1
|
Zu X, Zhao Q, Liu W, Guo L, Liao T, Cai J, Li H. Sturgeon (Acipenser schrenckii) spinal cord peptides: Antioxidative and acetylcholinesterase inhibitory efficacy and mechanisms. Food Chem 2024; 461:140834. [PMID: 39153375 DOI: 10.1016/j.foodchem.2024.140834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Providing antioxidants and targeting acetylcholinesterase (AChE) are key strategies in treating neurocognitive dysfunction. In this study, bioactive sturgeon (Acipenser schrenckii) spinal cord peptides (SSCPs) with antioxidant and AChE inhibitory potency were extracted and separated from sturgeon spinal cord by enzymatic hydrolysis and ultrafiltration, and targeted peptide PGGW was screened via computer simulated molecular docking. Further, the molecular dynamic interactions of the PGGW with superoxide dismutase (SOD) and AChE were analyzed, and the protective effect of PGGW on glutamate-induced PC12 cells in vitro was evaluated. The <3 kDa fraction of SSCPs displays the most potent antioxidative efficacy (1 mg/mL, DPPH•: 89.07%, ABTS+: 76.35%). Molecular dynamics simulation showed that PGGW was stable within AChE and tightly bound to residues SER203, PHE295, ILE294 and TRP236. When combined with SOD, the indole group of PGGW was stuck inside SOD, but the tail chain PGG fluctuated greatly outside. Surface plasmon resonance demonstrated that PGGW has a high binding affinity for AChE (KD = 1.4 mM) and 0.01 mg/mL PGGW provided good protection against glutamate-induced apoptosis. The findings suggest a promising strategy for drug research on neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Zu
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China
| | - Qing Zhao
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430000, China
| | - Wenbo Liu
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China; School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lu Guo
- School of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jun Cai
- School of Life and Health Sciences, Hubei University of Technology, Wuhan 430000, China.
| | - Hailan Li
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
2
|
Du C, Gong H, Zhao H, Wang P. Recent progress in the preparation of bioactive peptides using simulated gastrointestinal digestion processes. Food Chem 2024; 453:139587. [PMID: 38781909 DOI: 10.1016/j.foodchem.2024.139587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Bioactive peptides (BAPs) represent a unique class of peptides known for their extensive physiological functions and their role in enhancing human health. In recent decades, owing to their notable biological attributes such as antioxidant, antihypertensive, antidiabetic, and anti-inflammatory activities, BAPs have received considerable attention. Simulated gastrointestinal digestion (SGD) is a technique designed to mimic physiological conditions by adjusting factors such as digestive enzymes and their concentrations, pH levels, digestion duration, and salt content. Initially established for analyzing the gastrointestinal processing of foods or their constituents, SGD has recently become a preferred method for generating BAPs. The BAPs produced via SGD often exhibit superior biological activity and stability compared with those of BAPs prepared via other methods. This review offers a comprehensive examination of the recent advancements in BAP production from foods via SGD, addressing the challenges of the method and outlining prospective directions for further investigation.
Collapse
Affiliation(s)
- Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Huawei Zhao
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
3
|
Cheng L, Shi C, Li X, Matsui T. Impact of Peptide Transport and Memory Function in the Brain. Nutrients 2024; 16:2947. [PMID: 39275263 PMCID: PMC11396983 DOI: 10.3390/nu16172947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Recent studies have reported the benefits of food-derived peptides for memory dysfunction. Beyond the physiological effects of peptides, their bioavailability to the brain still remains unclear since the blood-brain barrier (BBB) strictly controls the transportation of compounds to the brain. Here, updated transportation studies on BBB transportable peptides are introduced and evaluated using in vitro BBB models, in situ perfusion, and in vivo mouse experiments. Additionally, the mechanisms of action of brain health peptides in relation to the pathogenesis of neurodegenerative diseases, particularly Alzheimer's disease, are discussed. This discussion follows a summary of bioactive peptides with neuroprotective effects that can improve cognitive decline through various mechanisms, including anti-inflammatory, antioxidative, anti-amyloid β aggregation, and neurotransmitter regulation.
Collapse
Affiliation(s)
- Lihong Cheng
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Caiyue Shi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| | - Xixi Li
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Godos J, Micek A, Currenti W, Franchi C, Poli A, Battino M, Dolci A, Ricci C, Ungvari Z, Grosso G. Fish consumption, cognitive impairment and dementia: an updated dose-response meta-analysis of observational studies. Aging Clin Exp Res 2024; 36:171. [PMID: 39162889 PMCID: PMC11335789 DOI: 10.1007/s40520-024-02823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/28/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Cognitive impairment is projected to affect a preponderant proportion of the aging population. Lifelong dietary habits have been hypothesized to play a role in preventing cognitive decline. Among the most studied dietary components, fish consumptionhas been extensively studied for its potential effects on the human brain. AIMS To perform a meta-analysis of observational studies exploring the association between fish intake and cognitive impairment/decline and all types of dementia. METHODS A systematic search of electronic databases was performed to identify observational studies providing quantitative data on fish consumption and outcomes of interest. Random effects models for meta-analyses using only extreme exposure categories, subgroup analyses, and dose-response analyses were performed to estimate cumulative risk ratios (RRs) and 95% confidence intervals (CIs). RESULTS The meta-analysis comprised 35 studies. Individuals reporting the highest vs. the lowest fish consumption were associated with a lower likelihood of cognitive impairment/decline (RR = 0.82, 95% CI: 0.75, 0.90, I2 = 61.1%), dementia (RR = 0.82, 95% CI: 0.73, 0.93, I2 = 38.7%), and Alzheimer's disease (RR = 0.80, 95% CI: 0.67, 0.96, I2 = 20.3%). The dose-response relation revealed a significantly decreased risk of cognitive impairment/decline and all cognitive outcomes across higher levels of fish intake up to 30% for 150 g/d (RR = 0.70, 95% CI: 0.52, 0.95). The results of this relation based on APOE ε4 allele status was mixed based on the outcome investigated. CONCLUSIONS Current findings suggest fish consumption is associated with a lower risk of cognitive impairment/decline in a dose-response manner, while for dementia and Alzheimer's disease there is a need for further studies to improve the strength of evidence.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, Catania, Italy
| | - Agnieszka Micek
- Statistical Laboratory, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, 31-501, Poland
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carlotta Franchi
- Laboratory of Pharmacoepidemiology and Human Nutrition, Department of Health Policy, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, 20156, Italy
- Italian Institute for Planetary Health (IIPH), Milan, 20124, Italy
| | - Andrea Poli
- Nutrition Foundation of Italy (NFI), Milan, 20124, Italy
| | - Maurizio Battino
- Department of Clinical Sciences, Università Politecnica Delle Marche, Ancona, Italy
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Alberto Dolci
- Sustainable Development Department, Bolton Food SpA, Milan, 20124, Italy
| | - Cristian Ricci
- Africa Unit for Transdisciplinary Health Research (AUTHeR), North-West University, Potchefstroom, 2531, South Africa
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral College, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, Catania, Italy.
| |
Collapse
|
5
|
Shen Y, Fang L, Liu C, Wang J, Wu D, Zeng Q, Leng Y, Min W. Effect of bi-enzyme hydrolysis on the properties and composition of hydrolysates of Manchurian walnut dreg protein. Food Chem 2024; 447:138947. [PMID: 38492294 DOI: 10.1016/j.foodchem.2024.138947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 03/18/2024]
Abstract
Walnut dreg (WD) active peptides are an important source of dietary antioxidants; however, the products of conventional hydrolysis have limited industrial output owing to poor flavour and low bioactivity. To this end, in this study, we aimed to employ bvLAP, an aminopeptidase previously identified in our research, as well as commercially available Alcalase for bi-enzyme digestion. The flavour, antioxidant activity, and structures of products resulting from various digestion methods were compared. The results showed that the bi-enzyme digestion products had enhanced antioxidant activity, increased β-sheet content, and reduced bitterness intensity from 9.65 to 6.93. Moreover, bi-enzyme hydrolysates showed a more diverse amino acid composition containing 1640 peptides with distinct sequences. These results demonstrate that bi-enzyme hydrolysis could be a potential process for converting WD into functional food ingredients. Additionally, our results provide new concepts that can be applied in waste processing and high-value utilisation of WD.
Collapse
Affiliation(s)
- Yue Shen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, PR China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, PR China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, PR China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, PR China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, PR China
| | - Qi Zeng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, PR China
| | - Yue Leng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, PR China.
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, PR China.
| |
Collapse
|
6
|
Zhang Q, Wang Y, Zhao L, Su G, Ding W, Zheng L, Zhao M. A Comparative Study of the Stability, Transport, and Structure-Activity Relationship of Round Scad Derived Peptides with Antineuroinflammatory Ability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39029133 DOI: 10.1021/acs.jafc.4c03029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Our previous study identified round scad neuroprotective peptides with different characteristics. However, the intrinsic relationship between their structure and bioactivity, as well as their bioavailability, remains unclear. The aim of this study is to elucidate the bioavailability of these peptides and their structure-activity relationship against neuroinflammation. Results showed that the SR and WCP peptides were resistant to gastrointestinal digestion. Additionally, peptides SR, WCP, and WCPF could transport Caco-2 monolayers as intact peptides. The permeability coefficients (Papp) of SR, WCP, and WCPF in Caco-2 monolayer were (1.53 ± 0.01) × 10-5, (2.12 ± 0.01) × 10-5, and (8.86 ± 0.03) × 10-7 cm/s, respectively. Peptides SR, WCP, and WCPF, as promising inhibitors of JAK2 and STAT3, could attenuate the levels of pro-inflammatory cytokines and regulate the NFκB and JAK2/STAT3 signaling pathway in LPS-treated BV-2 cells. WCPF exerted the highest anti-inflammatory activity. Moreover, bioinformatics, molecular docking, and quantum chemistry studies indicated that the bioactivity of SR was attributed to Arg, whereas those of WCP and WCPF were attributed to Trp. This study supports the application of round-scad peptides and deepens the understanding of the structure-activity relationship of neuroprotective peptides.
Collapse
Affiliation(s)
- Qi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yali Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lili Zhao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenping Ding
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Lu Z, Shen S, Lin S. The neuroprotective effects of SFGDI on sirtuin 3-related oxidative stress by regulating the Sirt3/SOD/ROS pathway and energy metabolism in BV2 cells. Food Funct 2024; 15:6692-6704. [PMID: 38828499 DOI: 10.1039/d4fo01512f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Recently, the investigation of neuroprotective peptides has gained attention in addressing memory impairment and cognitive decline. Although the potential neuroprotective peptide Serine-Phenylalanine-Glycine-Aspartic acid-Isoleucine (SFGDI) has been identified from sea cucumber, the molecular mechanisms remain unclear. This study was conducted to explore the neuroprotection of SFGDI against 3-TYP-induced oxidative stress in BV2 cells. The results showed a retention rate of 76.70% during in vitro simulated gastrointestinal digestion and an absorption rate of 10.41% in a rat-everted gut sac model for SFGDI. Two hours following the administration of SFGDI via gavage in mice, a notable fluorescence was observed in the brain, indicating a potential neuroprotection of SFGDI through its interactions with nerve cells. By utilizing a model of oxidative stress injury induced by 3-TYP in BV2 cells, it was determined that pretreatment with SFGDI (50-200 μg mL-1) resulted in a dose-dependent reduction in the acetylated SOD level, leading to enhanced SOD activity and reduced levels of ROS and MDA. In addition, this pretreatment triggered an increase in unsaturated lipid levels, which helped maintain the intracellular lipid metabolism balance and preserve the mitochondrial function and glycolysis levels to regulate energy metabolism. The results of this study indicate that SFGDI demonstrates neuroprotective properties through its modulation of the Sirt3/SOD/ROS pathway, regulation of lipid metabolism, and enhancement of energy metabolism in BV2 cells. These findings suggest potential novel therapeutic approaches for addressing Sirt3-related memory deficits and neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhiqiang Lu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China.
- Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, P. R. China
| | - Siqi Shen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China.
- Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, P. R. China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China.
- Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, P. R. China
| |
Collapse
|
8
|
Yang J, Ding J, Lu Z, Zhu B, Lin S. Digestive and Absorptive Properties of the Antarctic Krill Tripeptide Phe-Pro-Phe (FPF) and Its Auxiliary Memory-Enhancing Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8491-8505. [PMID: 38587859 DOI: 10.1021/acs.jafc.3c08158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aging and stress have contributed to the development of memory disorders. Phe-Pro-Phe (FPF) was identified with high stability by mass spectrometry from simulated gastrointestinal digestion and everted gut sac products of the Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) which was found to have a positive impact on memory enhancement. This study investigated the digestive stability, absorption, and memory-enhancing effects of FPF using nuclear magnetic resonance spectroscopy, simulated gastrointestinal digestion, in vivo fluorescence distribution analysis, mouse behavioral experiments, acetylcholine function, Nissl staining, immunofluorescence, and immunohistochemistry. FPF crossed the blood-brain barrier into the brain after digestion, significantly reduced shock time, working memory errors, and reference memory errors, and increased the recognition index. Additionally, FPF elevated ACh content; Nissl body counts; and CREB, SYN, and PSD-95 expression levels, while reducing AChE activity (P < 0.05). This implies that FPF prevents scopolamine-induced memory impairment and provides a basis for future research on memory disorders.
Collapse
Affiliation(s)
- Jingqi Yang
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jie Ding
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- The Education Department of Liaoning Province, Engineering Research Center of Special Dietary Food, Dalian 116034, P. R. China
| | - Zhiqiang Lu
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- The Education Department of Liaoning Province, Engineering Research Center of Special Dietary Food, Dalian 116034, P. R. China
| | - Beiwei Zhu
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
- The Education Department of Liaoning Province, Engineering Research Center of Special Dietary Food, Dalian 116034, P. R. China
| |
Collapse
|
9
|
Lin L, Li C, Zhang T, Xia C, Bai Q, Jin L, Shen Y. An in silico scheme for optimizing the enzymatic acquisition of natural biologically active peptides based on machine learning and virtual digestion. Anal Chim Acta 2024; 1298:342419. [PMID: 38462343 DOI: 10.1016/j.aca.2024.342419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/23/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND As a potential natural active substance, natural biologically active peptides (NBAPs) are recently attracting increasing attention. The traditional proteolysis methods of obtaining effective NBAPs are considerably vexing, especially since multiple proteases can be used, which blocks the exploration of available NBAPs. Although the development of virtual digesting brings some degree of convenience, the activity of the obtained peptides remains unclear, which would still not allow efficient access to the NBAPs. It is necessary to develop an efficient and accurate strategy for acquiring NBAPs. RESULTS A new in silico scheme named SSA-LSTM-VD, which combines a sparrow search algorithm-long short-term memory (SSA-LSTM) deep learning and virtually digested, was presented to optimize the proteolysis acquisition of NBAPs. Therein, SSA-LSTM reached the highest Efficiency value reached 98.00 % compared to traditional machine learning algorithms, and basic LSTM algorithm. SSA-LSTM was trained to predict the activity of peptides in the proteins virtually digested results, obtain the percentage of target active peptide, and select the appropriate protease for the actual experiment. As an application, SSA-LSTM was employed to predict the percentage of neuroprotective peptides in the virtual digested result of walnut protein, and trypsin was ultimately found to possess the highest value (85.29 %). The walnut protein was digested by trypsin (WPTrH) and the peptide sequence obtained was analyzed closely matches the theoretical neuroprotective peptide. More importantly, the neuroprotective effects of WPTrH had been demonstrated in nerve damage mouse models. SIGNIFICANCE The proposed SSA-LSTM-VD in this paper makes the acquisition of NBAPs efficient and accurate. The approach combines deep learning and virtually digested skillfully. Utilizing the SSA-LSTM-VD based strategy holds promise for discovering and developing peptides with neuroprotective properties or other desired biological activities.
Collapse
Affiliation(s)
- Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China.
| | - Tianlong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Chaoshuang Xia
- Center for Biomedical Mass Spectrometry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, United States
| | - Qiuhong Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China.
| |
Collapse
|
10
|
Lu Z, Yang J, Xu X, Liu R, Lin S. Regulation mechanisms of sea cucumber peptides against scopolamine-induced memory disorder and novel memory-improving peptides identification. Eur J Pharmacol 2024; 968:176430. [PMID: 38369274 DOI: 10.1016/j.ejphar.2024.176430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Memory impairment affects cognition and information processing, and attention, leading to a decline in life quality of patients. Previous studies have shown the memory-improving effects of sea cucumber peptides. This study further explored the memory-improving mechanisms of sea cucumber peptides using scopolamine-induced memory-impaired mice and identified novel memory-improving peptides within low molecular weight peptide fractions. The sea cucumber peptides were categorized into three groups based on their molecular weights: SCP-L (molecular weight greater than 10 kDa), SCP-M (weight between 3 kDa and 10 kDa), and SCP-S (molecular weight less than 3 kDa). The results showed that SCP-S improved behavioral performance by regulating cholinergic system disorder and reducing oxidative stress levels, distinguishing itself from SCP-M and SCP-L. Further, SCP-S was found to exhibit a well ability in alleviating the degree of neuroinflammation dependent on microglia and promoting synaptic plasticity. Additionally, a novel memory-improving peptide Ser-Phe-Gly-Asp-Ile (SFGDI) was identified by EASY-nano-LC/MS/MS after simulated digestion-absorption coupling of in silico technologies from SCP-S. SFGDI protected against oxidative stress and regulated cholinergic system in scopolamine-induced PC12 cells. These findings suggest that SCP-S and SFGDI might be considered as potential memory-improving food for people suffering from memory disorders.
Collapse
Affiliation(s)
- Zhiqiang Lu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, PR China
| | - Jingqi Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, PR China
| | - Xiaomeng Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, PR China
| | - Ruowen Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, PR China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, PR China.
| |
Collapse
|
11
|
Skibska A, Perlikowska R. Natural Plant Materials as a Source of Neuroprotective Peptides. Curr Med Chem 2024; 31:5027-5045. [PMID: 37403392 DOI: 10.2174/0929867331666230703145043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
In many circumstances, some crucial elements of the neuronal defense system fail, slowly leading to neurodegenerative diseases. Activating this natural process by administering exogenous agents to counteract unfavourable changes seems promising. Therefore, looking for neuroprotective therapeutics, we have to focus on compounds that inhibit the primary mechanisms leading to neuronal injuries, e.g., apoptosis, excitotoxicity, oxidative stress, and inflammation. Among many compounds considered neuroprotective agents, protein hydrolysates and peptides derived from natural materials or their synthetic analogues are good candidates. They have several advantages, such as high selectivity and biological activity, a broad range of targets, and high safety profile. This review aims to provide biological activities, the mechanism of action and the functional properties of plant-derived protein hydrolysates and peptides. We focused on their significant role in human health by affecting the nervous system and having neuroprotective and brain-boosting properties, leading to memory and cognitive improving activities. We hope our observation may guide the evaluation of novel peptides with potential neuroprotective effects. Research into neuroprotective peptides may find application in different sectors as ingredients in functional foods or pharmaceuticals to improve human health and prevent diseases.
Collapse
Affiliation(s)
- Agnieszka Skibska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Lodz, Poland
| | - Renata Perlikowska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Lodz, Poland
| |
Collapse
|
12
|
Patel K, Mani A. Food-derived Peptides as Promising Neuroprotective Agents: Mechanism and Therapeutic Potential. Curr Top Med Chem 2024; 24:1212-1229. [PMID: 38551052 DOI: 10.2174/0115680266289248240322061723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 07/20/2024]
Abstract
Many food-derived peptides have the potential to improve brain health and slow down neurodegeneration. Peptides are produced by the enzymatic hydrolysis of proteins from different food sources. These peptides have been shown to be involved in antioxidant and anti-inflammatory activity, neuro-transmission modulation, and gene expression regulation. Although few peptides directly affect chromatin remodeling and histone alterations, others indirectly affect the neuroprotection process by interfering with epigenetic changes. Fish-derived peptides have shown neuroprotective properties that reduce oxidative stress and improve motor dysfunction in Parkinson's disease models. Peptides from milk and eggs have been found to have anti-inflammatory properties that reduce inflammation and improve cognitive function in Alzheimer's disease models. These peptides are potential therapeutics for neurodegenerative diseases, but more study is required to assess their efficacy and the underlying neuroprotective benefits. Consequently, this review concentrated on each mechanism of action used by food-derived peptides that have neuroprotective advantages and applications in treating neurodegenerative diseases. This article highlights various pathways, such as inflammatory pathways, major oxidant pathways, apoptotic pathways, neurotransmitter modulation, and gene regulation through which food-derived peptides interact at the cellular level.
Collapse
Affiliation(s)
- Kavita Patel
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| |
Collapse
|
13
|
Singh K, Gupta JK, Kumar S, Soni U. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Bioactive Peptides. Curr Protein Pept Sci 2024; 25:507-526. [PMID: 38561605 DOI: 10.2174/0113892037275221240327042353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Neurodegenerative disorders, which include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), represent a significant and growing global health challenge. Current therapies predominantly focus on symptom management rather than altering disease progression. In this review, we discuss the major therapeutic strategies in practice for these disorders, highlighting their limitations. For AD, the mainstay treatments are cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists. For PD, dopamine replacement therapies, including levodopa, are commonly used. HD is managed primarily with symptomatic treatments, and reusable extends survival in ALS. However, none of these therapies halts or substantially slows the neurodegenerative process. In contrast, this review highlights emerging research into bioactive peptides as potential therapeutic agents. These naturally occurring or synthetically designed molecules can interact with specific cellular targets, potentially modulating disease processes. Preclinical studies suggest that bioactive peptides may mitigate oxidative stress, inflammation, and protein misfolding, which are common pathological features in neurodegenerative diseases. Clinical trials using bioactive peptides for neurodegeneration are limited but show promising initial results. For instance, hemiacetal, a γ-secretase inhibitor peptide, has shown potential in AD by reducing amyloid-beta production, though its development was discontinued due to side effects. Despite these advancements, many challenges remain, including identifying optimal peptides, confirming their mechanisms of action, and overcoming obstacles related to their delivery to the brain. Future research should prioritize the discovery and development of novel bioactive peptides and improve our understanding of their pharmacokinetics and pharmacodynamics. Ultimately, this approach may lead to more effective therapies for neurodegenerative disorders, moving beyond symptom management to potentially modify the course of these devastating diseases.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Urvashi Soni
- Department of Pharmacology, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, Maharashtra, India
| |
Collapse
|
14
|
Gupta JK, Singh K. Pharmacological Potential of Bioactive Peptides for the Treatment of Diseases Associated with Alzheimer's and Brain Disorders. Curr Mol Med 2024; 24:962-979. [PMID: 37691200 DOI: 10.2174/1566524023666230907115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
Bioactive peptides are a promising class of therapeutics for the treatment of diseases associated with Alzheimer's and brain disorders. These peptides are derived from naturally occurring proteins and have been shown to possess a variety of beneficial properties. They may modulate neurotransmitter systems, reduce inflammation, and improve cognitive performance. In addition, bioactive peptides have the potential to target specific molecular pathways involved in the pathogenesis of Alzheimer's and brain disorders. For example, peptides have been shown to interact with amyloid-beta, a major component of amyloid plaques found in Alzheimer's disease, and have been shown to reduce its accumulation in the brain. Furthermore, peptides have been found to modulate the activity of glutamate receptors, which are important for memory and learning, as well as to inhibit the activity of enzymes involved in the formation of toxic amyloid-beta aggregates. Finally, bioactive peptides have the potential to reduce oxidative stress and inflammation, two major components of many neurological disorders. These peptides could be used alone or in combination with traditional pharmacological treatments to improve the management of diseases associated with Alzheimer's and brain disorders.
Collapse
Affiliation(s)
- Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
15
|
Li Z, Dang Q, Wang P, Zhao F, Huang J, Wang C, Liu X, Min W. Food-Derived Peptides: Beneficial CNS Effects and Cross-BBB Transmission Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20453-20478. [PMID: 38085598 DOI: 10.1021/acs.jafc.3c06518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Food-derived peptides, as dietary supplements, have significant effects on promoting brain health and relieving central nervous system (CNS) diseases. However, the blood-brain barrier (BBB) greatly limits their in-brain bioavailability. Thus, overcoming the BBB to target the CNS is a major challenge for bioactive peptides in the prevention and treatment of CNS diseases. This review discusses improvement in the neuroprotective function of food-derived active peptides in CNS diseases, as well as the source of BBB penetrating peptides (BBB-shuttles) and the mechanism of transmembrane transport. Notably, this review also discusses various peptide modification methods to overcome the low permeability and stability of the BBB. Lipification, glycosylation, introduction of disulfide bonds, and cyclization are effective strategies for improving the penetration efficiency of peptides through the BBB. This review provides a new prospective for improving their neuroprotective function and developing treatments to delay or even prevent CNS diseases.
Collapse
Affiliation(s)
- Zehui Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P.R. China
| | - Qiao Dang
- College of Food Science and Engineering, Jilin Agricultural University, ChangChun, Jilin 130118, P.R. China
| | - Peng Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
| | - Fanrui Zhao
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Chongchong Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| | - Xingquan Liu
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, P.R. China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, P.R. China
| |
Collapse
|
16
|
Zhang L, Bai YY, Hong ZS, Xie J, Tian Y. Isolation, Identification, Activity Evaluation, and Mechanism of Action of Neuroprotective Peptides from Walnuts: A Review. Nutrients 2023; 15:4085. [PMID: 37764868 PMCID: PMC10534798 DOI: 10.3390/nu15184085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
As human life expectancy increases, the incidence of neurodegenerative diseases in older adults has increased in parallel. Walnuts contain bioactive peptides with demonstrated neuroprotective effects, making them a valuable addition to the diet. We here present a comprehensive review of the various methods used to prepare, isolate, purify, and identify the neuroprotective peptides found in walnuts. We further summarise the different approaches currently used to evaluate the activity of these peptides in experimental settings, highlighting their potential to reduce oxidative stress, neuroinflammation, and promote autophagy, as well as to regulate the gut microflora and balance the cholinergic system. Finally, we offer suggestions for future research concerning bioavailability and improving or masking the bitter taste and sensory properties of final products containing the identified walnut neuroprotective peptides to ensure successful adoption of these peptides as functional food ingredients for neurohealth promotion.
Collapse
Affiliation(s)
- Li Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yu-Ying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Zi-Shan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
- School of Tea and Coffee, Puer University, Puer 665000, China
| |
Collapse
|
17
|
Wu S, Zhu Z, Chen M, Huang A, Xie Y, Hu H, Zhang J, Wu Q, Wang J, Ding Y. Comparison of Neuroprotection and Regulating Properties on Gut Microbiota between Selenopeptide Val-Pro-Arg-Lys-Leu-SeMet and Its Native Peptide Val-Pro-Arg-Lys-Leu-Met In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12203-12215. [PMID: 37530172 DOI: 10.1021/acs.jafc.3c02918] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Selenopeptides are promising candidates for intervening in neuroinflammation; however, the key role of selenium (Se) in selenopeptides remains poorly understood. To address this gap, we compared the neuroprotective effects of selenopeptide Val-Pro-Arg-Lys-Leu-SeMet (namely, Se-P1) and its native peptide Val-Pro-Arg-Lys-Leu-Met (namely, P1). Our results demonstrate that Se-P1 treatment exhibits superior antioxidant and antineuroinflammatory effects in PC12 cells and lipopolysaccharide (LPS)-injured mice compared to P1. Moreover, the administration of Se-P1 and P1 resulted in a shift in the gut microbiota composition. Notably, during LPS-induced injury, Se-P1 treatment demonstrated greater stability in maintaining gut microbiota composition compared to P1 treatment. Specifically, Se-P1 may have a positive impact on gut microbiota dysbiosis by modulating inflammatory-related bacteria such as enhancing Lactobacillus abundance while reducing that of Lachnospiraceae_NK4A136_group. Furthermore, the alteration of metabolites induced by Se-P1 treatment exhibited a significant correlation with gut microbiota, subsequently modulating the inflammatory-related metabolic pathways including histidine metabolism, lysine degradation, and purine metabolism. These findings suggest that organic Se contributes to the bioactivities of Se-P1 in mitigating neuroinflammation in LPS-injured mice compared to P1. These findings hold significant value for the development of potential preventive or therapeutic strategies against neurodegenerative diseases and introduce novel concepts in selenopeptide nutrition and supplementation recommendations.
Collapse
Affiliation(s)
- Shujian Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Mengfei Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Aohuan Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yizhen Xie
- Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou 510530, China
| | - Huiping Hu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
18
|
Yang B, Li Y, Guo W, Zhang Q, Pan L, Duan K, Zhang P, Ren L, Zhang W, Wang Q, Kong D. Optimized approach for active peptides identification in Cerebrolysin by nanoLC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1225:123755. [PMID: 37220681 DOI: 10.1016/j.jchromb.2023.123755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
Cerebrolysin (CBL) is a peptide-rich preparation made by hydrolysis and purified extraction of porcine brain. CBL contains various neuroprotective peptides, such as neurotrophic factor, nerve growth factor and ciliary neurotrophic factor, which can be used to treat neurodegenerative diseases. However, the active peptides in CBL had not been studied in depth. In this study, the following was carried out in order to investigate the active peptides in CBL. First, CBL samples were treated using organic reagents (acetonitrile and acetone) to precipitate the proteins and different solid phase extraction methods (MCX mixed-mode cartridges, C18 SPE cartridge columns and HILIC sorbent). Then the samples were analyzed using nanoLC-MS, followed by the identification of peptides using different sequence analysis software (PEAKS, pNovo and novor). Finally, bioinformatics analysis was performed to predict peptides with potential neuroprotective functions in CBL, such as anti-inflammatory and antioxidant peptides. Results showed that the number of peptides obtained by the MCX method coupled with PEAKS was the highest and the method was the most stable. Bioinformatic analysis of the detected peptides showed that two anti-inflammatory peptides (LLNLQPPPR and LSPSLRLP) and an antioxidant peptide (WPFPR) might be neuroprotective peptides in CBL. In addition, this study found that some peptides in CBL were present in myelin basic protein and tubulin beta chain. The results of this study for the detection of active peptides in CBL laid the foundation for the subsequent study of its active ingredients.
Collapse
Affiliation(s)
- Bingkun Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China; School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017 China
| | - Yahui Li
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wenyan Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Qingning Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Liangyu Pan
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Kunfeng Duan
- Department of Pharmacy, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Panpan Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Leiming Ren
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.
| | - Qiao Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017 China.
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, School of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
19
|
Di C, Jia W. Food-derived bioactive peptides as momentous food components: Can functional peptides passed through the PI3K/Akt/mTOR pathway and NF-κB pathway to repair and protect the skeletal muscle injury? Crit Rev Food Sci Nutr 2023; 64:9210-9227. [PMID: 37171059 DOI: 10.1080/10408398.2023.2209192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Muscle injury is defined as an overuse injury or traumatic distraction of a muscle, which is latent in any sport event, from amateur to large events. Based on previous numbers of muscle injuries and time spent to the athletes' recovery, the use of dietary functional factors intervention strategies is essential to enhance the recovery process and health. In recent years, there has been increasing evidence that biologically active peptides played an important role in sports nutrition and muscle injure recovery. Food-derived bioactive peptides were physiologically active peptides mostly derived from proteins following hydrolysis, which could be resorbed in intact form to reduce muscle damage following exercise and induce beneficial adaptions within the connective tissue. However, the complexity of the histoarchitectural considerations for skeletal muscle injuries and the repair mechanism of damaged skeletal muscle were not well known. In the following overview, the potential mechanisms and possible limitations regarding the damaged skeletal muscle metabolism were summarized, which aimed to present an overview of the nutritional strategies and recommendations after a muscular sports injury, emphasizing the use of main bioactive peptides. In addition, this review will provide implications for the studies of dietary bioactive peptides in the future.
Collapse
Affiliation(s)
- Chenna Di
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| |
Collapse
|
20
|
Zhang Q, Zheng L, Luo D, Zhao M. In Vitro Simulated Gastrointestinal Digestion Stability of a Neuroprotective Octapeptide WCPFSRSF and Prediction of Potential Bioactive Peptides in Its Digestive Fragments by Multiple Bioinformatics Tools. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6987-6998. [PMID: 37128773 DOI: 10.1021/acs.jafc.3c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
WCPFSRSF, an octapeptide (Trp-Cys-Pro-Phe-Ser-Arg-Ser-Phe), has been reported to improve memory in mice, but its gastrointestinal stability is unclear. The objective of this study was to evaluate the gastrointestinal stability of peptide WCPFSRSF and explore the neuroprotective potential of its digestive fragments. Results showed that the content of WCPFSRSF after gastric and gastrointestinal digestion decreased to 71.64% and less than 1%, respectively. Furthermore, the antioxidant and neuroprotective ability of WCPFSRSF were also affected. Eleven and nine peptides were identified in its gastric and gastrointestinal digestive products, respectively. Multiple bioinformatics tools in combination with principal component analysis were employed to assess the physicochemical and structural properties of peptides. Novel peptides generated after gastrointestinal digestion could be classified into three groups: the first group had high bioactivity and bioavailability; the second group had high amphiphilicity, charge, and net hydrogen; and the third group had a long peptide chain. In addition, the representative peptides WCPF and SR showed neuroprotective ability.
Collapse
Affiliation(s)
- Qi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| |
Collapse
|
21
|
Wang W, Xu C, Wang Q, Hussain MA, Wang C, Hou J, Jiang Z. Protective Effect of Polyphenols, Protein, Peptides, and Polysaccharides on Alcoholic Liver Disease: A Review of Research Status and Molecular Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37001022 DOI: 10.1021/acs.jafc.2c07081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alcoholic liver disease (ALD) has emerged as an important public health problem in the world. The polyphenols, protein, peptides, and polysaccharides have attracted attention for prevention or treatment of ALD. Therefore, this paper reviews the pathogenesis of ALD, the relationship between polyphenols, peptides, polysaccharides, and ALD, and expounds the mechanism of gut microbiota on protecting ALD. It is mainly found that the hydroxyl group of polyphenols endows it with antioxidation to protect ALD. The ALD protection of bioactive peptides is related to amino acid composition. The ALD protection of polysaccharides is related to the primary structure. Meanwhile, polyphenols, protein, peptides, and polysaccharides prevent or treat ALD by antioxidation, anti-inflammatory, antiapoptosis, lipid metabolism, and gut microbiota regulation. This contribution provides updated information on polyphenols, protein, peptides, and polysaccharides in response to ALD, which will not only facilitate the development of novel bioactive components but also the future application of functional food raw materials will be promoted.
Collapse
Affiliation(s)
- Wan Wang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cong Xu
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qingyun Wang
- Beidahuang Wondersun Dairy Co., Ltd., Harbin 150090, China
| | - Muhammad Altaf Hussain
- Lasbela University of Agriculture, Water and Marine Science Uthal, Balochistan 90150, Pakistan
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
22
|
Ciobanu MM, Manoliu DR, Ciobotaru MC, Anchidin BG, Matei M, Munteanu M, Frunză G, Murariu OC, Flocea EI, Boișteanu PC. The Influence of Sensory Characteristics of Game Meat on Consumer Neuroperception: A Narrative Review. Foods 2023; 12:foods12061341. [PMID: 36981266 PMCID: PMC10048761 DOI: 10.3390/foods12061341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Game meat contains bioactive compounds that directly influence the formation of a rich reservoir of flavor precursors that produce specific sensory properties. Quality is considered one of the most influential determinants of consumer behavior, but the interpretation of this concept differs between consumers. Although recognized for its quality, its unique sensory characteristics (smell, taste, aroma) may have a major impact on consumer perception. The aim of this review is to describe the consumer behavior regarding game meat through elements of neuroperception, using methods of analysis, observation, and interpretation of scientific information from the literature. Following the analysis of published papers on this topic, it was shown that external factors influencing the biological basis of behavior could provide explanations for the acceptance or rejection of this type of meat and solutions. Neuroperception can explain the mechanism behind consumer decision-making. The influence of extrinsic factors (environment, mood, emotions, stress) shapes the perception of the quality attributes of game meat, the unique sensory characteristics of game meat passing through a primary filter of sensory receptors (eyes, nose, tongue, etc). Game meat is darker and tougher (compared to meat from domestic animals), and the taste and smell have the power to trigger memories and change the mood, influencing consumer behavior. Understanding consumer attitudes towards game meat in relation to quality attributes and the physiology of sensory perception can provide important insights for food industry professionals, processors, sensory evaluators, and researchers.
Collapse
Affiliation(s)
- Marius-Mihai Ciobanu
- Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 3, 700490 Iasi, Romania
| | - Diana-Remina Manoliu
- Faculty of Animal and Food Resources Engineering, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 8, 700490 Iasi, Romania
| | - Mihai-Cătălin Ciobotaru
- Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 3, 700490 Iasi, Romania
| | - Bianca-Georgiana Anchidin
- Faculty of Animal and Food Resources Engineering, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 8, 700490 Iasi, Romania
| | - Mădălina Matei
- Faculty of Animal and Food Resources Engineering, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 8, 700490 Iasi, Romania
| | - Mugurel Munteanu
- Faculty of Animal and Food Resources Engineering, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 8, 700490 Iasi, Romania
| | - Gabriela Frunză
- Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 3, 700490 Iasi, Romania
| | - Otilia Cristina Murariu
- Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 3, 700490 Iasi, Romania
| | - Elena-Iuliana Flocea
- Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 3, 700490 Iasi, Romania
| | - Paul-Corneliu Boișteanu
- Faculty of Animal and Food Resources Engineering, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 8, 700490 Iasi, Romania
| |
Collapse
|
23
|
Corrêa JAF, de Melo Nazareth T, Rocha GFD, Luciano FB. Bioactive Antimicrobial Peptides from Food Proteins: Perspectives and Challenges for Controlling Foodborne Pathogens. Pathogens 2023; 12:pathogens12030477. [PMID: 36986399 PMCID: PMC10052163 DOI: 10.3390/pathogens12030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Bioactive peptides (BAPs) derived from food proteins have been extensively studied for their health benefits, majorly exploring their potential use as nutraceuticals and functional food components. These peptides possess a range of beneficial properties, including antihypertensive, antioxidant, immunomodulatory, and antibacterial activities, and are naturally present within dietary protein sequences. To release food-grade antimicrobial peptides (AMPs), enzymatic protein hydrolysis or microbial fermentation, such as with lactic acid bacteria (LAB), can be employed. The activity of AMPs is influenced by various structural characteristics, including the amino acid composition, three-dimensional conformation, liquid charge, putative domains, and resulting hydrophobicity. This review discusses the synthesis of BAPs and AMPs, their potential for controlling foodborne pathogens, their mechanisms of action, and the challenges and prospects faced by the food industry. BAPs can regulate gut microbiota by promoting the growth of beneficial bacteria or by directly inhibiting pathogenic microorganisms. LAB-promoted hydrolysis of dietary proteins occurs naturally in both the matrix and the gastrointestinal tract. However, several obstacles must be overcome before BAPs can replace antimicrobials in food production. These include the high manufacturing costs of current technologies, limited in vivo and matrix data, and the difficulties associated with standardization and commercial-scale production.
Collapse
Affiliation(s)
- Jessica Audrey Feijó Corrêa
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Tiago de Melo Nazareth
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giovanna Fernandes da Rocha
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| |
Collapse
|
24
|
Wang S, Zhao M, Fan H, Wu J. Peptidomics Study of Plant-Based Meat Analogs as a Source of Bioactive Peptides. Foods 2023; 12:foods12051061. [PMID: 36900588 PMCID: PMC10000916 DOI: 10.3390/foods12051061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The demand for plant-based meat analogs (PBMA) is on the rise as a strategy to sustain the food protein supply while mitigating environmental change. In addition to supplying essential amino acids and energy, food proteins are known sources of bioactive peptides. Whether protein in PBMA affords similar peptide profiles and bioactivities as real meat remains largely unknown. The purpose of this study was to investigate the gastrointestinal digestion fate of beef and PBMA proteins with a special focus on their potential as precursors of bioactive peptides. Results showed that PBMA protein showed inferior digestibility than that in beef. However, PBMA hydrolysates possessed a comparable amino acid profile to that of beef. A total of 37, 2420 and 2021 peptides were identified in the gastrointestinal digests of beef, Beyond Meat and Impossible Meat, respectively. The astonishingly fewer peptides identified from beef digest is probably due to the near-full digestion of beef proteins. Almost all peptides in Impossible Meat digest were from soy, whereas 81%, 14% and 5% of peptides in Beyond Meat digest were derived from pea, rice and mung proteins, respectively. Peptides in PBMA digests were predicted to exert a wide range of regulatory roles and were shown to have ACE inhibitory, antioxidant and anti-inflammatory activities, supporting the potential of PBMA as a source of bioactive peptides.
Collapse
Affiliation(s)
- Shuguang Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Correspondence: ; Tel.: +1-(780)-492-6885
| |
Collapse
|
25
|
Lin L, Li C, Li T, Zheng J, Shu Y, Zhang J, Shen Y, Ren D. Plant‐derived peptides for the improvement of Alzheimer's disease: Production, functions, and mechanisms. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Tingting Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Jingyi Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Yu Shu
- College of Food Science and Technology Northwest University Xi'an Shaanxi China
| | - Jingjing Zhang
- College of Chemical Engineering Northwest University Xi'an Shaanxi China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Difeng Ren
- Beijing Key Laboratory of Food Processing and Safety in Forestry Department of Food Science and Engineering, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| |
Collapse
|
26
|
Whey protein hydrolysate enhances exercise endurance, regulates energy metabolism, and attenuates muscle damage in exercise mice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Huang M, Wei X, Wu T, Li M, Zhou L, Chai L, Ruan C, Li H. Inhibition of TNBS-induced intestinal inflammation in crucian carp (Carassius carassius) by oral administration of bioactive Bioactive food derived peptides. FISH & SHELLFISH IMMUNOLOGY 2022; 131:999-1005. [PMID: 36195269 DOI: 10.1016/j.fsi.2022.09.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Intestinal enteritis is a main issue in crucian carp production which results in massive economic loss. Traditional antibiotics used for disease prevention of crucian carp (Carassius carassius) have been banned, thus an alternative approach needs to be identified. In this study, the bioactive peptide was evaluated as a diet supplement for preventing intestinal inflammation in crucian carp. Intestinal inflammation was induced by intrarectal administration of a 2,4,6-trinitrobenzene sulfonic acid (TNBS) solution. The fish samples were fed with different diets for 14 days. The disease activity index (DAI), which included, fish swimming, food intake, anal inflammation, body surface, and ascites was determined daily. Intestine segments were stained with haematoxylin and eosin (H.E.) for histopathological analysis. The expression of cytokines, including interleukin-1β (IL-1β), interleukin-8 (IL-8), tumor necrosis factor α (TNF-α), and myeloperoxidase (MPO) in crucian carp were determined. In TNBS-induced groups, the DAI scores were dramatically increased compared to the control group. The histopathological analysis showed that the damage of the fish intestine after the injection of TNBS. The relative expression levels of pro-inflammation cytokines (TNF-α, IL-1β, IL-8, MPO) were significantly increased compared to the control group on day 1. In the TNBS-induced group feed with a diet supplemented with bioactive peptide, the symptoms of intestinal inflammation were relieved on day 3 and the mRNA expression levels of pro-inflammation cytokines (TNF-α, IL-1β, IL-8, MPO) were reduced compared to day 1. On day 7, the fish samples enrofloxacin group and bioactive peptide group were recovered from TNBS-induced intestinal inflammation. This study showed that the fish diet supplemented with bioactive peptide could help to prevent and recover from intestinal inflammation. Thus, the bioactive peptide can be used as a replacement for antibiotics to prevent disease in aquaculture production.
Collapse
Affiliation(s)
- Meijuan Huang
- Institute of Hematology, Fijian Union Hospital, attached to Fujian Medical University, Fujian, China
| | - Xinyao Wei
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Tiecheng Wu
- Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Mengyan Li
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Lei Zhou
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Libing Chai
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Chengxu Ruan
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Hao Li
- College of Biological Science and Engineering, Fuzhou University, Fujian, China.
| |
Collapse
|
28
|
Bao X, Wu J. Egg White Protein Ovotransferrin-Derived IRW (Ile-Arg-Trp) Inhibits LPS-Induced Barrier Integrity Dysfunction and Inflammation in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14170-14178. [PMID: 36317732 PMCID: PMC9650714 DOI: 10.1021/acs.jafc.2c05128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Tripeptide IRW derived from egg ovotransferrin was initially identified to be an inhibitor of angiotensin-converting enzyme. Later, IRW has been shown to possess various bioactivities, including anti-inflammatory activity and the ability to suppress colitis development. Nevertheless, its role in protecting intestinal barrier integrity has not been reported. This study aims to investigate the effect of IRW on inhibiting intestinal barrier dysfunction and inflammation in lipopolysaccharide (LPS)-treated Caco-2 cells. Pretreatment with IRW could mitigate the LPS-induced reduction of transepithelial electronic resistance values and decrease the paracellular permeation of differentiated Caco-2 cell monolayers. Meanwhile, IRW restored the expression level and cell surface distribution of the tight junction protein occludin. Furthermore, IRW showed LPS-neutralizing activity and could significantly inhibit LPS-induced activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. In conclusion, our study demonstrated the ability of IRW to prevent LPS-induced intestinal barrier dysfunction and prohibit inflammatory responses.
Collapse
|
29
|
Wang S, Su G, Fan J, Xiao Z, Zheng L, Zhao M, Wu J. Arginine-Containing Peptides Derived from Walnut Protein Against Cognitive and Memory Impairment in Scopolamine-Induced Zebrafish: Design, Release, and Neuroprotection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11579-11590. [PMID: 36098553 DOI: 10.1021/acs.jafc.2c05104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to investigate the neuroprotective effect of Arg-containing peptides from walnut storage protein sequences in scopolamine-induced zebrafish and further to validate the potential neuroprotection of Arg-containing peptide enriched walnut hydrolysates prepared by in silico hydrolysis and controlled enzymatic release. Results showed that walnut derived Arg-containing peptides with high abundance and great bioactivity predicted by bioinformatics displayed potent neuroprotection in scopolamine-induced zebrafish, and regulation of neurotransmitter level and antioxidant enzyme activity might be the main target for Arg-containing peptides to exert neuroprotection. Notably, Arg-containing peptides (not free arginine) contributed greater neuroprotection, and the positive charge and cell-penetrating properties also affected their neuroprotection. Subsequently, Arg-containing peptides could be released efficiently from walnut protein following hydrolysis by trypsin, pepsin, papain, and thermolysin (bound arginine content: ranging from 110.43 ± 1.58 to 121.82 ± 1.02 mg/g). Among them, trypsin had excellent potential for releasing Arg-containing peptides in silico hydrolysis, and its hydrolysate was confirmed to have neuroprotective capacity, indicating that the combination of in silico hydrolysis and controlled enzymatic release might be an effective approach to obtain Arg-containing neuroprotective peptides.
Collapse
Affiliation(s)
- Shuguang Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiangping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Zhichao Xiao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| |
Collapse
|
30
|
Zhang M, Zhu L, Wu G, Liu T, Qi X, Zhang H. Food-derived dipeptidyl peptidase IV inhibitory peptides: Production, identification, structure-activity relationship, and their potential role in glycemic regulation. Crit Rev Food Sci Nutr 2022; 64:2053-2075. [PMID: 36095057 DOI: 10.1080/10408398.2022.2120454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dipeptidyl Peptidase IV (DPP-IV) inhibitory peptides are attracting increasing attention, owing to their potential role in glycemic regulation by preventing the inactivation of incretins. However, few reviews have summarized the current understanding of DPP-IV inhibitory peptides and their knowledge gaps. This paper reviews the production, identification and structure-activity relationships (SAR) of DPP-IV inhibitory peptides. Importantly, their bioavailability and hypoglycemic effects are critically discussed. Unlike the traditional method to identifying peptides after separation step by step, the bioinformatics approach identifies peptides via virtual screening that is more convenient and efficient. In addition, the bioinformatics approach was also used to investigate the SAR of peptides. Peptides with proline (Pro) or alanine (Ala) residue at the second position of N-terminal are exhibit strong DPP-IV inhibitory activity. Besides, the bioavailability of DPP-IV inhibitory peptides is related to their gastrointestinal stability and cellular permeability, and in vivo studies showed that the glucose homeostasis has been improved by these peptides. Especially, the intestinal transport of DPP-IV inhibitory peptides and cell biological assays used to evaluate their potential role in glycemic regulation are innovatively summarized. For further successful development of DPP-IV inhibitory peptides in glycemic regulation, future study should elucidate their SAR and in vivo hypoglycemic effects .
Collapse
Affiliation(s)
- Mingkai Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tongtong Liu
- Binzhou Zhongyu Food Company Limited, Key Laboratory of Wheat Processing, Ministry of Agriculture and Rural Affairs, National Industry Technical Innovation Center for Wheat Processing, Bohai Advanced Technology Institute, Binzhou, China
| | - Xiguang Qi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
31
|
Alexandri M, Kachrimanidou V, Papapostolou H, Papadaki A, Kopsahelis N. Sustainable Food Systems: The Case of Functional Compounds towards the Development of Clean Label Food Products. Foods 2022; 11:foods11182796. [PMID: 36140924 PMCID: PMC9498094 DOI: 10.3390/foods11182796] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
The addition of natural components with functional properties in novel food formulations confers one of the main challenges that the modern food industry is called to face. New EU directives and the global turn to circular economy models are also pressing the agro-industrial sector to adopt cradle-to-cradle approaches for their by-products and waste streams. This review aims to present the concept of “sustainable functional compounds”, emphasizing on some main bioactive compounds that could be recovered or biotechnologically produced from renewable resources. Herein, and in view of their efficient and “greener” production and extraction, emerging technologies, together with their possible advantages or drawbacks, are presented and discussed. Μodern examples of novel, clean label food products that are composed of sustainable functional compounds are summarized. Finally, some action plans towards the establishment of sustainable food systems are suggested.
Collapse
Affiliation(s)
- Maria Alexandri
- Correspondence: (M.A.); or (N.K.); Tel.: +30-26710-26505 (N.K.)
| | | | | | | | | |
Collapse
|
32
|
Wang J, Liu J, John A, Jiang Y, Zhu H, Yang B, Wen L. Structure identification of walnut peptides and evaluation of cellular antioxidant activity. Food Chem 2022; 388:132943. [DOI: 10.1016/j.foodchem.2022.132943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 01/13/2023]
|
33
|
Anti-Inflammatory Function of Plant-Derived Bioactive Peptides: A Review. Foods 2022; 11:foods11152361. [PMID: 35954128 PMCID: PMC9368234 DOI: 10.3390/foods11152361] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is considered to be a crucial factor in the development of chronic diseases, eight of which were listed among the top ten causes of death worldwide in the World Health Organization’s World Health Statistics 2019. Moreover, traditional drugs for inflammation are often linked to undesirable side effects. As gentler alternatives to traditional anti-inflammatory drugs, plant-derived bioactive peptides have been shown to be effective interventions against various chronic diseases, including Alzheimer’s disease, cardiovascular disease and cancer. However, an adequate and systematic review of the structures and anti-inflammatory activities of plant-derived bioactive peptides has been lacking. This paper reviews the latest research on plant-derived anti-inflammatory peptides (PAPs), mainly including the specific regulatory mechanisms of PAPs; the structure–activity relationships of PAPs; and their enzymatic processing based on the structure–activity relationships. Moreover, current research problems for PAPs are discussed, such as the shallow exploration of mechanisms, enzymatic solution determination difficulty, low yield and unknown in vivo absorption and metabolism and proposed future research directions. This work aims to provide a reference for functional activity research, nutritional food development and the clinical applications of PAPs.
Collapse
|
34
|
Emerging proteins as precursors of bioactive peptides/hydrolysates with health benefits. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Lu Z, Sun N, Dong L, Gao Y, Lin S. Production of Bioactive Peptides from Sea Cucumber and Its Potential Health Benefits: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7607-7625. [PMID: 35715003 DOI: 10.1021/acs.jafc.2c02696] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioactive peptides from food have been widely studied due to their potential applications as functional foods and pharmaceuticals. Sea cucumber, a traditional tonic food, is characterized by high protein and low fat, thereby substrates are being studied to release sea cucumber peptides (SCPs). Although recent studies have shown that SCPs have various bioactive functions, there is no literature reviewing the development status of SCPs. In this review, we summarized the production of SCPs, including their purification and identification, then mainly focused on the comprehensive potential health benefits of SCP in vivo and in vitro, and finally discussed the challenge facing the development of SCPs. We found that SCPs have well-documented health benefits due to their antioxidation, anti-diabetes, ACE inhibitory, immunomodulatory, anti-cancer, anti-fatigue, anti-aging, neuroprotection, micromineral-chelating, etc. However, the structure-activity relationships of SCPs and the functional molecular mechanisms underlying their regulation in vivo need further investigation. Research on the safety of SCP and its potential regulation mechanism will contribute to transferring these findings into commercial applications. Hopefully, this review could promote the development and application of SCPs in further investigation and commercialization.
Collapse
Affiliation(s)
- Zhiqiang Lu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Liu Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yuanhong Gao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
36
|
Ma R, Chen Q, Dai Y, Huang Y, Hou Q, Huang Y, Zhong K, Huang Y, Gao H, Bu Q. Identification of novel antioxidant peptides from sea squirt ( Halocynthia roretzi) and its neuroprotective effect in 6-OHDA-induced neurotoxicity. Food Funct 2022; 13:6008-6021. [PMID: 35603858 DOI: 10.1039/d2fo00729k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ocean life contains a wealth of bioactive peptides that could be utilized in nutraceuticals and pharmaceuticals. This study aimed to obtain neuroprotective antioxidant peptides in sea squirt (Halocynthia roretzi) through protamex enzymolysis. Fraction F4 (ultrafiltration generated four fractions) had a lower molecular weight (<500 Dalton (Da)) with greater 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical scavenging activities (94.24 ± 2.50% and 91.80 ± 1.19%). After gel filtration, six peptides, including Phe-Gly-Phe (FGF), Leu-Gly-Phe (LGF), Leu-Phe-VAL (LFV), Val-Phe-Leu (VFL), Trp-Leu-Pro (WLP), and Ile-Ser-Trp (ISW), were identified and sequenced by liquid chromatography-mass spectrometry (LC-MS/MS). Peptides WLP and ISW showed higher oxygen radical absorbance capacity (ORAC) values (2.72 ± 0.47 and 1.93 ± 0.01 μmol L-1 of Trolox equivalent (TE) per μmol L-1 of peptide) than glutathione (GSH). Additionally, WLP effectively increased cell viability, dramatically attenuated 6-Hydroxydopamine (6-OHDA)-induced cell apoptosis and decreased reactive oxygen species (ROS) levels to nearly two-fold, and significantly boosted glutathione peroxidase (GSH-Px) activity in PC12 cells. Transcriptome sequencing revealed differential expression of genes associated with various oxidative stress pathways after WLP treatment, such as glutathione metabolism. These results suggest that the Halocynthia roretzi-derived tripeptide WLP could alleviate neurodegenerative diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Rui Ma
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| | - Qiqi Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yan Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Hou
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| | - Yuting Huang
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| | - Kai Zhong
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| | - Yina Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Gao
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| | - Qian Bu
- Department of Food Science and Technology, College of Biomass and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China. .,West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.,National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Wang M, Wu W, Xiao J, Li C, Chen B, Shen Y. Recent Development in Antioxidant Peptides of Woody Oil Plant By-Products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2073367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Min Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, Hubei, China
| | - Wenrui Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
38
|
Geng M, Zhao F, Lu H, Fang L, Wang J, Liu C, Min W. Insights into the hippocampus proteome and phosphorylation modification alterations in C57BL/6 revealed the memory improvement mechanisms of a walnut-derived peptide. Food Res Int 2022; 156:111311. [DOI: 10.1016/j.foodres.2022.111311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022]
|
39
|
Zhao Q, Wei G, Li K, Duan S, Ye R, Huang A. Identification and molecular docking of novel α-glucosidase inhibitory peptides from hydrolysates of Binglangjiang buffalo casein. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Ji J, Yi X, Zhu Y, Yu H, Huang S, Liu Z, Zhang X, Xia G, Shen X. Tilapia Head Protein Hydrolysate Attenuates Scopolamine-Induced Cognitive Impairment through the Gut-Brain Axis in Mice. Foods 2021; 10:foods10123129. [PMID: 34945680 PMCID: PMC8701847 DOI: 10.3390/foods10123129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
The destruction of the homeostasis in the gut-brain axis can lead to cognitive impairment and memory decline. Dietary intervention with bioactive peptides from aquatic products is an innovative strategy to prevent cognitive deficits. The present study aimed to determine the neuroprotective effect of tilapia head protein hydrolysate (THPH) on scopolamine-induced cognitive impairment in mice, and to further explore its mechanism through the microbiota–gut-brain axis. The results showed that THPH administration significantly improved the cognitive behavior of mice, and normalized the cholinergic system and oxidative stress system of the mice brain. The histopathological observation showed that THPH administration significantly reduced the pathological damage of hippocampal neurons, increased the number of mature neurons marked by NeuN and delayed the activation of astrocytes in the hippocampus of mice. In addition, THPH administration maintained the stability of cholinergic system, alleviated oxidative stress and further improved the cognitive impairment by reshaping the gut microbiota structure of scopolamine-induced mice and alleviating the disorder of lipid metabolism and amino acid metabolism in serum. In conclusion, our research shows that THPH supplementation is a nutritional strategy to alleviate cognitive impairment through the gut-brain axis.
Collapse
Affiliation(s)
- Jun Ji
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Yujie Zhu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Hui Yu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Shuqi Huang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
- Correspondence: ; Tel./Fax: +86-0898-66193581
| |
Collapse
|