in food systems. This paper reviews the interactions of proteins, polysaccharides, and polyphenols in the bulk phase and discusses the design strategies, coupling techniques, and their applications as conjugates in emulsion delivery systems, including traditional, Pickering, multilayer, and high internal-phase emulsions. Furthermore, it explores the prospects of the application of conjugates in food preservation, food development, and nanocarrier development. Currently, there are seven methods for composite delivery systems including the Maillard reaction, carbodiimide cross-linking, alkali treatment, enzymatic cross-linking, free radical induction, genipin cross-linking, and Schiff base chemical cross-linking to prepare binary and ternary conjugates of proteins, polysaccharides, and polyphenols. To design an effective target complex and its delivery system, it is helpful to understand the physicochemical properties of these biomolecules and their interactions in the bulk phase. This review summarizes the knowledge on the interaction of biological complexes in the bulk phase, preparation methods, and the preparation of stable emulsion delivery system.
Collapse
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, China
| | | | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
40
|
Khalesi Moghaddam R, Mhatre S, Yarranton HW, Natale G. Optical Tweezers-Based Measurements of Colloidal Forces between Asphaltene Thin Films: Effect of Ultrasonication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17009-17020. [PMID: 38000781 DOI: 10.1021/acs.langmuir.3c01183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Oil production and processing often involve the treatment of water-in-oil emulsions stabilized by asphaltenes. The asphaltenes adsorb irreversibly at the water-oil interface and, by self-association at the interface, form a viscoelastic film that stabilizes the emulsions mechanically and sterically. Hydrophobic forces associated with these films may also contribute to the emulsion stability. A key step in treating these emulsions is to weaken the asphaltene film at the interface, and one way to do so is with ultrasonic treatment. The effect of ultrasonic waves on the interactions between asphaltene films was investigated at a silica-water interface using optical tweezers. Silica microparticles were aged in asphaltene solutions to form asphaltene coatings on their surfaces. The particles were dispersed in water, and interparticle force measurements were performed with optical tweezers to capture the steric force and hydrophobic force contributions. The asphaltene coating thickness and hydrophobic coefficient (a factor resembling the strength of the hydrophobic interaction) were obtained from fitting these forces. The effect of ultrasonication on the thickness of the asphaltene films on the surfaces of the particles was investigated. No change in the hydrophobic coefficient was observed upon changing the interfacial asphaltene concentration. The asphaltene film thickness increased with the concentration of the asphaltene solution and aging time. After treatment of the dispersion with ultrasonic waves for different durations (between 5 and 40 min), a significant reduction in the coating thickness was observed. This reduction was confirmed by thermogravimetric analysis (TGA) measurements. It is hypothesized that cavitation at the interface removed part of the surface layer of asphaltenes from the coated particles. Based on these findings, we proved that a low-power ultrasound field can effectively break asphaltene-stabilized water-in-oil emulsions.
Collapse
Affiliation(s)
- R Khalesi Moghaddam
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - S Mhatre
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - H W Yarranton
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - G Natale
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
41
|
Liang Q, Zhou C, Rehman A, Qayum A, Liu Y, Ren X. Improvement of physicochemical properties, microstructure and stability of lotus root starch/xanthan gum stabilized emulsion by multi-frequency power ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 101:106687. [PMID: 37976566 PMCID: PMC10692874 DOI: 10.1016/j.ultsonch.2023.106687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Multi-frequency power ultrasound was applied as an environmentally friendly technique to control the nanoparticles (LS/XG-NPs) embedded with lotus root starch/xanthan gum, with the aim of enhancing the stability of Pickering emulsions. The present investigation was centered on evaluating the impact of ultrasound technology on various aspects of the emulsions, encompassing their mean particle size, particle size distribution, zeta potential, microstructure, rheological characteristics, and environmental stability. The findings of this study indicate that ultrasonic treatment enhanced the adsorption of LS/XG-NP onto oil droplets surface, resulting in a reduction in their size. Additionally, ultrasonic treatment decreased the viscosity and Brownian motion rate of the emulsion stabilized by LS/XG-NP, leading to increased fluidity. Furthermore, the emulsion's thermal stability and resistance to environmental oxidation were significantly enhanced through ultrasonic treatment. The Pickering emulsions that were prepared using ultrasound demonstrated excellent resistance to acid, alkali (pH 2-8) and salt ions (50-300 mM NaCl) for a period of 30 days during storage. It was worth anticipating that ultrasound-assisted LS/XG-NPs could efficiently retard the volatilization of fishy odor components within fish oil. Taken together, the present research has evinced the efficacy of ultrasound in enhancing the stability of Pickering emulsions coated with LS/XG-NPs. These findings offer significant novel insights into the advancement of ultrasound-assisted Pickering emulsions that are stabilized with starch-based or biopolymeric materials.
Collapse
Affiliation(s)
- Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China
| | - Chengwei Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
42
|
Lu SM, Vannoy KJ, Dick JE, Long YT. Multiphase Chemistry under Nanoconfinement: An Electrochemical Perspective. J Am Chem Soc 2023; 145:25043-25055. [PMID: 37934860 DOI: 10.1021/jacs.3c07374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Most relevant systems of interest to modern chemists rarely consist of a single phase. Real-world problems that require a rigorous understanding of chemical reactivity in multiple phases include the development of wearable and implantable biosensors, efficient fuel cells, single cell metabolic characterization techniques, and solar energy conversion devices. Within all of these systems, confinement effects at the nanoscale influence the chemical reaction coordinate. Thus, a fundamental understanding of the nanoconfinement effects of chemistry in multiphase environments is paramount. Electrochemistry is inherently a multiphase measurement tool reporting on a charged species traversing a phase boundary. Over the past 50 years, electrochemistry has witnessed astounding growth. Subpicoampere current measurements are routine, as is the study of single molecules and nanoparticles. This Perspective focuses on three nanoelectrochemical techniques to study multiphase chemistry under nanoconfinement: stochastic collision electrochemistry, single nanodroplet electrochemistry, and nanopore electrochemistry.
Collapse
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Kathryn J Vannoy
- Department of Chemistry, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
43
|
Qayum A, Rashid A, Liang Q, Wu Y, Cheng Y, Kang L, Liu Y, Zhou C, Hussain M, Ren X, Ashokkumar M, Ma H. Ultrasonic and homogenization: An overview of the preparation of an edible protein-polysaccharide complex emulsion. Compr Rev Food Sci Food Saf 2023; 22:4242-4281. [PMID: 37732485 DOI: 10.1111/1541-4337.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023]
Abstract
Emulsion systems are extensively utilized in the food industry, including dairy products, such as ice cream and salad dressing, as well as meat products, beverages, sauces, and mayonnaise. Meanwhile, diverse advanced technologies have been developed for emulsion preparation. Compared with other techniques, high-intensity ultrasound (HIUS) and high-pressure homogenization (HPH) are two emerging emulsification methods that are cost-effective, green, and environmentally friendly and have gained significant attention. HIUS-induced acoustic cavitation helps in efficiently disrupting the oil droplets, which effectively produces a stable emulsion. HPH-induced shear stress, turbulence, and cavitation lead to droplet disruption, altering protein structure and functional aspects of food. The key distinctions among emulsification devices are covered in this review, as are the mechanisms of the HIUS and HPH emulsification processes. Furthermore, the preparation of emulsions including natural polymers (e.g., proteins-polysaccharides, and their complexes), has also been discussed in this review. Moreover, the review put forward to the future HIUS and HPH emulsification trends and challenges. HIUS and HPH can prepare much emulsifier-stable food emulsions, (e.g., proteins, polysaccharides, and protein-polysaccharide complexes). Appropriate HIUS and HPH treatment can improve emulsions' rheological and emulsifying properties and reduce the emulsions droplets' size. HIUS and HPH are suitable methods for developing protein-polysaccharide forming stable emulsions. Despite the numerous studies conducted on ultrasonic and homogenization-induced emulsifying properties available in recent literature, this review specifically focuses on summarizing the significant progress made in utilizing biopolymer-based protein-polysaccharide complex particles, which can provide valuable insights for designing new, sustainable, clean-label, and improved eco-friendly colloidal systems for food emulsion. PRACTICAL APPLICATION: Utilizing complex particle-stabilized emulsions is a promising approach towards developing safer, healthier, and more sustainable food products that meet legal requirements and industrial standards. Moreover, the is an increasing need of concentrated emulsions stabilized by biopolymer complex particles, which have been increasingly recognized for their potential health benefits in protecting against lifestyle-related diseases by the scientific community, industries, and consumers.
Collapse
Affiliation(s)
- Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Melbourne, Australia
| | - Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Chengwei Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | | | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
44
|
Xu D, Xing X, Chitrakar B, Li H, Hu L, Zhang J, Zhu X, Yao L, Hati S, Liu Z, Mo H. Fabrication and 3D printing of Pickering emulsion gel based on Hypsizygus marmoreus by-products protein. Food Chem X 2023; 19:100849. [PMID: 37780343 PMCID: PMC10534211 DOI: 10.1016/j.fochx.2023.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Pickering emulsion gel (PEG) stabilized by the protein extracted from the by-product of Hypsizygus marmoreus, combining with xanthan gum (XG), was formulated as 3D printing ink. Hydrogen bonds are formed in XG/protein hybrid particles. Afterwards, PEG was developed. Results indicated that it has shear-thinning properties. The apparent viscosity, yield stress, Elastic modulus (G') and gel strength increased with the increased XG addition, while the size of emulsion decreased. XG incorporation improved the 3D printing performance with desired self-supporting capability and printing precision if its concentration reached 2.0% (w/v). This study provides ideas for the application of Hypsizygus marmoreus by-products protein in stabilizing PEG used for 3D printing, which has a potential to replace traditional hydrogenated cream for cake decoration.
Collapse
Affiliation(s)
- Dan Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xuebing Xing
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Hongbo Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Liangbin Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Jiayi Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiaolin Zhu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Lishan Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Subrot Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat 388110, India
| | - Zhenbin Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
45
|
Bennacef C, Desobry S, Jasniewski J, Leclerc S, Probst L, Desobry-Banon S. Influence of Alginate Properties and Calcium Chloride Concentration on Alginate Bead Reticulation and Size: A Phenomenological Approach. Polymers (Basel) 2023; 15:4163. [PMID: 37896406 PMCID: PMC10610877 DOI: 10.3390/polym15204163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Two types of alginates, AlgLF and AlgP, were used in this study to produce alginate beads by electro-vibratory extrusion. AlgLF and AlgP exhibited different Mannuronate/Guluronate (M/G) ratios and molecular weights as measured by NMR and SEC-MALS. The calcium chloride concentration was found to have the greatest effect on bead size. Higher concentrations resulted in smaller beads. AlgLF with a higher molecular weight and a lower proportion of G blocks showed smaller beads. For both alginates, the bead size was also influenced by the flow rate and vibration frequency. Alginate solution aging showed a minimal effect. Alginate reticulation was modeled using a mathematical equation. The study provides insights for the optimization of alginate-based materials in different applications by shedding light on the main factors influencing bead size. The importance of the molecular weight, M/G ratio and calcium ion concentration in the gelling process is highlighted, providing opportunities for the tailoring of alginate materials through a phenomenological model.
Collapse
Affiliation(s)
- Chanez Bennacef
- Université de Lorraine, Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA, 54000 Nancy, France; (C.B.); (S.D.); (J.J.)
- Cookal Company, 19 Avenue de la Meurthe, 54320 Maxéville, France;
| | - Stéphane Desobry
- Université de Lorraine, Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA, 54000 Nancy, France; (C.B.); (S.D.); (J.J.)
| | - Jordane Jasniewski
- Université de Lorraine, Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA, 54000 Nancy, France; (C.B.); (S.D.); (J.J.)
| | - Sébastien Leclerc
- Université de Lorraine, CNRS, LEMTA, Faculty of Science and Technology, 54000 Nancy, France;
| | - Laurent Probst
- Cookal Company, 19 Avenue de la Meurthe, 54320 Maxéville, France;
| | - Sylvie Desobry-Banon
- Université de Lorraine, Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA, 54000 Nancy, France; (C.B.); (S.D.); (J.J.)
| |
Collapse
|
46
|
Frempong KEB, He G, Kuang M, Jun P, Xue M, Wei Y, Zhou J. Improvement of amphipathic properties with molecular structure unfolding and activation of cottonseed protein as ultra stable and safe emulsifier by deamidation. Int J Biol Macromol 2023; 247:125802. [PMID: 37442501 DOI: 10.1016/j.ijbiomac.2023.125802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
By-product cottonseed proteins are excellent options for numerous applications due to their superior properties and lower cost. However, its complex folded structure and large molecular weight lead to lower reactivity and insufficient amphiphilicity. Cottonseed protein isolate (CPI) is less-soluble in water. Therefore, we improved the amphiphilicity of CPI with associated hydrolysis, molecular structure unfolding, and activation by alkaline-induced deamidation (at 24, 36, and 72 h) and produced three cottonseed protein hydrolysates CPH 24, 36, and 72. FTIR/UV-CD measurements confirmed the conformational changes and conversion of the structural content. Particle size decreased 2503.4-771.8 nm, while surface hydrophobicity (133.5-326.7), carboxyl content (1.13 × 10־3-2.09 × 10־3), and flexibility increased, signifying hydrolysis, unfolding, and amphiphilicity improvement. Longer deamidation (CPH 72) exhibited the best properties, its prepared emulsions were long-term stable under all the environmental stresses without visible phase separation after at least 40 days of storage except at pH 4. Compared to CPI, it had smaller droplets (939.3-264.9 nm) and larger absolute ζ-potential (-26.5 to -58.0 mV). From the in-vitro cytotoxicity test, deamidated CPI is extremely safer than commonly used synthetic surfactants. This research provides a new method for producing multifunctional emulsifiers from CPI, which could be utilized in the development of functional foods/non-foods.
Collapse
Affiliation(s)
- Kwame Eduam Baiden Frempong
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Guiqiang He
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Meng Kuang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan 455000, PR China.
| | - Peng Jun
- Sanya National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, PR China
| | - Min Xue
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
| | - Yanxia Wei
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| | - Jian Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
47
|
Dawoud MHS, Mannaa IS, Abdel-Daim A, Sweed NM. Integrating Artificial Intelligence with Quality by Design in the Formulation of Lecithin/Chitosan Nanoparticles of a Poorly Water-Soluble Drug. AAPS PharmSciTech 2023; 24:169. [PMID: 37552427 DOI: 10.1208/s12249-023-02609-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/25/2023] [Indexed: 08/09/2023] Open
Abstract
The aim of the current study is to explore the potential of artificial intelligence (AI) when integrated with Quality by Design (QbD) approach in the formulation of a poorly water-soluble drug, for its potential use in carcinoma. Silymarin is used as a model drug for its potential effectiveness in liver cancer. A detailed QbD approach was applied. The effect of the critical process parameters was studied on each of the particle size, size distribution, and entrapment efficiency. Response surface designs were applied in the screening and optimization of lecithin/chitosan nanoparticles, to obtain an optimized formula. The release rate was tested, where artificial neural network models were used to predict the % release of the drug from the optimized formula at different time intervals. The optimized formula was tested for its cytotoxicity. A design space was established, with an optimized formula having a molar ratio of 18.33:1 lecithin:chitosan and 38.35 mg silymarin. This resulted in nanoparticles with a size of 161 nm, a polydispersity index of 0.2, and an entrapment efficiency of 97%. The optimized formula showed a zeta potential of +38 mV, with well-developed spherical particles. AI successfully showed high prediction ability of the drug's release rate. The optimized formula showed an enhancement in the cytotoxic effect of silymarin with a decreased IC50 compared to standard silymarin. Lecithin/chitosan nanoparticles were successfully formulated, with deep process and product understanding. Several tools were used as AI which could shift pharmaceutical formulations from experience-dependent studies to data-driven methodologies in the future.
Collapse
Affiliation(s)
- Marwa H S Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, intersection of 26th of July road and Elwahat road, 6th of October city, Giza, Egypt.
| | - Islam S Mannaa
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, intersection of 26th of July road and Elwahat road, 6th of October city, Giza, Egypt
| | - Amira Abdel-Daim
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Nabila M Sweed
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, intersection of 26th of July road and Elwahat road, 6th of October city, Giza, Egypt
| |
Collapse
|
48
|
Taha A, Casanova F, Talaikis M, Stankevič V, Žurauskienė N, Šimonis P, Pakštas V, Jurkūnas M, Gomaa MAE, Stirkė A. Effects of Pulsed Electric Field on the Physicochemical and Structural Properties of Micellar Casein. Polymers (Basel) 2023; 15:3311. [PMID: 37571205 PMCID: PMC10422647 DOI: 10.3390/polym15153311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Pulsed electric field (PEF) as a green processing technology is drawing greater attention due to its eco-friendliness and potential to promote sustainable development goals. In this study, the effects of different electric field strengths (EFS, 0-30 kV/cm) on the structure and physicochemical features of casein micelles (CSMs) were investigated. It was found that the particle sizes of CSMs increased at low EFS (10 kV/cm) but decreased at high EFS (30 kV/cm). The absolute ζ-potential at 30 kV/cm increased from -26.6 (native CSMs) to -29.5 mV. Moreover, it was noticed that PEF treatment leads to changes in the surface hydrophobicity; it slightly increased at low EFS (10 kV/cm) but decreased at EFS > 10 kV/cm. PEF enhanced the protein solubility from 84.9 (native CSMs) to 87.1% (at 10 kV/cm). PEF at low EFS (10 kV/cm) intensified the emission fluorescence spectrum of CSMs, while higher EFS reduced the fluorescence intensity compared to native CSMs. Moreover, the analysis of the Amide Ι region showed that PEF-treated CSMs reduced the α-helix and increased the β-sheet content. Raman spectra confirmed that PEF treatment > 10 kV/cm buried tyrosine (Tyr) residues in a hydrophobic environment. It was also found that PEF treatment mainly induced changes in the disulfide linkages. In conclusion, PEF technology can be employed as an eco-friendly technology to change the structure and physiochemical properties of CSMs; this could improve their techno-functional properties.
Collapse
Affiliation(s)
- Ahmed Taha
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Martynas Talaikis
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Voitech Stankevič
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Nerija Žurauskienė
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Povilas Šimonis
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Vidas Pakštas
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Marijus Jurkūnas
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Mohamed A. E. Gomaa
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Arūnas Stirkė
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
- Micro and Nanodevices Laboratory, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia
| |
Collapse
|
49
|
Ji C, Wang Y. Nanocellulose-stabilized Pickering emulsions: Fabrication, stabilization, and food applications. Adv Colloid Interface Sci 2023; 318:102970. [PMID: 37523998 DOI: 10.1016/j.cis.2023.102970] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Pickering emulsions have been widely studied due to their good stability and potential applications. Nanocellulose including cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial cellulose nanofibrils (BCNFs) has emerged as sustainable stabilizers/emulsifiers in food-related Pickering emulsions due to their favorable properties such as renewability, low toxicity, amphiphilicity, biocompatibility, and high aspect ratio. Nanocellulose can be widely obtained from different sources and extraction methods and can effectively stabilize Pickering emulsions via the irreversible adsorption onto oil-water interface. The synergistic effects of nanocellulose and other substances can further enhance the interfacial networks. The nanocellulose-based Pickering emulsions have potential food-related applications in delivery systems, food packaging materials, and fat substitutes. Nanocellulose-based Pickering emulsions as 3D printing inks exhibit good injectable and gelling properties and are promising to print spatial architectures. In the future, the utilization of biomass waste and the development of "green" and facile extraction methods for nanocellulose production deserve more attention. The stability of nanocellulose-based Pickering emulsions in multi-component food systems and at various conditions is an utmost challenge. Moreover, the case-by-case studies on the potential safety issues of nanocellulose-based Pickering emulsions need to be carried out with the standardized assessment procedures. In this review, we highlight key fundamental work and recent reports on nanocellulose-based Pickering emulsion systems. The sources and extraction of nanocellulose and the fabrication of nanocellulose-based Pickering emulsions are briefly summarized. Furthermore, the synergistic stability and food-related applications of nanocellulose-stabilized Pickering emulsions are spotlighted.
Collapse
Affiliation(s)
- Chuye Ji
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
50
|
Shome A, Mugisho OO, Niederer RL, Rupenthal ID. Comprehensive Grading System for Experimental Autoimmune Uveitis in Mice. Biomedicines 2023; 11:2022. [PMID: 37509662 PMCID: PMC10377264 DOI: 10.3390/biomedicines11072022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Experimental autoimmune uveitis (EAU) is the most commonly used animal model to study the progression of chronic uveitis and to test various therapies to treat the disease. However, to accurately evaluate the effectiveness of such treatments, a grading system that combines the latest imaging techniques with definitive quantitative grading thresholds is required. This study aimed to develop a comprehensive grading system that objectively evaluates EAU progression in C57BL/6J mice. EAU was induced following immunisation with interphotoreceptor retinoid-binding protein (IRBP) and pertussis toxin. Weekly fundus and optical coherence tomography (OCT) images were acquired over 12 weeks using a Micron IV imaging system. Each mouse was graded (between 0 to 4) based on changes seen on both the fundus (optic disc, retinal blood vessels and retinal tissue) and OCT (vitreous and retinal layers) images. A total EAU response (with a maximum score of 48) was calculated for each mouse based on the sum of the individual scores each week. Analysis of the clinical scores depicted a gradual increase in inflammatory signs including optic disc and vascular swelling, leukocyte infiltration in the vitreous, lesions in the retina and formation of granulomas and hyper-reflective foci in the retinal layers in EAU mice, with most signs reaching a plateau towards the end of the study period. Development of these signs into sight-threatening complications such as optic disc atrophy, structural damage to the retina and subretinal oedema were noted in 80-90% of mice suggesting consistent disease induction. Overall, a comprehensive and objective grading system encompassing all pathologies occurring in EAU mice was developed to enhance the preclinical evaluation of novel uveitis treatments.
Collapse
Affiliation(s)
- Avik Shome
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, The New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, The New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand
| | - Rachael L Niederer
- Department of Ophthalmology, The New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand
- Te Whatu Ora Te Toka Tumai, Auckland 1142, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, The New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|