1
|
Wu J, Gong J, Chen Q, Hao W, He J, Wang M, Zhou Q. Unveiling kaempferol glycosides as the key antiglycative components in butterfly pea ( Clitoria ternatea) flower. Curr Res Food Sci 2024; 9:100896. [PMID: 39525386 PMCID: PMC11550770 DOI: 10.1016/j.crfs.2024.100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/27/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Edible flowers have been used in dietary practices since ancient times. In recent years, they have garnered increasingly more attentions for their potentials in the prevention and amelioration of pathological conditions. The present study employed in vitro BSA models to evaluate the antiglycative effect of some edible flowers. Results showed that butterfly pea flower (BFPF) exhibited the highest potential in preventing advanced glycation end products (AGEs) formation, which had an inhibition rate of 92.11% at 1 g/mL, 56.99% at 0.1 g/mL, and 9.94% at 0.01 g/mL, respectively. Moreover, the antiglycative components in BFPF were identified as four flavonol glycosides through chromatographic and spectral analyses, which were manghaslin (quercetin 3-2″-rhamnosylrutinoside, QCT-Rh), clitorin (kaempferol 3-2″-rhamnosylrutinoside, KFR-Rh), rutin (quercetin 3-rutinoside), and kaempferol 3-neohesperidoside (KFR-Ne). Notably, KFR-Rh and KFR-Ne were presented in higher concentrations in BFPF (764.31 mg/kg and 1135.10 mg/kg dry matter) and significantly contributed to the antiglycative activity (IC50 = 182.17 μM and IC50 = 131.03 μM). Molecular docking (MD) and nuclear magnetic resonance (NMR) analyses revealed that KFR-Rh and KFR-Ne formed hydrogen bonds and hydrophobic interactions with BSA, while KFR-Ne demonstrating a stronger interaction than KFR-Rh. Collectively, our findings highlight the beneficial effects of BFPF with clearly identified active components, which might further promote its application in functional food and medical industry.
Collapse
Affiliation(s)
- Jun Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jun Gong
- Central Laboratory of YunFu People's Hospital, Yunfu, 527300, China
| | - Qiaochun Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Wen Hao
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266000, China
- Qingdao Institute of Preventive Medicine, Qingdao, 266000, China
| | - Jiayi He
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qian Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Feng M, Zhang M, Adhikari B, Chang L. Novel strategies for enhancing quality stability of edible flower during processing using efficient physical fields: A review. Food Chem 2024; 448:139077. [PMID: 38518445 DOI: 10.1016/j.foodchem.2024.139077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Edible flowers are an exotic part of the human diet due to their distinct sensorial properties and health benefits. Due to consumers demand edible flowers and their products with natural freshness and high nutritional value, there is increasing research on the application of green and efficient edible flower processing technologies. This paper reviews the application of a number of physical fields including ultrasound, microwave, infrared, ultraviolet, ionizing radiation, pulse electric field, high hydrostatic pressure, and reduced pressure aiming to improve the processing and product quality of edible flowers. The mechanism of action, influencing factors, and status on application of each physical energy field are critically evaluated. In addition, the advantages and disadvantages of each of these energy fields are evaluated, and trends on their future prospects are highlighted. Future research is expected to focus on gaining greater understanding of the mechanism action of physical field-based technologies when applied to processing of edible flowers and to provide the basis for broaden the application of physical field-based technologies in industrial realm.
Collapse
Affiliation(s)
- Min Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Lu Chang
- Shandong Huamei Biology Science & Technology Co, Pingyin, China
| |
Collapse
|
3
|
Ragupathy S, Thirugnanasambandam A, Henry T, Vinayagam V, Sneha R, Newmaster SG. Flower Species Ingredient Verification Using Orthogonal Molecular Methods. Foods 2024; 13:1862. [PMID: 38928803 PMCID: PMC11203286 DOI: 10.3390/foods13121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Flowers are gaining considerable interest among consumers as ingredients in food, beverages, cosmetics, and natural health products. The supply chain trades in multiple forms of botanicals, including fresh whole flowers, which are easier to identify than dried flowers or flowers processed as powdered or liquid extracts. There is a gap in the scientific methods available for the verification of flower species ingredients traded in the supply chains of multiple markets. The objective of this paper is to develop methods for flower species ingredient verification using two orthogonal methods. More specifically, the objectives of this study employed both (1) DNA-based molecular diagnostic methods and (2) NMR metabolite fingerprint methods in the identification of 23 common flower species ingredients. NMR data analysis reveals considerable information on the variation in metabolites present in different flower species, including color variants within species. This study provides a comprehensive comparison of two orthogonal methods for verifying flower species ingredient supply chains to ensure the highest quality products. By thoroughly analyzing the benefits and limitations of each approach, this research offers valuable insights to support quality assurance and improve consumer confidence.
Collapse
Affiliation(s)
- Subramanyam Ragupathy
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Arunachalam Thirugnanasambandam
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Thomas Henry
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Varathan Vinayagam
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Ragupathy Sneha
- College of Medicine, American University of Antigua, Jobberwock Beach Road, Coolidge P.O. Box W1451, Antigua;
| | - Steven G. Newmaster
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| |
Collapse
|
4
|
Fernández-Pintor B, Morante-Zarcero S, Sierra I. Simultaneous Determination of 23 Pyrrolizidine and Tropane Alkaloids in Infusions from Dry Edible Flowers Using Optimized μSPEed ® Microextraction Prior to Their Analysis by UHPLC-IT-MS/MS. Foods 2024; 13:1740. [PMID: 38890967 PMCID: PMC11171954 DOI: 10.3390/foods13111740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
A miniaturized solid-phase extraction of two tropane alkaloids (TAs) and twenty-one pyrrolizidine alkaloids (PAs) from infusions of dry edible flowers using optimized µSPEed® technique was developed. The optimization of the µSPEed® methodology involved testing different cartridges and comparing various volumes and numbers of loading cycles. The final conditions allowed for a rapid extraction, taking only 3.5 min. This was achieved using a C18-ODS cartridge, conditioning with 100 µL of methanol (two cycles), loading 100 µL of the infusion sample (seven cycles), and eluting the analytes with 100 µL of methanol (two cycles). Prior to their analysis by UHPLC-IT-MS/MS, the extracts were evaporated and reconstituted in 100 µL of water (0.2% formic acid)/methanol (0.2% ammonia) 95:5 (v/v), allowing for a preconcentration factor of seven times. The methodology was successfully validated obtaining recoveries ranging between 87 and 97%, RSD of less than 12%, and MQL between 0.09 and 0.2 µg/L. The validated methodology was applied to twenty samples of edible flower infusions to evaluate the safety of these products. Two infusion samples obtained from Acmella oleracea and Viola tricolor were contaminated with 0.16 and 0.2 µg/L of scopolamine (TA), respectively, while the infusion of Citrus aurantium was contaminated with intermedine and lycopsamine (PAs) below the MQL.
Collapse
Affiliation(s)
- Begoña Fernández-Pintor
- Departamento de Tecnología Química y Ambiental, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain;
| | - Sonia Morante-Zarcero
- Departamento de Tecnología Química y Ambiental, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain;
| | - Isabel Sierra
- Departamento de Tecnología Química y Ambiental, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain;
- Instituto de Investigación de Tecnologías para la Sostenibilidad, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain
| |
Collapse
|
5
|
de Oliveira I, Chrysargyris A, Finimundy TC, Carocho M, Santos-Buelga C, Calhelha RC, Tzortzakis N, Barros L, Heleno SA. Magnesium and manganese induced changes on chemical, nutritional, antioxidant and antimicrobial properties of the pansy and Viola edible flowers. Food Chem 2024; 438:137976. [PMID: 37980870 DOI: 10.1016/j.foodchem.2023.137976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Pansy and viola edible flowers were grown hydroponically with different levels of Mg and Mn. The nutritional composition was determined using standard methods. Free sugars, fatty acids, organic acids, tocopherols, and phenolic compounds were analyzed using various HPLC and GC devises. The extract's antimicrobial, antioxidant, cytotoxicity, and anti-inflammatory activity were assessed. The results indicated that Mg enrichment negatively affected plant growth and mineral accumulation but improved photosynthetic performance. The edible flowers contained significant amounts of protein, low levels of fat, and varying sugar contents, such as glucose and fructose. Various fatty acids and phenolic compounds were identified, with different concentrations depending on the treatment. The flowers exhibited antioxidant potential, antimicrobial activity, cytotoxic effects, and anti-inflammatory properties. The correlations between the investigated parameters not only expand knowledge on Mg and Mn interaction but also catalyze significant advancements in sustainable agriculture and food health, fostering a healthier and more conscious future.
Collapse
Affiliation(s)
- Izamara de Oliveira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Spain
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus
| | - Tiane C Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Spain
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
6
|
Teixeira M, De Luca L, Faria A, Bordiga M, de Freitas V, Mateus N, Oliveira H. First Insights on the Bioaccessibility and Absorption of Anthocyanins from Edible Flowers: Wild Pansy, Cosmos, and Cornflower. Pharmaceuticals (Basel) 2024; 17:191. [PMID: 38399406 PMCID: PMC10892915 DOI: 10.3390/ph17020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Edible flowers are regaining interest among both the scientific community and the general population, not only for their appealing sensorial characteristics but also from the growing evidence about their health benefits. Among edible flowers, those that contain anthocyanins are among the most consumed worldwide. However, little is known regarding the bioaccessibility and absorption of their bioactive compounds upon ingestion. The aim of this work was to explore, for the first time, the behavior of anthocyanin-rich extracts from selected edible flowers under different food processing conditions and after ingestion using simulated digestions, as well as their absorption at the intestinal level. Overall, the results showed that the monoglucoside and rutinoside anthocyanin extracts were less stable under different pH, temperature, and time conditions as well as different digestive processes in the gastrointestinal tract. There was a prominent decrease in the free anthocyanin content after the intestinal phase, which was more pronounced for the rutinoside anthocyanin extract (78.41% decrease from the oral phase). In contrast, diglucoside and rutinoside anthocyanin extracts showed the highest absorption efficiencies at the intestinal level, of approximately 5% after 4 h of experiment. Altogether, the current results emphasize the influence of anthocyanins' structural arrangement on both their chemical stability as well as their intestinal absorption. These results bring the first insights about the bioaccessibility and absorption of anthocyanins from wild pansy, cosmos, and cornflower and the potential outcomes of such alternative food sources.
Collapse
Affiliation(s)
- Margarida Teixeira
- REQUIMTE/LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.T.); (V.d.F.); (N.M.)
| | - Lorenzo De Luca
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; (L.D.L.); (M.B.)
| | - Ana Faria
- CHRC, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal;
- CINTESIS@RISE, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; (L.D.L.); (M.B.)
| | - Victor de Freitas
- REQUIMTE/LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.T.); (V.d.F.); (N.M.)
| | - Nuno Mateus
- REQUIMTE/LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.T.); (V.d.F.); (N.M.)
| | - Hélder Oliveira
- REQUIMTE/LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.T.); (V.d.F.); (N.M.)
| |
Collapse
|
7
|
Castillo-Carrión M, Martínez-Espinosa R, Pérez-Álvarez JÁ, Fernández-López J, Viuda-Martos M, Lucas-González R. Nutritional, Fatty Acids, (Poly)phenols and Technological Properties of Flower Powders from Fuchsia hybrida and Alcea rosea. Foods 2024; 13:237. [PMID: 38254537 PMCID: PMC10814466 DOI: 10.3390/foods13020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Fuchsia hybrida (pena pena) and Alcea rosea L. (malvagoma) are predominant flowers in the "Horchata" infusion, a traditional beverage in southern Ecuador, to which some medicinal properties are attributed. However, there is very little published information about these two flower species. The current study aimed to obtain two dehydrated powders of these flowers and to determine their chemical composition, physicochemical and technological properties, polyphenols, and fatty acids profile. In both powdered flowers, carbohydrates predominated, with a significant content of dietary fiber and fructose. The fat content was low, mainly comprising polyunsaturated fats (62% pena pena and 52% malvagoma), with a significant presence of omega-3 (C18:3n-3,6,9) and omega-6 (C18:2n-6,9) fatty acids, showing a better n-6/n-3 balance in the malvagoma flowers. Pena pena flowers are highlighted by high anthocyanin and ellagic acid amounts, whereas malvagoma contains a high content of flavanones. In conclusion, the studied powder flowers, could be used in the formulation of new foods or as source of anthocyanins as food colorants.
Collapse
Affiliation(s)
- Maritza Castillo-Carrión
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador; (M.C.-C.); (R.M.-E.)
| | - Ruth Martínez-Espinosa
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador; (M.C.-C.); (R.M.-E.)
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UHM), Miguel Hernández University, 03312 Alicante, Spain; (J.Á.P.-Á.); (J.F.-L.); (M.V.-M.)
| | - Juana Fernández-López
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UHM), Miguel Hernández University, 03312 Alicante, Spain; (J.Á.P.-Á.); (J.F.-L.); (M.V.-M.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UHM), Miguel Hernández University, 03312 Alicante, Spain; (J.Á.P.-Á.); (J.F.-L.); (M.V.-M.)
| | - Raquel Lucas-González
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UHM), Miguel Hernández University, 03312 Alicante, Spain; (J.Á.P.-Á.); (J.F.-L.); (M.V.-M.)
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Avda. Galicia No. 4, 32900 Ourense, Spain
| |
Collapse
|
8
|
Rivas-García L, Crespo-Antolín L, Forbes-Hernández TY, Romero-Márquez JM, Navarro-Hortal MD, Arredondo M, Llopis J, Quiles JL, Sánchez-González C. Bioactive Properties of Tagetes erecta Edible Flowers: Polyphenol and Antioxidant Characterization and Therapeutic Activity against Ovarian Tumoral Cells and Caenorhabditis elegans Tauopathy. Int J Mol Sci 2023; 25:280. [PMID: 38203451 PMCID: PMC10778855 DOI: 10.3390/ijms25010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Tagetes erecta is an edible flower deeply rooted in traditional Mexican culture. It holds a central role in the most popular and iconic Mexican celebration, "the Day of the Dead". Furthermore, it is currently receiving interest as a potential therapeutic agent, motivated mainly by its polyphenol content. The present study aims to evaluate the biological activity of an extract synthesized from the petals of the edible flower T. erecta. This extract showed significant antioxidant scores measured by the most common in vitro methodologies (FRAP, ABTS, and DPPH), with values of 1475.3 μM trolox/g extr, 1950.3 μM trolox/g extr, and 977.7 μM trolox/g extr, respectively. In addition, up to 36 individual polyphenols were identified by chromatography. Regarding the biomedical aspects of the petal extract, it exhibited antitumoral activity against ovarian carcinoma cells evaluated by the MTS assay, revealing a lower value of IC50 compared to other flower extracts. For example, the extract from T. erecta reported an IC50 value half as low as an extract from Rosa × hybrida and six times lower than another extract from Tulbaghia violacea. This antitumoral effect of T. erecta arises from the induction of the apoptotic process; thus, incubating ovarian carcinoma cells with the petal extract increased the rate of apoptotic cells measured by flow cytometry. Moreover, the extract also demonstrated efficacy as a therapeutic agent against tauopathy, a feature of Alzheimer's disease (AD) in the Caenorhabditis elegans experimental model. Treating worms with the experimental extract prevented disfunction in several motility parameters such as wavelength and swimming speed. Furthermore, the T. erecta petal extract prevented the release of Reactive Oxygen Species (ROS), which are associated with the progression of AD. Thus, treatment with the extract resulted in an approximate 20% reduction in ROS production. These findings suggest that these petals could serve as a suitable source of polyphenols for biomedical applications.
Collapse
Affiliation(s)
- Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain; (L.R.-G.); (L.C.-A.); (J.M.R.-M.); (M.D.N.-H.); (J.L.); (J.L.Q.)
- Sport and Health Research Centre, University of Granada, 18016 Armilla, Spain
| | - Lara Crespo-Antolín
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain; (L.R.-G.); (L.C.-A.); (J.M.R.-M.); (M.D.N.-H.); (J.L.); (J.L.Q.)
- Sport and Health Research Centre, University of Granada, 18016 Armilla, Spain
| | - Tamara Y. Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain; (L.R.-G.); (L.C.-A.); (J.M.R.-M.); (M.D.N.-H.); (J.L.); (J.L.Q.)
| | - Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain; (L.R.-G.); (L.C.-A.); (J.M.R.-M.); (M.D.N.-H.); (J.L.); (J.L.Q.)
| | - María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain; (L.R.-G.); (L.C.-A.); (J.M.R.-M.); (M.D.N.-H.); (J.L.); (J.L.Q.)
| | - Miguel Arredondo
- Micronutrient Laboratory, Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile;
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain; (L.R.-G.); (L.C.-A.); (J.M.R.-M.); (M.D.N.-H.); (J.L.); (J.L.Q.)
- Sport and Health Research Centre, University of Granada, 18016 Armilla, Spain
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain; (L.R.-G.); (L.C.-A.); (J.M.R.-M.); (M.D.N.-H.); (J.L.); (J.L.Q.)
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain; (L.R.-G.); (L.C.-A.); (J.M.R.-M.); (M.D.N.-H.); (J.L.); (J.L.Q.)
- Sport and Health Research Centre, University of Granada, 18016 Armilla, Spain
| |
Collapse
|
9
|
Hegde A, Gupta S, Kumari P, Joshi R, Srivatsan V. Wild Edible Flowers of Western Himalayas: Nutritional Characterization, UHPLC-QTOF-IMS-Based Phytochemical Profiling, Antioxidant Properties, and In Vitro Bioaccessibility of Polyphenols. ACS OMEGA 2023; 8:40212-40228. [PMID: 37929082 PMCID: PMC10620890 DOI: 10.1021/acsomega.3c03861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023]
Abstract
Four edible flowers commonly consumed in the Western Himalayan region, namely, Bauhinia variegata (Kachnar), Tropaeolum majus (Nasturtium), Matricaria chamomilla (Chamomile), and Tagetes erecta (Marigold), were characterized for their nutritional and phytochemical composition. Through the UHPLC-QTOF-IMS-based metabolomics approach, 131 compounds were tentatively identified consisting of phenolic acids, flavonoid glycosides, terpenoids, amino acids, and fatty acid derivatives. Kaempferol and quercetin glycosides for Kachnar, apigenin glycosides and caffeoylquinic acid derivatives for Chamomile, patulin and quercetin derivatives for Marigold, cyanidin and delphinidin glycosides for Nasturtium were the predicted marker metabolites identified through non-targeted metabolomics. Kachnar and Chamomile scored best in terms of macronutrients and essential micronutrients, respectively. Nasturtium contained high concentrations of α-linolenic acid, anthocyanins, and lutein. Kachnar contained the highest total phenolic acids (63.36 ± 0.38 mg GAE g-1), while Marigold contained the highest total flavonoids (118.90 ± 1.30 mg QUE g-1). Marigolds possessed excellent free radical scavenging and metal chelation activities. Chamomile exhibited strong α-glucosidase inhibition activity, followed by Nasturtium. The in vitro gastrointestinal digestibility of flower extracts indicated that the bioaccessibility of phenolic acids was higher than that of flavonoids. Polyphenols from Nasturtium and Chamomile showed the highest bioaccessibility. The study is an attempt to characterize traditionally consumed edible flowers and promote their wider utilization in gastronomy and nutraceuticals.
Collapse
Affiliation(s)
- Athrinandan
S. Hegde
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Smriti Gupta
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Poonam Kumari
- Division
of Agrotechnology, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Robin Joshi
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Vidyashankar Srivatsan
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
10
|
Pereira AG, Cassani L, Liu C, Li N, Chamorro F, Barreira JCM, Simal-Gandara J, Prieto MA. Camellia japonica Flowers as a Source of Nutritional and Bioactive Compounds. Foods 2023; 12:2825. [PMID: 37569093 PMCID: PMC10417519 DOI: 10.3390/foods12152825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023] Open
Abstract
In recent decades, plants have strengthened their relevance as sources of molecules potentially beneficial for health. This underpinning effect also arises from the extensive research that has been conducted on plants that are typically undervalued, besides being scarcely used. This is the case with Camellia japonica in Galicia (NW Spain), where, despite its abundance, it is exclusively used for ornamental purposes and has been studied only for its proximate composition. Thus, the present study was conducted on several additional parameters in the flowers of eight C. japonica varieties. Our results show that camellia has a high nutritional value, with carbohydrates as the most abundant macronutrients followed by a moderate protein content (4.4-6.3 g/100 g dry weight) and high levels of polyunsaturated fatty acids (especially ω-3 fatty acids, which represent 12.9-22.7% of the total fatty acids), raising its potential for use for nutritional purposes. According to the thermochemical characterization and elemental composition of camellia, the raw material has poor mineralization and low nitrogen content, but high percentages of volatile matter and high carbon-fixation rates, making it a promising alternative for biofuel production. Furthermore, preliminary analysis reveals a high concentration of different bioactive compounds. As a result of these findings, camellias can be used as food or functional ingredients to improve the nutritional quality of food formulations.
Collapse
Affiliation(s)
- Antia G. Pereira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, 32004 Ourense, Spain; (A.G.P.); (L.C.); (F.C.); (M.A.P.)
| | - Lucia Cassani
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, 32004 Ourense, Spain; (A.G.P.); (L.C.); (F.C.); (M.A.P.)
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250000, China;
| | - Ningyang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266005, China;
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, 32004 Ourense, Spain; (A.G.P.); (L.C.); (F.C.); (M.A.P.)
| | - João C. M. Barreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, 32004 Ourense, Spain; (A.G.P.); (L.C.); (F.C.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, 32004 Ourense, Spain; (A.G.P.); (L.C.); (F.C.); (M.A.P.)
| |
Collapse
|
11
|
Nutraceutical potential, and antioxidant and antibacterial properties of Quararibea funebris flowers. Food Chem 2023; 411:135529. [PMID: 36689869 DOI: 10.1016/j.foodchem.2023.135529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
The flowers of Quararibea funebris tree are an important component of tejate, a traditional Mexican beverage. The flowers exhibited a high concentration of total polyphenolic compounds, total carotenoids, and vitamin C. UPLC analysis revealed the presence of salicylic acid, kaemferol-3-O-glucoside, trans-cinnamic acid, rutin, scopoletin, l-phenylalanine, 4-coumaric acid and quercetin-3-glucoside, among others metabolites. The flowers exhibited volatile compounds as isolongifolene, α-cedrene, 2,5,5-trimethyl-2,3,4,5,6,7-hexahydro-1H-2,4a-ethanonaphthalene, while that linoleic acid, palmitic acid, and linolenic acid were the major fatty acids present in the oil extract. Magnesium, potassium, and calcium were the minerals most abundant in the flowers. In addition the methanolic extract of the flowers exhibited antimicrobial properties against the tested pathogenic microbial strains. In conclusion, these results showed that the Q. funebris flowers not only have an aromatic and flavoring power for the Tejate beverage, but also contains compounds with antioxidant, antimicrobial, and nutraceutical potential, which helps to explain its therapeutic uses.
Collapse
|
12
|
Edorh Tossa P, Belorgey M, Dashbaldan S, Pączkowski C, Szakiel A. Flowers and Inflorescences of Selected Medicinal Plants as a Source of Triterpenoids and Phytosterols. PLANTS (BASEL, SWITZERLAND) 2023; 12:1838. [PMID: 37176893 PMCID: PMC10181404 DOI: 10.3390/plants12091838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Steroids and triterpenoids are compounds valued for their various biological and pharmacological properties; however, their content in medicinal and edible plants is often understudied. Flowers have been consumed since the ancient times as a part of traditional cuisine and as alternative medicines. Currently, the interest in medicinal and edible flowers is growing since contemporary consumers are incessantly seeking innovative natural sources of bioactive compounds. The aim of this report was the GC-MS (gas-chromatography-mass spectrometry) analysis of steroid and triterpenoid content in flowers, inflorescences and leaves of several plants (Berberis vulgaris L., Crataegus laevigata (Poir.) DC., Pulsatilla vulgaris Mill., Rosa rugosa Thunb., Sambucus nigra L. and Vinca minor L.), applied in herbal medicine in various forms, including isolated flowers (Flos), inflorescences (Inflorescentia) or aerial parts (Herba, i.e., combined flowers, leaves and stems). The most abundant source of triterpenoids was V. minor flowers (6.3 mg/g d.w.), whereas the steroids were prevailing in P. vulgaris flowers (1.8 and 1.1 mg/g). The profiles of triterpenoid acids and neutral triterpenoids in C. laevigata and S. nigra inflorescences were particularly diverse, involving compounds belonging to lupane-, oleanane- and ursane-type skeletons. The obtained results revealed that some flowers can constitute an abundant source of phytosterols and bioactive triterpenoids, valuable for utilization in functional foods, dietary supplements and cosmetic products.
Collapse
Affiliation(s)
- Pauline Edorh Tossa
- Clermont Auvergne Institut National Polytechnique, SIGMA Clermont, Campus des Cézeaux CS 20265, 63178 Aubière, France
| | - Morgan Belorgey
- Faculté de Pharmacie, Université Clermont Auvergne, 28 Place Henri Dunant, BP 38, 63001 Clermont-Ferrand, France
| | - Soyol Dashbaldan
- School of Industrial Technology, Mongolian University of Science and Technology, 8th Khoroo, Baga Toiruu 34, Sukhbaatar District, Ulaanbaatar 14191, Mongolia;
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland;
| | - Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland;
| |
Collapse
|
13
|
Pensamiento-Niño CA, Castañeda-Ovando A, Añorve-Morga J, Hernández-Fuentes AD, Aguilar-Arteaga K, Ojeda-Ramírez D. Edible Flowers and Their Relationship with Human Health: Biological Activities. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2182885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
| | | | - Javier Añorve-Morga
- Chemistry Department, Universidad Autonoma del Estado de Hidalgo, Mineral de la Reforma, Mexico
| | - Alma D. Hernández-Fuentes
- Veterinary Medicine and Agroindustry Engineering Departments, Universidad Autonoma del Estado de Hidalgo, Tulancingo, Mexico
| | - Karina Aguilar-Arteaga
- Agroindustry Engineering Department, Universidad Politécnica de Francisco, Madero, Francisco Madero, Mexico
| | - Deyanira Ojeda-Ramírez
- Veterinary Medicine and Agroindustry Engineering Departments, Universidad Autonoma del Estado de Hidalgo, Tulancingo, Mexico
| |
Collapse
|
14
|
Bian Y, Feng Y, Zhang A, Qi X, Ma X, Pan J, Han J, Liang L. Residue behaviors, processing factors and transfer rates of pesticides and metabolites in rose from cultivation to consumption. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130104. [PMID: 36303346 DOI: 10.1016/j.jhazmat.2022.130104] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The presence of pesticide residues in rose makes it necessary to pay special attention to the proper cultivation to consumption. In this study, the inherent regularity of residue behaviors, processing factors and transfer rates of pesticides and potential metabolites during rose planting, drying and brewing was researched. The half-lives in the bud, corolla and leaf were 0.5-2.9, 0.3-1.7 and 2.6-25.9 d, respectively. Residues were more distributed in leaf, followed by corolla, bud and root. Systemic pesticides could appear in the root 1 day after application, and non-systemic pesticides were not detected in the root. The effect of sun and oven drying (80 °C) was more significant in promoting the degradation of cyazofamid, bifenazate, thiamethoxam and imidacloprid. The processing factors (PFs) of other pesticides were > 1. Our results showed that the transfer rate of residues during brewing was negatively correlated exponentially with Log Kow and positively logarithmically correlated with melting point and water solubility. The transfer rate of residues and antioxidant capacity in infusion were significantly affected by different brewing conditions.
Collapse
Affiliation(s)
- Yanli Bian
- Shandong Academy of Pesticide Sciences Institute of Residue Technology, Shandong Academy of Agricultural Sciences, Jinan 250033, China.
| | - Yizhi Feng
- Shandong Academy of Pesticide Sciences Institute of Residue Technology, Shandong Academy of Agricultural Sciences, Jinan 250033, China
| | - Aijuan Zhang
- Shandong Academy of Pesticide Sciences Institute of Residue Technology, Shandong Academy of Agricultural Sciences, Jinan 250033, China
| | - Xiaoxue Qi
- Shandong Academy of Pesticide Sciences Institute of Residue Technology, Shandong Academy of Agricultural Sciences, Jinan 250033, China
| | - Xingang Ma
- Shandong Academy of Pesticide Sciences Institute of Residue Technology, Shandong Academy of Agricultural Sciences, Jinan 250033, China
| | - Jinju Pan
- Shandong Academy of Pesticide Sciences Institute of Residue Technology, Shandong Academy of Agricultural Sciences, Jinan 250033, China
| | - Jifeng Han
- Shandong Academy of Pesticide Sciences Institute of Residue Technology, Shandong Academy of Agricultural Sciences, Jinan 250033, China
| | - Lin Liang
- Shandong Academy of Pesticide Sciences Institute of Residue Technology, Shandong Academy of Agricultural Sciences, Jinan 250033, China.
| |
Collapse
|
15
|
Buathong R, Duangsrisai S. Plant ingredients in Thai food: a well-rounded diet for natural bioactive associated with medicinal properties. PeerJ 2023; 11:e14568. [PMID: 36879911 PMCID: PMC9985418 DOI: 10.7717/peerj.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/23/2022] [Indexed: 03/05/2023] Open
Abstract
Background Seeking cures for chronic inflammation-associated diseases and infectious diseases caused by critical human pathogens is challenging and time-consuming. Even as the research community searches for novel bioactive agents, consuming a healthy diet with functional ability might be an effective way to delay and prevent the progression of severe health conditions. Many plant ingredients in Thai food are considered medicinal, and these vegetables, herbs, and spices collectively possess multiple biological and pharmacological activities, such as anti-inflammatory, antimicrobial, antidiabetic, antipyretic, anticancer, hepatoprotective, and cardioprotective effects. Methodology In this review, the selected edible plants are unspecific to Thai food, but our unique blend of recipes and preparation techniques make traditional Thai food healthy and functional. We searched three electronic databases: PUBMED, Science Direct, and Google Scholar, using the specific keywords "Plant name" followed by "Anti-inflammatory" or "Antibacterial" or "Antiviral" and focusing on articles published between 2017 and 2021. Results Our selection of 69 edible and medicinal plant species (33 families) is the most comprehensive compilation of Thai food sources demonstrating biological activities to date. Focusing on articles published between 2017 and 2021, we identified a total of 245 scientific articles that have reported main compounds, traditional uses, and pharmacological and biological activities from plant parts of the selected species. Conclusions Evidence indicates that the selected plants contain bioactive compounds responsible for anti-inflammatory, antibacterial, and antiviral properties, suggesting these plants as potential sources for bioactive agents and suitable for consumption for health benefits.
Collapse
Affiliation(s)
- Raveevatoo Buathong
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sutsawat Duangsrisai
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
16
|
Synthesis of Integrated Flower Waste Biorefinery: Multi-Objective Optimisation with Economic and Environmental Consideration. Processes (Basel) 2022. [DOI: 10.3390/pr10112240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The improper disposal of flower waste from cultural activities is one of the main challenges in certain countries such as India. If the flower waste is not managed properly, it causes a number of environmental issues. Therefore, various technologies have been developed to transform flower waste into value-added products. To integrate multiple technologies holistically to maximise the energy and material recovery, an integrated flower-waste biorefinery is required. Since there are a wide range of technologies available that can convert the waste into multiple products, there is a need to develop a systematic approach to evaluate all the technologies. This research proposes a systematic approach to synthesise an integrated flower-waste biorefinery based on different optimisation objectives, e.g., maximum economic performance and minimum environmental impact. Due to the conflicting nature between the two objectives, a fuzzy optimisation approach has been adapted to synthesise a sustainable integrated flower-waste biorefinery that satisfies both objectives at once. The efficacy of the proposed approach is demonstrated through a case study in India based on the optimised results with fuzzy optimisation—a synthesised flower-waste integrated biorefinery with economy performance of $400,932 and carbon emission of 46,209 kg CO2/h.
Collapse
|
17
|
Song X, Jiang Y, Zhong Y, Wang D, Deng Y. Evaluation of Radio Frequency-Assisted Enzymatic Extraction of Non-Anthocyanin Polyphenols from Akebia trifoliata Flowers and Their Biological Activities Using UPLC-PDA-TOF-ESI-MS and Chemometrics. Foods 2022; 11:3410. [PMID: 36360024 PMCID: PMC9659098 DOI: 10.3390/foods11213410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 05/18/2024] Open
Abstract
A new radio frequency heating-assisted enzymatic extraction (RF-E) method is applied for the determination of phenolic compounds in Akebia trifoliata flowers, compared with hot water, acidified ethanol (EtOH), and enzymatic-assisted (EA) extractions. Non-anthocyanin polyphenol profiles, antibacterial, angiotensin-converting enzyme (ACE) inhibitory, anti-inflammatory activities, and structures of extracts are evaluated. Results show no significant differences in the extraction of total flavonoid content (15.85-16.63 mg QEs/g) and ACE inhibitory activity (51.30-52.86%) between RF-E and EA extracts. RF-E extract shows the highest anti-inflammatory activities. FTIR and UV spectra reveal that acidified EtOH treatment has a significant effect on the structure of the extract due to its highest flavonoid content (20.33 mg QEs/g), thus it has the highest antibacterial activity against Staphylococcus aureus and Escherichia coli. Sixteen non-anthocyanin polyphenols are identified by UPLC-PDA-TOF-ESI-MS and RF pre-treatment did not cause significant compound degradation. The chemometric analysis shows that enzymatic hydrolysis significantly increased biological activities, and the presence of non-anthocyanin polyphenols correlates well with ACE inhibitory and anti-inflammatory activities. Accordingly, A trifoliata flowers have potential as reagents for the food and pharmaceutical industries due to their abundant polyphenols that could be extracted efficiently using RF-E.
Collapse
Affiliation(s)
- Xiaoyong Song
- College of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Yongli Jiang
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Shanghai Food Safety and Engineering Technology Research Center, Shanghai 200240, China
| | - Yu Zhong
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Danfeng Wang
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Shanghai Food Safety and Engineering Technology Research Center, Shanghai 200240, China
| |
Collapse
|
18
|
Yan G, Zhou Y, Zhao L, Wang W. Phenolic contents and antioxidant activities of solvent extracts from four edible flowers. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.5.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In order to identify new sources of natural antioxidants, the antioxidant activities of various solvent extracts from four edible flower samples [Wisteria sinensis (Sims) DC., Benincasa hispida (Thunb.) Cogn, Luffa cylindrica (L.) Roem, and Cucurbita pepo L.) were systemically investigated. The total phenolic content (TPC) and total flavonoid content (TFC), and individual phenolic profile of each extract were investigated, and antioxidant activities were measured by the DPPH radical scavenging activity, superoxide radical scavenging activity, total reduction capability, and ferrous ions chelating activity. Results revealed that all flower extracts exhibited antioxidant activities, and contained certain amounts of phenolic compounds. Specifically, different solvents exhibited different efficiencies in the extraction of phenolics, flavonoids, and compounds with antioxidant activities. The 70% ethanolic extract from B. hispida yielded the highest TPC (49.92 mg GAE/g DW), superoxide radical scavenging activity (IC50, 0.073 mg/mL), and FRAP value (18.05 mg of GAE/g DW). The highest TFC was obtained with the ethanolic extract of W. sinensis (30.39 mg QE/g DW), and the contents of apigenin, luteolin, and myricetin in the ethanolic extract of W. sinensis were significantly higher than those in the other extracts. The 40% ethanolic extract of L. cylindrica yielded the highest DPPH scavenging capacity (IC50, 0.340 mg/mL), and water extract of B. hispida yielded the highest chelating activity (0.027 mg/mL). Correlation analysis indicated that total phenolics and flavonoids in the extracts were the major contributors to the DPPH scavenging activities and FRAP activities. Overall, results demonstrated that these edible flowers could serve as useful source of natural antioxidants, and be used as functional food ingredients.
Collapse
|
19
|
Supercritical fluid extraction as a suitable technology to recover bioactive compounds from flowers. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
In Vitro and In Silico Studies to Assess Edible Flowers’ Antioxidant Activities. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The incorporation of edible flowers in the human diet and culinary preparations dates back to ancient times. Nowadays, edible flowers have gained great attention due to their health-promoting and nutritive effects and their widespread acceptance by consumers. Therefore, edible flowers are ideal candidates for use in the design and development of functional foods and dietary supplements, representing a new and promising trend in the food industry. Thus, the present study attempts to assess the potential of various edible flowers against oxidative stress by applying a combination of in vitro, in silico and spectroscopic techniques. Specifically, the spectroscopic profiles of edible flower extracts were evaluated using ATR-FTIR spectroscopy, while their total phenolic contents and antioxidant/antiradical activities were determined spectrophotometrically. The most abundant phytochemicals in the studied flowers were examined as enzyme inhibitors through molecular docking studies over targets that mediate antioxidant mechanisms in vivo. Based on the results, the red China rose followed by the orange Mexican marigold exhibited the highest TPCs and antioxidant activities. All samples showed the characteristic FTIR band of the skeletal vibration of phenolic aromatic rings. Phenolic compounds seem to exhibit antioxidant activity with respect to NADPH oxidase, myeloperoxidase (MP), cytochrome P450 and, to a lesser extent, xanthine oxidase (XO) enzymes.
Collapse
|
21
|
Fan M, Zhang X, Zhao Y, Zhi J, Xu W, Yang Y, Xu Y, Luo K, Wang D. Mn(II)-Mediated Self-Assembly of Tea Polysaccharide Nanoparticles and Their Functional Role in Mice with Type 2 Diabetes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30607-30617. [PMID: 35771882 DOI: 10.1021/acsami.2c07488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tea polysaccharide (TPS) is a bioactive compound that has attracted increasing attention for its health effect on regulating the metabolism of glucose and lipid. Moreover, due to their good biocompatibility and biodegradability, TPS-based nanoparticles have emerged as effective nanocarriers for the delivery of bioactive molecules. In this study, we developed a TPS-based biocarrier system for the orally targeted administration of Mn(II) ions and investigated their antidiabetic effects in C57BL/6 mice with HFD/streptozotocin (STZ)-induced T2DM. Mn(II)-loaded TPS-based nanoparticles (MTNPs) were synthesized, in which negatively charged functional groups in protein and uronic acid in TPS conjugates would act as binding sites for Mn(II) ions, which is responsible for the cross-linking reaction of MTNP. The resulting MTNP had a spherical shape and a mean particle size of around 30 nm with a Mn(II) ion content of 2.24 ± 0.13 mg/g. In T2DM mice, we discovered that MTNP treatment significantly lowered blood glucose levels and improved glucose intolerance. Furthermore, the impact of MTNP on the recovery of FINS, the homeostatic index of insulin resistance (HOMA-IR), and the homeostatic index of β-cell (HOMA β-cell) levels was significantly larger (p < 0.05) than TPS alone, demonstrating that Mn(II) ions can enhance TPS's ability to repair HFD/STZ-induced β-cell damage. Mn(II) ions in MTNP not only acted as cofactors to increase the exocytosis of insulin secretory cells by upregulating the expression of Ca(II)/calmodulin-dependent protein kinase II (CaMK II) but also promoted TPS's lipid-lowering effect in T2DM mice by inhibiting glucogenesis and regulating the lipid metabolism. Our findings suggest that Mn(II) ions can be used not only as cross-linkers in the formation of nanoparticulated TPS but also as cofactors in improving the functional role of TPS in regulating the glucose and lipid metabolism, which will provide insights into the development of TPS-based drug delivery systems for the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Minghao Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xin Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yi Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jinglei Zhi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Wanying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yuqi Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| |
Collapse
|
22
|
Mlcek J, Plaskova A, Jurikova T, Sochor J, Baron M, Ercisli S. Chemical, Nutritional and Sensory Characteristics of Six Ornamental Edible Flowers Species. Foods 2021; 10:2053. [PMID: 34574164 PMCID: PMC8472405 DOI: 10.3390/foods10092053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
Ornamental edible flowers can be used as novel nutraceutical sources with valuable biological properties. The purpose of this study was to establish nutritional, chemical, and sensory characteristics, antioxidant capacity (AC), and the relationship between their bioactive components and AC. The selected flowers Begonia × tuberhybrida, Tropaeolum majus, Calendula officinalis, Rosa, Hemerocallis, and Tagetes patula, can be easily collected due to their larger size. Their methanolic extracts were spectrophotometrically determined for polyphenols, flavonoids, and AC. Mineral elements were analyzed by atomic-absorption spectroscopy; crude protein was quantified by the Kjeldahl method. Eventually, 30 panelists evaluated sensory properties in 11 attributes. In addition, this study may serve to popularize selected blossoms. In flowers the contents of minerals were in this order: K > Ca > P > Mg > Na > Zn > Mn > Fe > Cu > Mo. AC ranged between 4.11 and 7.94 g of ascorbic acid equivalents/kg of fresh mass. The correlation coefficients between AC-total phenolics and AC-total flavonoids were r = 0.73* and r = 0.58*, respectively. It is also possible to observe a strong correlation between mineral elements and bioactive compounds. Hemerocallis was rated as the best and most tasteful; additionally, it exhibited the highest AC, total phenolic and flavonoid contents.
Collapse
Affiliation(s)
- Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
| | - Anna Plaskova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
| | - Tunde Jurikova
- Institute for Teacher Training, Faculty of Central European Studies, Constantine the Philosopher University in Nitra, Dražovská 4, 949 74 Nitra, Slovakia
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, 691 44 Lednice, Czech Republic
| | - Mojmir Baron
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, 691 44 Lednice, Czech Republic
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|