1
|
Shen H, Wang R, Bai J, Wang J, Qi H, Luo A. Utilization of electron beam irradiation pretreatment for the extraction of pectic polysaccharides from Diaphragma juglandis fructus: Structural, physicochemical, and functional properties. Int J Biol Macromol 2024; 279:135198. [PMID: 39216575 DOI: 10.1016/j.ijbiomac.2024.135198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The effects of electron beam irradiation (EBI) pretreatment on the alkaline extraction of pectic polysaccharides from Diaphragma juglandis fructus (DJF) are highly dependent on the irradiation dosage. Comprehensive characterizations encompassing physicochemical, structural, and functional properties were conducted on crude pectic polysaccharide extract from DJF subjected to various EBI doses. EBI pretreatment significantly increased the yields of crude pectic polysaccharides extract (increasing by 41.89 %), also facilitating the extraction of uronic acid, RG-I structure, and protein content, despite causing a decrease in total sugar content. EBI pretreatment induced the degradation of pectin, resulting in decreased molecular weight, particle size, crystallinity, viscosity, thermal stability, and water holding capacity, while enhancing solubility and oil holding capacity. Variations in physicochemical and structural properties induced by different EBI doses influenced the functional activities of DJF pectic polysaccharides. Low-dose EBI (at 5 kGy) pretreatment markedly improved the emulsifying activity/stability (increasing by 20.82/74.10 %) and ABTS/DPPH radical scavenging activity (increasing by 27.91/12.40 %), whereas high-dose EBI pretreatment (50 kGy) greatly enhanced foaming capacity/stability (increasing by 259.99/175.56 %). These findings provide a novel regulatory strategy for the functional activity of pectic polysaccharides.
Collapse
Affiliation(s)
- Heyu Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruoling Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junqing Bai
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi 712100, China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heting Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anwei Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Zhang T, Zheng J, Chen M, Li D, Sun Y, Liu R, Sun T. A mini review of polysaccharides from Zanthoxylum bungeanum maxim: Their extraction, purification, structural characteristics, bioactivity and potential applications. Int J Biol Macromol 2024; 282:137007. [PMID: 39486707 DOI: 10.1016/j.ijbiomac.2024.137007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/29/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Zanthoxylum bungeanum Maxim (Z. bungeanum), commonly known as Sichuan pepper or Chinese prickly ash, is a deciduous shrub in the Rutaceae family, with a lengthy history of use as a food ingredient and traditional medicine in China. Z. bungeanum polysaccharides (ZBPs) represent one of the crucial bioactive components of Z. bungeanum, garnering global attention due to their potential medicinal value, culinary significance, and promising application prospects. The principal methods for extracting ZBPs are hot water extraction, ultrasound-assisted extraction, enzyme-assisted extraction and microbial fermentation extraction. However, the structural characteristics of ZBPs remain ambiguous, necessitating further exploration and elucidation of the structure-activity relationship using the advanced analytical techniques. In addition, ZBPs demonstrate diverse bioactivities, including antioxidant activity, neuroprotective effect, antibacterial activity, and the anti-fatigue effect, positioning them as promising candidates for various therapeutic and health-promoting applications. This review provides a comprehensive overview of the extraction, purification, structural characteristics, bioactivities, and potential applications of ZBPs, emphasizing the significant promise of ZBPs as valuable natural compounds with a range of bioactivities, supporting their further exploitation and application in various fields of industries and therapeutics.
Collapse
Affiliation(s)
- Ting Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Jianfeng Zheng
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Mengjie Chen
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
3
|
Yap PG, Gan CY. Optimized extraction and characterization of ramie leaf polysaccharides using deep eutectic solvent and microwave: Antioxidant, metal chelation, and UV protection properties. Int J Biol Macromol 2024; 282:136927. [PMID: 39471933 DOI: 10.1016/j.ijbiomac.2024.136927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/24/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Ramie leaf polysaccharides (RLP) were extracted using deep eutectic solvent (DES) and microwave. The extraction conditions, i.e., buffer-to-substrate (B:S) ratio (10:1-30:1 w/v), microwave power (90-270 W) and extraction duration (2-4 min) were optimized using response surface methodology. Based on the optimized model, 21.1 mL/g B:S ratio, 263 W microwave power and 2.8 min extraction time had successfully produced RLP with 16.67 ± 1.10 % (w/w) yield and 80.84 ± 1.16 % 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The 23.4 ± 0.389 kDa RLP was a neutral polysaccharide with low carbohydrate, protein, and phenolic contents. The low galacturonic acid content (0.89 ± 0.05 mg/g) suggested RLP contained partially pectic-polysaccharide. The major monosaccharides of RLP were rhamnose, glucose, galactose and xylose. RLP was a relatively non-linear, highly branched polysaccharide with short branches based on the monosaccharide ratio. Bioactivity screening had identified the reduction (0.66 ± 0.02 mmol Fe2+/g) and copper chelation (48.5 ± 0.4 %) activities of RLP. The polysaccharide could also absorb ultraviolet (UV) in which it gave major protection against UVB with 8.7 ± 0.3 sun protection factor. These biological activities were related to specific functional groups, monosaccharide units, molecular weight and/or the neutral property of RLP. The current findings provided new insights into the antioxidant, copper chelation and sun protection benefit of RLP.
Collapse
Affiliation(s)
- Pei Gee Yap
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM Campus, Lebuh Bukit Jambul, Bayan Lepas, 11900 Penang, Malaysia.
| | - Chee Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM Campus, Lebuh Bukit Jambul, Bayan Lepas, 11900 Penang, Malaysia.
| |
Collapse
|
4
|
Qiu X, Geng Y, Cai X, Ou Y, Li M, Zhang Y, He D, Qian X, Wu Y, Ma H, Yan JK, Yao H, Chen WH. Anti-inflammatory activity and underlying mechanism against sepsis-induced acute lung injury of a low-molecular-weight polysaccharide from the root of Stemona tuberosa Lour. Int J Biol Macromol 2024; 282:136617. [PMID: 39426768 DOI: 10.1016/j.ijbiomac.2024.136617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The root of Stemona tuberosa Lour has been used to treat tuberculosis, scabies, and eczema. Polysaccharides are among its main bioactive ingredients. A low-molecular-weight (1819 Da) polysaccharide (SPS2-A) was obtained from the root of S. tuberosa Lour by optimizing three-phase partitioning, purified using an ion chromatography column, and its effects and mechanisms were investigated. Structural analysis revealed that SPS2-A contained arabinose, galactose (Gal), glucose (Glc), xylose, and mannose. The SPS2-A backbone structure comprised sugar residues →4)-α-D-Glcp-(1→, →4)-α-D-Galp-(1→, and →4,6)-β-D-Galp-(1→, while the side chain primarily comprised α-D-Glcp-(1 → connected to the O-6 position of the residue →4,6)-β-D-Galp-(1→. In vitro, SPS2-A downregulated the expression of interleukin-6 in lipopolysaccharide-induced RAW264.7 macrophages. In vivo, SPS2-A significantly downregulated the expression of myeloperoxidase, interleukin-6, interleukin-1β, and tumor necrosis factor-α in bronchoalveolar lavage fluid and lung tissue. Western blotting analysis indicated that SPS2-A reduced lung inflammation in mice with sepsis-induced acute lung injury by activating the nuclear factor κB pathway. These results suggest that SPS2-A is a potential anti-inflammatory candidate for the treatment of sepsis-induced acute lung injury.
Collapse
Affiliation(s)
- Xiang Qiu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yan Geng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Xiaoyue Cai
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Yanghui Ou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Dengqin He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Xudong Qian
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Yanting Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Hongwei Ma
- Guangdong Huakangyuan Medicinal Resources Development Co., LTD, China
| | - Jing-Kun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China.
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
5
|
Zeng S, Wang B, Lv W, Li B, Xiao H, Lin R. Physicochemical properties, structure and biological activity of ginger polysaccharide: Effect of microwave infrared dual-field coupled drying. Int J Biol Macromol 2024; 281:136474. [PMID: 39401618 DOI: 10.1016/j.ijbiomac.2024.136474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Ginger was dried by microwave infrared dual-field coupled drying (MIDFCD). The composition, structure, physicochemical properties and biological activity of ginger polysaccharides at various stages of MIDFCD were investigated. The MIDFCD significantly impacted the chemical composition, molecular weight (Mw), microstructure, and physicochemical properties of ginger polysaccharides. However, there were no notable differences in functional group composition. The Mw and chemical composition were notably influenced by microwave-infrared exposure and prolonged drying time. The degradation of polysaccharides due to high temperatures in the later stage resulted in further decreases in Mw and alterations in monosaccharide composition. These changes in chemical composition and Mw affected thermal properties, crystallization properties, particle size, rheological properties, antioxidant capacity, and hypoglycemic activity. These findings suggest that MIDFCD enhances the quality and bioactivity of natural polysaccharides. This study offers theoretical support for MIDFCD processing and the value-added utilization of ginger.
Collapse
Affiliation(s)
- Shiyu Zeng
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Wang
- School of Behavioural and Health Science, Australian Catholic University, Sydney, NSW 2060, Australia
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Bingzheng Li
- Guangxi Key laboratory of Microwave Advanced Manufacturing Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Rongru Lin
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
6
|
Chen X, Wu S, Tao X, He F, Shen M. Sulfated Chinese yam polysaccharide exert anti-inflammatory potential via MAPK/NF-κB signaling pathways in a co-culture system and LPS-induced acute inflammatory mice model. J Food Sci 2024; 89:6720-6732. [PMID: 39269279 DOI: 10.1111/1750-3841.17319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024]
Abstract
Our previous study has demonstrated that sulfated Chinese yam polysaccharide (SCYP) can improve immunomodulatory activity in Raw 264.7 cells. However, its anti-inflammatory is little known. In this study, the anti-inflammatory effects of SCYP were systematically investigated via the Lipopolysaccharides (LPS)-induced Raw264.7 cell model, Caco-2/Raw264.7 co-culture system, and acute inflammation mice model. The results suggested SCYP promoted the cell proliferation and have no toxicity in Raw264.7 and Caco-2 cells at the concentration of 200 µg/mL. Moreover, when treated with SCYP, the production of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor-α) reduced significantly in Raw264.7 via the MAPK/NF-κB pathway. In the Caco-2/Raw264.7 co-cultured system, SCYP could regulate inflammation reaction by improving intestinal barrier, which might prevent systemic inflammation. Further, systemic inflammation was alleviated by SCYP in LPS-induced acute inflammation mice through MAPK/NF-κB pathway. PRACTICAL APPLICATION: These results supported that SCYP may be used as an anti-inflammation agent in the functional food field.
Collapse
Affiliation(s)
- Xianxiang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Xin Tao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Fengxia He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Huang R, Yu H. Extraction methods, chemical compositions, molecular structure, health functions, and potential applications of tea polysaccharides as a promising biomaterial: a review. Int J Biol Macromol 2024; 277:134150. [PMID: 39059531 DOI: 10.1016/j.ijbiomac.2024.134150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Tea polysaccharides (TPS) have attracted much attention due to their multiple biological activities, excellent biocompatibility and good biodegradability, creating a wide range of potential applications in the food and pharmaceutical industries. However, the high molecular weight and complexity of TPS components have restricted its purification and bioactivity, limiting its potential applications. In this review, the effects of various extraction methods, tea processing, and degree of fermentation on the composition and structure of TPS were thoroughly investigated to overcome this dilemma. Through a comprehensive analysis of in vivo and in vitro studies, the health benefits of TPS are discussed in detail, including antioxidant, anti-obesity, modulation of gut microbial communities, and anticancer bioactivities. Typical structural characterization techniques of TPS are also summarized, and interactions with common food components are discussed in depth, providing a deeper perspective on the overall knowledge of TPS. Finally, this review offers an extensive overview of the wide range of applications of TPS, including its strong emulsifying properties and bio-accessibility, in various fields such as food nutrition, drug delivery, encapsulation films, and emulsifiers. This review aims to provide a theoretical basis for the profound development of TPS for productive utilization.
Collapse
Affiliation(s)
- Rong Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, Shanghai 200030, China.
| | - Hongfei Yu
- North Ring Road no.1, Xinyang Agriculture and Forestry University, Pingqiao, Xinyang, He'nan, China
| |
Collapse
|
8
|
Tran DT, Yadav AS, Nguyen NK, Singha P, Ooi CH, Nguyen NT. Biodegradable Polymers for Micro Elastofluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303435. [PMID: 37292037 DOI: 10.1002/smll.202303435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 06/10/2023]
Abstract
Micro elastofluidics is an emerging research field that encompasses characteristics of conventional microfluidics and fluid-structure interactions. Micro elastofluidics is expected to enable practical applications, for instance, where direct contact between biological samples and fluid handling systems is required. Besides design optimization, choosing a proper material is critical to the practical use of micro elastofluidics upon interaction with biological interface and after its functional lifetime. Biodegradable polymers are one of the most studied materials for this purpose. Micro elastofluidic devices made of biodegradable polymers possess exceptional mechanical elasticity, excellent bio compatibility, and structural degradability into non-toxic products. This article provides an insightful and systematic review of the utilization of biodegradable polymers in digital and continuous-flow micro elastofluidics.
Collapse
Affiliation(s)
- Du Tuan Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Ajeet Singh Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| |
Collapse
|
9
|
Duan Y, Hu Z, Jin L, Zong T, Zhang X, Liu Y, Yang P, Sun J, Zhou W, Li G. Efficient degradation and enhanced anticomplementary activity of Belamcanda chinensis (L.) DC. polysaccharides via trifluoroacetic acid treatment with different degrees. Int J Biol Macromol 2024; 276:134117. [PMID: 39084989 DOI: 10.1016/j.ijbiomac.2024.134117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
The degradation of Belamcanda chinensis (L.) DC. polysaccharides was carried out by five concentrations of trifluoroacetic acid (TFA) (1-5 mol/L), and their physicochemical properties, degradation kinetics and anticomplementary activity were investigated. The findings revealed a notable reduction in the molecular weight of BCP, from an initial value of 2.622 × 105 g/mol to a final value of 6.255 × 104 g/mol, and the water solubility index increased from 90.66 ± 0.42 % to 97.78 ± 0.43 %. The degraded polysaccharides of B. chinensis exhibited a comparable monosaccharide composition comprising Man, GalA, Glc, Gal, and Ara. As the concentration of TFA increased, the degradation rate constant increased from 1.468 × 10-3 to 5.943 × 10-3, and the process followed the first-order degradation kinetic model (R2 > 0.97) and the random fracture model (R2 > 0.96). Furthermore, the five degraded polysaccharides still exhibit good thermal stability. In vitro experiments showed that DBCP-3 exhibited more potent anticomplementary activity than the original polysaccharides and positive drugs, which was strongly correlated with its Mw (r = 0.6-0.8), inhibiting complement activation by blocking C2 and C4. These results indicated that TFA degradation has a positive effect on polysaccharides, of which DBCP-3 is expected to treat diseases involving hyperactivation of the complement system.
Collapse
Affiliation(s)
- Yuanqi Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - Zhengyu Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China.
| | - Long Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - Tieqiang Zong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - Xiaohui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - Yanan Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - Pengcheng Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China.
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China.
| | - Wei Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China.
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China.
| |
Collapse
|
10
|
Zhong Y, Tan P, Lin H, Zhang D, Chen X, Pang J, Mu R. A Review of Ganoderma lucidum Polysaccharide: Preparations, Structures, Physicochemical Properties and Application. Foods 2024; 13:2665. [PMID: 39272434 PMCID: PMC11395056 DOI: 10.3390/foods13172665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Ganoderma lucidum (GL) is a kind of edible fungus with various functions and a precious medicinal material with a long history. Ganoderma lucidum polysaccharide (GLP) is one of the main bioactive substances in GL, with anti-tumor, anti-oxidation, anti-cancer, and other biological activities. GLP is closely related to human health, and the research on GLP is getting deeper. This paper reviewed the extraction and purification methods of GLP, the relationship between structure and activity, and the qualitative and quantitative methods. This review provides solutions for the analysis and application of GLP. At the same time, some new methods for extraction, purification and analysis of GLP, the relationship between advanced structures and activity, and future applications of and research into GLP were emphasized. As a kind of bioactive macromolecule, GLP has unique functional properties. Through the comprehensive summary of the extraction, purification, and analysis of GLP and its future prospects, we hope that this review can provide valuable reference for the further study of GLP.
Collapse
Affiliation(s)
- Yuanbo Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pingping Tan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanglong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Li X, Li C, Liu Y, Han G, Lin C, Chen X, Mao J. Rheological and Structural Characterization of Carrageenans during Depolymerization Conducted by a Marine Bacterium Shewanella sp. LE8. Gels 2024; 10:502. [PMID: 39195031 DOI: 10.3390/gels10080502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Carrageenans were widely utilized as thickening and gelling agents in the food and cosmetic industries, and their oligosaccharides have been proven to possess enhanced physicochemical and biological properties. In this study, Shewanella sp. LE8 was utilized for the depolymerization of κ-, ι-, and λ-carrageenan under conditions of fermentation. During a 24-h fermentation at 28 °C, the apparent viscosity of κ-, ι-, and λ-carrageenan decreased by 53.12%, 84.10%, and 59.33%, respectively, accompanied by a decrease in storage modulus, and loss modulus. After a 72-h fermentation, the analysis of methylene blue and molecular weight distribution revealed that ι-carrageenan was extensively depolymerized into smaller polysaccharides by Shewanella sp. LE8, while exhibiting partial degradation on κ- and λ-carrageenan. However, the impact of Shewanella sp. LE8 on total sugars was found to be limited; nevertheless, a significant increase in reduced sugar content was observed. The ESIMS analysis results revealed that the purified components obtained through ι-carrageenan fermentation for 72 h were identified as tetrasaccharides, while the two purified components derived from λ-carrageenan fermentation consisted of a hexasaccharide and a tetrasaccharide, respectively. Overall, the present study first reported the depolymerization of ι-and λ-carrageenan by Shewanella and suggested that the Shewanella could be used to depolymerize multiple carrageenans, as well as complex polysaccharides derived from red algae, to further obtain their oligosaccharides.
Collapse
Affiliation(s)
- Xiong Li
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Chuyi Li
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yizhou Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Gang Han
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Congyu Lin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoli Chen
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jian Mao
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
12
|
Zhang H, Li Y, Fu Y, Jiao H, Wang X, Wang Q, Zhou M, Yong YC, Liu J. A structure-functionality insight into the bioactivity of microbial polysaccharides toward biomedical applications: A review. Carbohydr Polym 2024; 335:122078. [PMID: 38616098 DOI: 10.1016/j.carbpol.2024.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Microbial polysaccharides (MPs) are biopolymers secreted by microorganisms such as bacteria and fungi during their metabolic processes. Compared to polysaccharides derived from plants and animals, MPs have advantages such as wide sources, high production efficiency, and less susceptibility to natural environmental influences. The most attractive feature of MPs lies in their diverse biological activities, such as antioxidative, anti-tumor, antibacterial, and immunomodulatory activities, which have demonstrated immense potential for applications in functional foods, cosmetics, and biomedicine. These bioactivities are precisely regulated by their sophisticated molecular structure. However, the mechanisms underlying this precise regulation are not yet fully understood and continue to evolve. This article presents a comprehensive review of the most representative species of MPs, including their fermentation and purification processes and their biomedical applications in recent years. In particular, this work presents an in-depth analysis into the structure-activity relationships of MPs across multiple molecular levels. Additionally, this review discusses the challenges and prospects of investigating the structure-activity relationships, providing valuable insights into the broad and high-value utilization of MPs.
Collapse
Affiliation(s)
- Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Mengbo Zhou
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
13
|
Jayasree Subhash A, Babatunde Bamigbade G, Al-Ramadi B, Kamal-Eldin A, Gan RY, Senaka Ranadheera C, Ayyash M. Characterizing date seed polysaccharides: A comprehensive study on extraction, biological activities, prebiotic potential, gut microbiota modulation, and rheology using microwave-assisted deep eutectic solvent. Food Chem 2024; 444:138618. [PMID: 38309077 DOI: 10.1016/j.foodchem.2024.138618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
This study investigated the biological activities, prebiotic potentials, modulating gut microbiota, and rheological properties of polysaccharides derived from date seeds via microwave-assisted deep eutectic solvent systems. Averaged molecular weight (246.5 kDa) and a monosaccharide profile (galacturonic acid: glucose: mannose: fructose: galactose), classifying MPS as a heteropolysaccharide. MPS, at concentrations of 125-1000 µg/mL, demonstrates increasing free radical scavenging activities (DPPH, ABTS, MC, SOD, SORS, and LO), potent antioxidant potential (FRAP: 51.2-538.3 µg/mL; TAC: 28.3-683.4 µg/mL; RP: 18.5-171.2 µg/mL), and dose-dependent antimicrobial activity against common foodborne pathogens. Partially-purified MPS exhibits inhibition against α-glucosidase (79.6 %), α-amylase (85.1 %), and ACE (68.4 %), along with 80 % and 46 % inhibition against Caco-2 and MCF-7 cancer cells, respectively. Results indicate that MPS fosters the growth of beneficial fecal microbiota, including Proteobacteria, Firmicutes, and Actinobacteria, supporting microbes responsible for major SCFAs (acetic, propionic, and butyric acids) production, such as Ruminococcus and Blautia.
Collapse
Affiliation(s)
- Athira Jayasree Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, UAE
| | - Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, UAE
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al-Ain, UAE; Zayed Center for Health Sciences, United Arab Emirates University (UAEU), Al-Ain, UAE
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, UAE
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | | | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, UAE; School of Agriculture, Food, and Ecosystem Sciences, Faculty of Science, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
14
|
Choudhary A, Bains A, Sridhar K, Dhull SB, Goksen G, Sharma M, Chawla P. Recent advances in modifications of exudate gums: Functional properties and applications. Int J Biol Macromol 2024; 271:132688. [PMID: 38806080 DOI: 10.1016/j.ijbiomac.2024.132688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Gums are high-molecular-weight compounds with hydrophobic or hydrophilic characteristics, which are mainly comprised of complex carbohydrates called polysaccharides, often associated with proteins and minerals. Various innovative modification techniques are utilized, including ultrasound-assisted and microwave-assisted techniques, enzymatic alterations, electrospinning, irradiation, and amalgamation process. These methods advance the process, reducing processing times and energy consumption while maintaining the quality of the modified gums. Enzymes like xanthan lyases, xanthanase, and cellulase can selectively modify exudate gums, altering their structure to enhance their properties. This precise enzymatic approach allows for the use of exudate gums for specific applications. Exudate gums have been employed in nanotechnology applications through techniques like electrospinning. This enables the production of nanoparticles and nanofibers with improved properties, making them suitable for the drug delivery system, tissue engineering, active and intelligient food packaging. The resulting modified exudate gums exhibit improved rheological, emulsifying, gelling, and other functional properties, which expand their potential applications. This paper discusses novel applications of these modified gums in the pharmaceutical, food, and industrial sectors. The ever-evolving field presents diverse opportunities for sustainable innovation across these sectors.
Collapse
Affiliation(s)
- Anchal Choudhary
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey.
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 Ath, Belgium.
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
15
|
Yao H, Yang J, Li S, Cui SW, Tan H, Nie S. Effects of different fractions of polysaccharides from Dictyophora indusiata on high-fat diet-induced metabolic syndrome in mice. Int J Biol Macromol 2024; 272:132744. [PMID: 38834122 DOI: 10.1016/j.ijbiomac.2024.132744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/05/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Dictyophora indusiata is a common edible mushroom with great potential in the field of medicine against metabolic disorders, inflammation, and immunodeficiency. Our previous studies have shown that different fractions of the polysaccharide from Dictyophora indusiata (DIP) have various structural characteristics and morphology. However, the impact of the structural features on the protective effects of DIP against metabolic syndrome remains unclear. In this study, three distinct polysaccharide fractions have been extracted from Dictyophora indusiata and a high-fat diet-induced metabolic syndrome (MetS) was constructed in mice. The effects of these fractions on a range of MetS-associated endpoints, including abnormal blood glucose, lipid profiles, body fat content, liver function, intestinal microbiota and their metabolites were investigated. Through correlation analysis, the potential link between the monosaccharide composition of the polysaccharides and their biological activities was determined. The study aimed to explore the potential mechanisms and ameliorative effects of these polysaccharide fractions on MetS, thereby providing statistical evidence for understanding the relationship between monosaccharides composition of Dictyophora indusiata polysaccharides and their potential utility in treating metabolic disorders.
Collapse
Affiliation(s)
- Hong Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Jingrui Yang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Song Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China; Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
16
|
Pan X, Chen X, Niu H, Shen M, Ye X, Mo S, Xie J. Large and small amplitude oscillatory shear techniques evaluate the nonlinear rheological properties of Ficus pumila polysaccharide -wheat starch gel. Int J Biol Macromol 2024; 270:132352. [PMID: 38754676 DOI: 10.1016/j.ijbiomac.2024.132352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Polysaccharides are used in starch-based product formulations to enhance the final quality of food products. This study examined the interaction mechanisms in Ficus pumila polysaccharide (FPP) and wheat starch (WS) gel systems with varying FPP concentrations using linear and nonlinear rheological analysis. Physicochemical structural analyses showed non-covalent FPP-WS interactions, strengthening hydrogen bonding between molecules and promoting water binding and ordered structure generation during WS gel aging. Small amplitude oscillatory shear analyses revealed that elevated FPP concentrations led to increased storage modulus (G'), loss modulus (G"), critical strains (From 29.02 % to 53.32 %) and yield stresses (From 0.94 Pa to 30.97 Pa) in the WS gel system, along with improved resistance to deformation and short-term regeneration. In the nonlinear viscoelastic region, FPP-WS gels shifted from elastic to viscous behavior. Higher FPP concentrations displayed increased energy dissipation, strain hardening (S>0, e3/e1 > 0) and shear thinning (T<0, v3/v1<0). FPP contributes more nonlinearity in the dynamic flow field as showed by the high harmonic ratio, with a larger I3/I1 values overall. This study highlights FPP's potential in starch gel food processing, and offers a theoretical basis for understanding hydrocolloid-starch interactions.
Collapse
Affiliation(s)
- Xiangwen Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaomei Ye
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Shiru Mo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
17
|
Bai C, Chen R, Chen Y, Bai H, Sun H, Li D, Wu W, Wang Y, Gong M. Plant polysaccharides extracted by high pressure: A review on yields, physicochemical, structure properties, and bioactivities. Int J Biol Macromol 2024; 263:129939. [PMID: 38423909 DOI: 10.1016/j.ijbiomac.2024.129939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Polysaccharides are biologically essential macromolecules, widely exist in plants, which are used in food, medicine, bioactives' encapsulation, targeted delivery and other fields. Suitable extraction technology can not only improve the yield, but also regulate the physicochemical, improve the functional property, and is the basis for the research and application of polysaccharide. High pressure (HP) extraction (HPE) induces the breakage of raw material cells and tissues through rapid changes in pressure, increases extraction yield, reduces extraction time, and modifies structure of polysaccharides. However, thus far, literature review on the mechanism of extraction, improved yield and modified structure of HPE polysaccharide is lacking. Therefore, the present work reviews the mechanism of HPE polysaccharide, increasing extraction yield, regulating physicochemical and functional properties, modifying structure and improving activity. This review contributes to a full understanding of the HPE or development of polysaccharide production and modification methods and promotes the application of HP technology in polysaccharide production.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Yubo Chen
- FAW-Volkswagen Automotive Co., Ltd., Powertrain Division T-D Planning Powertrain T-D-1, Changchun 130011, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Dongxue Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Wenjing Wu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yongtang Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Mingze Gong
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
18
|
Zhang Y, Li L, Ma X, Liu R, Shi R, Zhao D, Li X. Extraction, purification, structural features, modifications, bioactivities, structure-activity relationships, and applications of polysaccharides from garlic: A review. Int J Biol Macromol 2024; 265:131165. [PMID: 38547941 DOI: 10.1016/j.ijbiomac.2024.131165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
Garlic is a common vegetable and spice in people's daily diets, in which garlic polysaccharide (GP) is one of the most important active components with a variety of benefits, such as antioxidant, immune-enhancing, anti-inflammatory, liver-protective and bowel-regulating properties. >20 types of GPs, mainly crude polysaccharides, have been identified. However, the exact chemical composition of GPs or the mechanism underlying their pharmacological activity is still not fully understood. The extraction and purification methods of GPs are compared in this review while providing detailed information on their structural features, identification methods, major biological activities, mechanisms of actions, structural modifications, structure-activity relationships as well as potential applications. Finally, the limitations of GP research and future issues that need to be addressed are discussed in this review. GPs are widely recognized as substances with great potential in the pharmaceutical and food industries. Therefore, this review aims to provide a comprehensive summary of the latest research progresses in the field of GPs, together with scientific insights and a theoretical support for the development of GPs in research and industrialization.
Collapse
Affiliation(s)
- Yongwei Zhang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Garlic Medicinal Uses Key Laboratory of Xinjiang, China
| | - Lanlan Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Key Laboratory of High Incidence Disease Research in Xinjiang, Xinjiang Medical University, Ministry of Education, Urumqi 830054, China
| | - Xuehong Ma
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Key Laboratory of High Incidence Disease Research in Xinjiang, Xinjiang Medical University, Ministry of Education, Urumqi 830054, China; Garlic Medicinal Uses Key Laboratory of Xinjiang, China
| | - Ruiting Liu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Xinjiang Hu Suan Research Institute (Co., LTD), Urumqi 830020, China; Garlic Medicinal Uses Key Laboratory of Xinjiang, China
| | - Rongmei Shi
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Xinjiang Hu Suan Research Institute (Co., LTD), Urumqi 830020, China; Garlic Medicinal Uses Key Laboratory of Xinjiang, China
| | - Dongsheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xinxia Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China; Key Laboratory of High Incidence Disease Research in Xinjiang, Xinjiang Medical University, Ministry of Education, Urumqi 830054, China.
| |
Collapse
|
19
|
Chen Y, Zhang N, Chen X. Structurally Modified Polysaccharides: Physicochemical Properties, Biological Activities, Structure-Activity Relationship, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3259-3276. [PMID: 38308635 DOI: 10.1021/acs.jafc.3c06433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Polysaccharides are an important class of biomolecules derived from several sources. However, the inherent structure of polysaccharides prevents them from exhibiting favorable physicochemical properties, which restricts their development in agriculture, industry, food, and biomedicine. This paper systematically summarizes the changes in the primary and advanced structures of modified polysaccharides, and focuses on the effects of various modification methods on the hydrophobicity, rheological properties, emulsifying properties, antioxidant activity, hypoglycemic, and hypolipidemic activities of polysaccharides. Then there is a list the applications of modified polysaccharides in treating heavy metal pollutants, purifying water resources, improving beverage stability and bread quality, and precisely delivering the drug. When summarized and reviewed, the information above can shed further light on the relationship between polysaccharide structure and function. Determining the structure-activity relationship provides a scientific basis for the direction of molecular modifications of polysaccharides.
Collapse
Affiliation(s)
- Yue Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Na Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
20
|
Geng X, Guo D, Wu B, Wang W, Zhang D, Hou S, Bau T, Lei J, Xu L, Cheng Y, Feng C, Meng J, Qian H, Chang M. Effects of different extraction methods on the physico-chemical characteristics and biological activities of polysaccharides from Clitocybe squamulosa. Int J Biol Macromol 2024; 259:129234. [PMID: 38216007 DOI: 10.1016/j.ijbiomac.2024.129234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
This study comparatively evaluated the effects of the commonly used six extraction methods (acidic, alkaline, enzymatic, ultrasonic, high-pressure, and microwave) on the physico-chemical properties, processing characteristics, and biological activities of polysaccharides from Clitocybe squamulosa (CSFPs). The results show that polysaccharides extracted using an enzyme-assisted extraction method has a relatively high extraction yield (4.46 ± 1.62 %) and carbohydrate content (70.79 ± 6.25 %) compared with others. Furthermore, CSFPs were all composed of glucose, galactose, mannose, xylose, and glucosamine hydrochloride. Only ultrasonic-assisted extraction of polysaccharides (CSFP-U) has a triple helix chain conformation. Scanning electron microscopy (SEM) revealed significant differences in the microstructure of polysaccharides prepared using different methods. Besides that, the polysaccharides prepared by alkali extraction (CSFP-B) and high-pressure assisted extraction (CSFP-H) have good water (2.86 ± 0.29 g/g and 3.15 ± 0.29 g/g) and oil (8.13 ± 0.32 g/g and 7.97 ± 0.04 g/g) holding properties. The rheological behavior demonstrated that CSFPs solutions were typical non-Newtonian fluid. Apart from this, the antioxidant capacity (clearing DPPH (IC50 = 0.29) and ABTS free radicals (IC50 = 0.19), total reduction ability (IC50 = 3.02)) of polysaccharides prepared by the microwave-assisted extraction (CSFP-M) method was significantly higher than that of other extraction methods. By contrast, the polysaccharide prepared by acid extraction (CSFP-A) has the optimum binding capacity (bile acid salt (71.30 ± 6.78 %) and cholesterol (57.07 ± 3.26 mg/g)). The antibacterial activity of CSFPs was positively correlated with their concentration. Thus, the research results can provide a theoretical basis for the development and utilization of polysaccharides from C. squamulosa.
Collapse
Affiliation(s)
- Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Bin Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Wuxia Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Defang Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Shuting Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Tergun Bau
- Inner Mongolia Agriculture, Animal Husbandry, Fishery, Biology Experiment Research Centre, Inner Mongolia Agricultural University, Hohhot 010019, PR China
| | - Jiayu Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, PR China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, PR China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
21
|
Lu MK, Lee MH, Chao CH, Hsu YC. Sodium sulfate addition increases the bioresource of biologically active sulfated polysaccharides from Antrodia cinnamomea. Int J Biol Macromol 2024; 257:128699. [PMID: 38092106 DOI: 10.1016/j.ijbiomac.2023.128699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Fungal sulfated polysaccharides (SPS) have been used in the pharmaceutical industry. In this study, sodium sulfate was employed as an elicitor to induce stress on the mycelia of Antrodia cinnamomea for the biosynthesis of SPS with high sulfate content. Sodium sulfate treatments increased the yield of SPS to 4.46 % and increased the sulfate content to 6.8 mmol/g of SPS. SPS were extracted from A. cinnamomea cultured with 500 mM sodium sulfate; these SPSs are denoted as Na500. Na500 exhibited the highest sulfate content and dose-dependent inhibitory activity against LPS-induced production of macrophage interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin 1β (IL-1β). Mechanistically, Na500 hindered the phosphorylation of transforming growth factor-β receptor II (TGFRII), extracellular signal-regulated kinases (ERK), and protein kinase B (AKT) expression. A purified 7.79 kDa galactoglucan, Na500 F3, augmented the anti-inflammation activity by inhibiting LPS-induced TGFβ release. Additionally, Na500 F3 restrained the LPS-induced phosphorylation of p-38, ERK, AKT, and TGFRII in RAW264.7 cells. Na500 F3 impeded the proliferation of lung cancer H1975 cells by inhibiting the phosphorylation of focal adhesion kinase, ERK, and Slug. The anti-inflammation and anticancer properties of Antrodia SPS contribute to its health benefits, suggesting its utility in functional foods.
Collapse
Affiliation(s)
- Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, 252 Wu-Hsing St., Taipei 110, Taiwan; Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan.
| | - Meng-Hsin Lee
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan
| | - Yu-Chi Hsu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan
| |
Collapse
|
22
|
Xiang F, Liu Z, Hu H, Mitra P, Ma X, Zhu J, Shi A, Wang Q. Advances of blend films based on natural food soft matter: Multi-scale structural analysis. Int J Biol Macromol 2024; 258:128770. [PMID: 38104689 DOI: 10.1016/j.ijbiomac.2023.128770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The blend films made of food soft matter are of growing interest to the food packaging industries as a pro-environment packaging option. The blend films have become a novel pattern to replace traditional plastics gradually due to their characteristics of biodegradability, sustainability, and environmental friendliness. This review discussed the whole process of the manufacturing of food soft matter blend films from the raw material to the application due to multi-scale structural analysis. There are 3 stages and 12 critical analysis points of the entire process. The raw material, molecular self-assembly, film-forming mechanism and performance test of blend films are investigated. In addition, 11 kinds of blend films with different functional properties by casting are also preliminarily described. The industrialization progress of blend films can be extended or facilitated by analysis of the 12 critical analysis points and classification of the food soft matter blend films which has a great potential in protecting environment by developing sustainable packaging solutions.
Collapse
Affiliation(s)
- Fei Xiang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Pranabendu Mitra
- Department of Kinesiology, Health, Food, and Nutritional Sciences, University of Wisconsin-Stout, Menomonie, WI 54751, USA
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinjin Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
23
|
Feng L, Shi Y, Zou J, Zhang X, Zhai B, Guo D, Sun J, Wang M, Luan F. Recent advances in Platycodon grandiflorum polysaccharides: Preparation techniques, structural features, and bioactivities. Int J Biol Macromol 2024; 259:129047. [PMID: 38171434 DOI: 10.1016/j.ijbiomac.2023.129047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Platycodon grandiflorum, a globally recognized medicinal and edible plant, possesses significant nutritional value and pharmacological value. In traditional Chinese medicine, it has the effects of tonifying the spleen and replenishing the Qi, moistening the lung and relieving the cough, clearing the heat and detoxifying, and relieving the pain. Accumulating evidence has revealed that the polysaccharides from P. grandiflorum (PGPs) are one of the major and representative biologically active macromolecules and have diverse biological activities, such as immunomodulatory activity, anti-inflammatory activity, anti-tumor activity, regulation of the gut microbiota, anti-oxidant activity, anti-apoptosis activity, anti-angiogenesis activity, hypoglycemic activity, anti-microbial activity, and so on. Although the polysaccharides extracted from P. grandiflorum have been extensively studied for the extraction and purification methods, structural characteristics, and pharmacological activities, the knowledge of their structures and bioactivity relationship, toxicologic effects, and pharmacokinetic profile is limited. The main purpose of the present review is to provide comprehensively and systematically reorganized information on extraction and purification, structure characterizations, and biological functions as well as toxicities of PGPs to support their therapeutic potentials and sanitarian functions. New valuable insights for future research regarding PGPs were also proposed in the fields of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Lile Feng
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Mei Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
24
|
Song J, Rong L, Li J, Shen M, Yu Q, Chen Y, Kong J, Xie J. Effects of three different polysaccharides on the sol gel-behavior, rheological, and structural properties of tapioca starch. Int J Biol Macromol 2024; 254:128053. [PMID: 37963504 DOI: 10.1016/j.ijbiomac.2023.128053] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
The sol-gel behavior of tapioca starch (TS) plays a crucial role in the processing and quality control of flour-based products. However, natural tapioca starch has low gel strength and poor viscosity, which tremendously limits its application. To solve this problem, this study investigated the effects of κ-carrageenan (KC), konjac gum (KGM), and Mesona chinensis Benth polysaccharide (MCP) on the pasting behavior, rheological, and structural properties of tapioca starch. KC, KGM, and MCP significantly increased the viscosity of TS. With the exception of high-concentration KGM (0.5 %), all other blending systems showed decrease in setback. This may be attributed to the stronger effect of the high-concentration KC (0.5 %) and MCP (0.5 %) functional groups interacting with starch. KC, KGM, and MCP effectively improved the dynamic modulus (G' and G") of TS gel and were effective in increasing the gel strength and hardness of TS. The FT-IR analysis indicated that the short-range order of TS was mainly influenced by polysaccharides through non-covalent bonding interactions. Furthermore, it was confirmed that three polysaccharides could form dense structures by hydrogen bonding with TS. Similarly, more stable structure and pore size were observed in the microstructure diagram.
Collapse
Affiliation(s)
- Jiajun Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liyuan Rong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jinwang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jia Kong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
25
|
Cai Z, Guo Y, Ma A, Zhang H. NMR analysis of the side-group substituents in welan gum in comparison to gellan gum. Int J Biol Macromol 2024; 254:127847. [PMID: 37924910 DOI: 10.1016/j.ijbiomac.2023.127847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/02/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
The physicochemical properties and applications of polysaccharides are highly dependent on their chemical structures, including the monosaccharide composition, degree of substitution, and position of substituent groups in the backbone. The occurrence of side groups or side chains in the chain backbone of polysaccharides is often an essential factor influencing their conformational and physicochemical properties. Welan gum produced by the fermentation of Sphingomonas sp. ATCC 31555 microorganisms has been widely used in food, construction, and oil drilling fields. While understanding the physicochemical properties of welan gum solution has been highly developed, there is still little information about the determination strategy of the glycosyl side groups in welan gum. In this study, the NMR method was established to quantitatively determine the substituent groups in the chain backbone of welan gum. The delicate chemical structures of welan gum obtained at different fermentation conditions were clarified. The composition and content of side substituents were also identified by high-performance liquid chromatography to confirm the accuracy of NMR analysis. The quantitative determination of substituent groups in gellan gum based on NMR analysis was also elaborated for comparison. This work provides insights for profoundly understanding the structure-function relationship of welan gum.
Collapse
Affiliation(s)
- Zhixiang Cai
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yalong Guo
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aiqin Ma
- Department of Nutrition, Affiliated Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai 201499, China.
| | - Hongbin Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
26
|
Hamed YS, Ahsan HM, Hussain M, Ahmad I, Tian B, Wang J, Zou XG, Bu T, Ming C, Rayan AM, Yang K. Polysaccharides from Brassica rapa root: Extraction, purification, structural features, and biological activities. A review. Int J Biol Macromol 2024; 254:128023. [PMID: 37952795 DOI: 10.1016/j.ijbiomac.2023.128023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Brassica rapa (B. rapa) roots are attracting increased attention from nutritionists and health-conscious customers because of their remarkable performance in supplying necessary nutrients. Polysaccharides are major biologically active substances in B. rapa roots, which come in a variety of monosaccharides with different molar ratios and glycosidic bond types. Depending on the source, extraction, separation, and purification methods of B. rapa roots polysaccharides (BRP); different structural features, and pharmacological activities are elucidated. Polysaccharides from B. rapa roots possess a range of nutritional, biological, and health-enhancing characteristics, including anti-hypoxic, antifatigue, immunomodulatory, hypoglycemic, anti-tumor, and antioxidant activities. This paper reviewed extraction and purification methods, structural features, and biological activities as well as correlations between the structural and functional characteristics of polysaccharides from the B. rapa roots. Ultimately, this work will serve as useful reference for understanding the connections between polysaccharide structure and biological activity and developing novel BRP-based functional foods.
Collapse
Affiliation(s)
- Yahya S Hamed
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China; Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt.
| | - Hafiz Muhammad Ahsan
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China; Department of Human Nutrition, Faculty of Food Science and Nutrition, Bahahuddin Zakaria University, Multan, Pakistan
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Ishtiaq Ahmad
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Jian Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Xian-Guo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Tingting Bu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Cai Ming
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| |
Collapse
|
27
|
Wu Y, Chen H, Wang B, Xu J, Li J, Ying G, Chen K. Extraction of Ampelopsis japonica polysaccharides using p-toluenesulfonic acid assisted n-butanol three-phase partitioning: Physicochemical, rheological characterization and antioxidant activity. Int J Biol Macromol 2024; 254:127699. [PMID: 37913878 DOI: 10.1016/j.ijbiomac.2023.127699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Polysaccharides as the biopolymers are showing various structural and modulatory functions. Effective separation of carbohydrate structures is essential to understanding their function. In this study, we choose an efficient organic acid in combination with recyclable organic solvent three-phase partitioning technology for the simultaneous extraction of polysaccharides from Ampelopsis japonica (AJPs) to ensure the integrity of linear and branched polysaccharide. The monosaccharide composition, glycosidic linkage information, structural and physicochemical analyses and associations with antioxidant activities were extensively analyzed. Synergistic extraction was compared with the conventional hot water extraction method and the results showed that AJPs-HNP exhibited better elastic properties and excellent antioxidant activity. Correlation analysis confirmed that the antioxidant activity of AJPs was significantly correlated with relative molecular weight, uronic acid content and terminal glycoside linkage molar ratios. The collaborative processing has significantly improved the utilization potential of AJPs and provides a sound theoretical foundation for the effective extraction and separation of polysaccharides. Overall, this work provides systematic and comprehensive scientific information on the physicochemical, rheological and antioxidant properties of AJPs, revealing their potential as natural antioxidants in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yan Wu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haoying Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China.
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China
| | - Guangdong Ying
- Shandong Sun Holdings Group, No. 1 Youyi Road, Yanzhou District, Jining 272100, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China
| |
Collapse
|
28
|
Sun K, Li Z, Lian M, Li Q, Wang R, Gu Y, Lei P, He H, Xu H, Sha F, Sun L. Characterization of a novel exopolysaccharide from Acinetobacter rhizosphaerae with ability to enhance the salt stress resistance of rice seedlings. Int J Biol Macromol 2024; 256:128438. [PMID: 38042318 DOI: 10.1016/j.ijbiomac.2023.128438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
We here describe the isolation of a novel exopolysaccharide from Acinetobacter rhizosphaerae, named ArEPS. The structure of ArEPS was characterized by analysis of the monosaccharide composition, molecular weight, infrared spectrum, methylation, and nuclear magnetic resonance spectrum. ArEPS was found to be an acidic heteropolysaccharide composed of glucose, galactose, galacturonic acid, glucuronic acid, mannose, and glucosamine; the molecular weight was 1533 kDa. Structural analysis showed that the main-chain structure of ArEPS predominantly comprised 1,3,6-β-Glcp, 1,3,4-α-Galp, 1,2-β-Glcp, 1,4-β-GlcpA, 1,4-β-GalpA, and the side-chain structure comprised 1,6-β-Glcp, 1,3-β-Galp, 1-α-Glcp, 1-β-Galp, 1-α-Manp, 1,4,6-α-Glcp, 1,2,4-β-Glcp, 1,2,3-β-Glcp, and 1,3-β-GlcpN. ArEPS significantly enhanced the tolerance of rice seedlings to salt stress. Specifically, plant height, fresh weight, chlorophyll content, and the K+/Na+ ratio increased by 51 %, 63 %, 29 %, and 162 %, respectively, and the malondialdehyde content was reduced by 45 % after treatment with 100 mg/kg ArEPS compared to treatment with 100 mM NaCl. Finally, based on the quadratic regression between fresh weight and ArEPS addition, the optimal ArEPS addition level was estimated to be 135.12 mg/kg. These results indicate the prospects of ArEPS application in agriculture.
Collapse
Affiliation(s)
- Ke Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Suzhou Cornigs Polyols CO., LTD., Suzhou 215000, China
| | - Zhen Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Mengyu Lian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Quan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hongjie He
- Westa College, Southwest University, Chongqing 400715, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Feng Sha
- Suzhou Cornigs Polyols CO., LTD., Suzhou 215000, China; School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
29
|
Cheng L, Yang Q, Li C, Zheng J, Wang Y, Duan B. Preparation, structural characterization, bioactivities, and applications of Crataegus spp. polysaccharides: A review. Int J Biol Macromol 2023; 253:126671. [PMID: 37689285 DOI: 10.1016/j.ijbiomac.2023.126671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/16/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
Crataegus, is a genus within the Rosaceae family. It is recognized as a valuable plant with both medicinal and edible qualities, earning it the epithet of the "nutritious fruit" owing to its abundant bioactive compounds. Polysaccharides are carbohydrate polymers linked by glycosidic bonds, one of the crucial bioactive ingredients of Crataegus spp. Recently, Crataegus spp. polysaccharides (CPs) have garnered considerable attention due to their diverse range of bioactivities, including prebiotic, hypolipidemic, anticancer, antibacterial, antioxidant, and immunobiological properties. Herein, we provide a comprehensive overview of recent research on CPs. The analysis revealed that CPs exhibited a broad molecular weight distribution, ranging from 5.70 Da to 4.76 × 108 Da, and are composed of various monosaccharide constituents such as mannose, rhamnose, and arabinose. Structure-activity relationships demonstrated that the biological function of CPs is closely associated with their molecular weight, galacturonic acid content, and chemical modifications. Additionally, CPs have excellent bioavailability, biocompatibility, and biodegradability, which make them promising candidates for applications in the food, medicine, and cosmetic industries. The article also scrutinized the potential development and future research directions of CPs. Overall, this article provides comprehensive knowledge and underpinnings of CPs for future research and development as therapeutic agents and multifunctional food additives.
Collapse
Affiliation(s)
- Lei Cheng
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Qiuli Yang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Chaohai Li
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | | | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
30
|
Yang J, Dong S, Zhou X, Zhang W, Gu Y, Zheng L, Yang G, Wang J, Zhang Y. Polysaccharides from waste Zingiber mioga leaves: Ultrasonic-microwave-assisted extraction, characterization, antioxidant and anticoagulant potentials. ULTRASONICS SONOCHEMISTRY 2023; 101:106718. [PMID: 38091742 PMCID: PMC10733691 DOI: 10.1016/j.ultsonch.2023.106718] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
Zingiber mioga is a highly economic crop that is used to produce vegetables, spices and herbal pharmaceuticals. Its edible flower bud contributes most to the economic value, but the big leaves were discarded as agricultural waste, which urgently needs to be exploited. In this work, polysaccharides from waste Z. mioga leaves (PWZMLs) were extracted using ultrasonic-microwave-assisted extraction (UMAE). After purification and characterization, the antioxidation and anticoagulation of PWZMLs were evaluated to appraise the potential in cardiovascular protection. Under the liquid-solid ratio of 26: 1 mL/g, after ultrasonication at 495 W for 10 min, followed by microwaving at 490 W for 5 min, the yield of PWZMLs achieved to 6.22 ± 0.14 %, notably higher (P < 0.01) than other methods, and ultrasound contributed more to the yield than microwave. Various analyses confirmed that PWZMLs were negatively charged polysaccharides with galacturonic acid the dominant uronic acid. PWZMLs exerted excellent antioxidant capacity, especially for scavenging 1, 1-diphenyl-2-picrylhydrazyl radical. PWZMLs also elicited promising anticoagulant property, particularly for prolonging activated partial thromboplastin time and lowering fibrinogen, which were almost equivalent to heparin at the same concentration. PWZMLs contained two polysaccharide fractions (199.53 and 275.42 kDa) that could synergistically contribute to the pronounced antioxidant and anticoagulant activities. The PWZMLs extracted with optimized UMAE have great potential in cardiovascular protection.
Collapse
Affiliation(s)
- Jingchun Yang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Shuaiyi Dong
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Xu Zhou
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Wen Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Yunzhu Gu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Lixue Zheng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Guihong Yang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Jing Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China.
| |
Collapse
|
31
|
Cui T, Lan Y, Yu F, Lin S, Qiu J. Plumbagin alleviates temporomandibular joint osteoarthritis progression by inhibiting chondrocyte ferroptosis via the MAPK signaling pathways. Aging (Albany NY) 2023; 15:13452-13470. [PMID: 38032278 DOI: 10.18632/aging.205253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
AIMS The acceleration of osteoarthritis (OA) development by chondrocytes undergoing ferroptosis has been observed. Plumbagin (PLB), known for its potent antioxidant and anti-inflammatory properties, has demonstrated promising potential in the treatment of OA. However, it remains unclear whether PLB can impede the progression of temporomandibular joint osteoarthritis (TMJOA) through the regulation of ferroptosis. The study aims to investigate the impact of ferroptosis on TMJOA and assess the ability of PLB to modulate the inhibitory effects of ferroptosis on TMJOA. MATERIALS AND METHODS The study utilized an in vivo rat model of unilateral anterior crossbite (UAC)-induced TMJOA and an in vitro study of chondrocytes exposed to H2O2 to create an OA microenvironment. Various experiments including cell viability assessment, quantitative RT-PCR, western blot analysis, histology, and immunofluorescence were conducted to examine the impact of ferroptosis on TMJOA and evaluate the potential of PLB to mitigate the inhibitory effects of ferroptosis on TMJOA. Additionally, RNA-seq and bioinformatics analysis were performed to investigate the underlying mechanism by which PLB regulates ferroptosis in TMJOA. RESULTS Fer-1 demonstrated its potential in mitigating the advancement of TMJOA through its inhibitory effects on ferroptosis and matrix degradation in chondrocytes, thereby substantiating the role of ferroptosis in the pathogenesis of TMJOA. Furthermore, the observed protective impact of PLB on cartilage implied that PLB can modulate the inhibition of ferroptosis in TMJOA by regulating the MAPK signaling pathways. CONCLUSIONS PLB alleviates TMJOA progression by suppressing chondrocyte ferroptosis via MAPK pathways, indicating PLB to be a potential therapeutic strategy for TMJOA.
Collapse
Affiliation(s)
- Tiehan Cui
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yun Lan
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fei Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Suai Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
32
|
Wu W, Zhao Z, Zhao Z, Zhang D, Zhang Q, Zhang J, Fang Z, Bai Y, Guo X. Structure, Health Benefits, Mechanisms, and Gut Microbiota of Dendrobium officinale Polysaccharides: A Review. Nutrients 2023; 15:4901. [PMID: 38068759 PMCID: PMC10708504 DOI: 10.3390/nu15234901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Dendrobium officinale polysaccharides (DOPs) are important active polysaccharides found in Dendrobium officinale, which is commonly used as a conventional food or herbal medicine and is well known in China. DOPs can influence the composition of the gut microbiota and the degradation capacity of these symbiotic bacteria, which in turn may determine the efficacy of dietary interventions. However, the necessary analysis of the relationship between DOPs and the gut microbiota is lacking. In this review, we summarize the extraction, structure, health benefits, and related mechanisms of DOPs, construct the DOPs-host axis, and propose that DOPs are potential prebiotics, mainly composed of 1,4-β-D-mannose, 1,4-β-D-glucose, and O-acetate groups, which induce an increase in the abundance of gut microbiota such as Lactobacillus, Bifidobacterium, Akkermansia, Bacteroides, and Prevotella. In addition, we found that when exposed to DOPs with different structural properties, the gut microbiota may exhibit different diversity and composition and provide health benefits, such as metabolism regulations, inflammation modulation, immunity moderation, and cancer intervention. This may contribute to facilitating the development of functional foods and health products to improve human health.
Collapse
Affiliation(s)
- Weijie Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Ziqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Zhaoer Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Dandan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Qianyi Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Jiayu Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Zhengyi Fang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Yiling Bai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| | - Xiaohui Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (W.W.); (Z.Z.); (Z.Z.); (D.Z.); (Q.Z.); (Y.B.)
| |
Collapse
|
33
|
Yameen M, Asghar F, Adeel S, Haider MZ, Özomay M, Aftab M, Mia R. Enhancing wool dyeing with clove bud ( Syzygium aromaticum) based natural dye via microwave treatment using a central composite design. Sci Prog 2023; 106:368504231215593. [PMID: 37993993 PMCID: PMC10666708 DOI: 10.1177/00368504231215593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
This research investigates the viability of using Syzygium aromaticum (clove) as a natural dye for wool yarn through the application of microwave treatment and optimization using central composite design (CCD). As concerns grow over the environmental impact of synthetic dyes and their detrimental disposal in water bodies, the search for eco-friendly alternatives becomes imperative to revolutionize the textile industry. Microwave-assisted extraction of the colorant from clove powder is explored as an efficient and sustainable method, minimizing solvent usage and energy consumption compared to conventional techniques. To enhance colorfastness properties while eliminating the need for toxic mordants, green alternatives such as Al, Fe, and tannic acid, combined with plant phenolics from red sumac, pomegranate rind, and weld, are employed. According to the analysis of CCD, the higher color strength value 18.1653 was achieved using pH = 3, time = 50 min, temperature = 70 °C, and salt concentration = 1.5 g/100 mL. The optimized dyeing conditions also showed a maximum level of colorfastness properties of 5 for light, 5 for wash, 5 for dry rubbing, and 4 for wet rubbing. The findings from Fourier-transform infrared spectroscopy and scanning electron microscopy analyses provide valuable insights into the chemical and morphological changes induced by microwave treatment and dyeing with clove extract. The results affirm the presence of eugenol as a potential active molecule responsible for the captivating color of clove flower buds, validating its suitability as a natural dye source for wool. This study highlights the promising potential of microwave-assisted extraction and plant-based biomolecules as innovative and environmentally friendly approaches in natural dyeing, paving the way for a more sustainable future in the textile industry. Embracing these eco-friendly practices allows the textile sector to reduce its ecological footprint and contribute to a cleaner and greener environment. Further research and implementation of these techniques can foster a more harmonious coexistence with nature, ensuring a healthier ecosystem for all.
Collapse
Affiliation(s)
- Muhammad Yameen
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fariha Asghar
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahid Adeel
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Meral Özomay
- Department of Textile Engineering, Marmara University, Istanbul, Turkey
| | - Muhammad Aftab
- Department of Statistics, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rony Mia
- Department of Textile Engineering, National Institute of Textile Engineering and Research, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
34
|
Wang G, Xie L, Huang Z, Xie J. Recent advances in polysaccharide biomodification by microbial fermentation: production, properties, bioactivities, and mechanisms. Crit Rev Food Sci Nutr 2023:1-25. [PMID: 37740706 DOI: 10.1080/10408398.2023.2259461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Polysaccharides are natural chemical compounds that are extensively employed in the food and pharmaceutical industries. They exhibit a wide range of physical and biological properties. These properties are commonly improved by using chemical and physical methods. However, with the advancement of biotechnology and increased demand for green, clean, and safe products, polysaccharide modification via microbial fermentation has gained importance in improving their physicochemical and biological activities. The physicochemical and structural characteristics, biological activity, and modification mechanisms of microbially fermented polysaccharides were reviewed and summarized in this study. Polysaccharide modifications were categorized and discussed in terms of strains and fermentation techniques. The effects of microbial fermentation on the physicochemical characteristics of polysaccharides were highlighted. The impact of modification of polysaccharides on their antioxidant, immune, hypoglycemic, and other activities, as well as probiotic digestive enhancement, were also discussed. Finally, we investigated a potential enzyme-based process for polysaccharide modification via microbial fermentation. Modification of polysaccharides via microbial fermentation has significant value and application potential.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
35
|
Raza H, Xu H, Zhou Q, He J, Zhu B, Li S, Wang M. A review of green methods used in starch-polyphenol interactions: physicochemical and digestion aspects. Food Funct 2023; 14:8071-8100. [PMID: 37647014 DOI: 10.1039/d3fo01729j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The interactions of starch with lipids, proteins, and other major food components during food processing are inevitable. These interactions could result in the formation of V-type or non-V-type complexes of starch. The starch-lipid complexes have been intensively studied for over five decades, however, the complexes of starch and polyphenols are relatively less studied and are the subject of recent interest. The interactions of starch with polyphenols can affect the physicochemical properties and its digestibility. The literature has highlighted several green methods such as ultrasound, microwave, high pressure, extrusion, ball-milling, cold plasma etc., to assist interactions of starch with polyphenols. However, comprehensive information on green methods to induce starch-polyphenol interactions is still scarce. Therefore, in light of the importance and potential of starch-polyphenol complexes in developing functional foods with low digestion, this review has summarized the novel green methods employed in interactions of starch with flavonoids, phenolic acids and tannins. It has been speculated that flavonoids, phenolic acids, and tannins, among other types of polyphenols, may have anti-digestive activities and are also revealed for their interaction with starch to form either an inclusion or non-inclusion complex. Further information on the effects of these interactions on physicochemical parameters to understand the chemistry and structure of the complexes is also provided.
Collapse
Affiliation(s)
- Husnain Raza
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, DK, 1958, Denmark
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Jiayi He
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Siqian Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
36
|
Bai C, Chen R, Zhang Y, Bai H, Tian L, Sun H, Li D, Wu W. Comparison in structural, physicochemical and functional properties of sweet potato stems and leaves polysaccharide conjugates from different technologies. Int J Biol Macromol 2023; 247:125730. [PMID: 37422248 DOI: 10.1016/j.ijbiomac.2023.125730] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
In order to better understand the influences of extraction techniques on the yield, characteristics, and bioactivities of polysaccharide conjugates, hot reflux extraction (HRE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), complex enzymolysis extraction (CEE), ultra-high pressure extraction (UPE), ultrasonic complex enzymes extraction (UEE) were used to extract sweet potato stems leaves polysaccharide conjugates (SPSPCs), and their physicochemical characteristics, functional properties, antioxidant and hypoglycemic activities were compared. Results showed that compared with HRE conjugate (HR-SPSPC), the yield, content of uronic acid (UAC), total phenol (TPC), total flavonoid (TFC) and sulfate group (SGC), water solubility (WS), percentage of glucuronic acid (GlcA), galacuronic acid (GalA) and galactose (Gal), antioxidant and hypoglycemia activities of UEE polysaccharide conjugates (UE-SPSPC) significant increased, while its molecular weight (Mw), degree of esterification (DE), content of protein (PC) and percentage of glucose (Glc) declined, but monosaccharides and amino acid types, and glycosyl linkages were not much different. Indeed, UE-SPSPC possessed the highest antioxidant activities and hypolipidemic activities among six SPSPCs, which might be due to the high UAC, TPC, TFC, SGC, GlcA, GalA and WS, low Mw, DE and Glc of UE-SPSPC. The results reveal that UEE is an effective extraction and modification technology of polysaccharide conjugates.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Yu Zhang
- CHINA FAW GROUP CO., LTD, General Institute of FAW Vehicle benchmarking Center, Changchun 130011, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Dongxue Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Wenjing Wu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
37
|
Xu Y, Sun L, Zhuang Y, Gu Y, Cheng G, Fan X, Ding Y, Liu H. Protein-Stabilized Emulsion Gels with Improved Emulsifying and Gelling Properties for the Delivery of Bioactive Ingredients: A Review. Foods 2023; 12:2703. [PMID: 37509795 PMCID: PMC10378947 DOI: 10.3390/foods12142703] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In today's food industry, the potential of bioactive compounds in preventing many chronic diseases has garnered significant attention. Many delivery systems have been developed to encapsulate these unstable bioactive compounds. Emulsion gels, as colloidal soft-solid materials, with their unique three-dimensional network structure and strong mechanical properties, are believed to provide excellent protection for bioactive substances. In the context of constructing carriers for bioactive materials, proteins are frequently employed as emulsifiers or gelling agents in emulsions or protein gels. However, in emulsion gels, when protein is used as an emulsifier to stabilize the oil/water interface, the gelling properties of proteins can also have a great influence on the functionality of the emulsion gels. Therefore, this paper aims to focus on the role of proteins' emulsifying and gelling properties in emulsion gels, providing a comprehensive review of the formation and modification of protein-based emulsion gels to build high-quality emulsion gel systems, thereby improving the stability and bioavailability of embedded bioactive substances.
Collapse
Affiliation(s)
- Yuan Xu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
38
|
Nesic A, De Bonis MV, Dal Poggetto G, Ruocco G, Santagata G. Microwave Assisted Extraction of Raw Alginate as a Sustainable and Cost-Effective Method to Treat Beach-Accumulated Sargassum Algae. Polymers (Basel) 2023; 15:2979. [PMID: 37514369 PMCID: PMC10383502 DOI: 10.3390/polym15142979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
This paper highlights the potential of Sargassum algae, recovered from raw beach seaweed wastes, as a valid source of valuable sodium alginate. Alginate is a biodegradable, highly attractive polysaccharide widely used in food, pharmaceuticals, and biomedicine applications. The aim of this work is to employ a new eco-sustainable and cost-effective extractive method to obtain alginate as a raw material from pollutant organic Sargassum seaweeds. Algae were exposed to microwave pre-treatment under static and dynamic conditions, and three different extractive protocols were followed: (a) conventional, (b) hot water and (c) alkaline method. All samples were characterized by GPC, SEM, FTIR/ATR and TGA. It was found that alginate's best performances were obtained by the microwave dynamic pre-treatment method followed by alkaline extractive protocol. Nevertheless, the microwave pre-treatment of algae allowed the easiest breaking of their cell walls and the following fast releasing of sodium alginate. The authors demonstrated that microwave-enhanced extraction is an effective way to obtain sodium alginate from Sargassum-stranded seaweed waste materials in a cost-effective and eco-sustainable approach. They also assessed their applications as mulching films for agricultural applications.
Collapse
Affiliation(s)
- Aleksandra Nesic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11 000 Belgrade, Serbia
| | - Maria Valeria De Bonis
- College of Engineering, Campus Macchia Romana, University of Basilicata, 85100 Potenza, Italy
| | - Giovanni Dal Poggetto
- National Council of Research, Institute for Polymers, Composites and Biomaterials, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Gianpaolo Ruocco
- College of Engineering, Campus Macchia Romana, University of Basilicata, 85100 Potenza, Italy
| | - Gabriella Santagata
- National Council of Research, Institute for Polymers, Composites and Biomaterials, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
39
|
Peng W, Guo X, Xu X, Zou D, Zou H, Yang X. Advances in Polysaccharide Production Based on the Co-Culture of Microbes. Polymers (Basel) 2023; 15:2847. [PMID: 37447493 DOI: 10.3390/polym15132847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Microbial polysaccharides are natural carbohydrates that can confer adhesion capacity to cells and protect them from harsh environments. Due to their various physiological activities, these macromolecules are widely used in food, medicine, environmental, cosmetic, and textile applications. Microbial co-culture is an important strategy that is used to increase the production of microbial polysaccharides or produce new polysaccharides (structural alterations). This is achieved by exploiting the symbiotic/antagonistic/chemo-sensitive interactions between microbes and stimulating the expression of relevant silent genes. In this article, we review the performance of polysaccharides produced using microbial co-culture in terms of yield, antioxidant activity, and antibacterial, antitumor, and anti-inflammatory properties, in addition to the advantages and application prospects of co-culture. Moreover, the potential for microbial polysaccharides to be used in various applications is discussed.
Collapse
Affiliation(s)
- Wanrong Peng
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xueying Guo
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xinyi Xu
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Dan Zou
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Hang Zou
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| |
Collapse
|
40
|
Cui T, Lan Y, Lu Y, Yu F, Lin S, Fu Y, Qiu J, Niu G. Isoorientin ameliorates H 2O 2-induced apoptosis and oxidative stress in chondrocytes by regulating MAPK and PI3K/Akt pathways. Aging (Albany NY) 2023; 15:204768. [PMID: 37277114 PMCID: PMC10292868 DOI: 10.18632/aging.204768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 06/07/2023]
Abstract
Osteoarthritis (OA) is a chronic and complicated degenerative disease for which there is currently no effective treatment. Isoorientin (ISO) is a natural plant extract that has antioxidant activity and could be used to treat OA. However, due to a lack of research, it has not been widely used. In this study, we investigated the protective effects and molecular mechanisms of ISO on H2O2-induced chondrocytes, a widely used cell model for OA. Based on RNA-seq and bioinformatics, we discovered that ISO significantly increased the activity of chondrocytes induced by H2O2, which was associated with apoptosis and oxidative stress. Furthermore, the combination of ISO and H2O2 significantly reduced apoptosis and restored mitochondrial membrane potential (MMP), which may be achieved by inhibiting apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, ISO increased superoxide dismutase (SOD), heme oxygenase 1 (HO-1) and quinone oxidoreductase 1 (NQO-1) and reduced malondialdehyde (MDA) levels. Finally, ISO inhibited H2O2-induced intracellular reactive oxygen species (ROS) in chondrocytes by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) and phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling pathways. This study establishes a theoretical framework for ISO's ability to inhibit OA in vitro models.
Collapse
Affiliation(s)
- Tiehan Cui
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yun Lan
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| | - Yuying Lu
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| | - Fei Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Suai Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yizhe Fu
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Guangliang Niu
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| |
Collapse
|
41
|
Wang J, Dai G, Shang M, Wang Y, Xia C, Duan B, Xu L. Extraction, structural-activity relationships, bioactivities, and application prospects of Pueraria lobata polysaccharides as ingredients for functional products: A review. Int J Biol Macromol 2023:125210. [PMID: 37271269 DOI: 10.1016/j.ijbiomac.2023.125210] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Pueraria lobata (Willd.) Ohwi is an important resource with dual functions in medicine and food since ancient times. Polysaccharides are the main bioactive component of P. lobata and have various bioactivities, such as antidiabetic, antioxidant, immunological activities, etc. Due to the distinctive bioactivity of P. lobata polysaccharides (PLPs), the research on PLPs is booming. Although a series of PLPs have been isolated and characterized, the chemical structure and mechanism are unclear and need further study. Here, we reviewed recent progress in isolation, identification, pharmacological properties, and possible therapeutic mechanisms of PLPs to update awareness of these value-added natural polysaccharides. Besides, the structure-activity relationships, application status, and toxic effects of PLPs are highlighted and discussed to afford a deeper understanding of PLPs. This article may provide theoretical insights and technical guidance for developing PLPs as novel functional foods.
Collapse
Affiliation(s)
- Jiale Wang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Guona Dai
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Mingyue Shang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Yaping Wang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Conglong Xia
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Li Xu
- College of Basic Medicine, Dali University, Dali 671000, China.
| |
Collapse
|
42
|
Degradation of polymeric polyproanthocyanidins from black chokeberry by microwave-assisted nucleophilic technique of sulfite/catechin: Reaction kinetics, antioxidation and structural analysis. Food Chem 2023; 408:135220. [PMID: 36535185 DOI: 10.1016/j.foodchem.2022.135220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Microwave was employed to enhance the degradation of polymeric proanthocyanidins from black chokeberry using the nucleophilic technique of sulfite/catechin. Based on the degradation effect and kinetics, it was found that increasing the microwave time, microwave power, microwave temperature, sulfite concentration, and mass ratio of raw material to catechins was favourable for the degradation reaction. The degradation kinetics conformed to a random first-order degradation model. The antioxidant activity of the degraded products was analysed using DPPH and O2- assay, which suggested that the scavenging effect of the products was improved. FT-IR and 1H NMR analyses showed that the main functional groups were not destroyed. Using MALDI-TOF/MS to study the components of the degradation products, it was found that the molecular weight distribution became narrower, and the compositions were more single. Polyproanthocyanidins were reduced to oligomers. This study suggested that microwave-assisted nucleophilic techniques could produce oligomeric proanthocyanidins with remarkably improved functionalities.
Collapse
|
43
|
Niu H, Dou Z, Hou K, Wang W, Chen X, Chen X, Chen H, Fu X. A critical review of RG-I pectin: sources, extraction methods, structure, and applications. Crit Rev Food Sci Nutr 2023; 64:8911-8931. [PMID: 37114929 DOI: 10.1080/10408398.2023.2204509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In recent years, RG-I pectin isolated by low-temperature alkaline extraction methods has attracted the attention of a large number of researchers due to its huge health benefits. However, studies on other applications of RG-I pectin are still lacking. In this study, we summarized the sources (e.g. potato pulp, sugar beet pulp, okra, apple pomace, citrus peel, pumpkin, grapefruit, ginseng, etc.), extraction methods, fine structure and applications of RG-I pectin in physiological activities (e.g. anti-cancer, anti-inflammatory, anti-obesity, anti-oxidation, immune regulation, prebiotics, etc.), emulsions, gels, etc. These neutral sugar side chains not only endow RG-I pectin with various physiological activities but the entanglement and cross-linking of these side chains also endow RG-I pectin with excellent emulsifying and gelling properties. We believe that this review can not only provide a comprehensive reading for new workers interested in RG-I pectin, but also provide a valuable reference for future research directions of RG-I pectin.
Collapse
Affiliation(s)
- Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Xianwei Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| |
Collapse
|
44
|
Lu X. Changes in the structure of polysaccharides under different extraction methods. EFOOD 2023. [DOI: 10.1002/efd2.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
45
|
Jie Z, Liu C, Xia D, Zhang G. An atmospheric microwave plasma-based distributed system for medical waste treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51314-51326. [PMID: 36809622 PMCID: PMC9942016 DOI: 10.1007/s11356-023-25793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/03/2023] [Indexed: 04/16/2023]
Abstract
Inadequate handling of infectious medical waste may promote the spread of the virus through secondary transmission during the transfer process. Microwave plasma, an ease-of-use, device-compact, and pollution-free technology, enables the on-site disposal of medical waste, thereby preventing secondary transmission. We developed atmospheric-pressure air-based microwave plasma torches with lengths exceeding 30 cm to rapidly treat various medical wastes in situ with nonhazardous exhaust gas. The gas compositions and temperatures throughout the medical waste treatment process were monitored by gas analyzers and thermocouples in real time. The main organic elements in medical waste and their residues were analyzed by an organic elemental analyzer. The results showed that (i) the weight reduction ratio of medical waste achieved a maximum value of 94%; (ii) a water-waste ratio of 30% was beneficial for enhancing the microwave plasma treatment effect for medical wastes; and (iii) substantial treatment effectiveness was achievable under a high feeding temperature (≥ 600 °C) and a high gas flow rate (≥ 40 L/min). Based on these results, we built a miniaturized and distributed pilot prototype for microwave plasma torch-based on-site medical waste treatment. This innovation could fill the gap in the field of small-scale medical waste treatment facilities and alleviate the existing issue of handling medical waste on-site.
Collapse
Affiliation(s)
- Ziyao Jie
- Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Cheng Liu
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China
| | - Daolu Xia
- Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
- Suqian Development and Reform Commission, Suqian, 223800, China
| | - Guixin Zhang
- Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
46
|
Tang W, Lin X, Walayat N, Liu J, Zhao P. Dietary fiber modification: structure, physicochemical properties, bioactivities, and application-a review. Crit Rev Food Sci Nutr 2023; 64:7895-7915. [PMID: 36995253 DOI: 10.1080/10408398.2023.2193651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
There is increasing attention on the modification of dietary fiber (DF), since its effective improvement on properties and functions of DF. Modification of DF can change their structure and functions to enhance their bioactivities, and endow them with huge application potential in the field of food and nutrition. Here, we classified and explained the different modification methods of DF, especially dietary polysaccharides. Different modification methods exert variable effects on the chemical structure of DF such as molecular weight, monosaccharide composition, functional groups, chain structure, and conformation. Moreover, we have discussed the change in physicochemical properties and biological activities of DF, resulting from alterations in the chemical structure of DF, along with a few applications of modified DF. Finally, we have summarized the modified effects of DF. This review will provide a foundation for further studies on DF modification and promote the future application of DF in food products.
Collapse
Affiliation(s)
- Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xinyi Lin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Peicheng Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
47
|
Whey Protein Isolate- Mesona chinensis Polysaccharide Conjugate: Characterization and Its Applications in O/W Emulsions. Foods 2023; 12:foods12051068. [PMID: 36900587 PMCID: PMC10000475 DOI: 10.3390/foods12051068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Mesona chinensis polysaccharide (MCP), a common thickener, stabilizer and gelling agent in food and pharmaceuticals, also has antioxidant, immunomodulatory and hypoglycemic properties. Whey protein isolate (WPI)-MCP conjugate was prepared and used as a stabilizer for O/W emulsion in this study. FT-IR and surface hydrophobicity results showed there could exist interactions between -COO- in MCP and -NH3+ in WPI, and hydrogen bonding may be involved in the covalent binding process. The red-shifted peaks in the FT-IR spectra suggested the formation of WPI-MCP conjugate, and MCP may be bound to the hydrophobic area of WPI with decreasing surface hydrophobicity. According to chemical bond measurement, hydrophobic interaction, hydrogen bond and disulfide bond played the main role in the formation process of WPI-MCP conjugate. According to morphological analysis, the O/W emulsion formed by WPI-MCP had a larger size than the emulsion formed by WPI. The conjugation of MCP with WPI improved the apparent viscosity and gel structure of emulsions, which was concentration-dependent. The oxidative stability of the WPI-MCP emulsion was higher than that of the WPI emulsion. However, the protection effect of WPI-MCP emulsion on β-carotene still needs to be further improved.
Collapse
|
48
|
Ma R, Cao T, An H, Yu S, Ji H, Liu A. Extraction, purification, structure, and antioxidant activity of polysaccharide from Rhodiola rosea. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
49
|
Jie Z, Liu C, Xia D, Zhang G. Microwave plasma torches for solid waste treatment and vitrification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32827-32838. [PMID: 36472733 DOI: 10.1007/s11356-022-24523-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Conventional thermal plasma technology used in the treatment of solid waste has a high demand for power and a high rate of heat loss during solid waste treatment. We developed a novel approach for treating and vitrifying solid waste with a low-power microwave plasma torch (MPT). Based on theoretical thermodynamic equilibrium calculations, we studied the melting temperature of the residual ash and achieved vitrification of the residual ash with an MPT by adding specified ratios of discarded glass scraps. Thermocouples and a gas analyzer were used to characterize the temperature variations and gas concentrations in the plasma treatment chambers, respectively. An organic elemental analyzer and X-ray fluorescence (XRF) analyses were used to determine the chemical proportions of the solid waste residues. The morphologies of the residues and vitreous material were analyzed using scanning electron microscopy (SEM). The results showed that the microwave plasma treatment process converted 96 wt.% of the solid wastes into nonpolluting gases, leaving a residue of pure carbon and inorganic powder. Through theoretical calculations and experiments, atmospheric MPTs with power levels less than 10 kW were identified as realistic means for treating and vitrifying solid wastes.
Collapse
Affiliation(s)
- Ziyao Jie
- Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Cheng Liu
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China
| | - Daolu Xia
- Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
- Suqian Development and Reform Commission, Suqian, 223800, China
| | - Guixin Zhang
- Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
50
|
Extraction, Structural Characterization, Biological Functions, and Application of Rice Bran Polysaccharides: A Review. Foods 2023; 12:foods12030639. [PMID: 36766168 PMCID: PMC9914776 DOI: 10.3390/foods12030639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Rice bran is a "treasure house of natural nutrition". Even so, utilization of rice bran is often ignored, and this has resulted in the wastage of nutrients. Polysaccharides are one of the active substances in rice bran that have gained widespread attention for their antioxidant, antitumor, immune-enhancing, antibacterial, and hypoglycemic properties. This review summarizes the extraction methods, structural characterization, bioactivity, and application of rice bran polysaccharides that have been developed and studied in recent years, laying a foundation for its development into foods and medicines. In addition, we also discuss the prospects for future research on rice bran polysaccharides.
Collapse
|