1
|
Zhu W, Feng X, Pan Y, Guo H, Liu Y, Lin X, Fan F, Gong S, Chen P, Chu Q. Flowering in aged white tea: Recovering umami taste and amplifying of stale aroma. Food Chem 2025; 465:141649. [PMID: 39433449 DOI: 10.1016/j.foodchem.2024.141649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024]
Abstract
Throughout the natural aging process from new to aged white tea, the flavor evolves into a 'stale flavor', despite the initial umami diminishes. The flowering process, inoculation of Eurotium cristatum to white tea, improves the flavor. The impact on sensory qualities and underlying chemical basis of flowering in aged white tea warrant investigation. Sensory analysis, non-targeted metabolomics and volatilomics together deciphered flavor modifications of flowering in aged white tea from different aging years (FAWTs). Findings indicate the flowering process can recover the umami of aged white tea, enhancing the 'stale flavor'. These changes primarily stem from oxidations of catechins and free amino acids, enrichments of flavonols and soluble sugars, and 16 pivotal aroma compounds from degradations of lipids and glycosides. Additionally, 15 volatile and 39 non-volatile compounds were identified as potential biomarkers for FAWTs. These findings offer a viable strategy to improving the quality of aged white tea.
Collapse
Affiliation(s)
- Wan Zhu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Haowei Guo
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Liu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China..
| |
Collapse
|
2
|
Fu Y, Wang C, Gao Z, Liao Y, Peng M, Fu F, Li G, Su D, Guo J, Shan Y. Microbes: Drivers of Chenpi manufacturing, biotransformation, and physiological effects. Food Chem 2025; 464:141631. [PMID: 39454433 DOI: 10.1016/j.foodchem.2024.141631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Chenpi holds a rich history of both edible and medicinal applications worldwide, garnering increased attention from researchers in recent years due to its diverse physiological effects. While current research predominantly exploresed its chemical composition and physiological effects, there remains a notable gap in knowledge concerning its manufacturing, characteristic chemical substances, and the underlying mechanisms driving its physiological effects. In this review, the impacts of microbes on the manufacturing, biotransformation, and physiological effects of Chenpi were summarized, as well as the present status of product development. Furthermore, this review engaged in an in-depth discussion highlighting the challenges and shortcomings in recent research, while proposing potential directions and prospects. Additionally, the claim that "The longer the aging, the better the quality" of Chenpi was scientifically evaluated for the first time, providing a solid theoretical foundation for advancing the Chenpi industry.
Collapse
Affiliation(s)
- Yanjiao Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chao Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Yanfang Liao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingfang Peng
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Donglin Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
3
|
Tan Z, Yu P, Zhu H, Gao J, Han N, Yang C, Shen Z, Gao C, Yang X. Differential characteristics of chemical composition, fermentation metabolites and antioxidant effects of polysaccharides from Eurotium Cristatum and Fu-brick tea. Food Chem 2024; 461:140934. [PMID: 39197322 DOI: 10.1016/j.foodchem.2024.140934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Fu-brick tea (FBT) is predominately fermented by Eurotium Cristatum, FBT polysaccharides (FTPs) and Eurotium Cristatum extracellular polysaccharides (ECPs) are the main active substances in FBT and Eurotium Cristatum, respectively. FTPs was shown to exhibit higher levels of uronic acids, proteins, and polyphenols as compared to ECPs (p < 0.05), contributing to the superior antioxidant activity observed in FTPs. Additionally, FTPs had better water solubility and thermal stability than ECPs. Interestingly, in vitro digestive simulation revealed that FTPs and ECPs resist digestion in the stomach and small intestine. Excitingly, utilizing in vitro fermentation with feces from healthy individuals and type 2 diabetes mellitus (T2DM) patients demonstrated that FTPs and ECPs promote the production of SCFAs. Still, FTPs resulted in greater SCFAs contents than ECPs (p < 0.05). Moreover, FTPs and ECPs fermentation by T2DM patients' fecal microbiota affected different metabolomic pathways. Our findings suggested that FTPs holds great promise for application in functional foods.
Collapse
Affiliation(s)
- Zhengwei Tan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Pinglian Yu
- Key Laboratory of Yunnan University for Plateau Characteristic Functional Food, School of Chemistry and Chemical Engineering, Zhaotong University, 657000, China.
| | - Haoyan Zhu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jiaobei Gao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ning Han
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhuo Shen
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chang Gao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Shen S, Fu J, Fan R, Zhang J, Sun H, Wang Y, Ning J, Yue P, Zhang L, Gao X. Changes in the key odorants of loose-leaf dark tea fermented by Eurotium cristatum during aging for one year: Focus on the stale aroma. Food Res Int 2024; 197:115244. [PMID: 39593326 DOI: 10.1016/j.foodres.2024.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Aging process has been recognized as one of the means to improve the quality of microbial fermented teas. The evolution of the characteristic stale aroma, a key odorant of microbial fermented tea, throughout the aging process remains unknown. To investigate the changes in key odorants of the fermented tea during aging, the loose-leaf dark tea (LDT) used in this study was prepared by solid-state fermentation using Eurotium cristatum and was aged for 0, 3, 6, 9, 12 months, producing varied aged LDT samples. Quantitative descriptive analysis (QDA) showed that the intensity of stale aroma in the LDT increased gradually during aging for one year. The volatile compounds from different aged samples were extracted using solvent-assisted flavor evaporation (SAFE) combined with liquid-liquid extraction, and ninety-six aroma-active compounds were further identified by gas chromatography-mass spectrometry/olfactometry (GC - MS/O) combined with modified detection frequency (MF) values. Among them, alcohols and esters showed an increasing trend, while nitrogenous compounds showed a decreasing trend during aging. The stale aroma attribute of the LDT were closely associated with several key odorants produced from the biotransformation by Eurotium cristatum, including cedrol, β-ionone, 1-octen-3-one, 1-octen-3-ol, and 4-vinylguaiacol, their aroma contributions were confirmed by further addition tests. These findings provide a theoretical basis for the future optimization of the aging process of fermented tea.
Collapse
Affiliation(s)
- Shanshan Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jialin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ranqin Fan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Haoran Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pengxiang Yue
- Fujian Provincial Key Laboratory of Plant Extraction Technology for Beverages, Zhangzhou, 363005, Fujian, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xueling Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
5
|
Xiao Y, Chen H, Chen Y, Ho CT, Wang Y, Cai T, Li S, Ma J, Guo T, Zhang L, Liu Z. Effect of inoculation with different Eurotium cristatum strains on the microbial communities and volatile organic compounds of Fu brick tea. Food Res Int 2024; 197:115219. [PMID: 39593304 DOI: 10.1016/j.foodres.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Eurotium cristatum is the primary fungus in Fu brick tea (FBT) and plays a crucial role in its special flavor. This study investigated the effect of inoculation with different E. cristatum strains (i.e., ZJ, GX, GZ, HN, and SX) on the microbial communities and volatile organic compounds (VOCs) of FBT. A total of 113 VOCs were identified in all samples, with the concentration of VOCs (alcohols, aldehydes, and ketones) significantly higher in GXE FBT than in other samples. The core VOCs of GXE (19), GZE (16), HNE (19), SXE (15), and ZJE (13) FBT were identified using orthogonal partial least squares discriminant analysis and relative odor activity value (ROAV) analysis. Methional (a27), butanal (a41), 1-octen-3-one (a69), and ethyl acetate (a77) were key markers for inoculated FBTs, and 1-octen-3-ol, dimethyl disulfide, and acetoin-M were the specific markers of HNE. Linalool and (E)-2-octenal were particularly prominent in GXE, and isoamyl acetate-D was an important aroma component of GZE. Differences in microbial diversity were observed among the different inoculated fermented FBTs, and E. cristatum inoculation remarkably influenced the richness and diversity of bacterial communities. The VOCs were closely associated with fungi and bacteria, and 19 potentially dominant microorganisms (10 fungal and 9 bacterial genera) correlated with VOCs were identified. Among them, Aspergillus (fungi) and Pseudomonas (bacteria) exerted the greatest role. The FBT inoculated with E. cristatum from ZJ had the highest content of theaflavins and theabrownins, which intensified the red and yellow colors of the tea. E. cristatum greatly decreased the free amino acids and fatty acids, contributing to the aroma formation of FBT. Therefore, inoculating FBT with E. cristatum remarkably influenced the microbial communities and improved its flavor profile. This work provides a theoretical foundation on the role of E. cristatum in the formation and regulation of FBT flavor.
Collapse
Affiliation(s)
- Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| | - Hui Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ting Cai
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China
| | - Shi Li
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jinrong Ma
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tianyang Guo
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
6
|
Zhao R, Yao H, Hou Z, Zhou Q, Zhao M, Wu C, Zhang L, Xu C, Su H. Sensomics-assisted analysis unravels the formation of the Fungus Aroma of Fu Brick Tea. Food Chem 2024; 458:140174. [PMID: 38964109 DOI: 10.1016/j.foodchem.2024.140174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Fu Brick Tea (FBT) is characterized by Fungus Aroma (FA), which determines the quality of FBT products. However, the aroma constituents and their interactive mechanism for FA remain unclear. In this study, the FBT sample with the optimal FA characteristics was selected from 29 FBTs. Then, 19 components with OAV ≥ 1 were identified as the odorants involved in the FA formation. The aroma recombination test suggested that the FA was potentially produced by the synergistic interplay among the 15 key odorants, including (E,E)-2,4-heptadienal, (E,E)-2,4-nonadienal, (E)-2-nonenal, (E,Z)-2,6-nonadienal, (E)-2-octenal, (E)-β-ionone, 4-ketoisophorone, dihydroactinidiolide, (E)-β-damascenone, 1-octen-3-ol, linalool, geraniol, heptanal, hexanal, and phenylacetaldehyde. And, the synergistic effects between them were preliminarily studied by aroma omissions, such as modulatory effects, masking effects, compensatory effects, and novelty effects, ultimately contributing to the FA. In all, this work helps us better understand the formation of the FA and provides a basis for the improvement of FBT production technology.
Collapse
Affiliation(s)
- Renliang Zhao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Zhengzhou 450046, China
| | - Hengbin Yao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Ziyan Hou
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiongqiong Zhou
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Zhengzhou 450046, China
| | - Mengyao Zhao
- Henan Commerce Science Institute Co. Ltd., Zhengzhou 450000, China
| | - Chunlai Wu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Zhengzhou 450046, China
| | - Lipan Zhang
- Henan Commerce Science Institute Co. Ltd., Zhengzhou 450000, China
| | - Chao Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, 450002, Henan Province, China.
| | - Hui Su
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Zhengzhou 450046, China.
| |
Collapse
|
7
|
Zhou J, Chen L, Foo HL, Cao Z, Lin Q. Changes in microbial diversity and volatile metabolites during the fermentation of Bulang pickled tea. Food Chem 2024; 458:140293. [PMID: 38970959 DOI: 10.1016/j.foodchem.2024.140293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
The present study aimed to determine microbial community, short-chain fatty acids (SCFAs), and volatilome of Bulang pickled tea during fermentation. Sequencing of 16S rRNA and ITS revealed that Bualng pickled tea was dominated by Lactobacillus plantarum, unclassified Enterobacteriaceae, unclassified Debaryomyces, Candida metapsilosis, Cladosporium sphaerospermum, and unclassified Aspergillus. The overall contents of SCFAs increased, with acetic acid showing the highest content. A total of 398 differential volatile metabolites were detected using differential metabolomics analysis. Out of these different volatile compounds, ten key volatile compounds including (Z)-4-heptenal, 1-(2-thienyl)-ethanone, 5-methyl-(E)-2-hepten-4-one, 2-ethoxy-3-methylpyrazine, p-cresol, 2-methoxy-phenol, ethy-4-methylvalerate, 3-ethyl-phenol, p-menthene-8-thiol, and 2-s-butyl-3-methoxypyrazinewere were screened based on odor activity value (OAV). The Spearman correlation analysis showed a high correlation of SCFAs and volatile compounds with microorganisms, especially L. plantarum and C. sphaerospermum. This study provided a theoretical basis for elucidating the flavor quality formation mechanism of Bulang pickled tea.
Collapse
Affiliation(s)
- Jinping Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Laifeng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Research Laboratory of Probiotics and Cancer Therapeutics, UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China.
| | - Qiuye Lin
- College of Food Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China.
| |
Collapse
|
8
|
Liu R, Wu B, Zhang T, Zheng J, Sun Y. Fu brick tea polysaccharides: A state-of-the-art mini-review on extraction, purification, characteristics, bioactivities and applications. Int J Biol Macromol 2024; 280:136135. [PMID: 39349078 DOI: 10.1016/j.ijbiomac.2024.136135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Fu brick tea (FBT), a post-fermented dark tea, is highly esteemed for its abundant nutritional and medicinal values. Fu brick polysaccharides (FBTPs) are acidic heteropolysaccharides primarily composed of galactose and galacturonic acid, which are crucial components of FBT. FBTPs exhibit multiple bioactivities, including immunomodulatory, antioxidant, anti-inflammatory, regulatory effects on intestinal microbiota, anti-obesity, among others. Owing to their significant marketing potential and promising development prospects, FBTPs have attracted considerable attention from researchers worldwide. However, the specific mechanisms and underlying structure-function relationships of FBTPs are not well understood. Consequently, this review aims to provide comprehensive and cutting-edge information on the extraction, purification, structural characteristics, and biological activities of FBTPs, with an emphasis on exploring how their structural characteristics influence biological activities and therapeutic potential. We found that different materials and extraction techniques could result in differences in the structure-activity relationship of FBTPs. Furthermore, monosaccharide composition and molecular weight could also significantly impact the bioactivities of FBTPs, such as lipid-lowering effects and immunomodulatory activity. This review would further facilitate the applications of FBTPs as therapeutic agents and functional foods, thereby laying a solid foundation for their further development and utilization.
Collapse
Affiliation(s)
- Rui Liu
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, PR China
| | - Bolin Wu
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, PR China
| | - Ting Zhang
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, PR China
| | - Jianfeng Zheng
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, PR China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, PR China.
| |
Collapse
|
9
|
Li Y, Wang R, Xiao T, Song L, Xiao Y, Liu Z, Wang K, Huang J, Zhu M. Unveiling key odor-active compounds and bacterial communities in Fu Brick tea from seven Chinese regions: A comprehensive sensomics analysis using GC-MS, GC-O, aroma recombination, omission, and high-throughput sequencing. Food Res Int 2024; 196:114978. [PMID: 39614465 DOI: 10.1016/j.foodres.2024.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 12/01/2024]
Abstract
Fu Brick Tea (FBT) is a unique fermented tea produced in multiple regions of China, whose aroma qualities, key odor-active compounds and bacterial communities are not well characterized. By optimizing HS-SPME methods, utilizing GC-MS, GC-O, sensory analysis, aroma recombination and omission experiments, and bacterial sequencing, we revealed the primary volatiles and bacterial communities in 41 samples from 7 major producing regions. A total of 63 volatiles and 32 odor-active compounds were quantitatively analyzed using GC-MS and GC-O, respectively. Sensory analyses discriminated the quality of the samples. Differential analysis indicated that poor aroma FBTs had either low volatile content or excessive "green" notes. Key odor-active compounds in high-quality aroma FBTs include 1-octen-3-ol, phenylethylalcohol, β-ionone, dihydroactindiolide, and 1,2,3-trimethoxybenzene. Sequencing results identified Bacillus, Pseudomonas, and Streptococcus as dominant genera. Functional prediction analyses suggest that bacteria contribute to the formation of FBT aroma. This study offers new insights into the quality characteristics of FBT.
Collapse
Affiliation(s)
- Yilong Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Ruoxian Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Tian Xiao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Lubin Song
- Tea Research Institute of Shandong Academy of Agricultral Sciences.
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Jianan Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
10
|
Zhang D, Huang Y, Fan X, Zeng X. Effects of solid-state fermentation with Aspergillus cristatus (MK346334) on the dynamics changes in the chemical and flavor profile of dark tea by HS-SPME-GC-MS, HS-GC-IMS and electronic nose. Food Chem 2024; 455:139864. [PMID: 38833862 DOI: 10.1016/j.foodchem.2024.139864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/04/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
Aspergillus cristatus, the predominant microbe of Fuzhuan brick tea (FBT), is responsible for the creation of distinctive golden flower and unique floral aroma of FBT. The present study examined the alterations in chemical and aromatic components of raw dark tea by solid-state fermentation using A. cristatus (MK346334), the strain isolated from FBT. As results, catechins, total ployphenols, total flavonoids, theaflavins, thearubigins and antioxidant activity were significantly reduced after fermentation. Moreover, 112 and 76 volatile substances were identified by HS-SPME-GC-MS and HS-GC-IMS, respectively, primarily composed of alcohols, ketones, esters and aldehydes. Furthermore, the calculation of odor activity values revealed that 19 volatile chemicals, including hexanal, heptanal, linalool and methyl salicylate, were the main contributors to the floral, fungal, woody and minty aroma of dark tea. The present research highlights the pivotal role played by the fermentation with A. cristatus in the chemical composition, antioxidant property and distinctive flavor of dark tea.
Collapse
Affiliation(s)
- Di Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xia Fan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
11
|
Song W, Zhou L, Liu T, Wang G, Lv J, Zhang S, Dai X, Wang M, Shi L. Characterization of Eurotium cristatum Fermented Thinned Young Apple and Mechanisms Underlying Its Alleviating Impacts on Experimental Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16221-16236. [PMID: 38996349 DOI: 10.1021/acs.jafc.4c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
A hundred million tons of young apples are thinned and discarded in the orchard per year, aiming to increase the yield and quality of apples. We fermented thinned young apples using a potential probiotic fungus, Eurotium cristatum, which notably disrupted the microstructure of raw samples, as characterized by the scanning electron microscope. Fermentation substantially altered the metabolite profiles of samples, which are predicted to alleviate colitis via regulating inflammatory response and response to lipopolysaccharide by using network pharmacology analysis. In vivo, oral gavage of water extracts of E. cristatum fermented young apples (E.YAP) effectively alleviated DSS-induced colitis, restored the histopathology damage, reduced the levels of inflammatory cytokines, and promoted colonic expressions of tight junction proteins. Moreover, E.YAP ameliorated gut dysbacteriosis by increasing abundances of Lactobacillus,Blautia, Muribaculaceae, and Prevotellaceae_UCG-001 while inhibiting Turicibacter, Alistipes, and Desulfovibrio. Importantly, E.YAP increased colonic bile acids, such as CA, TCA, DCA, TUDCA, and LCA, thereby alleviating colitis via PXR/NF-κB signaling. Furthermore, a synbiotic combination with Limosilactobacillus reuteri WX-94, a probiotic strain isolated from feces of healthy individuals with anti-inflammatory properties, augmented anticolitis capacities of E.YAP. Our findings demonstrate that E.YAP could be a novel, potent, food-based anti-inflammatory prebiotic for relieving inflammatory injuries.
Collapse
Affiliation(s)
- Wei Song
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Guoze Wang
- Guizhou Provincial Engineering Research Center of Ecological Food Innovation, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Jiayao Lv
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Shiyi Zhang
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaoshuang Dai
- Xbiome, Scientific Research Building, Room 907, Tsinghua High-Tech Park, Shenzhen 518000, China
| | - Meng Wang
- Shaanxi Functional Food Engineering Center Company Limited, Xi'an 710069, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
12
|
Yuan Y, Peng Z, Jiang X, Zhu Q, Chen R, Wang W, Liu A, Wu C, Ma C, Zhang J. Metabolomics analysis of flavor differences in Shuixian (Camellia sinensis) tea from different production regions and their microbial associations. Food Chem 2024; 443:138542. [PMID: 38281414 DOI: 10.1016/j.foodchem.2024.138542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Shuixian is renowned for its "rock flavor". However, the variations in Shuixian flavor are unclear, as the discussion mainly considers regional factors and overlooks the role of microorganisms. Sensory evaluation of Shuixian from three different regions (Zhengyan, Banyan, and Waishan) revealed that each had unique flavor characteristics: a woody aroma with slight acidity, a strong floral and fruity aroma with good freshness, and a distinct sweet aroma and sourness. Metabolomic analyses have revealed that 2-methylpyrazine was a crucial component of the woody aroma, whereas other metabolites contributed to sweet aroma, freshness, and acidity. Moreover, examinations of the relationship between flavor metabolites and microorganisms revealed that fungi had a more pronounced influence on the metabolite content of Shuixian. The study evaluated the role of fermentation microorganisms in shaping the flavor based on Shuixian flavor analyses, contributing to further research into the "rock flavor", as well as potential microbial interventions.
Collapse
Affiliation(s)
- Yang Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xinyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Qi Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Rongping Chen
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Wenzhen Wang
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Anxing Liu
- H.K.I.(Wuyishan) Tea Company Limited, Nanping 353000, China
| | - Chengjian Wu
- Wuyishan Kaijie Rock Tea City Co., LTD, Nanping 353000, China; Fujian Vocational College of Agriculture, Fuzhou 350119, China
| | | | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
13
|
Deng Y, Li C, Chen Y, Zou Z, Gong J, Shen C, Fang K. Chemical Profile and Aroma Effects of Major Volatile Compounds in New Mulberry Leaf Fu Brick Tea and Traditional Fu Brick Tea. Foods 2024; 13:1808. [PMID: 38928750 PMCID: PMC11203251 DOI: 10.3390/foods13121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to investigate the aroma effects of key volatile compounds in a new type of mulberry leaf Fu brick teas (MTs) and traditional Fu brick teas (FTs). Headspace solid-phase microextraction (HS-SPME), gas chromatography-mass spectrometry (GC-MS), sensory evaluation, and chemometrics were used to determine the differences in key flavour qualities between the two. The results showed that a total of 139 volatile components were identified, with aldehydes, ketones, and alcohols dominating. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) combined with the odour activity value (OAV) showed that seven aroma compounds had an OAV > 10, including 2-(4-methylcyclohex-3-en-1-yl) propan-2-ol with floral and fruity aroma and green attributes, 6-methylhept-5-en-2-one, (E)-6,10-dimethyl-5,9-Undecadien-2-one, (3E,5E)-octa-3,5-dien-2-one, Benzaldehyde, and (E)-3,7,11,15-tetramethylhexadec-2-en-1-ol, which were more abundant in MTs than FTs; Cedrol with sweet aroma attributes was more consistent in MTs than FTs, and we suggest that these odour compounds are important aroma contributors to MTs. Taken together, these findings will provide new insights into the mechanism of formation of the characteristic attributes of aroma in MTs.
Collapse
Affiliation(s)
- Yuezhao Deng
- College of Information and Intelligent Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (C.L.); (Z.Z.); (J.G.)
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Cheng Li
- College of Information and Intelligent Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (C.L.); (Z.Z.); (J.G.)
| | - Yineng Chen
- School of Information Science and Engineering, Hunan Women’s College, Changsha 410000, China;
| | - Zhuoyang Zou
- College of Information and Intelligent Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (C.L.); (Z.Z.); (J.G.)
| | - Junyao Gong
- College of Information and Intelligent Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (C.L.); (Z.Z.); (J.G.)
| | - Chengwen Shen
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Kui Fang
- College of Information and Intelligent Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.D.); (C.L.); (Z.Z.); (J.G.)
| |
Collapse
|
14
|
Hu Z, Liu S, Zhou X, Liu Z, Li T, Yu S, Zhang X, Xu Z. Morphological variation and expressed sequence tags-simple sequence repeats-based genetic diversity of Aspergillus cristatus in Chinese dark tea. Front Microbiol 2024; 15:1390030. [PMID: 38887709 PMCID: PMC11180798 DOI: 10.3389/fmicb.2024.1390030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Aspergillus cristatus is a homothallic fungus that is used in the natural fermentation process of Chinese Fuzhuan tea and has been linked to the production of bioactive components. However, not much is known about the variations present in the fungus. To understand the variation of the dominant microorganism, A. cristatus, within dark tea, the present study investigated the genetic and morphological diversity of 70 A. cristatus collected across six provinces of China. Methods Expressed sequence tags-simple sequence repeats (EST-SSR) loci for A. cristatus were identified and corresponding primers were developed. Subsequently, 15 specimens were selected for PCR amplification. Results The phylogenetic tree obtained revealed four distinct clusters with a genetic similarity coefficient of 0.983, corresponding to previously identified morphological groups. Five strains (A1, A11, B1, D1, and JH1805) with considerable differences in EST-SSR results were selected for further physiological variation investigation. Microstructural examinations revealed no apparent differentiation among the representative strains. However, colony morphology under a range of culture media varied substantially between strains, as did the extracellular enzymatic activity (cellulase, pectinase, protease, and polyphenol oxidase); the data indicate that there are differences in physiological metabolic capacity among A. cristatus strains. Discussion Notably, JH1805, B1, and A11 exhibited higher enzymatic activity, indicating their potential application in the production of genetically improved strains. The findings provide valuable insights into species identification, genetic diversity determination, and marker-assisted breeding strategies for A. cristatus.
Collapse
Affiliation(s)
- Zhiyuan Hu
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Shiquan Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Xiaohong Zhou
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Zhanjun Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Taotao Li
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Songlin Yu
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Xinyu Zhang
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Zhenggang Xu
- College of Forestry, Northwest A & F University, Yangling, China
- Research Institute of South Tea Introduced to North in Huashan, Weinan, China
| |
Collapse
|
15
|
Hu Y, Chen W, Gouda M, Yao H, Zuo X, Yu H, Zhang Y, Ding L, Zhu F, Wang Y, Li X, Zhou J, He Y. Fungal fermentation of Fuzhuan brick tea: A comprehensive evaluation of sensory properties using chemometrics, visible near-infrared spectroscopy, and electronic nose. Food Res Int 2024; 186:114401. [PMID: 38729704 DOI: 10.1016/j.foodres.2024.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Fuzhuan brick tea (FBT) fungal fermentation is a key factor in achieving its unique dark color, aroma, and taste. Therefore, it is essential to develop a rapid and reliable method that could assess its quality during FBT fermentation process. This study focused on using electronic nose (e-nose) and spectroscopy combination with sensory evaluations and physicochemical measurements for building machine learning (ML) models of FBT. The results showed that the fused data achieved 100 % accuracy in classifying the FBT fermentation process. The SPA-MLR method was the best prediction model for FBT quality (R2 = 0.95, RMSEP = 0.07, RPD = 4.23), and the fermentation process was visualized. Where, it was effectively detecting the degree of fermentation relationship with the quality characteristics. In conclusion, the current study's novelty comes from the established real-time method that could sensitively detect the unique post-fermentation quality components based on the integration of spectral, and e-nose and ML approaches.
Collapse
Affiliation(s)
- Yan Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Wei Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Nutrition and Food Science, National Research Centre, Dokki, Gizah 12622, Egypt
| | - Huan Yao
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xinxin Zuo
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Huahao Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yuying Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lejia Ding
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Fengle Zhu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Jihong Zhou
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Li X, Han H, Ma Y, Wang X, Lü X. Identification of phenolic compounds from fermented Moringa oleifera Lam. leaf supplemented with Fuzhuan brick tea and their volatile composition and anti-obesity activity. J Food Sci 2024; 89:3094-3109. [PMID: 38634238 DOI: 10.1111/1750-3841.17060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
As a nutritious plant with valuable potential, the Moringa oleifera Lam. (MOL) leaf addition on Fuzhuan brick tea (FBT) for the co-fermentation (MOL-FBT) was an industry innovation and a new route to make full use of MOL leaf. After optimization of the extraction conditions, the best conditions for the polyphenols extraction method from MOL-FBT (MFP) were 60°C for 40 min (1:80, V/W) using response surface methodology. A total of 30 phenolics were identified and quantified. Most of the polyphenols were increased after adding MOL leaf for co-fermentation compared to FBT polyphenols. In particular, caffeic acids were found only in MFP. Moreover, the MFP received high value in taste, aroma, and color. In total, 62 volatile flavor compounds, consisting of 3 acids, 5 alcohols, 15 aldehydes, 4 esters, 20 hydrocarbons, 10 ketones, and 5 others, were identified in MFP. In addition, MFP inhibited 3T3-L1 preadipocyte differentiation in a dose-dependent manner and decreased lipid accumulation via the peroxisome proliferator-activated receptor gamma (PPARγ)/CCAAT/enhancer binding protein alpha (CEBPα)/cluster of differentiation 36 (CD36) axis and induced a brown adipocyte-like phenotype. In vivo experiments were further conducted to confirm the in vitro results. MFP regulated lipid accumulation, glucose/insulin tolerance, improved liver and kidney function, and inhibited the secretion of pro-inflammatory factors by the PPARγ/CEBPα/CD36 axis and alleviated inflammation in high fat and high fructose diet-induced obese mice. In summary, MFP possesses high-quality properties and anti-obesity effects, as well as the great potential to be used as a novel functional food product.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Haoyue Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
17
|
Ban S, Cheng W, Wang X, Niu J, Wu Q, Xu Y. Predicting the final metabolic profile based on the succession-related microbiota during spontaneous fermentation of the starter for Chinese liquor making. mSystems 2024; 9:e0058623. [PMID: 38206013 PMCID: PMC10878095 DOI: 10.1128/msystems.00586-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Microbial inoculation is an effective way to improve the quality of fermented foods via affecting the microbiota structure. However, it is unclear how the inoculation regulates the microbiota structure, and it is still difficult to directionally control the microbiota function via the inoculation. In this work, using the spontaneous fermentation of the starter (Daqu) for Chinese liquor fermentation as a case, we inoculated different microbiota groups at different time points in Daqu fermentation, and analyzed the effect of the inoculation on the final metabolic profile of Daqu. The inoculated microbiota and inoculated time points both significantly affected the final metabolites via regulating the microbial succession (P < 0.001), and multiple inoculations can promote deterministic assembly. Twenty-seven genera were identified to be related to microbial succession, and drove the variation of 121 metabolites. We then constructed an elastic network model to predict the profile of these 121 metabolites based on the abundances of 27 succession-related genera in Daqu fermentation. Procrustes analysis showed that the model could accurately predict the metabolic abundances (average Spearman correlation coefficients >0.3). This work revealed the effect of inoculation on the microbiota succession and the metabolic profile. The established predicted model of metabolic profile would be beneficial for directionally improving the food quality.IMPORTANCEThis work revealed the importance of microbial succession to microbiota structure and metabolites. Multi-inoculations would promote deterministic assembly. It would facilitate the regulation of microbiota structure and metabolic profile. In addition, we established a model to predict final metabolites based on microbial genera related to microbial succession. This model was beneficial for optimizing the inoculation of the microbiota. This work would be helpful for controlling the spontaneous food fermentation and directionally improving the food quality.
Collapse
Affiliation(s)
- Shibo Ban
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wei Cheng
- Sichuan Langjiu Group Co., Ltd, Luzhou, China
| | - Xi Wang
- Sichuan Langjiu Group Co., Ltd, Luzhou, China
| | - Jiao Niu
- Sichuan Langjiu Group Co., Ltd, Luzhou, China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Xiang Z, Zhu B, Yang X, Deng J, Zhu Y, Gan L, Yu M, Chen J, Xia C, Chen S. Comprehensive Analysis of Phenolic Constituents, Biological Activities, and Derived Aroma Differences of Penthorum chinense Pursh Leaves after Processing into Green and Black Tea. Foods 2024; 13:399. [PMID: 38338534 PMCID: PMC10855198 DOI: 10.3390/foods13030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Penthorum chinense Pursh (Penthoraceae) is a traditional herb used in Miao medical systems that is also processed into foods (e.g., tea products) in China. Different processing methods significantly affect the volatile compounds, phenolic constituents, and biological activities. This study aimed to produce P. chinense green tea leaves (GTL), black tea leaves (BTL), and untreated leaves (UL) to investigate differences in their flavor substances, functional components, antioxidant activity, alcohol dehydrogenase (ADH) activity, and acetaldehyde dehydrogenase (ALDH) activity. The results showed that 63, 56, and 56 volatile compounds were detected in UL, GTL, and BTL, respectively, of which 43 volatile compounds were identified as differential metabolites among them. The total phenolic content (97.13-179.34 mg GAE/g DW), flavonoid content (40.07-71.93 mg RE/g DW), and proanthocyanidin content (54.13-65.91 mg CE/g DW) exhibited similar trends, decreasing in the order of UL > BTL > GTL. Fourteen phenolic compounds were determined, of which gallic acid, (-)-epicatechin, and pinocembrin 7-O-glucoside showed a sharp decrease in content from UL to BTL, while the content of pinocembrin 7-O-(3″-O-galloy-4″, 6″-hexahydroxydiphenoyl)-glucoside and pinocembrin significantly increased. GTL showed better DPPH/ABTS·+ scavenging ability and ferric-reducing ability than UL. The ADH and ALDH activities decreased in the order of GTL > UL > BTL. Therefore, tea products made with P. chinense leaves contained an abundance of functional compounds and showed satisfactory antioxidant and hepatoprotective activities, which are recommended for daily consumption.
Collapse
Affiliation(s)
- Zhuoya Xiang
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Boyu Zhu
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Xing Yang
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Junlin Deng
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Yongqing Zhu
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Lu Gan
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Manyou Yu
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Jian Chen
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, China; (Z.X.); (B.Z.); (X.Y.); (J.D.); (Y.Z.); (L.G.); (M.Y.)
| | - Song Chen
- Gucui Biotechnology Co., Ltd., Luzhou 646500, China;
| |
Collapse
|
19
|
Shen S, Zhang J, Sun H, Zu Z, Fu J, Fan R, Chen Q, Wang Y, Yue P, Ning J, Zhang L, Gao X. Sensomics-Assisted Characterization of Fungal-Flowery Aroma Components in Fermented Tea Using Eurotium cristatum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18963-18972. [PMID: 37962281 DOI: 10.1021/acs.jafc.3c05273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Fermented tea (FT) using a single Eurotium cristatum strain can produce a pleasant fungal-flowery aroma, which is similar to the composite aroma characteristic of minty, flowery, and woody aromas, but its molecular basis is not yet clear. In this study, solvent-assisted flavor evaporation and gas chromatography-mass spectrometry/olfactometry were applied to isolate and identify volatiles from the FT by E. cristatum. The application of an aroma extract dilution analysis screened out 43 aroma-active compounds. Quantification revealed that there were 11 odorants with high odor threshold concentrations. Recombination and omission tests revealed that nonanal, methyl salicylate, decanoic acid, 4-methoxybenzaldehyde, α-terpineol, phenylacetaldehyde, and coumarin were the major odorants in the FT. Addition tests further verified that methyl salicylate, 4-methoxybenzaldehyde, and coumarin were the key odorants for fungal-flowery aroma, each corresponding to minty, woody, and flowery aromas, respectively. 4-Methoxybenzaldehyde and coumarin were newly found odorants for fungal-flowery aroma in FT, and 4-methoxybenzaldehyde had not been reported as a tea volatile compound before. This finding may guide future industrial production optimization of FT with improved flavor.
Collapse
Affiliation(s)
- Shanshan Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Haoran Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhongqi Zu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jialin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ranqin Fan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pengxiang Yue
- Damin Foodstuff (Zhangzhou) Co., Ltd., Zhangzhou, Fujian 363000, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xueling Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
20
|
Wen M, Zhu M, Han Z, Ho CT, Granato D, Zhang L. Comprehensive applications of metabolomics on tea science and technology: Opportunities, hurdles, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4890-4924. [PMID: 37786329 DOI: 10.1111/1541-4337.13246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
With the development of metabolomics analytical techniques, relevant studies have increased in recent decades. The procedures of metabolomics analysis mainly include sample preparation, data acquisition and pre-processing, multivariate statistical analysis, as well as maker compounds' identification. In the present review, we summarized the published articles of tea metabolomics regarding different analytical tools, such as mass spectrometry, nuclear magnetic resonance, ultraviolet-visible spectrometry, and Fourier transform infrared spectrometry. The metabolite variation of fresh tea leaves with different treatments, such as biotic/abiotic stress, horticultural measures, and nutritional supplies was reviewed. Furthermore, the changes of chemical composition of processed tea samples under different processing technologies were also profiled. Since the identification of critical or marker metabolites is a complicated task, we also discussed the procedure of metabolite identification to clarify the importance of omics data analysis. The present review provides a workflow diagram for tea metabolomics research and also the perspectives of related studies in the future.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Daniel Granato
- Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
21
|
Xu W, Zhao Y, Lv Y, Bouphun T, Jia W, Liao S, Zhu M, Zou Y. Variations in microbial diversity and chemical components of raw dark tea under different relative humidity storage conditions. Food Chem X 2023; 19:100863. [PMID: 37780317 PMCID: PMC10534245 DOI: 10.1016/j.fochx.2023.100863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Raw dark tea (RDT) usually needs to be stored for a long time to improve its quality under suitable relative humidity (RH). However, the impact of RH on tea quality is unclear. In this study, we investigated the metabolites and microbial diversity, and evaluated the sensory quality of RDT stored under three RH conditions (1%, 57%, and 88%). UHPLC-Q-TOF-MS analysis identified 144 metabolites, including catechins, flavonols, phenolic acids, amino acids, and organic acids. 57% RH led to higher levels of O-methylated catechin derivatives, polymerized catechins, and flavonols/flavones when compared to 1% and 88% RH. The best score in sensory evaluation was also obtained by 57% RH. Aspergillus, Gluconobacter, Kluyvera, and Pantoea were identified as the core functional microorganisms in RDT under different RH storage conditions. Overall, the findings provided new insights into the variation of microbial communities and chemical components under different RH storage conditions.
Collapse
Affiliation(s)
- Wei Xu
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiqiao Zhao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yating Lv
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tunyaluk Bouphun
- Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang 52000, Thailand
| | - Wenbao Jia
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyu Liao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yao Zou
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
22
|
Xiao L, Yang C, Zhang X, Wang Y, Li Z, Chen Y, Liu Z, Zhu M, Xiao Y. Effects of solid-state fermentation with Bacillus subtilis LK-1 on the volatile profile, catechins composition and antioxidant activity of dark teas. Food Chem X 2023; 19:100811. [PMID: 37780291 PMCID: PMC10534189 DOI: 10.1016/j.fochx.2023.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, the solid-state fermentation (SSF) of dark tea was carried out using Bacillus subtilis LK-1, which was isolated from Fu brick tea (FBT). The effects of SSF with B. subtilis on volatile organic compounds (VOCs), non-volatile metabolites, and antioxidant activities of dark tea was investigated. A total of 45 VOCs were identified, primarily consisting of ketones (18), hydrocarbons (8), aldehydes (7), and alcohols (6). Following fermentation, the content of key odor active substances such as linalool, β-ionone, and 3,5-octadiene-2-one significantly increased, resulting in an enhanced floral and fruity aroma of dark tea. Furthermore, new flavor substances like geranyl isovalerate and decanal were produced during SSF, enriching the aroma profile of dark tea. Non-ester catechins demonstrated a drastic increase, while ester catechins remarkably decreased after SSF. Furthermore, SSF led to a slight decrease in the total polyphenols content and antioxidant activity of dark tea. There is a close relationship between VOCs and the main non-volatile metabolites during SSF. Overall, this study highlighted the great impact of SSF with B. subtilis on the metabolites of dark tea and provided valuable insights into the role of bacteria in shaping the metabolite profile of FBT.
Collapse
Affiliation(s)
- Leike Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chenghongwang Yang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xilu Zhang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
23
|
An T, Shen S, Zu Z, Chen M, Wen Y, Chen X, Chen Q, Wang Y, Wang S, Gao X. Changes in the volatile compounds and characteristic aroma during liquid-state fermentation of instant dark tea by Eurotium cristatum. Food Chem 2023; 410:135462. [PMID: 36669288 DOI: 10.1016/j.foodchem.2023.135462] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Instant dark tea (IDT) was prepared by liquid-state fermentation inoculating Eurotium cristatum. The changes in the volatile compounds and characteristic aroma of IDT during fermentation were analyzed using gas chromatography-mass spectrometry by collecting fermented samples after 0, 1, 3, 5, 7, and 9 days of fermentation. Components with high odor activity (log2FD ≥ 5) were verified by gas chromatography-olfactometry. A total of 107 compounds showed dynamic changes during fermentation over 9 days, including 17 alcohols, 7 acids, 10 ketones, 11 esters, 8 aldehydes, 37 hydrocarbons, 4 phenols, and 13 other compounds. The variety of flavor compounds increased gradually with time within the early stage and achieved a maximum of 79 compounds on day 7 of fermentation. β-Damascenone showed the highest odor activity (log2FD = 9) in the day 7 sample, followed by linalool and geraniol. These results indicate that fungal fermentation is critical to the formation of these aromas of IDT.
Collapse
Affiliation(s)
- Tingting An
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Shanshan Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Zhongqi Zu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Mengxue Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Xu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xueling Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
24
|
Wen L, Yang L, Chen C, Li J, Fu J, Liu G, Kan Q, Ho CT, Huang Q, Lan Y, Cao Y. Applications of multi-omics techniques to unravel the fermentation process and the flavor formation mechanism in fermented foods. Crit Rev Food Sci Nutr 2023; 64:8367-8383. [PMID: 37068005 DOI: 10.1080/10408398.2023.2199425] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fermented foods are important components of the human diet. There is increasing awareness of abundant nutritional and functional properties present in fermented foods that arise from the transformation of substrates by microbial communities. Thus, it is significant to unravel the microbial communities and mechanisms of characteristic flavor formation occurring during fermentation. There has been rapid development of high-throughput and other omics technologies, such as metaproteomics and metabolomics, and as a result, there is growing recognition of the importance of integrating these approaches. The successful applications of multi-omics approaches and bioinformatics analyses have provided a solid foundation for exploring the fermentation process. Compared with single-omics, multi-omics analyses more accurately delineate microbial and molecular features, thus they are more apt to reveal the mechanisms of fermentation. This review introduces fermented foods and an overview of single-omics technologies - including metagenomics, metatranscriptomics, metaproteomics, and metabolomics. We also discuss integrated multi-omics and bioinformatic analyses and their role in recent research progress related to fermented foods, as well as summarize the main potential pathways involved in certain fermented foods. In the future, multilayered analyses of multi-omics data should be conducted to enable better understanding of flavor formation mechanisms in fermented foods.
Collapse
Affiliation(s)
- Linfeng Wen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lixin Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Cong Chen
- Guangdong Eco-engineering Polytechnic, Guangzhou, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan, China
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Zheng Y, Liang F, Wu Y, Ban S, Huang H, Xu Y, Wang X, Wu Q. Unraveling multifunction of low-temperature Daqu in simultaneous saccharification and fermentation of Chinese light aroma type liquor. Int J Food Microbiol 2023; 397:110202. [PMID: 37086526 DOI: 10.1016/j.ijfoodmicro.2023.110202] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 04/24/2023]
Abstract
Chinese liquor is produced by a representative simultaneous saccharification and fermentation process. Daqu, as a starter of Chinese liquor fermentation, affects both saccharification and fermentation. However, it is still unclear how Daqu contributed to the simultaneous saccharification and fermentation process. Here, using Chinese light aroma type liquor as a case, we identified low-temperature Daqu-originated enzymes and microorganisms that contributed to the simultaneous saccharification and fermentation using metaproteomic analysis combined with amplicon sequencing analysis. α-Amylase and glucoamylase accounted for 95 % of total saccharifying enzymes and were identified as key saccharifying enzymes. Lichtheimia was the key producer of these two enzymes (> 90 %) in low-temperature Daqu. Daqu contributed 90 % α-amylase and 99 % glucoamylase to the initial liquor fermentation. These two enzymes decreased by 35 % and 49 % until day 15 in liquor fermentation. In addition, Daqu contributed key microbial genera (91 % Saccharomyces, 6.5 % Companilactobacillus) and key enzymes (37 % alcohol dehydrogenase, 40 % lactic acid dehydrogenase, 56 % aldehyde dehydrogenase) related with formations of ethanol, lactic acid and flavour compounds to the initial liquor fermentation. The average relative abundances of these fermentation-related key microorganisms and enzymes increased by 2.78 times and 1.29 times till day 15 in liquor fermentation, respectively. It indicated that Daqu provided saccharifying enzymes for starch hydrolysis, and provided both enzymes and microorganisms associated with formations of ethanol, lactic acid and flavour compounds for liquor fermentation. This work illustrated the multifunction of low-temperature Daqu in the simultaneous saccharification and fermentation of Chinese light aroma type liquor. It would facilitate improving liquor fermentation by producing high-quality Daqu.
Collapse
Affiliation(s)
- Yifu Zheng
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feng Liang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Qinghai Huzhu Tianyoude Qingke Wine Incorporated Company, Huzhu 810500, China
| | - Yi Wu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shibo Ban
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Heqiang Huang
- Qinghai Huzhu Tianyoude Qingke Wine Incorporated Company, Huzhu 810500, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuliang Wang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
26
|
Yang S, Fan L, Tan P, Lei W, Liang J, Gao Z. Effects of Eurotium cristatum on chemical constituents and α-glucosidase activity of mulberry leaf tea. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
27
|
An In Vitro Catalysis of Tea Polyphenols by Polyphenol Oxidase. Molecules 2023; 28:molecules28041722. [PMID: 36838710 PMCID: PMC9959171 DOI: 10.3390/molecules28041722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Tea polyphenol (TPs) oxidation caused by polyphenol oxidase (PPO) in manufacturing is responsible for the sensory characteristics and health function of fermented tea, therefore, this subject is rich in scientific and commercial interests. In this work, an in vitro catalysis of TPs in liquid nitrogen grinding of sun-dried green tea leaves by PPO was developed, and the changes in metabolites were analyzed by metabolomics. A total of 441 metabolites were identified in the catalyzed tea powder and control check samples, which were classified into 11 classes, including flavonoids (125 metabolites), phenolic acids (67 metabolites), and lipids (55 metabolites). The relative levels of 28 metabolites after catalysis were decreased significantly (variable importance in projection (VIP) > 1.0, p < 0.05, and fold change (FC) < 0.5)), while the relative levels of 45 metabolites, including theaflavin, theaflavin-3'-gallate, theaflavin-3-gallate, and theaflavin 3,3'-digallate were increased significantly (VIP > 1.0, p < 0.05, and FC > 2). The increase in theaflavins was associated with the polymerization of catechins catalyzed by PPO. This work provided an in vitro method for the study of the catalysis of enzymes in tea leaves.
Collapse
|
28
|
Zhang B, Ren D, Zhao A, Shao H, Li T, Niu P, Zhao Y, Yang X. Eurotium cristatum Exhibited Anti-Colitis Effects via Modulating Gut Microbiota-Dependent Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16164-16175. [PMID: 36519185 DOI: 10.1021/acs.jafc.2c05464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fu-brick tea (FBT) has attracted the attention of researchers because of its unique nutritional value, but it remains unknown whether Eurotium cristatum, the critical fungus from FBT, is responsible for the observed anti-colitis effects of FBT. Herein, the effects of E. cristatum on dextran sulfate sodium (DSS)-induced ulcerative colitis was first discussed. The results illustrated that the oral administration of E. cristatum inhibited DSS-induced colon damage. Microbiota analysis revealed that E. cristatum improved the intestinal homeostasis of colitis mice, especially increased the proportion of Lactobacillus, followed by an obvious increase in fecal short-chain fatty acids (SCFAs). Besides, E. cristatum markedly promoted tryptophan metabolism and increased the fecal contents of tryptophan metabolites in colitis mice. Furthermore, E. cristatum drastically increased the content of colonic IL-22 and the expression of tight-junction proteins. Conclusively, these results suggest that E. cristatum can resist colon damage and other implications of colitis by regulating the microbiota and enhancing tryptophan metabolism to strengthen intestinal barriers.
Collapse
Affiliation(s)
- Bo Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Aiqing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Pengfei Niu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
29
|
Liao S, Han J, Jiang C, Zhou B, Jiang Z, Tang J, Ding W, Che Z, Lin H. HS-SPME-GC × GC/MS combined with multivariate statistics analysis to investigate the flavor formation mechanism of tank-fermented broad bean paste. Food Chem X 2022; 17:100556. [PMID: 36845488 PMCID: PMC9943836 DOI: 10.1016/j.fochx.2022.100556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
With the advancement of industrialization, tank fermentation technology is promising for Pixian broad bean paste. This study identified and analyzed the general physicochemical factors and volatile metabolites of fermented broad beans in a thermostatic fermenter. Headspace solid-phase microextraction (HS-SPME)-two-dimensional gas chromatography-mass spectrometry (GC × GC-MS) was applied to detect the volatile compounds in fermented broad beans, while metabolomics was used to explore their physicochemical characteristics and analyze the possible metabolic mechanism. A total of 184 different metabolites were detected, including 36 alcohols, 29 aldehydes, 26 esters, 21 ketones, 14 acids, 14 aromatic compounds, ten heterocycles, nine phenols, nine organonitrogen compounds, seven hydrocarbons, two ethers, and seven other types, which were annotated to various branch metabolic pathways of carbohydrate and amino acid metabolism. This study provides references for subsequent functional microorganism mining to improve the quality of the tank-fermented broad beans and upgrade the Pixian broad bean paste industry.
Collapse
Affiliation(s)
- Shiqi Liao
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Jinlin Han
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Chunyan Jiang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Binbin Zhou
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Zhenju Jiang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Jie Tang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Wenwu Ding
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China,Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Zhenming Che
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China,Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Hongbin Lin
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China,Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China,Corresponding author at: Xihua University, Chengdu 610039, China.
| |
Collapse
|
30
|
Huang H, Chen J, Ao T, Chen Y, Xie J, Hu X, Yu Q. Exploration of the role of bound polyphenols on tea residues dietary fiber improving diabetic hepatorenal injury and metabolic disorders. Food Res Int 2022; 162:112062. [DOI: 10.1016/j.foodres.2022.112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/12/2022] [Accepted: 10/16/2022] [Indexed: 11/04/2022]
|
31
|
Du H, Shi L, Wang Q, Yan T, Wang Y, Zhang X, Yang C, Zhao Y, Yang X. Fu Brick Tea Polysaccharides Prevent Obesity via Gut Microbiota-Controlled Promotion of Adipocyte Browning and Thermogenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13893-13903. [PMID: 36264038 DOI: 10.1021/acs.jafc.2c04888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The antiobesity efficacy and underlying mechanisms of polysaccharides extracted from Fu brick tea (FBTP) were investigated. An 8-week administration of FBTP dose-dependently inhibited increases in body weight and weights of the epididymal-, retroperitoneal- and inguinal-white adipose tissues and stimulated beige-fat development and brown adipose tissue-derived nonshivering thermogenesis in high-fat diet-induced obese mice. FBTP protected against obesity-associated abnormality in serum adiponectin and leptin, indicating its positive regulation of energy metabolism. FBTP reversed gut dysbiosis by enriching beneficial bacteria, for example, Lactobacillus, Parabacteroides, Akkermansia, Bifidobacterium, and Roseburia. Results from the fecal microbiota transplantation further confirmed that FBTP-induced microbial shifts contributed to adipose browning and thermogenesis, thereby alleviating host adiposity, glucose homeostasis, dyslipidemia, and its related hepatic steatosis. Our study demonstrates the great potential of FBTP with prebiotic-like activities in preventing diet-induced obesity and its related metabolic complications via gut microbiota-derived enhancement of fat burning and energy expenditures.
Collapse
Affiliation(s)
- Haiping Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lin Shi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Qi Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Tao Yan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Chengcheng Yang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
32
|
Nurmilah S, Cahyana Y, Utama GL. Metagenomics Analysis of the Polymeric and Monomeric Phenolic Dynamic Changes Related to the Indigenous Bacteria of Black Tea Spontaneous Fermentation. BIOTECHNOLOGY REPORTS 2022; 36:e00774. [DOI: 10.1016/j.btre.2022.e00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
33
|
Characteristic fingerprints and change of volatile organic compounds of dark teas during solid-state fermentation with Eurotium cristatum by using HS-GC-IMS, HS-SPME-GC-MS, E-nose and sensory evaluation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Du Y, Yang C, Ren D, Shao H, Zhao Y, Yang X. Fu brick tea alleviates alcoholic liver injury by modulating the gut microbiota-liver axis and inhibiting the hepatic TLR4/NF-κB signaling pathway. Food Funct 2022; 13:9391-9406. [PMID: 35959866 DOI: 10.1039/d2fo01547a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study first evaluated the protective effects of Fu brick tea water extracts (FTE) on alcoholic liver injury and its underlying mechanism in C57BL/6J mice. Oral administration of FTE by oral gavage (400 mg per kg bw) for 12 weeks significantly alleviated lipid metabolism disorder, reduced the activities of serum ALT and AST, decreased the expression of the liver CYP2E1 gene, and enhanced the antioxidant capacities of the livers in alcohol-fed mice (p < 0.05). FTE also relieved alcohol-induced gut microbiota dysbiosis by promoting the proliferation of probiotics such as Muribaculaceae and Lactobacillus, and subsequently increased the cecal levels of short-chain fatty acids (SCFAs) and decreased the tryptophan content of alcohol-fed mice (p < 0.05). Importantly, FTE was found to improve the alcohol-impaired gut barrier function by up-regulating the expression of the epithelial tight junction protein. Accordingly, FTE decreased the circulating lipopolysaccharide (LPS) and thus inhibited the hepatic TLR4/NF-κB signaling pathway to ameliorate alcoholic liver injury. Cumulatively, these findings shed light on the important role of the gut microbiota-liver axis behind the protective efficacy of FTE on alcoholic liver injury.
Collapse
Affiliation(s)
- Yao Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Chengcheng Yang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
35
|
Miao W, Li N, Wu JL. Food polysaccharides utilization via in vitro fermentation: microbiota, structure, and function. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Multiplex PCR Identification of Aspergillus cristatus and Aspergillus chevalieri in Liupao Tea Based on Orphan Genes. Foods 2022; 11:foods11152217. [PMID: 35892804 PMCID: PMC9332452 DOI: 10.3390/foods11152217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
“Golden flower” fungi in dark tea are beneficial to human health. The rapid identification method of “golden flower” fungi can verify the quality of dark tea products and ensure food safety. In this study, 6 strains were isolated from Liupao tea. They were respectively identified as A. cristatus, A. chevalieri, and A. pseudoglaucus. A. pseudoglaucus was reported as Liupao tea “golden flower” fungus for the first time. It was found that the ITS and BenA sequences of A. cristatus and A. chevalieri were highly conserved. It is difficult to clearly distinguish these closely related species by ITS sequencing. To rapidly identify species, multiplex PCR species-specific primers were designed based on orphan genes screened by comparative genomics analysis. Multiplex PCR results showed that orphan genes were specific and effective for the identification of A. cristatus and A. chevalieri isolated from Liupao tea and Fu brick tea. We confirmed that orphan genes can be used for identification of closely related Aspergillus species. Validation showed that the method is convenient, rapid, robust, sequencing-free, and economical. This promising method will be greatly beneficial to the dark tea processing industry and consumers.
Collapse
|
37
|
Chen Y, Chen J, Chen R, Xiao L, Wu X, Hu L, Li Z, Wang Y, Zhu M, Liu Z, Xiao Y. Comparison of the Fungal Community, Chemical Composition, Antioxidant Activity, and Taste Characteristics of Fu Brick Tea in Different Regions of China. Front Nutr 2022; 9:900138. [PMID: 35656159 PMCID: PMC9152283 DOI: 10.3389/fnut.2022.900138] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, the fungal community structure, metabolites, antioxidant ability, and taste characteristics of five Fu brick tea (FBT) from different regions of China were determined and compared. A total of 69 operational taxonomic units (OTUs) were identified and assigned into 5 phyla and 27 genera, with Eurotium as the predominant genus in all samples. Hunan (HN) sample had the strongest fungal diversity and richness, followed by Guangxi (GX) sample, and Zhejiang (ZJ) sample had the lowest. GX sample had higher amounts of gallic acid (GA), total catechins, gallocatechin (GC), and epicatechin gallate (ECG) as well as antioxidant activity than the other samples. The levels of total phenolics, total flavonoids, epigallocatechin (EGC), catechin, epicatechin (EC), thearubigins (TRs), and theaflavins (TFs) were the highest in the ZJ sample. Guizhou (GZ) and Shaanxi (SX) samples contained the highest contents of epigallocatechin gallate (EGCG) and gallocatechin gallate (GCG), respectively. Total phenolics, GA, EC, CG, and TFs were positively associated with most of fungal genera. Total phenolic content (TPC), total flavonoid content (TFC), and most of catechins contributed to the antioxidant activities of FBT. HN sample had the strongest sourness and sweetness, ZJ sample had the strongest saltiness, SX sample had the strongest umami, and GZ sample had the strongest astringency, which was ascribed to the varied metabolites. This work reveals that FBT in different regions vary greatly in fungal community, metabolites, antioxidant activity, and taste characteristics, and provides new insight into the quality characteristics formation of FBT in different regions.
Collapse
Affiliation(s)
- Yulian Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiaxu Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Longping Branch Graduate School, Hunan University, Changsha, China
| | - Ruyang Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Leike Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xing Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lin Hu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Mingzhi Zhu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
| |
Collapse
|