1
|
Berrissou C, Cognat V, Koechler S, Bergdoll M, Duchêne AM, Drouard L. Extensive import of nucleus-encoded tRNAs into chloroplasts of the photosynthetic lycophyte, Selaginella kraussiana. Proc Natl Acad Sci U S A 2024; 121:e2412221121. [PMID: 39503889 PMCID: PMC11573648 DOI: 10.1073/pnas.2412221121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024] Open
Abstract
Over the course of evolution, land plant mitochondrial genomes have lost many transfer RNA (tRNA) genes and the import of nucleus-encoded tRNAs is essential for mitochondrial protein synthesis. By contrast, plastidial genomes of photosynthetic land plants generally possess a complete set of tRNA genes and the existence of plastidial tRNA import remains a long-standing question. The early vascular plants of the Selaginella genus show an extensive loss of plastidial tRNA genes while retaining photosynthetic capacity, and represent an ideal model for answering this question. Using purification, northern blot hybridization, and high-throughput tRNA sequencing, a global analysis of total and plastidial tRNA populations was undertaken in Selaginella kraussiana. We confirmed the expression of all plastidial tRNA genes and, conversely, observed that nucleus-encoded tRNAs corresponding to these plastidial tRNAs were generally excluded from the chloroplasts. We then demonstrated a selective and differential plastidial import of around forty nucleus-encoded tRNA species, likely compensating for the insufficient coding capacity of plastidial-encoded tRNAs. In-depth analysis revealed differential import of tRNA isodecoders, leading to the identification of specific situations. This includes the expression and import of nucleus-encoded tRNAs expressed from plastidial or bacterial-like genes inserted into the nuclear genome. Overall, our results confirm the existence of molecular processes that enable tRNAs to be selectively imported not only into mitochondria, as previously described, but also into chloroplasts, when necessary.
Collapse
Affiliation(s)
- Christina Berrissou
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| | - Valérie Cognat
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| | - Sandrine Koechler
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| | - Marc Bergdoll
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| | - Anne-Marie Duchêne
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France
| |
Collapse
|
2
|
Li Z, Ran Z, Xiao X, Yan C, Xu J, Tang M, An M. Comparative analysis of the whole mitochondrial genomes of four species in sect. Chrysantha (Camellia L.), endemic taxa in China. BMC PLANT BIOLOGY 2024; 24:955. [PMID: 39395971 PMCID: PMC11475203 DOI: 10.1186/s12870-024-05673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND The sect. Chrysantha Chang of plants with yellow flowers of Camellia species as the "Queen of the Tea Family", most of these species are narrowly distributed endemics of China and are currently listed Grde-II in National Key Protected Wild Plant of China. They are commercially important plants with horticultural medicinal and scientific research value. However, the study of the sect. Chrysantha species genetics are still in its infancy, to date, the mitochondrial genome in sect. Chrysantha has been still unexplored. RESULTS In this study, we provide a comprehensive assembly and annotation of the mitochondrial genomes for four species within the sect. Chrysantha. The results showed that the mitochondrial genomes were composed of closed-loop DNA molecules with sizes ranging from 850,836 bp (C. nitidissima) to 1,098,121 bp (C. tianeensis) with GC content of 45.71-45.78% and contained 48-58 genes, including 28-37 protein-coding genes, 17-20 tRNA genes and 2 rRNA genes. We also examined codon usage, sequence repeats, RNA editing and selective pressure in the four species. Then, we performed a comprehensive comparison of their basic structures, GC contents, codon preferences, repetitive sequences, RNA editing sites, Ka/Ks ratios, haplotypes, and RNA editing sites. The results showed that these plants differ little in gene type and number. C. nitidissima has the greatest variety of genes, while C. tianeensis has the greatest loss of genes. The Ka/Ks values of the atp6 gene in all four plants were greater than 1, indicating positive selection. And the codons ending in A and T were highly used. In addition, the RNA editing sites differed greatly in number, type, location, and efficiency. Twelve, six, five, and twelve horizontal gene transfer (HGT) fragments were found in C. tianeensis, Camellia huana, Camellia liberofilamenta, and C. nitidissima, respectively. The phylogenetic tree clusters the four species of sect. Chrysantha plants into one group, and C. huana and C. liberofilamenta have closer affinities. CONCLUSIONS In this study, the mitochondrial genomes of four sect. Chrysantha plants were assembled and annotated, and these results contribute to the development of new genetic markers, DNA barcode databases, genetic improvement and breeding, and provide important references for scientific research, population genetics, and kinship identification of sect. Chrysantha plants.
Collapse
Affiliation(s)
- Zhi Li
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zhaohui Ran
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Xu Xiao
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Chao Yan
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Jian Xu
- Guizhou Botanical Garden, Guiyang, 550000, China
| | - Ming Tang
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang, 330045, China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Mingtai An
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Zhu L, Diao S, Li T, Guo J. Deciphering the multi- partite mitochondrial genome of Crataegus pinnatifida: insights into the evolution and genetics of cultivated Hawthorn. BMC PLANT BIOLOGY 2024; 24:929. [PMID: 39370506 PMCID: PMC11457364 DOI: 10.1186/s12870-024-05645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Flowering plant (angiosperm) mitochondrial genomes are remarkably dynamic in their structures. We present the complete mitochondrial genome of hawthorn (Crataegus pinnatifida Bunge), a shrub that bears fruit and is celebrated for its extensive medicinal history. We successfully assembled the hawthorn mitogenome utilizing the PacBio long-read sequencing technique, which yielded 799,862 reads, and the Illumina novaseq6000 sequencing platform, which producing 6.6 million raw paired reads. The C. pinnatifida mitochondria sequences encompassed a total length of 440,295 bp with a GC content of 45.42%. The genome annotates 54 genes, including 34 that encode proteins, 17 that encode tRNA, and three genes for rRNA. A fascinating interplay was observed between the chloroplast and mitochondrial genomes, which share 17 homologous sequences sequences that rotal 1,933 bp. A total of 134 SSRs, 22 tandem repeats and 42 dispersed repeats were identified in the mitogenome. Four conformations of C. pinnatifida mitochondria sequences recombination were verified through PCR experiments and Sanger sequencing, and C. pinnatifida mitogenome is more likely to be assembled into three circular-mapping chromosomes. All the RNA editing sites that were identified C-U edits, which predominantly occurred at the first and second positions of the codons. Phylogenetic and collinearity analyses identified the evolutionary trajectory of C. pinnatifida, which reinforced the genetic identity of the hawthorn section. This unveiling of the unique multi-partite structure of the hawthorn mitogenome offers a foundational reference for future study into the evolution and genetics of C. pinnatifida.
Collapse
Affiliation(s)
- Lili Zhu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Songfeng Diao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
- National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, China.
| | - Taishan Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Juan Guo
- National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, China
| |
Collapse
|
4
|
Golubenko MV, Puzyrev VP. Liberties of the genome: insertions of mitochondrial DNA fragments into nuclear genome. Vavilovskii Zhurnal Genet Selektsii 2024; 28:467-475. [PMID: 39280847 PMCID: PMC11393654 DOI: 10.18699/vjgb-24-53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 09/18/2024] Open
Abstract
The transition of detached fragments of mitochondrial DNA into the nucleus and their integration into chromosomal DNA is a special kind of genetic variability that highlights the relation between the two genomes and their interaction in a eukaryotic cell. The human genome contains several hundreds of insertions of mtDNA fragments (NUMTS). This paper presents an overview of the current state of research in this area. To date, evidence has been obtained that the occurrence of new mtDNA insertions in the nuclear genome is a seldom but not exceptionally rare event. The integration of new mtDNA fragments into the nuclear genome occurs during double-strand DNA break repair through the non-homologous end joining mechanism. Along with evolutionarily stable "genetic fossils" that were integrated into the nuclear genome millions of years ago and are shared by many species, there are NUMTS that could be species-specific, polymorphic in a species, or "private". Partial copies of mitochondrial DNA in the human nuclear genome can interfere with mtDNA during experimental studies of the mitochondrial genome, such as genotyping, heteroplasmy assessment, mtDNA methylation analysis, and mtDNA copy number estimation. In some cases, the insertion of multiple copies of the complete mitochondrial genome sequence may mimic paternal inheritance of mtDNA. The functional significance of NUMTS is poorly understood. For instance, they may be a source of variability for expression and splicing modulation. The role of NUMTS as a cause of hereditary diseases is negligible, since only a few cases of diseases caused by NUMTS have been described so far. In addition, NUMTS can serve as markers for evolutionary genetic studies. Of particular interest is the meaning of NUMTS in eukaryotic genome evolution. The constant flow of functionally inactive DNA sequences from mitochondria into the nucleus and its significance could be studied in view of the modern concepts of evolutionary theory suggesting non-adaptive complexity and the key role of stochastic processes in the formation of genomic structure.
Collapse
Affiliation(s)
- M V Golubenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - V P Puzyrev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
5
|
Zhang Z, Zhao J, Li J, Yao J, Wang B, Ma Y, Li N, Wang H, Wang T, Liu B, Gong L. Evolutionary trajectory of organelle-derived nuclear DNAs in the Triticum/Aegilops complex species. PLANT PHYSIOLOGY 2024; 194:918-935. [PMID: 37847157 PMCID: PMC10828211 DOI: 10.1093/plphys/kiad552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023]
Abstract
Organelle-derived nuclear DNAs, nuclear plastid DNAs (NUPTs), and nuclear mitochondrial DNAs (NUMTs) have been identified in plants. Most, if not all, genes residing in NUPTs/NUMTs (NUPGs/NUMGs) are known to be inactivated and pseudogenized. However, the role of epigenetic control in silencing NUPGs/NUMGs and the dynamic evolution of NUPTs/NUMTs with respect to organismal phylogeny remain barely explored. Based on the available nuclear and organellar genomic resources of wheat (genus Triticum) and goat grass (genus Aegilops) within Triticum/Aegilops complex species, we investigated the evolutionary fates of NUPTs/NUMTs in terms of their epigenetic silencing and their dynamic occurrence rates in the nuclear diploid genomes and allopolyploid subgenomes. NUPTs and NUMTs possessed similar genomic atlas, including (i) predominantly located in intergenic regions and preferential integration to gene regulation regions and (ii) generating sequence variations in the nuclear genome. Unlike nuclear indigenous genes, the alien NUPGs/NUMGs were associated with repressive epigenetic signals, namely high levels of DNA methylation and low levels of active histone modifications. Phylogenomic analyses suggested that the species-specific and gradual accumulation of NUPTs/NUMTs accompanied the speciation processes. Moreover, based on further pan-genomic analyses, we found significant subgenomic asymmetry in the NUPT/NUMT occurrence, which accumulated during allopolyploid wheat evolution. Our findings provide insight into the dynamic evolutionary fates of organelle-derived nuclear DNA in plants.
Collapse
Affiliation(s)
- Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jinyang Yao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yiqiao Ma
- Jilin Academy of Vegetable and Flower Science, Changchun 130033, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
6
|
Uvizl M, Puechmaille SJ, Power S, Pippel M, Carthy S, Haerty W, Myers EW, Teeling EC, Huang Z. Comparative Genome Microsynteny Illuminates the Fast Evolution of Nuclear Mitochondrial Segments (NUMTs) in Mammals. Mol Biol Evol 2024; 41:msad278. [PMID: 38124445 PMCID: PMC10764098 DOI: 10.1093/molbev/msad278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The escape of DNA from mitochondria into the nuclear genome (nuclear mitochondrial DNA, NUMT) is an ongoing process. Although pervasively observed in eukaryotic genomes, their evolutionary trajectories in a mammal-wide context are poorly understood. The main challenge lies in the orthology assignment of NUMTs across species due to their fast evolution and chromosomal rearrangements over the past 200 million years. To address this issue, we systematically investigated the characteristics of NUMT insertions in 45 mammalian genomes and established a novel, synteny-based method to accurately predict orthologous NUMTs and ascertain their evolution across mammals. With a series of comparative analyses across taxa, we revealed that NUMTs may originate from nonrandom regions in mtDNA, are likely found in transposon-rich and intergenic regions, and unlikely code for functional proteins. Using our synteny-based approach, we leveraged 630 pairwise comparisons of genome-wide microsynteny and predicted the NUMT orthology relationships across 36 mammals. With the phylogenetic patterns of NUMT presence-and-absence across taxa, we constructed the ancestral state of NUMTs given the mammal tree using a coalescent method. We found support on the ancestral node of Fereuungulata within Laurasiatheria, whose subordinal relationships are still controversial. This study broadens our knowledge on NUMT insertion and evolution in mammalian genomes and highlights the merit of NUMTs as alternative genetic markers in phylogenetic inference.
Collapse
Affiliation(s)
- Marek Uvizl
- Department of Zoology, National Museum, 19300 Prague, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| | - Sebastien J Puechmaille
- Institut des Sciences de l’Evolution de Montpellier (ISEM), University of Montpellier, 34095 Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Sarahjane Power
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- National Bioinformatics Infrastructure Sweden, Uppsala, Sweden
| | - Samuel Carthy
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Colney Ln, NR4 7UZ Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
7
|
Namasivayam S, Sun C, Bah AB, Oberstaller J, Pierre-Louis E, Etheridge RD, Feschotte C, Pritham EJ, Kissinger JC. Massive invasion of organellar DNA drives nuclear genome evolution in Toxoplasma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.539837. [PMID: 37293002 PMCID: PMC10245829 DOI: 10.1101/2023.05.22.539837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Toxoplasma gondii is a zoonotic protist pathogen that infects up to 1/3 of the human population. This apicomplexan parasite contains three genome sequences: nuclear (63 Mb); plastid organellar, ptDNA (35 kb); and mitochondrial organellar, mtDNA (5.9 kb of non-repetitive sequence). We find that the nuclear genome contains a significant amount of NUMTs (nuclear DNA of mitochondrial origin) and NUPTs (nuclear DNA of plastid origin) that are continuously acquired and represent a significant source of intraspecific genetic variation. NUOT (nuclear DNA of organellar origin) accretion has generated 1.6% of the extant T. gondii ME49 nuclear genome; the highest fraction ever reported in any organism. NUOTs are primarily found in organisms that retain the non-homologous end-joining repair pathway. Significant movement of organellar DNA was experimentally captured via amplicon sequencing of a CRISPR-induced double-strand break in non-homologous end-joining repair competent, but not ku80 mutant, Toxoplasma parasites. Comparisons with Neospora caninum, a species that diverged from Toxoplasma ~28 MY ago, revealed that the movement and fixation of 5 NUMTs predates the split of the two genera. This unexpected level of NUMT conservation suggests evolutionary constraint for cellular function. Most NUMT insertions reside within (60%) or nearby genes (23% within 1.5 kb) and reporter assays indicate that some NUMTs have the ability to function as cis-regulatory elements modulating gene expression. Together these findings portray a role for organellar sequence insertion in dynamically shaping the genomic architecture and likely contributing to adaptation and phenotypic changes in this important human pathogen.
Collapse
Affiliation(s)
- Sivaranjani Namasivayam
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Present address: Clinical Microbiome Unit, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD 20892, USA
| | - Cheng Sun
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA; Present address: College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Assiatu B Bah
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019
| | - Jenna Oberstaller
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Present address: Department of Global Health, University of South Florida, Tampa, FL 33620, USA
| | - Edwin Pierre-Louis
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Ronald Drew Etheridge
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Cedric Feschotte
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019; Present address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | - Ellen J. Pritham
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019
| | - Jessica C. Kissinger
- Department of Genetics, Institute of Bioinformatics, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Minhas BF, Beck EA, Cheng CHC, Catchen J. Novel mitochondrial genome rearrangements including duplications and extensive heteroplasmy could underlie temperature adaptations in Antarctic notothenioid fishes. Sci Rep 2023; 13:6939. [PMID: 37117267 PMCID: PMC10147917 DOI: 10.1038/s41598-023-34237-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
Mitochondrial genomes are known for their compact size and conserved gene order, however, recent studies employing long-read sequencing technologies have revealed the presence of atypical mitogenomes in some species. In this study, we assembled and annotated the mitogenomes of five Antarctic notothenioids, including four icefishes (Champsocephalus gunnari, C. esox, Chaenocephalus aceratus, and Pseudochaenichthys georgianus) and the cold-specialized Trematomus borchgrevinki. Antarctic notothenioids are known to harbor some rearrangements in their mt genomes, however the extensive duplications in icefishes observed in our study have never been reported before. In the icefishes, we observed duplications of the protein coding gene ND6, two transfer RNAs, and the control region with different copy number variants present within the same individuals and with some ND6 duplications appearing to follow the canonical Duplication-Degeneration-Complementation (DDC) model in C. esox and C. gunnari. In addition, using long-read sequencing and k-mer analysis, we were able to detect extensive heteroplasmy in C. aceratus and C. esox. We also observed a large inversion in the mitogenome of T. borchgrevinki, along with the presence of tandem repeats in its control region. This study is the first in using long-read sequencing to assemble and identify structural variants and heteroplasmy in notothenioid mitogenomes and signifies the importance of long-reads in resolving complex mitochondrial architectures. Identification of such wide-ranging structural variants in the mitogenomes of these fishes could provide insight into the genetic basis of the atypical icefish mitochondrial physiology and more generally may provide insights about their potential role in cold adaptation.
Collapse
Affiliation(s)
- Bushra Fazal Minhas
- Informatics Programs, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Emily A Beck
- Data Science Initiative, University of Oregon, Eugene, USA
| | - C-H Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Julian Catchen
- Informatics Programs, University of Illinois at Urbana-Champaign, Urbana, USA.
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, USA.
| |
Collapse
|
9
|
Ding H, Bi D, Zhang S, Han S, Ye Y, Yi R, Yang J, Liu B, Wu L, Zhuo R, Kan X. The Mitogenome of Sedum plumbizincicola (Crassulaceae): Insights into RNA Editing, Lateral Gene Transfer, and Phylogenetic Implications. BIOLOGY 2022; 11:1661. [PMID: 36421375 PMCID: PMC9687357 DOI: 10.3390/biology11111661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 09/08/2024]
Abstract
As the largest family within the order Saxifragales, Crassulaceae contains about 34 genera with 1400 species. Mitochondria play a critical role in cellular energy production. Since the first land plant mitogenome was reported in Arabidopsis, more than 400 mitogenomic sequences have been deposited in a public database. However, no entire mitogenome data have been available for species of Crassulaceae to date. To better understand the evolutionary history of the organelles of Crassulaceae, we sequenced and performed comprehensive analyses on the mitogenome of Sedum plumbizincicola. The master mitogenomic circle is 212,159 bp in length, including 31 protein-coding genes (PCGs), 14 tRNA genes, and 3 rRNA genes. We further identified totally 508 RNA editing sites in PCGs, and demonstrated that the second codon positions of mitochondrial genes are most prone to RNA editing events. Notably, by neutrality plot analyses, we observed that the mitochondrial RNA editing events have large effects on the driving forces of plant evolution. Additionally, 4 MTPTs and 686 NUMTs were detected in the mitochondrial and nuclear genomes of S. plumbizincicola, respectively. Additionally, we conducted further analyses on gene transfer, secondary structures of mitochondrial RNAs, and phylogenetic implications. Therefore, the findings presented here will be helpful for future investigations on plant mitogenomes.
Collapse
Affiliation(s)
- Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - De Bi
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Birong Liu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou 311400, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
10
|
Evaluation of Intracellular Gene Transfers from Plastome to Nuclear Genome across Progressively Improved Assemblies for Arabidopsis thaliana and Oryza sativa. Genes (Basel) 2022; 13:genes13091620. [PMID: 36140788 PMCID: PMC9498363 DOI: 10.3390/genes13091620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
DNA originating from organellar genomes are regularly discovered in nuclear sequences during genome assembly. Nevertheless, such insertions are sometimes omitted during the process of nuclear genome assembly because the inserted DNA is assigned to organellar genomes, leading to a systematic underestimation of their frequency. With the rapid development of high-throughput sequencing technology, more inserted fragments from organelle genomes can now be detected. Therefore, it is necessary to be aware of the insertion events from organellar genomes during nuclear genome assembly to properly attribute the impact and rate of such insertions in the evolution of nuclear genomes. Here, we investigated the impact of intracellular gene transfer (IGT) from the plastome to the nuclear genome using genome assemblies that were refined through time with technological improvements from two model species, Arabidopsis thaliana and Oryza sativa. We found that IGT from the plastome to the nuclear genome is a dynamic and ongoing process in both A. thaliana and O. sativa, and mostly occurred recently, as the majority of transferred sequences showed over 95% sequence similarity with plastome sequences of origin. Differences in the plastome-to-nuclear genome IGT between A. thaliana and O. sativa varied among the different assembly versions and were associated with the quality of the nuclear genome assembly. IGTs from the plastome to nuclear genome occurred more frequently in intergenic regions, which were often associated with transposable elements (TEs). This study provides new insights into intracellular genome evolution and nuclear genome assembly by characterizing and comparing IGT from the plastome into the nuclear genome for two model plant species.
Collapse
|
11
|
Miranda-Astudillo H, Ostolga-Chavarría M, Cardol P, González-Halphen D. Beyond being an energy supplier, ATP synthase is a sculptor of mitochondrial cristae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148569. [PMID: 35577152 DOI: 10.1016/j.bbabio.2022.148569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Mitochondrial F1FO-ATP synthase plays a key role in cellular bioenergetics; this enzyme is present in all eukaryotic linages except in amitochondriate organisms. Despite its ancestral origin, traceable to the alpha proteobacterial endosymbiotic event, the actual structural diversity of these complexes, due to large differences in their polypeptide composition, reflects an important evolutionary divergence between eukaryotic lineages. We discuss the effect of these structural differences on the oligomerization of the complex and the shape of mitochondrial cristae.
Collapse
Affiliation(s)
- Héctor Miranda-Astudillo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcos Ostolga-Chavarría
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pierre Cardol
- InBios/Phytosystems, Institut de Botanique, Université de Liège, Liège, Belgium
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
12
|
Fischer A, Dotzek J, Walther D, Greiner S. Graph-based models of the Oenothera mitochondrial genome capture the enormous complexity of higher plant mitochondrial DNA organization. NAR Genom Bioinform 2022; 4:lqac027. [PMID: 35372837 PMCID: PMC8969700 DOI: 10.1093/nargab/lqac027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022] Open
Abstract
Plant mitochondrial genomes display an enormous structural complexity, as recombining repeat-pairs lead to the generation of various sub-genomic molecules, rendering these genomes extremely challenging to assemble. We present a novel bioinformatic data-processing pipeline called SAGBAC (Semi-Automated Graph-Based Assembly Curator) that identifies recombinogenic repeat-pairs and reconstructs plant mitochondrial genomes. SAGBAC processes assembly outputs and applies our novel ISEIS (Iterative Sequence Ends Identity Search) algorithm to obtain a graph-based visualization. We applied this approach to three mitochondrial genomes of evening primrose (Oenothera), a plant genus used for cytoplasmic genetics studies. All identified repeat pairs were found to be flanked by two alternative and unique sequence-contigs defining so-called 'double forks', resulting in four possible contig-repeat-contig combinations for each repeat pair. Based on the inferred structural models, the stoichiometry of the different contig-repeat-contig combinations was analyzed using Illumina mate-pair and PacBio RSII data. This uncovered a remarkable structural diversity of the three closely related mitochondrial genomes, as well as substantial phylogenetic variation of the underlying repeats. Our model allows predicting all recombination events and, thus, all possible sub-genomes. In future work, the proposed methodology may prove useful for the investigation of the sub-genome organization and dynamics in different tissues and at various developmental stages.
Collapse
Affiliation(s)
- Axel Fischer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jana Dotzek
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Stephan Greiner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
13
|
Sleith RS, Karol KG. Global high-throughput genotyping of organellar genomes reveals insights into the origin and spread of invasive starry stonewort (Nitellopsis obtusa). Biol Invasions 2021. [DOI: 10.1007/s10530-021-02591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
AbstractAquatic invasive species are damaging to native ecosystems. Preventing their spread and achieving comprehensive control measures requires an understanding of the genetic structure of an invasive population. Organellar genomes (plastid and mitochondrial) are useful for population level analyses of invasive plant distributions. In this study we generate complete organellar reference genomes using PacBio sequencing, then use these reference sequences for SNP calling of high-throughput, multiplexed, Illumina based organellar sequencing of fresh and historical samples from across the native and invasive range of Nitellopsis obtusa (Desv. in Loisel.) J.Groves, an invasive macroalgae. The data generated by the analytical pipeline we develop indicate introduction to North America from Western Europe. A single nucleotide transversion in the plastid genome separates a group of five samples from Michigan and Wisconsin that either resulted from introductions of two closely related genotypes or a mutation that has arisen in the invasive range. This transversion will serve as a useful tool to understand how Nitellopsis obtusa moves across the landscape. The methods and analyses described here are broadly applicable to invasive and native plant and algae species, and allow efficient genotyping of variable quality samples, including 100-year-old herbarium specimens, to determine population structure and geographic distributions.
Collapse
|
14
|
Ding L, Sang H, Sun C. Genus-Wide Characterization of Nuclear Mitochondrial DNAs in Bumblebee (Hymenoptera: Apidae) Genomes. INSECTS 2021; 12:insects12110963. [PMID: 34821764 PMCID: PMC8625877 DOI: 10.3390/insects12110963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary The DNA of mitochondria can be transferred into the nucleus and form nuclear mitochondrial DNAs (NUMTs). In this study, we identified and characterized NUMTs in genus-wide bumblebee species. The number of NUMTs in bumblebee is much lower than those in its closely related taxon, honeybee. The insertion sites of NUMTs in bumblebee are not random, with AT-rich regions harboring more NUMTs. In addition, NUMTs derived from the mitochondrial COX1 gene are most abundant in the nuclear genome. While the majority of NUMTs seem unfunctional in the bumblebee, some NUMTs show functional clues, which could fuse with their flanking sequences to form novel proteins. Our results shed light on the molecular features of NUMTs and uncover their contribution to genome innovation in the bumblebee. Abstract In eukaryotes, DNA of mitochondria is transferred into the nucleus and forms nuclear mitochondrial DNAs (NUMTs). Taking advantage of the abundant genomic resources for bumblebees, in this study, we de novo generated mitochondrial genomes (mitogenomes) for 11 bumblebee species. Then, we identified and characterized NUMTs in genus-wide bumblebee species. The number of identified NUMTs varies across those species, with numbers ranging from 32 to 72, and nuclear genome size is not positively related to NUMT number. The insertion sites of NUMTs in the nuclear genome are not random, with AT-rich regions harboring more NUMTs. In addition, our results suggest that NUMTs derived from the mitochondrial COX1 gene are most abundant in the bumblebee nuclear genome. Although the majority of NUMTs are found within intergenic regions, some NUMTs do reside within genic regions. Transcripts that contain both the NUMT sequence and its flanking non-NUMT sequences could be found in the bumblebee transcriptome, suggesting a potential domestication of NUMTs in the bumblebee. Taken together, our results shed light on the molecular features of NUMTs in the bumblebee and uncover their contribution to genome innovation.
Collapse
|
15
|
Complete Mitochondrial Genomes of Metcalfa pruinosa and Salurnis marginella (Hemiptera: Flatidae): Genomic Comparison and Phylogenetic Inference in Fulgoroidea. Curr Issues Mol Biol 2021; 43:1391-1418. [PMID: 34698117 PMCID: PMC8929015 DOI: 10.3390/cimb43030099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022] Open
Abstract
The complete mitochondrial genomes (mitogenomes) of two DNA barcode-defined haplotypes of Metcalfa pruinosa and one of Salurnis marginella (Hemiptera: Flatidae) were sequenced and compared to those of other Fulgoroidea species. Furthermore, the mitogenome sequences were used to reconstruct phylogenetic relationships among fulgoroid families. The three mitogenomes, including that of the available species of Flatidae, commonly possessed distinctive structures in the 1702-1836 bp A+T-rich region, such as two repeat regions at each end and a large centered nonrepeat region. All members of the superfamily Fulgoroidea, including the Flatidae, consistently possessed a motiflike sequence (TAGTA) at the ND1 and trnS2 junction. The phylogenetic analyses consistently recovered the familial relationships of (((((Ricaniidae + Issidae) + Flatidae) + Fulgoridae) + Achilidae) + Derbidae) in the amino acid-based analysis, with the placement of Cixiidae and Delphacidae as the earliest-derived lineages of fulgoroid families, whereas the monophyly of Delphacidae was not congruent between tree-constructing algorithms.
Collapse
|
16
|
Hong Z, Liao X, Ye Y, Zhang N, Yang Z, Zhu W, Gao W, Sharbrough J, Tembrock LR, Xu D, Wu Z. A complete mitochondrial genome for fragrant Chinese rosewood (Dalbergia odorifera, Fabaceae) with comparative analyses of genome structure and intergenomic sequence transfers. BMC Genomics 2021; 22:672. [PMID: 34536995 PMCID: PMC8449883 DOI: 10.1186/s12864-021-07967-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dalbergia odorifera is an economically and culturally important species in the Fabaceae because of the high-quality lumber and traditional Chinese medicines made from this plant, however, overexploitation has increased the scarcity of D. odorifera. Given the rarity and the multiple uses of this species, it is important to expand the genomic resources for utilizing in applications such as tracking illegal logging, determining effective population size of wild stands, delineating pedigrees in marker assisted breeding programs, and resolving gene networks in functional genomics studies. Even the nuclear and chloroplast genomes have been published for D. odorifera, the complete mitochondrial genome has not been assembled or assessed for sequence transfer to other genomic compartments until now. Such work is essential in understanding structural and functional genome evolution in a lineage (Fabaceae) with frequent intergenomic sequence transfers. RESULTS We integrated Illumina short-reads and PacBio CLR long-reads to assemble and annotate the complete mitochondrial genome of D. odorifera. The mitochondrial genome was organized as a single circular structure of 435 Kb in length containing 33 protein coding genes, 4 rRNA and 17 tRNA genes. Nearly 4.0% (17,386 bp) of the genome was annotated as repetitive DNA. From the sequence transfer analysis, it was found that 114 Kb of DNA originating from the mitochondrial genome has been transferred to the nuclear genome, with most of the transfer events having taken place relatively recently. The high frequency of sequence transfers from the mitochondria to the nuclear genome was similar to that of sequence transfer from the chloroplast to the nuclear genome. CONCLUSION For the first-time, the complete mitochondrial genome of D. odorifera was assembled in this study, which will provide a baseline resource in understanding genomic evolution in the highly specious Fabaceae. In particular, the assessment of intergenomic sequence transfer suggests that transfers have been common and recent indicating a possible role in environmental adaptation as has been found in other lineages. The high turnover rate of genomic colinearly and large differences in mitochondrial genome size found in the comparative analyses herein providing evidence for the rapid evolution of mitochondrial genome structure compared to chloroplasts in Faboideae. While phylogenetic analyses using functional genes indicate that mitochondrial genes are very slowly evolving compared to chloroplast genes.
Collapse
Affiliation(s)
- Zhou Hong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yuanjun Ye
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ningnan Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Zengjiang Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Weidong Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wei Gao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.,College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Daping Xu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China.
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
17
|
Zhang G, Geng D, Guo Q, Liu W, Li S, Gao W, Wang Y, Zhang M, Wang Y, Bu Y, Niu H. Genomic landscape of mitochondrial DNA insertions in 23 bat genomes: characteristics, loci, phylogeny, and polymorphism. Integr Zool 2021; 17:890-903. [PMID: 34496458 DOI: 10.1111/1749-4877.12582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transfer of mitochondrial DNA to the nuclear genome gives rise to the nuclear DNA sequences of mitochondrial origin (NUMTs), considered as a driving force in genome evolution. In this study, NUMTs in 23 bat genomes were investigated and compared systematically. The results showed that NUMTs existed in 22 genomes except for Noctilio leporinus, suggesting that mitochondrial fragment insertion in the nuclear genome was a common event in bat genomes. However, remarkable variations in NUMTs number, cumulative length, and proportion in the nuclear genome were discovered across bat species. Further orthologous NUMT loci analysis of the Phyllostomidae family indicated that the NUMTs insertion events in bat genomes were homoplasy-free. The NUMTs were mainly inserted into the intergenic regions, particularly, co-localized with repetitive sequences (especially transposable elements). However, several NUMTs were inserted into genes, some of which were in the exon region of functional genes. One NUMT in the genome of Pteropus alecto surprisingly matched with cDNA of ATP8B3 that provided evidence of NUMTs with coding function. Phylogenic analysis on NUMTs originating from COXI and COXII loci highlighted 2 clusters of Yinpterochiroptera and Yangochiroptera for Chiroptera. Seven NUMTs from Rhinolophus ferrumequinum were amplified, and the sequencing results confirmed the reliability of the NUMT analysis. One of them was polymorphic for the presence or absence of the NUMT insertion, and each genotype of NUMT loci showed a distinct regional distribution pattern. The information obtained in this study provides novel insights into the NUMT organization and features in bat genomes and establishes a basis for further studying of the evolution of bat species.
Collapse
Affiliation(s)
- Guojun Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Deqi Geng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qiulin Guo
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wei Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yongfei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Min Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yilin Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanzhen Bu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hongxing Niu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
18
|
Abstract
Variation in the mitochondrial DNA (mtDNA) sequence is common in certain tumours. Two classes of cancer mtDNA variants can be identified: de novo mutations that act as 'inducers' of carcinogenesis and functional variants that act as 'adaptors', permitting cancer cells to thrive in different environments. These mtDNA variants have three origins: inherited variants, which run in families, somatic mutations arising within each cell or individual, and variants that are also associated with ancient mtDNA lineages (haplogroups) and are thought to permit adaptation to changing tissue or geographic environments. In addition to mtDNA sequence variation, mtDNA copy number and perhaps transfer of mtDNA sequences into the nucleus can contribute to certain cancers. Strong functional relevance of mtDNA variation has been demonstrated in oncocytoma and prostate cancer, while mtDNA variation has been reported in multiple other cancer types. Alterations in nuclear DNA-encoded mitochondrial genes have confirmed the importance of mitochondrial metabolism in cancer, affecting mitochondrial reactive oxygen species production, redox state and mitochondrial intermediates that act as substrates for chromatin-modifying enzymes. Hence, subtle changes in the mitochondrial genotype can have profound effects on the nucleus, as well as carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Piotr K Kopinski
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiping Zhang
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie T Lott
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Division of Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Kim H, Kim J. Structural Mutations in the Organellar Genomes of Valeriana sambucifolia f. dageletiana (Nakai. ex Maekawa) Hara Show Dynamic Gene Transfer. Int J Mol Sci 2021; 22:ijms22073770. [PMID: 33916499 PMCID: PMC8038606 DOI: 10.3390/ijms22073770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Valeriana sambucifolia f. dageletiana (Nakai. ex Maekawa) Hara is a broad-leaved valerian endemic to Ulleung Island, a noted hot spot of endemism in Korea. However, despite its widespread pharmacological use, this plant remains comparatively understudied. Plant cells generally contain two types of organellar genomes (the plastome and the mitogenome) that have undergone independent evolution, which accordingly can provide valuable information for elucidating the phylogenetic relationships and evolutionary histories of terrestrial plants. Moreover, the extensive mega-data available for plant genomes, particularly those of plastomes, can enable researchers to gain an in-depth understanding of the transfer of genes between different types of genomes. In this study, we analyzed two organellar genomes (the 155,179 bp plastome and the 1,187,459 bp mitogenome) of V. sambucifolia f. dageletiana and detected extensive changes throughout the plastome sequence, including rapid structural mutations associated with inverted repeat (IR) contraction and genetic variation. We also described features characterizing the first reported mitogenome sequence obtained for a plant in the order Dipsacales and confirmed frequent gene transfer in this mitogenome. We identified eight non-plastome-originated regions (NPRs) distributed within the plastome of this endemic plant, for six of which there were no corresponding sequences in the current nucleotide sequence databases. Indeed, one of these unidentified NPRs unexpectedly showed certain similarities to sequences from bony fish. Although this is ostensibly difficult to explain, we suggest that this surprising association may conceivably reflect the occurrence of gene transfer from a bony fish to the plastome of an ancestor of V. sambucifolia f. dageletiana mediated by either fungi or bacteria.
Collapse
Affiliation(s)
- Hyoungtae Kim
- Institute of Agriculture Science and Technology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea;
| | - Jungsung Kim
- Department of Forest Science, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
- Correspondence: ; Tel.: +82-43-261-2535
| |
Collapse
|
20
|
Comparative analysis of nuclear, chloroplast, and mitochondrial genomes of watermelon and melon provides evidence of gene transfer. Sci Rep 2021; 11:1595. [PMID: 33452307 PMCID: PMC7811005 DOI: 10.1038/s41598-020-80149-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/17/2020] [Indexed: 11/08/2022] Open
Abstract
During plant evolution, there is genetic communication between organelle and nuclear genomes. A comparative analysis was performed on the organelle and nuclear genomes of the watermelon and melon. In the watermelon, chloroplast-derived sequences accounted for 7.6% of the total length of the mitochondrial genome. In the melon, chloroplast-derived sequences accounted for approximately 2.73% of the total mitochondrial genome. In watermelon and melon, the chloroplast-derived small-fragment sequences are either a subset of large-fragment sequences or appeared multiple times in the mitochondrial genome, indicating that these fragments may have undergone multiple independent migration integrations or emerged in the mitochondrial genome after migration, replication, and reorganization. There was no evidence of migration from the mitochondria to chloroplast genome. A sequence with a total length of about 73 kb (47%) in the watermelon chloroplast genome was homologous to a sequence of about 313 kb in the nuclear genome. About 33% of sequences in the watermelon mitochondrial genome was homologous with a 260 kb sequence in the nuclear genome. A sequence with a total length of about 38 kb (25%) in the melon chloroplast genome was homologous with 461 sequences in the nuclear genome, with a total length of about 301 kb. A 3.4 Mb sequence in the nuclear genome was homologous with a melon mitochondrial sequence. These results indicate that, during the evolution of watermelon and melon, a large amount of genetic material was exchanged between the nuclear genome and the two organelle genomes in the cytoplasm.
Collapse
|
21
|
Kang S, Jeon S, Kim S, Chang YK, Kim YC. Development of a pVEC peptide-based ribonucleoprotein (RNP) delivery system for genome editing using CRISPR/Cas9 in Chlamydomonas reinhardtii. Sci Rep 2020; 10:22158. [PMID: 33335164 PMCID: PMC7747696 DOI: 10.1038/s41598-020-78968-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Recent technical advances related to the CRISPR/Cas9-based genome editing system have enabled sophisticated genome editing in microalgae. Although the demand for research on genome editing in microalgae has increased over time, methodological research has not been established to date for the delivery of a ribonucleoprotein (Cas9/sgRNA complex) using a cell penetrating peptide into microalgal cell lines. Here, we present a ribonucleoprotein delivery system for Chlamydomonas reinhardtii mediated by the cell penetrating peptide pVEC (LLIILRRRIRKQAHAHSK) which is in a non-covalent form. Using this technically simple method, the ribonucleoprotein was successfully delivered into C. reinhardtii. Gene Maa7 and FKB12 were disrupted, and their distinguishing patterns of Indel mutations were analyzed with the observation of several insertions of sequences not originating from the genome DNA, such as chloroplast DNA, into the expected loci. In addition, the cytotoxicity of Cas9 and the ribonucleoprotein was investigated according to the concentration and time in the algal cells. It was observed that Cas9 alone without the sgRNA induces a more severe cytotoxicity compared to the ribonucleoprotein. Our study will not only contribute to algal cell biology and its genetic engineering for further applications involving various organisms but will also provide a deeper understating of the basic science of the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Seongsu Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Seungjib Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Seungcheol Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
22
|
Kowal K, Tkaczyk A, Pierzchała M, Bownik A, Ślaska B. Identification of Mitochondrial DNA (NUMTs) in the Nuclear Genome of Daphnia magna. Int J Mol Sci 2020; 21:E8725. [PMID: 33218217 PMCID: PMC7699184 DOI: 10.3390/ijms21228725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 01/30/2023] Open
Abstract
This is the first study in which the Daphnia magna (D. magna) nuclear genome (nDNA) obtained from the GenBank database was analyzed for pseudogene sequences of mitochondrial origin. To date, there is no information about pseudogenes localized in D. magna genome. This study aimed to identify NUMTs, their length, homology, and location for potential use in evolutionary studies and to check whether their occurrence causes co-amplification during mitochondrial genome (mtDNA) analyses. Bioinformatic analysis showed 1909 fragments of the mtDNA of D. magna, of which 1630 were located in ten linkage groups (LG) of the nDNA. The best-matched NUMTs covering >90% of the gene sequence have been identified for two mt-tRNA genes, and they may be functional nuclear RNA molecules. Isolating the total DNA in mtDNA studies, co-amplification of nDNA fragments is unlikely in the case of amplification of the whole tRNA genes as well as fragments of other genes. It was observed that TRNA-MET fragments had the highest level of sequence homology, thus they could be evolutionarily the youngest. The lowest homology was found in the D-loop-derived pseudogene. It may probably be the oldest NUMT incorporated into the nDNA; however, further analysis is necessary.
Collapse
Affiliation(s)
- Krzysztof Kowal
- Faculty of Animal Sciences and Bioeconomy, Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 Str., 20-950 Lublin, Poland; (K.K.); (A.T.)
| | - Angelika Tkaczyk
- Faculty of Animal Sciences and Bioeconomy, Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 Str., 20-950 Lublin, Poland; (K.K.); (A.T.)
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36a Str., 05-552 Jastrzębiec, Poland;
| | - Adam Bownik
- Faculty of Environmental Biology, Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37 Str., 20-262 Lublin, Poland;
| | - Brygida Ślaska
- Faculty of Animal Sciences and Bioeconomy, Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 Str., 20-950 Lublin, Poland; (K.K.); (A.T.)
| |
Collapse
|
23
|
Doxorubicin-Induced Translocation of mtDNA into the Nuclear Genome of Human Lymphocytes Detected Using a Molecular-Cytogenetic Approach. Int J Mol Sci 2020; 21:ijms21207690. [PMID: 33080837 PMCID: PMC7589397 DOI: 10.3390/ijms21207690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/27/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Translocation of mtDNA in the nuclear genome is an ongoing process that contributes to the development of pathological conditions in humans. However, the causal factors of this biological phenomenon in human cells are poorly studied. Here we analyzed mtDNA insertions in the nuclear genome of human lymphocytes after in vitro treatment with doxorubicin (DOX) using a fluorescence in situ hybridization (FISH) technique. The number of mtDNA insertions positively correlated with the number of DOX-induced micronuclei, suggesting that DOX-induced chromosome breaks contribute to insertion events. Analysis of the odds ratios (OR) revealed that DOX at concentrations of 0.025 and 0.035 µg/mL significantly increases the rate of mtDNA insertions (OR: 3.53 (95% CI: 1.42–8.76, p < 0.05) and 3.02 (95% CI: 1.19–7.62, p < 0.05), respectively). Analysis of the distribution of mtDNA insertions in the genome revealed that DOX-induced mtDNA insertions are more frequent in larger chromosomes, which are more prone to the damaging action of DOX. Overall, our data suggest that DOX-induced chromosome damage can be a causal factor for insertions of mtDNA in the nuclear genome of human lymphocytes. It can be assumed that the impact of a large number of external and internal mutagenic factors contributes significantly to the origin and amount of mtDNA in nuclear genomes.
Collapse
|
24
|
Roy AS, Woehle C, LaRoche J. The Transfer of the Ferredoxin Gene From the Chloroplast to the Nuclear Genome Is Ancient Within the Paraphyletic Genus Thalassiosira. Front Microbiol 2020; 11:523689. [PMID: 33123095 PMCID: PMC7566914 DOI: 10.3389/fmicb.2020.523689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/07/2020] [Indexed: 11/24/2022] Open
Abstract
Ferredoxins are iron–sulfur proteins essential for a wide range of organisms because they are an electron transfer mediator involved in multiple metabolic pathways. In phytoplankton, these proteins are active in the mature chloroplasts, but the petF gene, encoding for ferredoxin, has been found either to be in the chloroplast genome or transferred to the nuclear genome as observed in the green algae and higher plant lineage. We experimentally determined the location of the petF gene in 12 strains of Thalassiosira covering three species using DNA sequencing and qPCR assays. The results showed that petF gene is located in the nuclear genome of all confirmed Thalassiosira oceanica strains (CCMP0999, 1001, 1005, and 1006) tested. In contrast, all Thalassiosira pseudonana (CCMP1012, 1013, 1014, and 1335) and Thalassiosira weissflogii (CCMP1010, 1049, and 1052) strains studied retained the gene in the chloroplast genome, as generally observed for Bacillariophyceae. Our evolutionary analyses further extend the dataset on the localization of the petF gene in the Thalassiosirales. The realization that the petF gene is nuclear-encoded in the Skeletonema genus allowed us to trace the petF gene transfer back to a single event that occurred within the paraphyletic genus Thalassiosira. Phylogenetic analyses revealed the need to reassess the taxonomic assignment of the Thalassiosira strain CCMP1616, since the genes used in our study did not cluster within the T. oceanica lineage. Our results suggest that this strains’ diversification occurred prior to the ferredoxin gene transfer event. The functional transfer of petF genes provides insight into the evolutionary processes leading to chloroplast genome reduction and suggests ecological adaptation as a driving force for such chloroplast to nuclear gene transfer.
Collapse
Affiliation(s)
- Alexandra-Sophie Roy
- Genomic Microbiology, Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Christian Woehle
- Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
25
|
Puertas MJ, González-Sánchez M. Insertions of mitochondrial DNA into the nucleus—effects and role in cell evolution. Genome 2020; 63:365-374. [DOI: 10.1139/gen-2019-0151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We review the insertion of mitochondrial DNA (mtDNA) fragments into nuclear DNA (NUMTS) as a general and ongoing process that has occurred many times during genome evolution. Fragments of mtDNA are generated during the lifetime of organisms in both somatic and germinal cells, by the production of reactive oxygen species in the mitochondria. The fragments are inserted into the nucleus during the double-strand breaks repair via the non-homologous end-joining machinery, followed by genomic instability, giving rise to the high variability observed in NUMT patterns among species, populations, or genotypes. Some de novo produced mtDNA insertions show harmful effects, being involved in human diseases, carcinogenesis, and ageing. NUMT generation is a non-stop process overpassing the Mendelian transmission. This parasitic property ensures their survival even against their harmful effects. The accumulation of mtDNA fragments mainly at pericentromeric and subtelomeric regions is important to understand the transmission and integration of NUMTs into the genomes. The possible effect of female meiotic drive for mtDNA insertions at centromeres remains to be studied. In spite of the harmful feature of NUMTs, they are important in cell evolution, representing a major source of genomic variation.
Collapse
Affiliation(s)
- María J. Puertas
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain
| | - Mónica González-Sánchez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain
| |
Collapse
|
26
|
The dynamic evolution of mobile open reading frames in plastomes of Hymenophyllum Sm. and new insight on Hymenophyllum coreanum Nakai. Sci Rep 2020; 10:11059. [PMID: 32632087 PMCID: PMC7338519 DOI: 10.1038/s41598-020-68000-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/12/2020] [Indexed: 11/08/2022] Open
Abstract
In this study, four plastomes of Hymenophyllum, distributed in the Korean peninsula, were newly sequenced and phylogenomic analysis was conducted to reveal (1) the evolutionary history of plastomes of early-diverging fern species at the species level, (2) the importance of mobile open reading frames in the genus, and (3) plastome sequence divergence providing support for H. coreanum to be recognized as an independent species distinct from H. polyanthos. In addition, 1C-values of H. polyanthos and H. coreanum were measured to compare the genome size of both species and to confirm the diversification between them. The rrn16-trnV intergenic regions in the genus varied in length caused by Mobile Open Reading Frames in Fern Organelles (MORFFO). We investigated enlarged noncoding regions containing MORFFO throughout the fern plastomes and found that they were strongly associated with tRNA genes or palindromic elements. Sequence identity between plastomes of H. polyanthos and H. coreanum is quite low at 93.35% in the whole sequence and 98.13% even if the variation in trnV-rrn16 intergenic spacer was ignored. In addition, different genome sizes were found for these species based on the 1C-value. Consequently, there is no reason to consider them as a conspecies.
Collapse
|
27
|
Li X, Fang C, Zhao JP, Zhou XY, Ni Z, Niu DK. Desiccation does not drastically increase the accessibility of exogenous DNA to nuclear genomes: evidence from the frequency of endosymbiotic DNA transfer. BMC Genomics 2020; 21:452. [PMID: 32611311 PMCID: PMC7329468 DOI: 10.1186/s12864-020-06865-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/23/2020] [Indexed: 12/04/2022] Open
Abstract
Background Although horizontal gene transfer (HGT) is a widely accepted force in the evolution of prokaryotic genomes, its role in the evolution of eukaryotic genomes remains hotly debated. Some bdelloid rotifers that are resistant to extreme desiccation and radiation undergo a very high level of HGT, whereas in another desiccation-resistant invertebrate, the tardigrade, the pattern does not exist. Overall, the DNA double-strand breaks (DSBs) induced by prolonged desiccation have been postulated to open a gateway to the nuclear genome for exogenous DNA integration and thus to facilitate the HGT process, thereby enhancing the rate of endosymbiotic DNA transfer (EDT). Results We first surveyed the abundance of nuclear mitochondrial DNAs (NUMTs) and nuclear plastid DNAs (NUPTs) in five eukaryotes that are highly resistant to desiccation: the bdelloid rotifers Adineta vaga and Adineta ricciae, the tardigrade Ramazzottius varieornatus, and the resurrection plants Dorcoceras hygrometricum and Selaginella tamariscina. Excessive NUMTs or NUPTs were not detected. Furthermore, we compared 24 groups of desiccation-tolerant organisms with their relatively less desiccation-tolerant relatives but did not find a significant difference in NUMT/NUPT contents. Conclusions Desiccation may induce DSBs, but it is unlikely to dramatically increase the frequency of exogenous sequence integration in most eukaryotes. The capture of exogenous DNA sequences is possible only when DSBs are repaired through a subtype of non-homologous end joining, named alternative end joining (alt-EJ). Due to the deleterious effects of the resulting insertion mutations, alt-EJ is less frequently initiated than other mechanisms.
Collapse
Affiliation(s)
- Xixi Li
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Cheng Fang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jun-Peng Zhao
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiao-Yu Zhou
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhihua Ni
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.,College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
28
|
Fang J, Wood AM, Chen Y, Yue J, Ming R. Genomic variation between PRSV resistant transgenic SunUp and its progenitor cultivar Sunset. BMC Genomics 2020; 21:398. [PMID: 32532215 PMCID: PMC7291442 DOI: 10.1186/s12864-020-06804-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The safety of genetically transformed plants remains a subject of scrutiny. Genomic variants in PRSV resistant transgenic papaya will provide evidence to rationally address such concerns. RESULTS In this study, a total of more than 74 million Illumina reads for progenitor 'Sunset' were mapped onto transgenic papaya 'SunUp' reference genome. 310,364 single nucleotide polymorphisms (SNPs) and 34,071 small Inserts/deletions (InDels) were detected between 'Sunset' and 'SunUp'. Those variations have an uneven distribution across nine chromosomes in papaya. Only 0.27% of mutations were predicted to be high-impact mutations. ATP-related categories were highly enriched among these high-impact genes. The SNP mutation rate was about 8.4 × 10- 4 per site, comparable with the rate induced by spontaneous mutation over numerous generations. The transition-to-transversion ratio was 1.439 and the predominant mutations were C/G to T/A transitions. A total of 3430 nuclear plastid DNA (NUPT) and 2764 nuclear mitochondrial DNA (NUMT) junction sites have been found in 'SunUp', which is proportionally higher than the predicted total NUPT and NUMT junction sites in 'Sunset' (3346 and 2745, respectively). Among all nuclear organelle DNA (norgDNA) junction sites, 96% of junction sites were shared by 'SunUp' and 'Sunset'. The average identity between 'SunUp' specific norgDNA and corresponding organelle genomes was higher than that of norgDNA shared by 'SunUp' and 'Sunset'. Six 'SunUp' organelle-like borders of transgenic insertions were nearly identical to corresponding sequences in organelle genomes (98.18 ~ 100%). None of the paired-end spans of mapped 'Sunset' reads were elongated by any 'SunUp' transformation plasmid derived inserts. Significant amounts of DNA were transferred from organelles to the nuclear genome during bombardment, including the six flanking sequences of the three transgenic insertions. CONCLUSIONS Comparative whole-genome analyses between 'SunUp' and 'Sunset' provide a reliable estimate of genome-wide variations and evidence of organelle-to-nucleus transfer of DNA associated with biolistic transformation.
Collapse
Affiliation(s)
- Jingping Fang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.,Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, 350117, Fujian, China.,FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew Michael Wood
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.,Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jingjing Yue
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
29
|
Eldarov CM, Vangely IM, Vays VB, Sheval EV, Holtze S, Hildebrandt TB, Kolosova NG, Popkov VA, Plotnikov EY, Zorov DB, Bakeeva LE, Skulachev VP. Mitochondria in the Nuclei of Rat Myocardial Cells. Cells 2020; 9:E712. [PMID: 32183238 PMCID: PMC7140638 DOI: 10.3390/cells9030712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/01/2023] Open
Abstract
Electron microscopic study of cardiomyocytes taken from healthy Wistar and OXYS rats and naked mole rats (Heterocephalus glaber) revealed mitochondria in nuclei that lacked part of the nuclear envelope. The direct interaction of mitochondria with nucleoplasm is shown. The statistical analysis of the occurrence of mitochondria in cardiomyocyte nuclei showed that the percentage of nuclei with mitochondria was roughly around 1%, and did not show age and species dependency. Confocal microscopy of normal rat cardiac myocytes revealed a branched mitochondrial network in the vicinity of nuclei with an organization different than that of interfibrillar mitochondria. This mitochondrial network was energetically functional because it carried the membrane potential that responded by oscillatory mode after photodynamic challenge. We suggest that the presence of functional mitochondria in the nucleus is not only a consequence of certain pathologies but rather represents a normal biological phenomenon involved in mitochondrial/nuclear interactions.
Collapse
Affiliation(s)
- Chupalav M Eldarov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina M Vangely
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Valeriya B Vays
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugene V Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Thomas B Hildebrandt
- Department of Reproduction Management, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Natalia G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vasily A Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitry B Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Lora E Bakeeva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir P Skulachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
30
|
Zhang GJ, Dong R, Lan LN, Li SF, Gao WJ, Niu HX. Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants. Int J Mol Sci 2020; 21:ijms21030707. [PMID: 31973163 PMCID: PMC7037861 DOI: 10.3390/ijms21030707] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/16/2022] Open
Abstract
The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed.
Collapse
Affiliation(s)
- Guo-Jun Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Ran Dong
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Li-Na Lan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- Correspondence: (W.-J.G.); (H.-X.N.)
| | - Hong-Xing Niu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- Correspondence: (W.-J.G.); (H.-X.N.)
| |
Collapse
|
31
|
Zhao N, Grover CE, Chen Z, Wendel JF, Hua J. Intergenomic gene transfer in diploid and allopolyploid Gossypium. BMC PLANT BIOLOGY 2019; 19:492. [PMID: 31718541 PMCID: PMC6852956 DOI: 10.1186/s12870-019-2041-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/20/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Intergenomic gene transfer (IGT) between nuclear and organellar genomes is a common phenomenon during plant evolution. Gossypium is a useful model to evaluate the genomic consequences of IGT for both diploid and polyploid species. Here, we explore IGT among nuclear, mitochondrial, and plastid genomes of four cotton species, including two allopolyploids and their model diploid progenitors (genome donors, G. arboreum: A2 and G. raimondii: D5). RESULTS Extensive IGT events exist for both diploid and allotetraploid cotton (Gossypium) species, with the nuclear genome being the predominant recipient of transferred DNA followed by the mitochondrial genome. The nuclear genome has integrated 100 times more foreign sequences than the mitochondrial genome has in total length. In the nucleus, the integrated length of chloroplast DNA (cpDNA) was between 1.87 times (in diploids) to nearly four times (in allopolyploids) greater than that of mitochondrial DNA (mtDNA). In the mitochondrion, the length of nuclear DNA (nuDNA) was typically three times than that of cpDNA. Gossypium mitochondrial genomes integrated three nuclear retrotransposons and eight chloroplast tRNA genes, and incorporated chloroplast DNA prior to divergence between the diploids and allopolyploid formation. For mitochondrial chloroplast-tRNA genes, there were 2-6 bp conserved microhomologies flanking their insertion sites across distantly related genera, which increased to 10 bp microhomologies for the four cotton species studied. For organellar DNA sequences, there are source hotspots, e.g., the atp6-trnW intergenic region in the mitochondrion and the inverted repeat region in the chloroplast. Organellar DNAs in the nucleus were rarely expressed, and at low levels. Surprisingly, there was asymmetry in the survivorship of ancestral insertions following allopolyploidy, with most numts (nuclear mitochondrial insertions) decaying or being lost whereas most nupts (nuclear plastidial insertions) were retained. CONCLUSIONS This study characterized and compared intracellular transfer among nuclear and organellar genomes within two cultivated allopolyploids and their ancestral diploid cotton species. A striking asymmetry in the fate of IGTs in allopolyploid cotton was discovered, with numts being preferentially lost relative to nupts. Our results connect intergenomic gene transfer with allotetraploidy and provide new insight into intracellular genome evolution.
Collapse
Affiliation(s)
- Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding /Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education / Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Zhiwen Chen
- Laboratory of Cotton Genetics, Genomics and Breeding /Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education / Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding /Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education / Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
32
|
Lee K, Park SJ, Park YI, Kang H. CFM9, a Mitochondrial CRM Protein, Is Crucial for Mitochondrial Intron Splicing, Mitochondria Function and Arabidopsis Growth and Stress Responses. PLANT & CELL PHYSIOLOGY 2019; 60:2538-2548. [PMID: 31359042 DOI: 10.1093/pcp/pcz147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/18/2019] [Indexed: 05/24/2023]
Abstract
Although the importance of chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins has been established for chloroplast RNA metabolism and plant development, the functional role of CRM proteins in mitochondria remains largely unknown. Here, we investigated the role of a mitochondria-targeted CRM protein (At3g27550), named CFM9, in Arabidopsis thaliana. Confocal analysis revealed that CFM9 is localized in mitochondria. The cfm9 mutant exhibited delayed seed germination, retarded growth and shorter height compared with the wild type under normal conditions. The growth-defect phenotypes were more manifested upon high salinity, dehydration or ABA application. Complementation lines expressing CFM9 in the mutant background fully recovered the wild-type phenotypes. Notably, the mutant had abnormal mitochondria, increased hydrogen peroxide and reduced respiration activity, implying that CFM9 is indispensable for normal mitochondrial function. More important, the splicing of many intron-containing genes in mitochondria was defective in the mutant, suggesting that CFM9 plays a crucial role in the splicing of mitochondrial introns. Collectively, our results provide clear evidence emphasizing that CFM9 is an essential factor in the splicing of mitochondrial introns, which is crucial for mitochondrial biogenesis and function and the growth and development of Arabidopsis.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, Korea
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, Korea
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju, Korea
| |
Collapse
|
33
|
Lee K, Park SJ, Han JH, Jeon Y, Pai HS, Kang H. A chloroplast-targeted pentatricopeptide repeat protein PPR287 is crucial for chloroplast function and Arabidopsis development. BMC PLANT BIOLOGY 2019; 19:244. [PMID: 31174473 PMCID: PMC6555926 DOI: 10.1186/s12870-019-1857-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/30/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Even though the roles of pentatricopeptide repeat (PPR) proteins are essential in plant organelles, the function of many chloroplast-targeted PPR proteins remains unknown. Here, we characterized the function of a chloroplast-localized PPR protein (At3g59040), which is classified as the 287th PPR protein among the 450 PPR proteins in Arabidopsis ( http://ppr.plantenergy.uwa.edu.au ). RESULTS The homozygous ppr287 mutant with the T-DNA inserted into the last exon displayed pale-green and yellowish phenotypes. The microRNA-mediated knockdown mutants were generated to further confirm the developmental defect phenotypes of ppr287 mutants. All mutants had yellowish leaves, shorter roots and height, and less seed yield, indicating that PPR287 is crucial for normal Arabidopsis growth and development. The photosynthetic activity and chlorophyll content of ppr287 mutants were markedly reduced, and the chloroplast structures of the mutants were abnormal. The levels of chloroplast rRNAs were decreased in ppr287 mutants. CONCLUSIONS These results suggest that PPR287 plays an essential role in chloroplast biogenesis and function, which is crucial for the normal growth and development of Arabidopsis.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 South Korea
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 South Korea
| | - Ji Hoon Han
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 South Korea
| | - Young Jeon
- Department of Systems Biology, Yonsei University, Seoul, 03722 South Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, 03722 South Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 South Korea
| |
Collapse
|
34
|
Leister D. Piecing the Puzzle Together: The Central Role of Reactive Oxygen Species and Redox Hubs in Chloroplast Retrograde Signaling. Antioxid Redox Signal 2019; 30:1206-1219. [PMID: 29092621 DOI: 10.1089/ars.2017.7392] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) and redox regulation are established components of chloroplast-nucleus retrograde signaling. Recent Advances: In recent years, a complex array of putative retrograde signaling molecules and novel signaling pathways have emerged, including various metabolites, chloroplast translation, mobile transcription factors, calcium, and links to the unfolded protein response. This critical mass of information now permits us to fit individual pieces into a larger picture and outline a few important stimuli and pathways. CRITICAL ISSUES In this review, we summarize how ROS and redox hubs directly (e.g., via hydrogen peroxide [H2O2]) and indirectly (e.g., by triggering the production of signaling metabolites) regulate chloroplast retrograde signaling. Indeed, evidence is accumulating that most of the presumptive signaling metabolites so far identified are produced directly by ROS (such as β-cyclocitral) or indirectly by redox- or ROS-mediated regulation of key enzymes in metabolic pathways, ultimately leading to the accumulation of certain precursors (e.g., methylerythritol cyclodiphosphate and 3'-phosphoadenosine 5'-phosphate) with signal function. Of the ROS generated in the chloroplast, only H2O2 is likely to leave the organelle, and recent results suggest that efficient and specific transfer of information via H2O2 occurs through physical association of chloroplasts with the nucleus. FUTURE DIRECTIONS The impact of ROS and redox regulation on chloroplast-nucleus communication is even greater than previously thought, and it can be expected that further instances of control of retrograde signaling by ROS/redox regulation will be revealed in future, perhaps including the basis for the enigmatic GUN response and translation-dependent signals.
Collapse
Affiliation(s)
- Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich (LMU), Planegg-Martinsried, Germany
| |
Collapse
|
35
|
Genome defense against integrated organellar DNA fragments from plastids into plant nuclear genomes through DNA methylation. Sci Rep 2019; 9:2060. [PMID: 30765781 PMCID: PMC6376042 DOI: 10.1038/s41598-019-38607-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/31/2018] [Indexed: 01/09/2023] Open
Abstract
Nuclear genomes are always faced with the modification of themselves by insertions and integrations of foreign DNAs and intrinsic parasites such as transposable elements. There is also substantial number of integrations from symbiotic organellar genomes to their host nuclear genomes. Such integration might have acted as a beneficial mutation during the evolution of symbiosis, while most of them have more or less deleterious effects on the stability of current genomes. Here we report the pattern of DNA substitution and methylation on organellar DNA fragments integrated from plastid into plant nuclear genomes. The genome analyses of 17 plants show homology–dependent DNA substitution bias. A certain number of these sequences are DNA methylated in the nuclear genome. The intensity of DNA methylation also decays according to the increase of relative evolutionary times after being integrated into nuclear genomes. The methylome data of epigenetic mutants shows that the DNA methylation of organellar DNA fragments in nuclear genomes are mainly dependent on the methylation maintenance machinery, while other mechanisms may also affect on the DNA methylation level. The DNA methylation on organellar DNA fragments may contribute to maintaining the genome stability and evolutionary dynamics of symbiotic organellar and their host’s genomes.
Collapse
|
36
|
Deal SL, Yamamoto S. Unraveling Novel Mechanisms of Neurodegeneration Through a Large-Scale Forward Genetic Screen in Drosophila. Front Genet 2019; 9:700. [PMID: 30693015 PMCID: PMC6339878 DOI: 10.3389/fgene.2018.00700] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023] Open
Abstract
Neurodegeneration is characterized by progressive loss of neurons. Genetic and environmental factors both contribute to demise of neurons, leading to diverse devastating cognitive and motor disorders, including Alzheimer's and Parkinson's diseases in humans. Over the past few decades, the fruit fly, Drosophila melanogaster, has become an integral tool to understand the molecular, cellular and genetic mechanisms underlying neurodegeneration. Extensive tools and sophisticated technologies allow Drosophila geneticists to identify and study evolutionarily conserved genes that are essential for neural maintenance. In this review, we will focus on a large-scale mosaic forward genetic screen on the fly X-chromosome that led to the identification of a number of essential genes that exhibit neurodegenerative phenotypes when mutated. Most genes identified from this screen are evolutionarily conserved and many have been linked to human diseases with neurological presentations. Systematic electrophysiological and ultrastructural characterization of mutant tissue in the context of the Drosophila visual system, followed by a series of experiments to understand the mechanism of neurodegeneration in each mutant led to the discovery of novel molecular pathways that are required for neuronal integrity. Defects in mitochondrial function, lipid and iron metabolism, protein trafficking and autophagy are recurrent themes, suggesting that insults that eventually lead to neurodegeneration may converge on a set of evolutionarily conserved cellular processes. Insights from these studies have contributed to our understanding of known neurodegenerative diseases such as Leigh syndrome and Friedreich's ataxia and have also led to the identification of new human diseases. By discovering new genes required for neural maintenance in flies and working with clinicians to identify patients with deleterious variants in the orthologous human genes, Drosophila biologists can play an active role in personalized medicine.
Collapse
Affiliation(s)
- Samantha L Deal
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
37
|
Kim HT, Kim KJ. Evolution of six novel ORFs in the plastome of Mankyua chejuense and phylogeny of eusporangiate ferns. Sci Rep 2018; 8:16466. [PMID: 30405200 PMCID: PMC6220310 DOI: 10.1038/s41598-018-34825-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/26/2018] [Indexed: 11/17/2022] Open
Abstract
In this paper, three plastomes of Mankyua chejuense, Helminthostachys zeylanica, and Botrychium ternatum in Ophioglossaceae were completely sequenced in order to investigate the plastome evolution and phylogeny of eusporangiate ferns. They were similar to each other in terms of length and the gene orders; however, six unknown open reading frames (ORFs) were found between rps4 and trnL-UAA genes in M. chejuense. Similar sequence regions of six ORFs of M. chejuense were found at the plastomes of Ophioglossum californicum and H. zeylanica, as well as the mitochondrial genome (mitogenome) of H. zeylanica, but not in B. ternatum. Interestingly, the translated amino acid sequences of three ORFs were more similar to the proteins of distantly related taxa such as algae and bacteria than they were to proteins in land plants. It is likely that the six ORFs region arose from endosymbiotic gene transfer (EGT) or horizontal gene transfer (HGT), but further study is needed to verify this. Phylogenetic analyses suggested that Mankyua was resolved as the earliest diverging lineage and that Ophioglossum was subsequently diverged in Ophioglossaceae. This result supports why the plastome of M. chejuense have contained the most ancestral six ORFs in the family.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Division of Life Sciences, School of Life Sciences, Korea University, Seoul, 02841, Korea
- Institute of Agricultural Science and Technology, Chungbuk National University, Chengju, 41566, Korea
| | - Ki-Joong Kim
- Division of Life Sciences, School of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
38
|
Portugez S, Martin WF, Hazkani-Covo E. Mosaic mitochondrial-plastid insertions into the nuclear genome show evidence of both non-homologous end joining and homologous recombination. BMC Evol Biol 2018; 18:162. [PMID: 30390623 PMCID: PMC6215612 DOI: 10.1186/s12862-018-1279-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
Background Mitochondrial and plastid DNA fragments are continuously transferred into eukaryotic nuclear genomes, giving rise to nuclear copies of mitochondrial DNA (numts) and nuclear copies of plastid DNA (nupts). Numts and nupts are classified as simple if they are composed of a single organelle fragment or as complex if they are composed of multiple fragments. Mosaic insertions are complex insertions composed of fragments of both mitochondrial and plastid DNA. Simple numts and nupts in eukaryotes have been extensively studied, their mechanism of insertion involves non-homologous end joining (NHEJ). Mosaic insertions have been less well-studied and their mechanisms of integration are unknown. Results Here we estimated the number of nuclear mosaic insertions (numins) in nine plant genomes. We show that numins compose up to 10% of the total nuclear insertions of organelle DNA in these plant genomes. The NHEJ hallmarks typical for numts and nupts were also identified in mosaic insertions. However, the number of identified insertions that integrated via NHEJ mechanism is underestimated, as NHEJ signatures are conserved only in recent insertions and mutationally eroded in older ones. A few complex insertions show signatures of long homology that cannot be attributed to NHEJ, a novel observation that implicates gene conversion or single strand annealing mechanisms in organelle nuclear insertions. Conclusions The common NHEJ signature that was identified here reveals that, in plant cells, mitochondria and plastid fragments in numins must meet during or prior to integration into the nuclear genome. Electronic supplementary material The online version of this article (10.1186/s12862-018-1279-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shir Portugez
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel.,School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel.
| |
Collapse
|
39
|
Steele LD, Coates BS, Seong KM, Valero MC, Mittapalli O, Sun W, Clark J, Pittendrigh BR. Variation in Mitochondria-Derived Transcript Levels Associated With DDT Resistance in the 91-R Strain of Drosophila melanogaster (Diptera: Drosophilidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5153340. [PMID: 30383265 PMCID: PMC6209762 DOI: 10.1093/jisesa/iey101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Indexed: 06/08/2023]
Abstract
The organochloride insecticide dichlorodiphenyltrichloroethane (DDT) and its metabolites can increase cellular levels of reactive oxygen species (ROS), cause mitochondrial dysfunction, and induce apoptosis. The highly DDT-resistant Drosophila melanogaster Meigen 1830 (Drosophila) strain, 91-R, and its susceptible control, 91-C, were used to investigate functional and structural changes among mitochondrial-derived pathways. Resequencing of mitochondrial genomes (mitogenomes) detected no structural differences between 91-R and 91-C, whereas RNA-seq suggested the differential expression of 221 mitochondrial-associated genes. Reverse transcriptase-quantitative PCR validation of 33 candidates confirmed that transcripts for six genes (Cyp12d1-p, Cyp12a4, cyt-c-d, COX5BL, COX7AL, CG17140) were significantly upregulated and two genes (Dif, Rel) were significantly downregulated in 91-R. Among the upregulated genes, four genes are duplicated within the reference genome (cyt-c-d, CG17140, COX5BL, and COX7AL). The predicted functions of the differentially expressed genes, or known functions of closely related genes, suggest that 91-R utilizes existing ROS regulation pathways of the mitochondria to combat increased ROS levels from exposure to DDT. This study represents, to our knowledge, the initial investigation of mitochondrial genome sequence variants and functional adaptations in responses to intense DDT selection and provides insights into potential adaptations of ROS management associated with DDT selection in Drosophila.
Collapse
Affiliation(s)
- Laura D Steele
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL
| | - Brad S Coates
- United States Department of Agriculture—Agricultural Research Service, Corn Insect and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University Ames, IA
| | - Keon Mook Seong
- Department of Entomology, Michigan State University, East Lansing, MI
| | - M Carmen Valero
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL
| | | | - Weilin Sun
- Department of Entomology, Michigan State University, East Lansing, MI
| | - John Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA
| | | |
Collapse
|
40
|
Complete mitogenome of Anopheles sinensis and mitochondrial insertion segments in the nuclear genomes of 19 mosquito species. PLoS One 2018; 13:e0204667. [PMID: 30261042 PMCID: PMC6160108 DOI: 10.1371/journal.pone.0204667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/12/2018] [Indexed: 11/19/2022] Open
Abstract
Anopheles sinensis is a major malarial vector in China and Southeast Asia. The mitochondria is involved in many important biological functions. Nuclear mitochondrial DNA segments (NUMTs) are common in eukaryotic organisms, but their characteristics are poorly understood. We sequenced and analyzed the complete mitochondrial (mt) genome of An. sinensis. The mt genome is 15,418 bp long and contains 13 protein-coding genes (PCGs), two rRNAs, 22 tRNAs and a large non-coding region. Its gene arrangement is similar to previously published mosquito mt genomes. We identified and analyzed the NUMTs of 19 mosquito species with both nuclear genomes and mt genome sequences. The number, total length and density of NUMTs are significantly correlated with genome size. About half of NUMTs are short (< 200 bp), but larger genomes can house longer NUMTs. NUMTs may help explain genome size expansion in mosquitoes. The expansion due to mitochondrial insertion segments is variable in different insect groups. PCGs are transferred to nuclear genomes at a higher frequency in mosquitoes, but NUMT origination is more different than in mammals. Larger-sized nuclear genomes have longer mt genome sequences in both mosquitoes and mammals. The study provides a foundation for the functional research of mitochondrial genes in An. sinensis and helps us understand the characteristics and origin of NUMTs and the potential contribution to genome expansion.
Collapse
|
41
|
Kim HT, Lee JM. Organellar genome analysis reveals endosymbiotic gene transfers in tomato. PLoS One 2018; 13:e0202279. [PMID: 30183712 PMCID: PMC6124701 DOI: 10.1371/journal.pone.0202279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2018] [Indexed: 01/13/2023] Open
Abstract
We assembled three complete mitochondrial genomes (mitogenomes), two of Solanum lycopersicum and one of Solanum pennellii, and analyzed their intra- and interspecific variations. The mitogenomes were 423,596-446,257 bp in length. Despite numerous rearrangements between the S. lycopersicum and S. pennellii mitogenomes, over 97% of the mitogenomes were similar to each other. These mitogenomes were compared with plastid and nuclear genomes to investigate genetic material transfers among DNA-containing organelles in tomato. In all mitogenomes, 9,598 bp of plastome sequences were found. Numerous nuclear copies of mitochondrial DNA (NUMTs) and plastid DNA (NUPTs) were observed in the S. lycopersicum and S. pennellii nuclear genomes. Several long organellar DNA fragments were tightly clustered in the nuclear genome; however, the NUMT and NUPT locations differed between the two species. Our results demonstrate the recent occurrence of frequent endosymbiotic gene transfers in tomato genomes.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, Korea
| |
Collapse
|
42
|
Liang B, Wang N, Li N, Kimball RT, Braun EL. Comparative Genomics Reveals a Burst of Homoplasy-Free Numt Insertions. Mol Biol Evol 2018; 35:2060-2064. [DOI: 10.1093/molbev/msy112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bin Liang
- Department of Biology, University of Florida, Gainesville, FL
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
- Forestry Research Institute of Hainan Province, Haikou, Hainan, P. R. China
| | - Ning Wang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Nan Li
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, CA
| | | | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL
| |
Collapse
|
43
|
Schiavo G, Strillacci MG, Ribani A, Bovo S, Roman-Ponce SI, Cerolini S, Bertolini F, Bagnato A, Fontanesi L. Few mitochondrial DNA sequences are inserted into the turkey (Meleagris gallopavo) nuclear genome: evolutionary analyses and informativity in the domestic lineage. Anim Genet 2018. [PMID: 29521475 DOI: 10.1111/age.12648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mitochondrial DNA (mtDNA) insertions have been detected in the nuclear genome of many eukaryotes. These sequences are pseudogenes originated by horizontal transfer of mtDNA fragments into the nuclear genome, producing nuclear DNA sequences of mitochondrial origin (numt). In this study we determined the frequency and distribution of mtDNA-originated pseudogenes in the turkey (Meleagris gallopavo) nuclear genome. The turkey reference genome (Turkey_2.01) was aligned with the reference linearized mtDNA sequence using last. A total of 32 numt sequences (corresponding to 18 numt regions derived by unique insertional events) were identified in the turkey nuclear genome (size ranging from 66 to 1415 bp; identity against the modern turkey mtDNA corresponding region ranging from 62% to 100%). Numts were distributed in nine chromosomes and in one scaffold. They derived from parts of 10 mtDNA protein-coding genes, ribosomal genes, the control region and 10 tRNA genes. Seven numt regions reported in the turkey genome were identified in orthologues positions in the Gallus gallus genome and therefore were present in the ancestral genome that in the Cretaceous originated the lineages of the modern crown Galliformes. Five recently integrated turkey numts were validated by PCR in 168 turkeys of six different domestic populations. None of the analysed numts were polymorphic (i.e. absence of the inserted sequence, as reported in numts of recent integration in other species), suggesting that the reticulate speciation model is not useful for explaining the origin of the domesticated turkey lineage.
Collapse
Affiliation(s)
- G Schiavo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - M G Strillacci
- Department of Veterinary Medicine, University of Milan, Via Celoria 10, 20133, Milano, Italy
| | - A Ribani
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - S Bovo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.,Biocomputing Group, Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via San Giacomo 9/2, 40126, Bologna, Italy
| | - S I Roman-Ponce
- Centro Nacional de Investigación en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agricola y Pecuarias (INIFAP), Km.1 Carretera a Colón, Auchitlán, 76280, Querétaro, Mexico
| | - S Cerolini
- Department of Veterinary Medicine, University of Milan, Via Celoria 10, 20133, Milano, Italy
| | - F Bertolini
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.,Department of Animal Science, Iowa State University, 2255 Kildee Hall, 50011, Ames, IA, USA
| | - A Bagnato
- Department of Veterinary Medicine, University of Milan, Via Celoria 10, 20133, Milano, Italy
| | - L Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| |
Collapse
|
44
|
The challenges of integrating two genomes in one cell. Curr Opin Microbiol 2017; 41:89-94. [PMID: 29277086 DOI: 10.1016/j.mib.2017.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/26/2017] [Accepted: 12/10/2017] [Indexed: 11/22/2022]
Abstract
Mutualistic bacteria and mitochondria have small genomes that harbor host-essential genes. A major question is why a distinct bacterial or mitochondrial genome is needed to encode these functions. The dual location of genes demand two sets of information processing systems, coordination of gene expression and elaborate transport systems. A simpler solution would be to harbor all genes in a single genome. Functional gene transfers to the host nuclear genome is uncommon in mutualistic bacteria and lost gene functions are rather rescued by co-symbiotic bacteria. Recent findings suggest that the mitochondrial genome is retained to avoid conflicting signals between protein targeting pathways in the cell. However, if the selective pressure for oxygenic respiration is lost, the mitochondrial genome will start to deteriorate and soon be lost.
Collapse
|
45
|
Calabrese FM, Balacco DL, Preste R, Diroma MA, Forino R, Ventura M, Attimonelli M. NumtS colonization in mammalian genomes. Sci Rep 2017; 7:16357. [PMID: 29180746 PMCID: PMC5703718 DOI: 10.1038/s41598-017-16750-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022] Open
Abstract
The colonization of the nuclear genome by mitochondrial DNA is an ongoing process in eukaryotes and plays an important role in genomic variability. Notwithstanding the DNA sequence availability of about 100 complete eukaryotic genomes, up to now NumtS distribution has been fully reported for a small number of sequenced eukaryotic species. With the aim to clarify the time and way of NumtS evolution, we explored the genomic distribution of NumtS in 23 eukaryotic species using an intra/interspecies in silico approach based on a cross-species similarity search and deeply investigate the evolution of NumtS in mammals. The intra- and interspecies analysis underlined how some mitochondrial regions that populated nuclear genomes can be considered as hotspots. Considering the large amount of NumtS we found in platypus and opossum genomes, we hypothesized the occurrence of an earlier colonization that happened prior to the Prototherian/Therian mammal divergence, approximately 160-210 million years ago. These events are still detectable due to the species-specific dynamics that have affected these genomes. Phylogenetic analyses of NumtS derived from two different mitochondrial DNA loci allowed us to recognize the unusual NumtS evolution that acted differently on primate and non-primate species' genomes.
Collapse
Affiliation(s)
- F M Calabrese
- Department of Biology, University of Bari, Bari, 70124, Italy
| | - D L Balacco
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - R Preste
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70124, Italy
| | - M A Diroma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70124, Italy
| | - R Forino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70124, Italy
| | - M Ventura
- Department of Biology, University of Bari, Bari, 70124, Italy.
| | - M Attimonelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70124, Italy.
| |
Collapse
|
46
|
Schiavo G, Hoffmann OI, Ribani A, Utzeri VJ, Ghionda MC, Bertolini F, Geraci C, Bovo S, Fontanesi L. A genomic landscape of mitochondrial DNA insertions in the pig nuclear genome provides evolutionary signatures of interspecies admixture. DNA Res 2017; 24:487-498. [PMID: 28460080 PMCID: PMC5737481 DOI: 10.1093/dnares/dsx019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 04/02/2017] [Indexed: 12/26/2022] Open
Abstract
Nuclear DNA sequences of mitochondrial origin (numts) are derived by insertion of mitochondrial DNA (mtDNA), into the nuclear genome. In this study, we provide, for the first time, a genome picture of numts inserted in the pig nuclear genome. The Sus scrofa reference nuclear genome (Sscrofa10.2) was aligned with circularized and consensus mtDNA sequences using LAST software. A total of 430 numt sequences that may represent 246 different numt integration events (57 numt regions determined by at least two numt sequences and 189 singletons) were identified, covering about 0.0078% of the nuclear genome. Numt integration events were correlated (0.99) to the chromosome length. The longest numt sequence (about 11 kbp) was located on SSC2. Six numts were sequenced and PCR amplified in pigs of European commercial and local pig breeds, of the Chinese Meishan breed and in European wild boars. Three of them were polymorphic for the presence or absence of the insertion. Surprisingly, the estimated age of insertion of two of the three polymorphic numts was more ancient than that of the speciation time of the Sus scrofa, supporting that these polymorphic sites were originated from interspecies admixture that contributed to shape the pig genome.
Collapse
Affiliation(s)
- Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy
| | - Orsolya Ivett Hoffmann
- Ruminant Genome Biology Group, NARIC, Agricultural Biotechnology Center, H-2100?Gödöllo, Hungary
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy
| | - Valerio Joe Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy
| | - Marco Ciro Ghionda
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy
| | - Francesca Bertolini
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy
| | - Claudia Geraci
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
47
|
Szafranski P. Intercompartmental Piecewise Gene Transfer. Genes (Basel) 2017; 8:genes8100260. [PMID: 28984842 PMCID: PMC5664110 DOI: 10.3390/genes8100260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022] Open
Abstract
Gene relocation from the residual genomes of organelles to the nuclear genome still continues, although as a scaled down evolutionary phenomenon, limited in occurrence mostly to protists (sensu lato) and land plants. During this process, the structural integrity of transferred genes is usually preserved. However, the relocation of mitochondrial genes that code for respiratory chain and ribosomal proteins is sometimes associated with their fragmentation into two complementary genes. Herein, this review compiles cases of piecewise gene transfer from the mitochondria to the nucleus, and discusses hypothesized mechanistic links between the fission and relocation of those genes.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Ancient mitochondrial pseudogenes reveal hybridization between distant lineages in the evolution of the Rupicapra genus. Gene 2017; 628:63-71. [DOI: 10.1016/j.gene.2017.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 11/23/2022]
|
49
|
Shi H, Xing Y, Mao X. The little brown bat nuclear genome contains an entire mitochondrial genome: Real or artifact? Gene 2017; 629:64-67. [PMID: 28754635 DOI: 10.1016/j.gene.2017.07.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 07/11/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Nuclear mitochondrial DNA sequences (NUMTs) have been documented in almost all eukaryotic genomes studied. Recently, with the number of sequenced genomes increasing, extremely large NUMTs, even a nearly entire mitochondrial genome, have been reported in some plants and animals. However, few such studies provided strong experimental evidences for these important discoveries. In this study using a computer-based search method an entire mitochondrial genome (NUMT-1) was found in the nuclear genome of a bat species (Myotis lucifugus). This super-large NUMT shared a same scaffold with a 754bp nuclear genomic sequence and a second NUMT (NUMT-2, 3292bp). If NUMT-1 was real, it will be the largest NUMT found in animals and this finding will provide valuable insights into the mode of generation of NUMTs in the nuclear genome. Unfortunately, although the initial sequencing technology of the published M. lucifugus genome makes the possibility of artifact less likely, our results from both the PCR amplification followed by Sanger sequencing and mapping method based on the whole-genome resequencing datasets suggested that the scaffold containing the entire mitochondrial genome was artifact possibly due to a misassembly of mitochondrial and the nuclear DNA sequences. Our current study highlights the necessity to validate the authenticity of extremely large NUMTs identified in previous searches on whole-genome sequence assemblies.
Collapse
Affiliation(s)
- Huizhen Shi
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Yutong Xing
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Xiuguang Mao
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
50
|
Striking pseudogenization in avian phylogenetics: Numts are large and common in falcons. Mol Phylogenet Evol 2017; 115:1-6. [PMID: 28690127 DOI: 10.1016/j.ympev.2017.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 11/21/2022]
Abstract
Nuclear copies of mitochondrial genes (numts) are a well-known feature of eukaryotic genomes and a concern in systematics, as they can mislead phylogenetic inferences when inadvertently used. Studies on avian numts initially based on the chicken genome suggest that numts may be uncommon and relatively short among birds. Here we ask how common numts are in falcons, based on recently sequenced genomes of the Saker falcon (Falco cherrug) and Peregrine falcon (F. peregrinus). We identified numts by BLASTN searches and then extracted CYTB, ND2 and COI sequences from them, which were then used for phylogeny inference along with several sequences from other species in Falconiformes. Our results indicate that avian numts may be much more frequent and longer than previously thought. Phylogenetic inferences revealed multiple independent nuclear insertions throughout the history of the Falconiformes, including cases of sequences available in public databases and wrongly identified as authentic mtDNA. New sequencing technologies and ongoing efforts for whole genome sequencing will provide exciting opportunities for avian numt research in the near future.
Collapse
|