1
|
Monarca RI, Silva RFB, Gabriel SI, Cerveira AM, von Merten S. The Presence of a Shelter in an Open Field Test Has Differential Effects on the Behavior and Stress Response of Two Mouse Species. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025. [PMID: 39868581 DOI: 10.1002/jez.2904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The open field test (OFT) is frequently used in research to assess anxiety-like behavior and locomotor activity. Its simple design can lead to the misconception that it is a standardized procedure comparable between laboratories. However, some modifications in the setup can cause changes in behavior. Different species might also react differently to the modifications introduced. There is thus need for a better understanding of the impact of modifications and their value for the species in question. Here, we tested two closely related mouse species, Mus musculus and Mus spretus, in an OFT with and without the presence of a shelter. We assessed mouse exploratory behavior through the analysis of multiple behavioral traits, and stress response through the measurement of circulating cortisol levels. Both species had elevated cortisol levels during the OFT in contrast to control animals which were not exposed to the OFT. While the presence of a shelter in the OFT increased the exploratory behavior in both mouse species, M. spretus, but not M. musculus, showed a reduction in cortisol levels. Also, other measured behaviors show a rather proactive coping strategy of the commensal M. musculus in contrast to a reactive strategy of the non-commensal M. spretus. Our study revealed a strong species-specific influence of the OFT design on the resulting behavior and stress levels of mice, illustrating the importance of OFT designs to account for the characteristics of the species under study. The addition of a shelter might be considered to improve experimental results by promoting animal welfare.
Collapse
Grants
- The research was funded by national funds, to CESAM by FCT/MCTES (UIDP/50017/2020|CESAM [https://doi.org/10.54499/UIDP/50017/2020], UIDB/50017/2020|CESAM [https://doi.org/10.54499/UIDB/50017/2020], LA/P/0094/2020|CESAM [https://doi.org/10.54499/UIDB/50017/2020]), and to CE3C by FCT/MCTES UIDP/00329/2020|cE3c (https://doi.org/10.54499/UIDP/00329/2020). AMC was funded by national funds (OE), through FCT-Fundação para a Ciência e a Tecnologia, I.P., in the scope of the framework contract foreseen in the numbers 4, 5, and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. SvM was partially funded through an FCT post-doc fellowship (SFRH/BPD/118053/2016).
Collapse
Affiliation(s)
- Rita I Monarca
- Departamento de Biologia, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- CESAM-Center for Environmental and Marine Studies, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- CE3C-Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo F B Silva
- Departamento de Biologia, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia I Gabriel
- Departamento de Biologia, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- CESAM-Center for Environmental and Marine Studies, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- CE3C-Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Cerveira
- CESAM-Center for Environmental and Marine Studies, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Sophie von Merten
- Departamento de Biologia, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- CESAM-Center for Environmental and Marine Studies, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Environment and Biodiversity, University of Salzburg, Salzburg, Austria
| |
Collapse
|
2
|
Chen GY, Huang SY, Lin MD, Chouvenc T, Ching YH, Li HF. Hybrids of two destructive subterranean termites established in the field, revealing a potential for gene flow between species. Heredity (Edinb) 2024; 132:257-266. [PMID: 38509263 PMCID: PMC11074111 DOI: 10.1038/s41437-024-00679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Hybridization between invasive pest species may lead to significant genetic and economic impacts that require close monitoring. The two most invasive and destructive termite species worldwide, Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann), have the potential for hybridization in the field. A three-year field survey conducted during the dispersal flight season of Coptotermes in Taiwan identified alates with atypical morphology, which were confirmed as hybrids of the two Coptotermes species using microsatellite and mitochondrial analyses. Out of 27,601 alates collected over three years, 4.4% were confirmed as hybrid alates, and some advanced hybrids (>F1 generations) were identified. The hybrid alates had a dispersal flight season that overlapped with the two parental species 13 out of 15 times. Most of the hybrid alates were females, implying that mating opportunities beyond F1 may primarily be possible through female hybrids. However, the incipient colony growth results from all potential mating combinations suggest that only backcross colonies with hybrid males could sometimes lead to brood development. The observed asymmetrical viability and fertility of hybrid alates may critically reduce the probability of advanced-hybrid colonies being established in the field.
Collapse
Affiliation(s)
- Guan-Yu Chen
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Ying Huang
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Thomas Chouvenc
- Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, University of Florida, Ft. Lauderdale, FL, USA
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan.
| | - Hou-Feng Li
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan.
- i- Center for Advanced Science and Technology, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
3
|
El Yakoubi W, Akera T. Condensin dysfunction is a reproductive isolating barrier in mice. Nature 2023; 623:347-355. [PMID: 37914934 PMCID: PMC11379054 DOI: 10.1038/s41586-023-06700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Reproductive isolation occurs when the genomes of two populations accumulate genetic incompatibilities that prevent interbreeding1,2. Understanding of hybrid incompatibility at the cell biology level is limited, particularly in the case of hybrid female sterility3. Here we find that species divergence in condensin regulation and centromere organization between two mouse species, Mus musculus domesticus and Mus spretus, drives chromosome decondensation and mis-segregation in their F1 hybrid oocytes, reducing female fertility. The decondensation in hybrid oocytes was especially prominent at pericentromeric major satellites, which are highly abundant at M. m. domesticus centromeres4-6, leading to species-specific chromosome mis-segregation and egg aneuploidy. Consistent with the condensation defects, a chromosome structure protein complex, condensin II7,8, was reduced on hybrid oocyte chromosomes. We find that the condensin II subunit NCAPG2 was specifically reduced in the nucleus in prophase and that overexpressing NCAPG2 rescued both the decondensation and egg aneuploidy phenotypes. In addition to the overall reduction in condensin II on chromosomes, major satellites further reduced condensin II levels locally, explaining why this region is particularly prone to decondensation. Together, this study provides cell biological insights into hybrid incompatibility in female meiosis and demonstrates that condensin misregulation and pericentromeric satellite expansion can establish a reproductive isolating barrier in mammals.
Collapse
Affiliation(s)
- Warif El Yakoubi
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Kang T, Moore EC, Kopania EEK, King CD, Schilling B, Campisi J, Good JM, Brem RB. A natural variation-based screen in mouse cells reveals USF2 as a regulator of the DNA damage response and cellular senescence. G3 (BETHESDA, MD.) 2023; 13:jkad091. [PMID: 37097016 PMCID: PMC10320765 DOI: 10.1093/g3journal/jkad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
Cellular senescence is a program of cell cycle arrest, apoptosis resistance, and cytokine release induced by stress exposure in metazoan cells. Landmark studies in laboratory mice have characterized a number of master senescence regulators, including p16INK4a, p21, NF-κB, p53, and C/EBPβ. To discover other molecular players in senescence, we developed a screening approach to harness the evolutionary divergence between mouse species. We found that primary cells from the Mediterranean mouse Mus spretus, when treated with DNA damage to induce senescence, produced less cytokine and had less-active lysosomes than cells from laboratory Mus musculus. We used allele-specific expression profiling to catalog senescence-dependent cis-regulatory variation between the species at thousands of genes. We then tested for correlation between these expression changes and interspecies sequence variants in the binding sites of transcription factors. Among the emergent candidate senescence regulators, we chose a little-studied cell cycle factor, upstream stimulatory factor 2 (USF2), for molecular validation. In acute irradiation experiments, cells lacking USF2 had compromised DNA damage repair and response. Longer-term senescent cultures without USF2 mounted an exaggerated senescence regulatory program-shutting down cell cycle and DNA repair pathways, and turning up cytokine expression, more avidly than wild-type. We interpret these findings under a model of pro-repair, anti-senescence regulatory function by USF2. Our study affords new insights into the mechanisms by which cells commit to senescence, and serves as a validated proof of concept for natural variation-based regulator screens.
Collapse
Affiliation(s)
- Taekyu Kang
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Emily C Moore
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | | | | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Liu SM, Ifebi B, Johnson F, Xu A, Ho J, Yang Y, Schwartz G, Jo YH, Chua S. The gut signals to AGRP-expressing cells of the pituitary to control glucose homeostasis. J Clin Invest 2023; 133:e164185. [PMID: 36787185 PMCID: PMC10065075 DOI: 10.1172/jci164185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Glucose homeostasis can be improved after bariatric surgery, which alters bile flow and stimulates gut hormone secretion, particularly FGF15/19. FGFR1 expression in AGRP-expressing cells is required for bile acids' ability to improve glucose control. We show that the mouse Agrp gene has 3 promoter/enhancer regions that direct transcription of each of their own AGRP transcripts. One of these Agrp promoters/enhancers, Agrp-B, is regulated by bile acids. We generated an Agrp-B knockin FLP/knockout allele. AGRP-B-expressing cells are found in endocrine cells of the pars tuberalis and coexpress diacylglycerol lipase B - an endocannabinoid biosynthetic enzyme - distinct from pars tuberalis thyrotropes. AGRP-B expression is also found in the folliculostellate cells of the pituitary's anterior lobe. Mice without AGRP-B were protected from glucose intolerance induced by high-fat feeding but not from excess weight gain. Chemogenetic inhibition of AGRP-B cells improved glucose tolerance by enhancing glucose-stimulated insulin secretion. Inhibition of the AGRP-B cells also caused weight loss. The improved glucose tolerance and reduced body weight persisted up to 6 weeks after cessation of the DREADD-mediated inhibition, suggesting the presence of a biological switch for glucose homeostasis that is regulated by long-term stability of food availability.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunlei Yang
- Department of Medicine
- Department of Neuroscience, and
| | - Gary Schwartz
- Department of Medicine
- Department of Neuroscience, and
| | - Young Hwan Jo
- Department of Medicine
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA
| | | |
Collapse
|
6
|
Raza A, Diehl SA, Krementsov DN, Case LK, Li D, Kost J, Ball RL, Chesler EJ, Philip VM, Huang R, Chen Y, Ma R, Tyler AL, Mahoney JM, Blankenhorn EP, Teuscher C. A genetic locus complements resistance to Bordetella pertussis-induced histamine sensitization. Commun Biol 2023; 6:244. [PMID: 36879097 PMCID: PMC9988836 DOI: 10.1038/s42003-023-04603-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Histamine plays pivotal role in normal physiology and dysregulated production of histamine or signaling through histamine receptors (HRH) can promote pathology. Previously, we showed that Bordetella pertussis or pertussis toxin can induce histamine sensitization in laboratory inbred mice and is genetically controlled by Hrh1/HRH1. HRH1 allotypes differ at three amino acid residues with P263-V313-L331 and L263-M313-S331, imparting sensitization and resistance respectively. Unexpectedly, we found several wild-derived inbred strains that carry the resistant HRH1 allotype (L263-M313-S331) but exhibit histamine sensitization. This suggests the existence of a locus modifying pertussis-dependent histamine sensitization. Congenic mapping identified the location of this modifier locus on mouse chromosome 6 within a functional linkage disequilibrium domain encoding multiple loci controlling sensitization to histamine. We utilized interval-specific single-nucleotide polymorphism (SNP) based association testing across laboratory and wild-derived inbred mouse strains and functional prioritization analyses to identify candidate genes for this modifier locus. Atg7, Plxnd1, Tmcc1, Mkrn2, Il17re, Pparg, Lhfpl4, Vgll4, Rho and Syn2 are candidate genes within this modifier locus, which we named Bphse, enhancer of Bordetella pertussis induced histamine sensitization. Taken together, these results identify, using the evolutionarily significant diversity of wild-derived inbred mice, additional genetic mechanisms controlling histamine sensitization.
Collapse
Affiliation(s)
- Abbas Raza
- Department of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Sean A Diehl
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Laure K Case
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Dawei Li
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Jason Kost
- Catalytic Data Science, Charleston, SC, 29403, USA
| | - Robyn L Ball
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | | | - Rui Huang
- School of Life Sciences, University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan Chen
- School of Life Sciences, University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Runlin Ma
- School of Life Sciences, University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Anna L Tyler
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - J Matthew Mahoney
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Elizabeth P Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Cory Teuscher
- Department of Medicine, University of Vermont, Burlington, VT, 05405, USA.
- Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
7
|
Timmermans S, Vandewalle J, Libert C. Mousepost 2.0, a major expansion of the resource. Nucleic Acids Res 2023; 51:1652-1661. [PMID: 36762471 PMCID: PMC9976886 DOI: 10.1093/nar/gkad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
The Mousepost 1.0 online search tool, launched in 2017, allowed to search for variations in all protein-coding gene sequences of 36 sequenced mouse inbred strains, compared to the reference strain C57BL/6J, which could be linked to strain-specific phenotypes and modifier effects. Because recently these genome sequences have been significantly updated and sequences of 16 extra strains added by the Mouse Genomes Project, a profound update, correction and expansion of the Mousepost 1.0 database has been performed and is reported here. Moreover, we have added a new class of protein disturbing sequence polymorphisms (besides stop codon losses, stop codon gains, small insertions and deletions, and missense mutations), namely start codon mutations. The current version, Mousepost 2.0 (https://mousepost.be), therefore is a significantly updated and invaluable tool available to the community and is described here and foreseen by multiple examples.
Collapse
Affiliation(s)
- Steven Timmermans
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Tigano A, Khan R, Omer AD, Weisz D, Dudchenko O, Multani AS, Pathak S, Behringer RR, Aiden EL, Fisher H, MacManes MD. Chromosome size affects sequence divergence between species through the interplay of recombination and selection. Evolution 2022; 76:782-798. [PMID: 35271737 PMCID: PMC9314927 DOI: 10.1111/evo.14467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/12/2021] [Indexed: 01/21/2023]
Abstract
The structure of the genome shapes the distribution of genetic diversity and sequence divergence. To investigate how the relationship between chromosome size and recombination rate affects sequence divergence between species, we combined empirical analyses and evolutionary simulations. We estimated pairwise sequence divergence among 15 species from three different mammalian clades-Peromyscus rodents, Mus mice, and great apes-from chromosome-level genome assemblies. We found a strong significant negative correlation between chromosome size and sequence divergence in all species comparisons within the Peromyscus and great apes clades but not the Mus clade, suggesting that the dramatic chromosomal rearrangements among Mus species may have masked the ancestral genomic landscape of divergence in many comparisons. Our evolutionary simulations showed that the main factor determining differences in divergence among chromosomes of different sizes is the interplay of recombination rate and selection, with greater variation in larger populations than in smaller ones. In ancestral populations, shorter chromosomes harbor greater nucleotide diversity. As ancestral populations diverge, diversity present at the onset of the split contributes to greater sequence divergence in shorter chromosomes among daughter species. The combination of empirical data and evolutionary simulations revealed that chromosomal rearrangements, demography, and divergence times may also affect the relationship between chromosome size and divergence, thus deepening our understanding of the role of genome structure in the evolution of species divergence.
Collapse
Affiliation(s)
- Anna Tigano
- Molecular, Cellular, and Biomedical Sciences DepartmentUniversity of New HampshireDurhamNH03824USA,Hubbard Center for Genome StudiesUniversity of New HampshireDurhamNH03824USA,Current address: Department of BiologyUniversity of British Columbia – Okanagan CampusKelownaBCV1 V 1V7Canada
| | - Ruqayya Khan
- The Center for Genome ArchitectureDepartment of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Arina D. Omer
- The Center for Genome ArchitectureDepartment of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - David Weisz
- The Center for Genome ArchitectureDepartment of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Olga Dudchenko
- The Center for Genome ArchitectureDepartment of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA,Department of Computer ScienceDepartment of Computational and Applied MathematicsRice UniversityHoustonTX77030USA
| | - Asha S. Multani
- Department of GeneticsM.D. Anderson Cancer CenterUniversity of TexasHoustonTX77030USA
| | - Sen Pathak
- Department of GeneticsM.D. Anderson Cancer CenterUniversity of TexasHoustonTX77030USA
| | - Richard R. Behringer
- Department of GeneticsM.D. Anderson Cancer CenterUniversity of TexasHoustonTX77030USA
| | - Erez L. Aiden
- The Center for Genome ArchitectureDepartment of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA,Department of Computer ScienceDepartment of Computational and Applied MathematicsRice UniversityHoustonTX77030USA,Center for Theoretical and Biological PhysicsRice UniversityHoustonTX77030USA,Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China,School of Agriculture and EnvironmentUniversity of Western AustraliaPerthWA6009Australia
| | - Heidi Fisher
- Department of BiologyUniversity of MarylandCollege ParkMD20742USA
| | - Matthew D. MacManes
- Molecular, Cellular, and Biomedical Sciences DepartmentUniversity of New HampshireDurhamNH03824USA,Hubbard Center for Genome StudiesUniversity of New HampshireDurhamNH03824USA
| |
Collapse
|
9
|
Banker SE, Bonhomme F, Nachman MW. Bidirectional introgression between Mus musculus domesticus and Mus spretus. Genome Biol Evol 2022; 14:6509516. [PMID: 35038727 PMCID: PMC8784167 DOI: 10.1093/gbe/evab288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles—including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Collapse
Affiliation(s)
- Sarah E Banker
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - François Bonhomme
- Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| | - Michael W Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
10
|
Zou X, Schaefke B, Li Y, Jia F, Sun W, Li G, Liang W, Reif T, Heyd F, Gao Q, Tian S, Li Y, Tang Y, Fang L, Hu Y, Chen W. Mammalian splicing divergence is shaped by drift, buffering in trans, and a scaling law. Life Sci Alliance 2022; 5:5/4/e202101333. [PMID: 34969779 PMCID: PMC8739531 DOI: 10.26508/lsa.202101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
This study globally investigates the allelic splicing pattern in multiple tissues of an F1 hybrid mouse and reveals the underlying driving forces shaping such tissue-dependent splicing divergence. Alternative splicing is ubiquitous, but the mechanisms underlying its pattern of evolutionary divergence across mammalian tissues are still underexplored. Here, we investigated the cis-regulatory divergences and their relationship with tissue-dependent trans-regulation in multiple tissues of an F1 hybrid between two mouse species. Large splicing changes between tissues are highly conserved and likely reflect functional tissue-dependent regulation. In particular, micro-exons frequently exhibit this pattern with high inclusion levels in the brain. Cis-divergence of splicing appears to be largely non-adaptive. Although divergence is in general associated with higher densities of sequence variants in regulatory regions, events with high usage of the dominant isoform apparently tolerate more mutations, explaining why their exon sequences are highly conserved but their intronic splicing site flanking regions are not. Moreover, we demonstrate that non-adaptive mutations are often masked in tissues where accurate splicing likely is more important, and experimentally attribute such buffering effect to trans-regulatory splicing efficiency.
Collapse
Affiliation(s)
- Xudong Zou
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Bernhard Schaefke
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Yisheng Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fujian Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wei Sun
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Guipeng Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Weizheng Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Tristan Reif
- Institute for Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Florian Heyd
- Institute for Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Qingsong Gao
- Laboratory for Systems Biology and Functional Genomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Shuye Tian
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yanping Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yisen Tang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liang Fang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Yuhui Hu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wei Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China .,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Matthews BJ, Melia T, Waxman DJ. Harnessing natural variation to identify cis regulators of sex-biased gene expression in a multi-strain mouse liver model. PLoS Genet 2021; 17:e1009588. [PMID: 34752452 PMCID: PMC8664386 DOI: 10.1371/journal.pgen.1009588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/10/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences in gene expression are widespread in the liver, where many autosomal factors act in tandem with growth hormone signaling to regulate individual variability of sex differences in liver metabolism and disease. Here, we compare hepatic transcriptomic and epigenetic profiles of mouse strains C57BL/6J and CAST/EiJ, representing two subspecies separated by 0.5-1 million years of evolution, to elucidate the actions of genetic factors regulating liver sex differences. We identify 144 protein coding genes and 78 lncRNAs showing strain-conserved sex bias; many have gene ontologies relevant to liver function, are more highly liver-specific and show greater sex bias, and are more proximally regulated than genes whose sex bias is strain-dependent. The strain-conserved genes include key growth hormone-dependent transcriptional regulators of liver sex bias; however, three other transcription factors, Trim24, Tox, and Zfp809, lose their sex-biased expression in CAST/EiJ mouse liver. To elucidate the observed strain specificities in expression, we characterized the strain-dependence of sex-biased chromatin opening and enhancer marks at cis regulatory elements (CREs) within expression quantitative trait loci (eQTL) regulating liver sex-biased genes. Strikingly, 208 of 286 eQTLs with strain-specific, sex-differential effects on expression were associated with a complete gain, loss, or reversal of the sex differences in expression between strains. Moreover, 166 of the 286 eQTLs were linked to the strain-dependent gain or loss of localized sex-biased CREs. Remarkably, a subset of these CREs apparently lacked strain-specific genetic variants yet showed coordinated, strain-dependent sex-biased epigenetic regulation. Thus, we directly link hundreds of strain-specific genetic variants to the high variability in CRE activity and expression of sex-biased genes and uncover underlying genetically-determined epigenetic states controlling liver sex bias in genetically diverse mouse populations.
Collapse
Affiliation(s)
- Bryan J. Matthews
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Tisha Melia
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - David J. Waxman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Davies B, Hinch AG, Cebrian-Serrano A, Alghadban S, Becker PW, Biggs D, Hernandez-Pliego P, Preece C, Moralli D, Zhang G, Myers S, Donnelly P. Altering the binding properties of PRDM9 partially restores fertility across the species boundary. Mol Biol Evol 2021; 38:5555-5562. [PMID: 34491357 PMCID: PMC8662609 DOI: 10.1093/molbev/msab269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sterility or subfertility of male hybrid offspring is commonly observed. This phenomenon contributes to reproductive barriers between the parental populations, an early step in the process of speciation. One frequent cause of such infertility is a failure of proper chromosome pairing during male meiosis. In subspecies of the house mouse, the likelihood of successful chromosome synapsis is improved by the binding of the histone methyltransferase PRDM9 to both chromosome homologues at matching positions. Using genetic manipulation, we altered PRDM9 binding to occur more often at matched sites, and find that chromosome pairing defects can be rescued, not only in an inter-subspecific cross, but also between distinct species. Using different engineered variants, we demonstrate a quantitative link between the degree of matched homologue binding, chromosome synapsis and rescue of fertility in hybrids between Mus musculus and Mus spretus. The resulting partial restoration of fertility reveals additional mechanisms at play that act to lock-in the reproductive isolation between these two species.
Collapse
Affiliation(s)
- Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | | | | | - Samy Alghadban
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Philipp W Becker
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Daniel Biggs
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | | | - Chris Preece
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Gang Zhang
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Simon Myers
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK.,Dept. of Statistics, University of Oxford, OX1 3LB, UK
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK.,Dept. of Statistics, University of Oxford, OX1 3LB, UK
| |
Collapse
|
13
|
Faber JE, Storz JF, Cheviron ZA, Zhang H. High-altitude rodents have abundant collaterals that protect against tissue injury after cerebral, coronary and peripheral artery occlusion. J Cereb Blood Flow Metab 2021; 41:731-744. [PMID: 32703056 PMCID: PMC7983333 DOI: 10.1177/0271678x20942609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Collateral number/density varies widely in brain and other tissues among strains of Mus musculus mice due to differences in genetic background. Recent studies have shown that prolonged exposure to reduced atmospheric oxygen induces additional collaterals to form, suggesting that natural selection may favor increased collaterals in populations native to high-altitude. High-altitude guinea pigs (Cavia) and deer mice (Peromyscus) were compared with lowland species of Peromyscus, Mus and Rattus (9 species/strains examined). Collateral density, diameter and other morphometrics were measured in brain where, importantly, collateral abundance reflects that in other tissues of the same individual. Guinea pigs and high-altitude deer mice had a greater density of pial collaterals than lowlanders. Consistent with this, guinea pigs and highlander mice evidenced complete and 80% protection against stroke, respectively. They also sustained significantly less ischemia in heart and lower extremities after arterial occlusion. Vessels of the circle of Willis, including the communicating collateral arteries, also exhibited unique features in the highland species. Our findings support the hypothesis that species native to high-altitude have undergone genetic selection for abundant collaterals, suggesting that besides providing protection in obstructive disease, collaterals serve a physiological function to optimize oxygen delivery to meet oxygen demand when oxygen is limiting.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Hasegawa A, Mochida K, Matoba S, Inoue K, Hama D, Kadota M, Hiraiwa N, Yoshiki A, Ogura A. Development of assisted reproductive technologies for Mus spretus†. Biol Reprod 2020; 104:234-243. [PMID: 32990726 DOI: 10.1093/biolre/ioaa177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 02/04/2023] Open
Abstract
The genus Mus consists of many species with high genetic diversity. However, only one species, Mus musculus (the laboratory mouse), is common in biomedical research. The unavailability of assisted reproductive technologies (ARTs) for other Mus species might be a major reason for their limited use in laboratories. Here, we devised ARTs for Mus spretus (the Algerian mouse), a commonly used wild-derived Mus species. We found that in vitro production of M. spretus embryos was difficult because of low efficacies of superovulation with equine chorionic gonadotropin or anti-inhibin serum (AIS) (5-8 oocytes per female) and a low fertilization rate following in vitro fertilization (IVF; 15.2%). The primary cause of this was the hardening of the zona pellucida but not the sperm's fertilizing ability, as revealed by reciprocal IVF with laboratory mice. The largest number of embryos (16 per female) were obtained when females were injected with AIS followed by human chorionic gonadotropin and estradiol injections 24 h later, and then by natural mating. These in vivo-derived 2-cell embryos could be vitrified/warmed with a high survival rate (94%) using an ethylene glycol-based solution. Importantly, more than 60% of such embryos developed into healthy offspring following interspecific embryo transfer into (C57BL/6 × C3H) F1 female mice. Thus, we have devised practical ARTs for Mus spretus mice, enabling efficient production of embryos and animals, with safe laboratory preservation of their strains. In addition, we have demonstrated that interspecific embryo transfer is possible in murine rodents.
Collapse
Affiliation(s)
| | | | - Shogo Matoba
- RIKEN BioResouce Research Center, Tsukuba, Japan
| | - Kimiko Inoue
- RIKEN BioResouce Research Center, Tsukuba, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Japan
| | - Daiki Hama
- RIKEN BioResouce Research Center, Tsukuba, Japan
| | | | | | | | - Atsuo Ogura
- RIKEN BioResouce Research Center, Tsukuba, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Japan.,Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan.,RIKEN Cluster for Pioneering Research, Saitama, Japan
| |
Collapse
|
15
|
Mus musculus populations in Western Australia lack VKORC1 mutations conferring resistance to first generation anticoagulant rodenticides: Implications for conservation and biosecurity. PLoS One 2020; 15:e0236234. [PMID: 32970676 PMCID: PMC7513997 DOI: 10.1371/journal.pone.0236234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022] Open
Abstract
Background Humans routinely attempt to manage pest rodent populations with anticoagulant rodenticides (ARs). We require information on resistance to ARs within rodent populations to have effective eradication programs that minimise exposure in non-target species. Mutations to the VKORC1 gene have been shown to confer resistance in rodents with high proportions of resistance in mice found in all European populations tested. We screened mutations in Mus musculus within Western Australia, by sampling populations from the capital city (Perth) and a remote island (Browse Island). These are the first Australian mouse populations screened for resistance using this method. Additionally, the mitochondrial D-loop of house mice was sequenced to explore population genetic structure, identify the origin of Western Australian mice, and to elucidate whether resistance was linked to certain haplotypes. Results No resistance-related VKORC1 mutations were detected in either house mouse population. A genetic introgression in the intronic sequence of the VKORC1 gene of Browse Island house mouse was detected which is thought to have originated through hybridisation with the Algerian mouse (Mus spretus). Analysis of the mitochondrial D-loop reported two haplotypes in the house mouse population of Perth, and two haplotypes in the population of Browse Island. Conclusions Both house mouse populations exhibited no genetic resistance to ARs, in spite of free use of ARs in Western Australia. Therefore weaker anticoagulant rodenticides can be employed in pest control and eradication attempts, which will result in reduced negative impacts on non-target species. Biosecurity measures must be in place to avoid introduction of resistant house mice, and new house mouse subspecies to Western Australia.
Collapse
|
16
|
Morales-Prieto N, López de Lerma N, Pacheco IL, Huertas-Abril PV, Pérez J, Peinado R, Abril N. Protective effect of Pedro-Ximénez must against p,p'-DDE-induced liver damages in aged Mus spretus mice. Food Chem Toxicol 2020; 136:110984. [PMID: 31765701 DOI: 10.1016/j.fct.2019.110984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
|
17
|
Michán C, Chicano-Gálvez E, Fuentes-Almagro CA, Alhama J. Redox and global interconnected proteome changes in mice exposed to complex environmental hazards surrounding Doñana National Park. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:427-439. [PMID: 31158671 DOI: 10.1016/j.envpol.2019.05.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Natural environments are receiving an increasing number of contaminants. Therefore, the evaluation and identification of early responses to pollution in these complex habitats is an urgent and challenging task. Doñana National Park (DNP, SW Spain) has been widely used as a model area for environmental studies because, despite its strictly protected core, it is surrounded by numerous threat sources from agricultural, mining and industrial activities. Since many pollutants often induce oxidative stress, redox proteomics was used to detect redox-based variations within the proteome of Mus spretus mice captured in DNP and the surrounding areas. Functional analysis showed that most differentially oxidized proteins are involved in the maintenance of homeostasis, by eliciting mechanisms to respond to toxic substances and oxidative stress, such as antioxidant and biotransformation processes, immune and inflammatory responses, and blood coagulation. Furthermore, changes in the overall protein abundance were also analysed by label-free quantitative proteomics. The upregulation of phase I and II biotransformation enzymes in mice from Lucio del Palacio may be an alert for organic pollution in the area located at the heart of DNP. Metabolic processes involved in protein turnover (proteolysis, amino acid catabolism, new protein biosynthesis and folding) were activated in response to oxidative damage to these biomolecules. Consequently, aerobic respiratory metabolism increased to address the greater ATP demands. Alterations of cholesterol metabolism that could cause hepatic steatosis were also detected. The proteomic detection of globally altered metabolic and physiological processes offers a complete view of the main biological changes caused by environmental pollution in complex habitats.
Collapse
Affiliation(s)
- Carmen Michán
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | | | | | - José Alhama
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain.
| |
Collapse
|
18
|
van der Veeken J, Zhong Y, Sharma R, Mazutis L, Dao P, Pe'er D, Leslie CS, Rudensky AY. Natural Genetic Variation Reveals Key Features of Epigenetic and Transcriptional Memory in Virus-Specific CD8 T Cells. Immunity 2019; 50:1202-1217.e7. [PMID: 31027997 DOI: 10.1016/j.immuni.2019.03.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/15/2019] [Accepted: 03/27/2019] [Indexed: 12/29/2022]
Abstract
Stable changes in chromatin states and gene expression in cells of the immune system form the basis for memory of infections and other challenges. Here, we used naturally occurring cis-regulatory variation in wild-derived inbred mouse strains to explore the mechanisms underlying long-lasting versus transient gene regulation in CD8 T cells responding to acute viral infection. Stably responsive DNA elements were characterized by dramatic and congruent chromatin remodeling events affecting multiple neighboring sites and required distinct transcription factor (TF) binding motifs for their accessibility. Specifically, we found that cooperative recruitment of T-box and Runx family transcription factors to shared targets mediated stable chromatin remodeling upon T cell activation. Our observations provide insights into the molecular mechanisms driving virus-specific CD8 T cell responses and suggest a general mechanism for the formation of transcriptional and epigenetic memory applicable to other immune and non-immune cells.
Collapse
Affiliation(s)
- Joris van der Veeken
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Zhong
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA; Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
| | - Linas Mazutis
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phuong Dao
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
19
|
Alhama J, Fuentes-Almagro CA, Abril N, Michán C. Alterations in oxidative responses and post-translational modification caused by p,p´-DDE in Mus spretus testes reveal Cys oxidation status in proteins related to cell-redox homeostasis and male fertility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:656-669. [PMID: 29723838 DOI: 10.1016/j.scitotenv.2018.04.305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
The major derivate of DDT, 1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene (p,p´-DDE), is a persistent pollutant previously associated with oxidative stress. Additionally, p,p´-DDE has been linked to several metabolic alterations related to sexual function in rodents. In this study, we analysed the effects of a non-lethal p,p´-DDE dose to Mus spretus mice in testes, focusing on oxidative damage to biomolecules, defence mechanisms against oxidative stress and post-translational protein modifications. No increase in lipid or DNA oxidation was observed, although antioxidative enzymatic defences and redox status of glutathione were altered in several ways. Global protein carbonylation and phosphorylation were significantly reduced in testes from p,p´-DDE-exposed mice; however, the total redox state of Cys thiols did not exhibit a defined pattern. We analysed the reversible redox state of specific Cys residues in detail with differential isotopic labelling and a shotgun labelling-based MS/MS proteomic approach for identification and quantification of altered peptides. Our results show that Cys residues are significantly affected by p,p´-DDE in several proteins related to oxidative stress and/or male fertility, particularly those participating in fertilization, sperm capacitation and blood coagulation. These molecular changes could explain the sexual abnormalities previously described in p,p´-DDE exposed organisms.
Collapse
Affiliation(s)
- José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Carlos A Fuentes-Almagro
- Servicio Central de Apoyo a la Investigación (SCAI), Unidad de Proteómica, Universidad de Córdoba, Campus de Rabanales, Edificio Ramón y Cajal, E-14071 Córdoba, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain.
| |
Collapse
|
20
|
Poltorak A, Apalko S, Sherbak S. Wild-derived mice: from genetic diversity to variation in immune responses. Mamm Genome 2018; 29:577-584. [PMID: 30056578 DOI: 10.1007/s00335-018-9766-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
Classical inbred mouse strains have historically been instrumental in mapping immunological traits. However, most of the classical strains originate from a relatively limited number of founder animals, largely within the Mus musculus domesticus subspecies. Therefore, their genetic diversity is ultimately limited. For this reason, it is not feasible to use these mice for exhaustive interrogation of immune signaling pathways. In order to investigate networks through forward genetic analysis, larger genetic diversity is required than is introduced under laboratory conditions. Recently, inbred strains from other mouse subspecies were established such as Mus musculus castaneus and Mus musculus musculus, which diverged from a shared common ancestor with Mus musculus domesticus more than one million years ago. A direct genomic comparison clearly demonstrates the evolutionary divergence that has occurred between wild-derived mice and the classical inbred strains. When compared to classical inbred strains, wild-derived mice exhibit polymorphisms every 100-200 base pairs. Studying the molecular basis of these traits provides us with insight into how the immune system can evolve regulatory features to accommodate environment-specific constraints. Because most wild-derived strains are able to breed with classical inbred mice, they represent a rich source of evolutionarily significant diversity for forward genetic studies. These organisms are an emerging, though still largely unexplored, model for the identification and study of novel immunological genes.
Collapse
Affiliation(s)
- Alexander Poltorak
- Department of Immunology, Tufts University, Boston, MA, 02111, USA. .,Petrozavodsk State University, Karelia, Russian Federation.
| | | | - Sergei Sherbak
- City Hospital, 40, St. Petersburg, Russian Federation.,St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
21
|
Morales-Prieto N, Ruiz-Laguna J, Sheehan D, Abril N. Transcriptome signatures of p,p´-DDE-induced liver damage in Mus spretus mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:150-167. [PMID: 29554563 DOI: 10.1016/j.envpol.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/19/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
The use of DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) in some countries, although regulated, is contributing to an increased worldwide risk of exposure to this organochlorine pesticide or its derivative p,p'-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene]. Many studies have associated p,p'-DDE exposure to type 2 diabetes, obesity and alterations of the reproductive system, but their molecular mechanisms of toxicity remain poorly understood. We have addressed this issue by using commercial microarrays based on probes for the entire Mus musculus genome to determine the hepatic transcriptional signatures of p,p'-DDE in the phylogenetically close mouse species Mus spretus. High-stringency hybridization conditions and analysis assured reliable results, which were also verified, in part, by qRT-PCR, immunoblotting and/or enzymatic activity. Our data linked 198 deregulated genes to mitochondrial dysfunction and perturbations of central signaling pathways (kinases, lipids, and retinoic acid) leading to enhanced lipogenesis and aerobic glycolysis, inflammation, cell proliferation and testosterone catabolism and excretion. Alterations of transcript levels of genes encoding enzymes involved in testosterone catabolism and excretion would explain the relationships established between p,p´-DDE exposure and reproductive disorders, obesity and diabetes. Further studies will help to fully understand the molecular basis of p,p´-DDE molecular toxicity in liver and reproductive organs, to identify effective exposure biomarkers and perhaps to design efficient p,p'-DDE exposure counteractive strategies.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Julia Ruiz-Laguna
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - David Sheehan
- College of Arts and Science, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| |
Collapse
|
22
|
Timmermans S, Souffriau J, Vandewalle J, Van Wyngene L, Van Looveren K, Vanderhaeghen T, Libert C. Using the inbred mouse strain SPRET/EiJ to provide novel insights in inflammation and infection research. Mamm Genome 2018; 29:585-592. [PMID: 29947962 DOI: 10.1007/s00335-018-9751-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/05/2018] [Indexed: 12/25/2022]
Abstract
Inbred mouse strains derived from the species Mus spretus have been very informative in the study of certain gene polymorphisms in inflammation and infection. Based on our interest in sepsis, we used SPRET/EiJ mice and mapped several critical loci that are linked to sensitivity to cytokine-induced inflammation and endotoxemia. These studies were based on prominent phenotypes that have never been observed in strains derived from Mus musculus and we mapped them at a resolution that enables us to draw conclusions on the mechanisms. Now that the genome of SPRET/EiJ has been sequenced, and other tools have become available, it is time to revisit this strain and emphasize its advantages and disadvantages as a research tool and a discovery platform.
Collapse
Affiliation(s)
- Steven Timmermans
- VIB Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Souffriau
- VIB Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- VIB Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lise Van Wyngene
- VIB Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kelly Van Looveren
- VIB Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tineke Vanderhaeghen
- VIB Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- VIB Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
23
|
Sun W, Gao Q, Schaefke B, Hu Y, Chen W. Pervasive allele-specific regulation on RNA decay in hybrid mice. Life Sci Alliance 2018; 1:e201800052. [PMID: 30456349 PMCID: PMC6238540 DOI: 10.26508/lsa.201800052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 02/05/2023] Open
Abstract
Cellular RNA abundance is determined by both RNA transcription and decay. Therefore, change in RNA abundance, which can drive phenotypic diversity between different species, could arise from genetic variants affecting either process. However, previous studies in the evolution of RNA expression have been largely focused on transcription. Here, to globally investigate the effects of cis-regulatory divergence on RNA decay in mammals for the first time, we quantified allele-specific differences in RNA decay rates (ASD) in an F1 hybrid mouse. Out of 8,815 genes with sufficient data, we identified 621 genes exhibiting significant cis-divergence. Systematic analysis of these genes revealed that the genetic variants affecting microRNA binding and RNA secondary structures contribute to the observed divergences. Finally, we demonstrated that although the divergences in RNA abundance were predominantly determined by allelic differences in RNA transcription, most genes with significant ASD did not exhibit significant difference in RNA abundance. For these genes, the apparently compensatory effect between the allelic differences in RNA transcription and ASD suggests that changes in RNA decay could serve as important means to stabilize RNA abundances during mammalian evolution.
Collapse
Affiliation(s)
- Wei Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Laboratory for Functional and Medical Genomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Qingsong Gao
- Laboratory for Functional and Medical Genomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Bernhard Schaefke
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhui Hu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
24
|
Morales-Prieto N, Ruiz-Laguna J, Abril N. Dietary Se supplementation partially restores the REDOX proteomic map of M. spretus liver exposed to p,p ′-DDE. Food Chem Toxicol 2018; 114:292-301. [DOI: 10.1016/j.fct.2018.02.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/14/2018] [Accepted: 02/21/2018] [Indexed: 12/29/2022]
|
25
|
Genetic mapping of species differences via in vitro crosses in mouse embryonic stem cells. Proc Natl Acad Sci U S A 2018; 115:3680-3685. [PMID: 29563231 PMCID: PMC5889640 DOI: 10.1073/pnas.1717474115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Discovering the genetic changes underlying species differences is a central goal in evolutionary genetics. However, hybrid crosses between species in mammals often suffer from hybrid sterility, greatly complicating genetic mapping of trait variation across species. Here, we describe a simple, robust, and transgene-free technique to generate "in vitro crosses" in hybrid mouse embryonic stem (ES) cells by inducing random mitotic cross-overs with the drug ML216, which inhibits the DNA helicase Bloom syndrome (BLM). Starting with an interspecific F1 hybrid ES cell line between the Mus musculus laboratory mouse and Mus spretus (∼1.5 million years of divergence), we mapped the genetic basis of drug resistance to the antimetabolite tioguanine to a single region containing hypoxanthine-guanine phosphoribosyltransferase (Hprt) in as few as 21 d through "flow mapping" by coupling in vitro crosses with fluorescence-activated cell sorting (FACS). We also show how our platform can enable direct study of developmental variation by rederiving embryos with contribution from the recombinant ES cell lines. We demonstrate how in vitro crosses can overcome major bottlenecks in mouse complex trait genetics and address fundamental questions in evolutionary biology that are otherwise intractable through traditional breeding due to high cost, small litter sizes, and/or hybrid sterility. In doing so, we describe an experimental platform toward studying evolutionary systems biology in mouse and potentially in human and other mammals, including cross-species hybrids.
Collapse
|
26
|
Morales-Prieto N, Abril N. REDOX proteomics reveals energy metabolism alterations in the liver of M. spretus mice exposed to p, p'-DDE. CHEMOSPHERE 2017; 186:848-863. [PMID: 28826133 DOI: 10.1016/j.chemosphere.2017.08.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/27/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
The toxicity induced by the pesticide 2,2-bis(p-chlorophenyl)-1,1,1,-trichloroethane (DDT) and its derivative 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) has been associated with mitochondrial dysfunction, uncoupling of oxidative phosphorylation and respiratory chain electron transport, intracellular ion imbalance, generation of reactive oxygen species and impairment of the antioxidant defense system. A disruption in the cellular redox status causes protein Cys-based regulatory shifts that influence the activity of many proteins and trigger signal transduction alterations. Here, we analyzed the ability of p,p'-DDE to alter the activities of hepatic antioxidants and glycolytic enzymes to investigate the oxidative stress generation in the liver of p,p'-DDE-fed M. spretus mice. We also determined the consequences of the treatment on the redox status in the thiol Cys groups. The data indicate that the liver of p,p'-DDE exposed mice lacks certain protective enzymes, and p,p'-DDE caused a metabolic reprogramming that increased the glycolytic rate and disturbed the metabolism of lipids. Our results suggested that the overall metabolism of the liver was altered because important signaling pathways are controlled by p,p'-DDE-deregulated proteins. The histological data support the proposed metabolic consequences of the p,p'-DDE exposure.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, España, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, España, Spain.
| |
Collapse
|
27
|
Wong ES, Schmitt BM, Kazachenka A, Thybert D, Redmond A, Connor F, Rayner TF, Feig C, Ferguson-Smith AC, Marioni JC, Odom DT, Flicek P. Interplay of cis and trans mechanisms driving transcription factor binding and gene expression evolution. Nat Commun 2017; 8:1092. [PMID: 29061983 PMCID: PMC5653656 DOI: 10.1038/s41467-017-01037-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/09/2017] [Indexed: 12/23/2022] Open
Abstract
Noncoding regulatory variants play a central role in the genetics of human diseases and in evolution. Here we measure allele-specific transcription factor binding occupancy of three liver-specific transcription factors between crosses of two inbred mouse strains to elucidate the regulatory mechanisms underlying transcription factor binding variations in mammals. Our results highlight the pre-eminence of cis-acting variants on transcription factor occupancy divergence. Transcription factor binding differences linked to cis-acting variants generally exhibit additive inheritance, while those linked to trans-acting variants are most often dominantly inherited. Cis-acting variants lead to local coordination of transcription factor occupancies that decay with distance; distal coordination is also observed and may be modulated by long-range chromatin contacts. Our results reveal the regulatory mechanisms that interplay to drive transcription factor occupancy, chromatin state, and gene expression in complex mammalian cell states.
Collapse
Affiliation(s)
- Emily S Wong
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Bianca M Schmitt
- University of Cambridge, Cancer Research UK-Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | | | - David Thybert
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Aisling Redmond
- University of Cambridge, Cancer Research UK-Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Frances Connor
- University of Cambridge, Cancer Research UK-Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Tim F Rayner
- University of Cambridge, Cancer Research UK-Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Christine Feig
- University of Cambridge, Cancer Research UK-Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | | | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- University of Cambridge, Cancer Research UK-Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK-Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
28
|
Chang PL, Kopania E, Keeble S, Sarver BAJ, Larson E, Orth A, Belkhir K, Boursot P, Bonhomme F, Good JM, Dean MD. Whole exome sequencing of wild-derived inbred strains of mice improves power to link phenotype and genotype. Mamm Genome 2017; 28:416-425. [PMID: 28819774 DOI: 10.1007/s00335-017-9704-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022]
Abstract
The house mouse is a powerful model to dissect the genetic basis of phenotypic variation, and serves as a model to study human diseases. Despite a wealth of discoveries, most classical laboratory strains have captured only a small fraction of genetic variation known to segregate in their wild progenitors, and existing strains are often related to each other in complex ways. Inbred strains of mice independently derived from natural populations have the potential to increase power in genetic studies with the addition of novel genetic variation. Here, we perform exome-enrichment and high-throughput sequencing (~8× coverage) of 26 wild-derived strains known in the mouse research community as the "Montpellier strains." We identified 1.46 million SNPs in our dataset, approximately 19% of which have not been detected from other inbred strains. This novel genetic variation is expected to contribute to phenotypic variation, as they include 18,496 nonsynonymous variants and 262 early stop codons. Simulations demonstrate that the higher density of genetic variation in the Montpellier strains provides increased power for quantitative genetic studies. Inasmuch as the power to connect genotype to phenotype depends on genetic variation, it is important to incorporate these additional genetic strains into future research programs.
Collapse
Affiliation(s)
- Peter L Chang
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA
| | - Emily Kopania
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA.,Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Sara Keeble
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA.,Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Brice A J Sarver
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Erica Larson
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.,Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Annie Orth
- Institut des Sciences de l'Evolution, CNRS UMR554, Université de Montpellier, Montpellier, France
| | - Khalid Belkhir
- Institut des Sciences de l'Evolution, CNRS UMR554, Université de Montpellier, Montpellier, France
| | - Pierre Boursot
- Institut des Sciences de l'Evolution, CNRS UMR554, Université de Montpellier, Montpellier, France
| | - François Bonhomme
- Institut des Sciences de l'Evolution, CNRS UMR554, Université de Montpellier, Montpellier, France
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Matthew D Dean
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA.
| |
Collapse
|
29
|
Enhanced Macrophage M1 Polarization and Resistance to Apoptosis Enable Resistance to Plague. J Infect Dis 2017; 216:761-770. [DOI: 10.1093/infdis/jix348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
30
|
Sirois F, Chrétien M, Mbikay M. Comparing expression and activity of PCSK9 in SPRET/EiJ and C57BL/6J mouse strains shows lack of correlation with plasma cholesterol. Mol Genet Metab Rep 2016; 10:11-17. [PMID: 27995077 PMCID: PMC5155046 DOI: 10.1016/j.ymgmr.2016.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/26/2016] [Indexed: 01/03/2023] Open
Abstract
Objective Low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) are opposing regulators of plasma LDL-cholesterol levels. The PCSK9 gene exhibits many single or compound polymorphisms within or among mammalian species. This is case between the SPRET/EiJ (SPRET) and C57BL/6J (B6) mouse strains. We examined whether these polymorphisms could be associated with differential expression and activity of their respective PCSK9 molecules. Methods Liver expression of LDLR and PCSK9 transcripts were assessed by RT-PCR, and that of their corresponding proteins by immunoblotting. Purified recombinant PCSK9 proteins were assayed for their ability to degrade LDLR. Pcsk9 gene proximal promoters were tested for activation of a luciferase reporter gene. Results SPRET and B6 mice carried comparable levels of plasma cholesterol in spite of the fact that SPRET mice expressed less PCSK9 and more LDLR in liver. There were indels and single-base differences between their Pcsk9 cDNA and promoter sequences. Ex vivo, SPRET PCSK9 protein was less secreted but was more active at degrading LDLR. Its gene promoter was more active at driving expression of the luciferase reporter. Conclusions Collectively, these results suggest that, compared to the B6 mouse, the SPRET mouse may represent an example of absence of direct correlation between PCSK9 and cholesterol levels in plasma, due to genetic variations leading to reduced secretion of PCSK9 associated with greater LDLR-degrading activity.
Collapse
Affiliation(s)
- Francine Sirois
- Functional Endoproteolysis Laboratory, Clinical Research Institute of Montreal, 110 avenue des Pins Ouest, Montreal, Quebec H2W 1R7, Canada
| | - Michel Chrétien
- Functional Endoproteolysis Laboratory, Clinical Research Institute of Montreal, 110 avenue des Pins Ouest, Montreal, Quebec H2W 1R7, Canada; Chronic Disease Program, Ottawa Hospital Research Institute, 725 Parkdale Avenue, Ottawa, Ontario K1Y 4E9, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Majambu Mbikay
- Functional Endoproteolysis Laboratory, Clinical Research Institute of Montreal, 110 avenue des Pins Ouest, Montreal, Quebec H2W 1R7, Canada; Chronic Disease Program, Ottawa Hospital Research Institute, 725 Parkdale Avenue, Ottawa, Ontario K1Y 4E9, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
31
|
Harr B, Karakoc E, Neme R, Teschke M, Pfeifle C, Pezer Ž, Babiker H, Linnenbrink M, Montero I, Scavetta R, Abai MR, Molins MP, Schlegel M, Ulrich RG, Altmüller J, Franitza M, Büntge A, Künzel S, Tautz D. Genomic resources for wild populations of the house mouse, Mus musculus and its close relative Mus spretus. Sci Data 2016; 3:160075. [PMID: 27622383 PMCID: PMC5020872 DOI: 10.1038/sdata.2016.75] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/29/2016] [Indexed: 12/20/2022] Open
Abstract
Wild populations of the house mouse (Mus musculus) represent the raw genetic material for the classical inbred strains in biomedical research and are a major model system for evolutionary biology. We provide whole genome sequencing data of individuals representing natural populations of M. m. domesticus (24 individuals from 3 populations), M. m. helgolandicus (3 individuals), M. m. musculus (22 individuals from 3 populations) and M. spretus (8 individuals from one population). We use a single pipeline to map and call variants for these individuals and also include 10 additional individuals of M. m. castaneus for which genomic data are publically available. In addition, RNAseq data were obtained from 10 tissues of up to eight adult individuals from each of the three M. m. domesticus populations for which genomic data were collected. Data and analyses are presented via tracks viewable in the UCSC or IGV genome browsers. We also provide information on available outbred stocks and instructions on how to keep them in the laboratory.
Collapse
Affiliation(s)
- Bettina Harr
- Max-Planck Institute for Evolutionary Biology, August-Thienemanstrasse 2, 24306 Plön, Germany
| | - Emre Karakoc
- Max-Planck Institute for Evolutionary Biology, August-Thienemanstrasse 2, 24306 Plön, Germany
| | - Rafik Neme
- Max-Planck Institute for Evolutionary Biology, August-Thienemanstrasse 2, 24306 Plön, Germany
| | - Meike Teschke
- Max-Planck Institute for Evolutionary Biology, August-Thienemanstrasse 2, 24306 Plön, Germany
| | - Christine Pfeifle
- Max-Planck Institute for Evolutionary Biology, August-Thienemanstrasse 2, 24306 Plön, Germany
| | - Željka Pezer
- Max-Planck Institute for Evolutionary Biology, August-Thienemanstrasse 2, 24306 Plön, Germany
| | - Hiba Babiker
- Max-Planck Institute for Evolutionary Biology, August-Thienemanstrasse 2, 24306 Plön, Germany
| | - Miriam Linnenbrink
- Max-Planck Institute for Evolutionary Biology, August-Thienemanstrasse 2, 24306 Plön, Germany
| | - Inka Montero
- Max-Planck Institute for Evolutionary Biology, August-Thienemanstrasse 2, 24306 Plön, Germany
| | - Rick Scavetta
- Max-Planck Institute for Evolutionary Biology, August-Thienemanstrasse 2, 24306 Plön, Germany
| | - Mohammad Reza Abai
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Marta Puente Molins
- Laboratorio de Anatomía Animal, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Vigo, 36200 Vigo, Spain
| | - Mathias Schlegel
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931 Cologne, Germany.,Institute of Human Genetics, Universitätsklinik Köln, Kerpener Str. 34, 50931 Köln, Germany
| | - Marek Franitza
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Anna Büntge
- Max-Planck Institute for Evolutionary Biology, August-Thienemanstrasse 2, 24306 Plön, Germany
| | - Sven Künzel
- Max-Planck Institute for Evolutionary Biology, August-Thienemanstrasse 2, 24306 Plön, Germany
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, August-Thienemanstrasse 2, 24306 Plön, Germany
| |
Collapse
|
32
|
Quigley DA, Kandyba E, Huang P, Halliwill KD, Sjölund J, Pelorosso F, Wong CE, Hirst GL, Wu D, Delrosario R, Kumar A, Balmain A. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer. Cell Rep 2016; 16:1153-1165. [PMID: 27425619 DOI: 10.1016/j.celrep.2016.06.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/16/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022] Open
Abstract
Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways. Gene networks related to specific cell types and signaling pathways, including sonic hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins, differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for expression quantitative trait loci (eQTL) network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules.
Collapse
Affiliation(s)
- David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo 0310, Norway; K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0313, Norway; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eve Kandyba
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Phillips Huang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Kyle D Halliwill
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jonas Sjölund
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
| | - Facundo Pelorosso
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 9(th) Floor, Ciudad Autónoma de Buenos Aires 1121, Argentina
| | - Christine E Wong
- Institute of Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Gillian L Hirst
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Di Wu
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Reyno Delrosario
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Atul Kumar
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
33
|
Steeland S, Timmermans S, Van Ryckeghem S, Hulpiau P, Saeys Y, Van Montagu M, Vandenbroucke RE, Libert C. Efficient analysis of mouse genome sequences reveal many nonsense variants. Proc Natl Acad Sci U S A 2016; 113:5670-5. [PMID: 27147605 PMCID: PMC4878497 DOI: 10.1073/pnas.1605076113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic polymorphisms in coding genes play an important role when using mouse inbred strains as research models. They have been shown to influence research results, explain phenotypical differences between inbred strains, and increase the amount of interesting gene variants present in the many available inbred lines. SPRET/Ei is an inbred strain derived from Mus spretus that has ∼1% sequence difference with the C57BL/6J reference genome. We obtained a listing of all SNPs and insertions/deletions (indels) present in SPRET/Ei from the Mouse Genomes Project (Wellcome Trust Sanger Institute) and processed these data to obtain an overview of all transcripts having nonsynonymous coding sequence variants. We identified 8,883 unique variants affecting 10,096 different transcripts from 6,328 protein-coding genes, which is about 28% of all coding genes. Because only a subset of these variants results in drastic changes in proteins, we focused on variations that are nonsense mutations that ultimately resulted in a gain of a stop codon. These genes were identified by in silico changing the C57BL/6J coding sequences to the SPRET/Ei sequences, converting them to amino acid (AA) sequences, and comparing the AA sequences. All variants and transcripts affected were also stored in a database, which can be browsed using a SPRET/Ei M. spretus variants web tool (www.spretus.org), including a manual. We validated the tool by demonstrating the loss of function of three proteins predicted to be severely truncated, namely Fas, IRAK2, and IFNγR1.
Collapse
Affiliation(s)
- Sophie Steeland
- Inflammation Research Center, Flanders Institute for Biotechnology (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Steven Timmermans
- Inflammation Research Center, Flanders Institute for Biotechnology (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Sara Van Ryckeghem
- Inflammation Research Center, Flanders Institute for Biotechnology (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Paco Hulpiau
- Inflammation Research Center, Flanders Institute for Biotechnology (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Yvan Saeys
- Inflammation Research Center, Flanders Institute for Biotechnology (VIB), 9052 Ghent, Belgium; Department of Internal Medicine, Ghent University, 9052 Ghent, Belgium
| | - Marc Van Montagu
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; International Plant Biotechnology Outreach, VIB, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, Flanders Institute for Biotechnology (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, Flanders Institute for Biotechnology (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium;
| |
Collapse
|
34
|
Puimège L, Van Hauwermeiren F, Steeland S, Van Ryckeghem S, Vandewalle J, Lodens S, Dejager L, Vandevyver S, Staelens J, Timmermans S, Vandenbroucke RE, Libert C. Glucocorticoid-induced microRNA-511 protects against TNF by down-regulating TNFR1. EMBO Mol Med 2016; 7:1004-17. [PMID: 25995337 PMCID: PMC4551340 DOI: 10.15252/emmm.201405010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
TNF is a central actor during inflammation and a well-recognized drug target for inflammatory diseases. We found that the mouse strain SPRET/Ei, known for extreme and dominant resistance against TNF-induced shock, displays weak expression of TNF receptor 1 protein (TNFR1) but normal mRNA expression, a trait genetically linked to the major TNFR1 coding gene Tnfrsf1a and to a locus harbouring the predicted TNFR1-regulating miR-511. This miRNA is a genuine TNFR1 regulator in cells. In mice, overexpression of miR-511 down-regulates TNFR1 and protects against TNF, while anti-miR-511 up-regulates TNFR1 and sensitizes for TNF, breaking the resistance of SPRET/Ei. We found that miR-511 inhibits endotoxemia and experimental hepatitis and that this miR is strongly induced by glucocorticoids and is a true TNFR1 modulator and thus an anti-inflammatory miR. Since minimal reductions of TNFR1 have considerable effects on TNF sensitivity, we believe that at least part of the anti-inflammatory effects of glucocorti-coids are mediated by induction of this miR, resulting in reduced TNFR1 expression.
Collapse
Affiliation(s)
- Leen Puimège
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Van Hauwermeiren
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sophie Steeland
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sara Van Ryckeghem
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sofie Lodens
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Dejager
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sofie Vandevyver
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan Staelens
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Timmermans
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- VIB Inflammation Research Center, Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Ruiz-Laguna J, Vélez JM, Pueyo C, Abril N. Global gene expression profiling using heterologous DNA microarrays to analyze alterations in the transcriptome of Mus spretus mice living in a heavily polluted environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5853-5867. [PMID: 26590064 DOI: 10.1007/s11356-015-5824-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Microarray platforms are a good approach for assessing biological responses to pollution as they enable the simultaneous analyses of changes in the expression of thousands of genes. As an omic and non-targeted methodology, this technique is open to unforeseen responses under particular environmental conditions. In this study, we successfully apply a commercial oligonucleotide microarray containing Mus musculus whole-genome probes to compare and assess the biological effects of living in a heavily polluted settlement, the Domingo Rubio stream (DRS), at the Huelva Estuary (SW Spain), on inhabitant free-living Mus spretus mice. Our microarray results show that mice living in DRS suffer dramatic changes in gene and protein expression compared with reference specimens. DRS mice showed alteration in the oxidative status of hepatocytes, with activation of both the innate and the acquired immune responses and the induction of chronic inflammation, accompanied by metabolic alterations that imply the accumulation of lipids in the liver (hepatic steatosis). The identified deregulated genes may be useful as biomarkers of environmental pollution.
Collapse
Affiliation(s)
- Julia Ruiz-Laguna
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain
| | - José M Vélez
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain
| | - Carmen Pueyo
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain.
| |
Collapse
|
36
|
Abstract
BACKGROUND Gene expression microarrays measure the levels of messenger ribonucleic acid (mRNA) in a sample using probe sequences that hybridize with transcribed regions. These probe sequences are designed using a reference genome for the relevant species. However, most model organisms and all humans have genomes that deviate from their reference. These variations, which include single nucleotide polymorphisms, insertions of additional nucleotides, and nucleotide deletions, can affect the microarray's performance. Genetic experiments comparing individuals bearing different population-associated single nucleotide polymorphisms that intersect microarray probes are therefore subject to systemic bias, as the reduction in binding efficiency due to a technical artifact is confounded with genetic differences between parental strains. This problem has been recognized for some time, and earlier methods of compensation have attempted to identify probes affected by genome variants using statistical models. These methods may require replicate microarray measurement of gene expression in the relevant tissue in inbred parental samples, which are not always available in model organisms and are never available in humans. RESULTS By using sequence information for the genomes of organisms under investigation, potentially problematic probes can now be identified a priori. However, there is no published software tool that makes it easy to eliminate these probes from an annotation. I present equalizer, a software package that uses genome variant data to modify annotation files for the commonly used Affymetrix IVT and Gene/Exon platforms. These files can be used by any microarray normalization method for subsequent analysis. I demonstrate how use of equalizer on experiments mapping germline influence on gene expression in a genetic cross between two divergent mouse species and in human samples significantly reduces probe hybridization-induced bias, reducing false positive and false negative findings. CONCLUSIONS The equalizer package reduces probe hybridization bias from experiments performed on the Affymetrix microarray platform, allowing accurate assessment of germline influence on gene expression.
Collapse
Affiliation(s)
- David Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
37
|
Gao Q, Sun W, Ballegeer M, Libert C, Chen W. Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing. Mol Syst Biol 2015; 11:816. [PMID: 26134616 PMCID: PMC4547845 DOI: 10.15252/msb.20145970] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Divergence of alternative splicing represents one of the major driving forces to shape phenotypic diversity during evolution. However, the extent to which these divergences could be explained by the evolving cis-regulatory versus trans-acting factors remains unresolved. To globally investigate the relative contributions of the two factors for the first time in mammals, we measured splicing difference between C57BL/6J and SPRET/EiJ mouse strains and allele-specific splicing pattern in their F1 hybrid. Out of 11,818 alternative splicing events expressed in the cultured fibroblast cells, we identified 796 with significant difference between the parental strains. After integrating allele-specific data from F1 hybrid, we demonstrated that these events could be predominately attributed to cis-regulatory variants, including those residing at and beyond canonical splicing sites. Contrary to previous observations in Drosophila, such predominant contribution was consistently observed across different types of alternative splicing. Further analysis of liver tissues from the same mouse strains and reanalysis of published datasets on other strains showed similar trends, implying in general the predominant contribution of cis-regulatory changes in the evolution of mouse alternative splicing.
Collapse
Affiliation(s)
- Qingsong Gao
- Laboratory for Systems Biology and Functional Genomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Wei Sun
- Laboratory for Systems Biology and Functional Genomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Marlies Ballegeer
- Inflammation Research Center, VIB, Ghent, Belgium Department of Biomedical Molecular Biology, University Ghent, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium Department of Biomedical Molecular Biology, University Ghent, Ghent, Belgium
| | - Wei Chen
- Laboratory for Systems Biology and Functional Genomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| |
Collapse
|
38
|
Jones EP, Searle JB. Differing Y chromosome versus mitochondrial DNA ancestry, phylogeography, and introgression in the house mouse. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Eleanor P. Jones
- Population Biology and Conservation Biology; Evolutionary Biology Centre; University of Uppsala; Uppsala Sweden
- Food and Environment Research Agency; Sand Hutton York YO41 1LZ UK
| | - Jeremy B. Searle
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
39
|
Bearoff F, Case LK, Krementsov DN, Wall EH, Saligrama N, Blankenhorn EP, Teuscher C. Identification of genetic determinants of the sexual dimorphism in CNS autoimmunity. PLoS One 2015; 10:e0117993. [PMID: 25671658 PMCID: PMC4324900 DOI: 10.1371/journal.pone.0117993] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/03/2015] [Indexed: 12/02/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating chronic inflammatory disease of the nervous system that affects approximately 2.3 million individuals worldwide, with higher prevalence in females, and a strong genetic component. While over 200 MS susceptibility loci have been identified in GWAS, the underlying mechanisms whereby they contribute to disease susceptibility remains ill-defined. Forward genetics approaches using conventional laboratory mouse strains are useful in identifying and functionally dissecting genes controlling disease-relevant phenotypes, but are hindered by the limited genetic diversity represented in such strains. To address this, we have combined the powerful chromosome substitution (consomic) strain approach with the genetic diversity of a wild-derived inbred mouse strain. Using experimental allergic encephalomyelitis (EAE), a mouse model of MS, we evaluated genetic control of disease course among a panel of 26 consomic strains of mice inheriting chromosomes from the wild-derived PWD strain on the C57BL/6J background, which models the genetic diversity seen in human populations. Nineteen linkages on 18 chromosomes were found to harbor loci controlling EAE. Of these 19 linkages, six were male-specific, four were female-specific, and nine were non-sex-specific, consistent with a differential genetic control of disease course between males and females. An MS-GWAS candidate-driven bioinformatic analysis using orthologous genes linked to EAE course identified sex-specific and non-sex-specific gene networks underlying disease pathogenesis. An analysis of sex hormone regulation of genes within these networks identified several key molecules, prominently including the MAP kinase family, known hormone-dependent regulators of sex differences in EAE course. Importantly, our results provide the framework by which consomic mouse strains with overall genome-wide genetic diversity, approximating that seen in humans, can be used as a rapid and powerful tool for modeling the genetic architecture of MS. Moreover, our data represent the first step towards mechanistic dissection of genetic control of sexual dimorphism in CNS autoimmunity.
Collapse
Affiliation(s)
- Frank Bearoff
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, 19129, United States of America
| | - Laure K. Case
- Department of Medicine, University of Vermont, Burlington, Vermont, 05405, United States of America
| | - Dimitry N. Krementsov
- Department of Medicine, University of Vermont, Burlington, Vermont, 05405, United States of America
| | - Emma H. Wall
- Department of Medicine, University of Vermont, Burlington, Vermont, 05405, United States of America
| | - Naresha Saligrama
- Department of Medicine, University of Vermont, Burlington, Vermont, 05405, United States of America
| | - Elizabeth P. Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, 19129, United States of America
| | - Cory Teuscher
- Department of Medicine, University of Vermont, Burlington, Vermont, 05405, United States of America
- Department of Pathology, University of Vermont, Burlington, Vermont, 05405, United States of America
- * E-mail:
| |
Collapse
|
40
|
Wong ES, Thybert D, Schmitt BM, Stefflova K, Odom DT, Flicek P. Decoupling of evolutionary changes in transcription factor binding and gene expression in mammals. Genome Res 2015; 25:167-78. [PMID: 25394363 PMCID: PMC4315291 DOI: 10.1101/gr.177840.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 11/12/2014] [Indexed: 11/25/2022]
Abstract
To understand the evolutionary dynamics between transcription factor (TF) binding and gene expression in mammals, we compared transcriptional output and the binding intensities for three tissue-specific TFs in livers from four closely related mouse species. For each transcription factor, TF-dependent genes and the TF binding sites most likely to influence mRNA expression were identified by comparing mRNA expression levels between wild-type and TF knockout mice. Independent evolution was observed genome-wide between the rate of change in TF binding and the rate of change in mRNA expression across taxa, with the exception of a small number of TF-dependent genes. We also found that binding intensities are preferentially conserved near genes whose expression is dependent on the TF, and the conservation is shared among binding peaks in close proximity to each other near the TSS. Expression of TF-dependent genes typically showed an increased sensitivity to changes in binding levels as measured by mRNA abundance. Taken together, these results highlight a significant tolerance to evolutionary changes in TF binding intensity in mammalian transcriptional networks and suggest that some TF-dependent genes may be largely regulated by a single TF across evolution.
Collapse
Affiliation(s)
- Emily S Wong
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - David Thybert
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Bianca M Schmitt
- University of Cambridge, Cancer Research UK - Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, United Kingdom
| | - Klara Stefflova
- University of Cambridge, Cancer Research UK - Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, United Kingdom
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK - Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, United Kingdom; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
41
|
Determining differentially expressed miRNAs and validating miRNA--target relationships using the SPRET/Ei mouse strain. Mamm Genome 2014; 26:94-107. [PMID: 25491574 DOI: 10.1007/s00335-014-9550-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/20/2014] [Indexed: 01/12/2023]
Abstract
Micro RNAs (miRs) are involved in many biological processes. The challenge of identifying genes influenced by miRs is evidenced by the relatively few validated miR-target interactions. In this work, we used the Mus spretus SPRET/Ei strain as an in vivo system to identify new miR-target relations. Mus spretus diverged from Mus musculus over one million years ago, making it genetically and phenotypically divergent. SPRET/Ei mice are resistant to inflammation and several cancers, making them attractive for different research fields. Their phenotype is unique and is considerably different from that of almost all other laboratory mouse strains. We exploited the characteristics of SPRET/Ei mice as a tool to identify miR-target relationships. Hepatic genes and miRs differentially expressed between C57BL/6 and SPRET/Ei mice at basal levels were identified with an Affymetrix microarray and a multiplex qPCR, respectively. A total of 955 genes and 38 miRs were identified as differentially expressed. Increased miR expression might result in downregulation of its target mRNA and vice versa. Subsequently, we used our miR and mRNA data to identify possible in vivo miR-target interactions. Ingenuity pathway analysis (IPA) analysis revealed 380 possible miR-target interactions. Five miRs were selected for experimental validation by in vivo overexpression of the miRs. This resulted in the confirmation of six previously unknown miR-target interactions: miR-146a, Zdhhc2; miR-150, Elovl3, Kcnk5, and Nrd1d2; miR-155, Camta1; and miR-592, Steap2. In conclusion, we show that SPRET/Ei mice can be used as a platform for miR-target identification in vivo, and we used this platform to identify and experimentally confirm miR-target interactions.
Collapse
|
42
|
Shen SQ, Turro E, Corbo JC. Hybrid mice reveal parent-of-origin and Cis- and trans-regulatory effects in the retina. PLoS One 2014; 9:e109382. [PMID: 25340786 PMCID: PMC4207689 DOI: 10.1371/journal.pone.0109382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022] Open
Abstract
A fundamental challenge in genomics is to map DNA sequence variants onto changes in gene expression. Gene expression is regulated by cis-regulatory elements (CREs, i.e., enhancers, promoters, and silencers) and the trans factors (e.g., transcription factors) that act upon them. A powerful approach to dissecting cis and trans effects is to compare F1 hybrids with F0 homozygotes. Using this approach and taking advantage of the high frequency of polymorphisms in wild-derived inbred Cast/EiJ mice relative to the reference strain C57BL/6J, we conducted allele-specific mRNA-seq analysis in the adult mouse retina, a disease-relevant neural tissue. We found that cis effects account for the bulk of gene regulatory divergence in the retina. Many CREs contained functional (i.e., activating or silencing) cis-regulatory variants mapping onto altered expression of genes, including genes associated with retinal disease. By comparing our retinal data with previously published liver data, we found that most of the cis effects identified were tissue-specific. Lastly, by comparing reciprocal F1 hybrids, we identified evidence of imprinting in the retina for the first time. Our study provides a framework and resource for mapping cis-regulatory variants onto changes in gene expression, and underscores the importance of studying cis-regulatory variants in the context of retinal disease.
Collapse
Affiliation(s)
- Susan Q. Shen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ernest Turro
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
43
|
Abril N, Ruiz-Laguna J, García-Sevillano MÁ, Mata AM, Gómez-Ariza JL, Pueyo C. Heterologous microarray analysis of transcriptome alterations in Mus spretus mice living in an industrial settlement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2183-2192. [PMID: 24460498 DOI: 10.1021/es4053973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work demonstrates the successful application of a commercial oligonucleotide microarray containing Mus musculus whole-genome probes to assess the biological effects of an industrial settlement on inhabitant Mus spretus mice. The transcriptomes of animals in the industrial settlement contrasted with those of specimens collected from a nearby protected ecosystem. Proteins encoded by the differentially expressed genes were broadly categorized into six main functional classes. Immune-associated genes were mostly induced and related to innate and acquired immunity and inflammation. Genes sorted into the stress-response category were mainly related to oxidative-stress tolerance and biotransformation. Metabolism-associated genes were mostly repressed and related to lipid metabolic pathways; these included genes that encoded 11 of the 20 cholesterol biosynthetic pathway enzymes. Crosstalk between members of different functional categories was also revealed, including the repression of serine-protease genes and the induction of protease-inhibitor genes to control the inflammatory response. Absolute quantification of selected transcripts was performed via RT-PCR to verify the microarray results and assess interindividual variability. Microarray data were further validated by immunoblotting and by cholesterol and protein-thiol oxidation level determinations. Reported data provide a broad impression of the biological consequences of residing in an industrial area.
Collapse
Affiliation(s)
- Nieves Abril
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), Severo Ochoa Building, University of Córdoba , Rabanales Campus, 14071 Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Pinheiro I, Dejager L, Petta I, Vandevyver S, Puimège L, Mahieu T, Ballegeer M, Van Hauwermeiren F, Riccardi C, Vuylsteke M, Libert C. LPS resistance of SPRET/Ei mice is mediated by Gilz, encoded by the Tsc22d3 gene on the X chromosome. EMBO Mol Med 2013; 5:456-70. [PMID: 23495141 PMCID: PMC3598084 DOI: 10.1002/emmm.201201683] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/07/2012] [Accepted: 12/12/2012] [Indexed: 01/12/2023] Open
Abstract
Natural variation for LPS-induced lethal inflammation in mice is useful for identifying new genes that regulate sepsis, which could form the basis for novel therapies for systemic inflammation in humans. Here we report that LPS resistance of the inbred mouse strain SPRET/Ei, previously reported to depend on the glucocorticoid receptor (GR), maps to the distal region of the X-chromosome. The GR-inducible gene Tsc22d3, encoding the protein Gilz and located in the critical region on the X-chromosome, showed a higher expressed SPRET/Ei allele, regulated in cis. Higher Gilz levels were causally related to reduced inflammation, as shown with knockdown and overexpression studies in macrophages. Transient overexpression of Gilz by hydrodynamic plasmid injection confirmed that Gilz protects mice against endotoxemia Our data strongly suggest that Gilz is responsible for the LPS resistance of SPRET/Ei mice and that it could become a treatment option for sepsis.
Collapse
Affiliation(s)
- Iris Pinheiro
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Stoetzel E, Denys C, Michaux J, Renaud S. Musin Morocco: a Quaternary sequence of intraspecific evolution. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuelle Stoetzel
- Département de Préhistoire; Muséum national d'Histoire naturelle; UMR 7194 CNRS; Paris; France
| | - Christiane Denys
- Département Systématique et Evolution; Muséum national d'Histoire naturelle; UMR 7205 CNRS; Paris; France
| | - Jacques Michaux
- Institut des Sciences de l'Evolution; UMR 5554 CNRS, Université Montpellier 2; Montpellier; France
| | - Sabrina Renaud
- Laboratoire de Biométrie et Biologie Evolutive; UMR 5558 CNRS, Université Lyon 1; Villeurbanne; France
| |
Collapse
|
46
|
Fleming JL, Gable DL, Samadzadeh-Tarighat S, Cheng L, Yu L, Gillespie JL, Toland AE. Differential expression of miR-1, a putative tumor suppressing microRNA, in cancer resistant and cancer susceptible mice. PeerJ 2013; 1:e68. [PMID: 23646287 PMCID: PMC3642704 DOI: 10.7717/peerj.68] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/25/2013] [Indexed: 12/14/2022] Open
Abstract
Mus spretus mice are highly resistant to several types of cancer compared to Mus musculus mice. To determine whether differences in microRNA (miRNA) expression account for some of the differences in observed skin cancer susceptibility between the strains, we performed miRNA expression profiling of skin RNA for over 300 miRNAs. Five miRNAs, miR-1, miR-124a-3, miR-133a, miR-134, miR-206, were differentially expressed by array and/or qPCR. miR-1 was previously shown to have tumor suppressing abilities in multiple tumor types. We found miR-1 expression to be lower in mouse cutaneous squamous cell carcinomas (cSCCs) compared to normal skin. Based on the literature and our expression data, we performed detailed studies on predicted miR-1 targets and evaluated the effect of miR-1 expression on two murine cSCC cell lines, A5 and B9. Following transfection of miR-1, we found decreased mRNA expression of three validated miR-1 targets, Met, Twf1 and Ets1 and one novel target Bag4. Decreased expression of Ets1 was confirmed by Western analysis and by 3’ reporter luciferase assays containing wildtype and mutated Ets1 3’UTR. We evaluated the effect of miR-1 on multiple tumor phenotypes including apoptosis, proliferation, cell cycle and migration. In A5 cells, expression of miR-1 led to decreased proliferation compared to a control miR. miR-1 expression also led to increased apoptosis at later time points (72 and 96 h) and to a decrease in cells in S-phase. In summary, we identified five miRNAs with differential expression between cancer resistant and cancer susceptible mice and found that miR-1, a candidate tumor suppressor, has targets with defined roles in tumorigenesis.
Collapse
Affiliation(s)
- Jessica L Fleming
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Dustin L Gable
- Biomedical Science Program, The Ohio State University, Columbus, OH, USA
| | - Somayeh Samadzadeh-Tarighat
- Division of Hematology/Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Luke Cheng
- Biomedical Science Program, The Ohio State University, Columbus, OH, USA
| | - Lianbo Yu
- The Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Jessica L Gillespie
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Amanda Ewart Toland
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
47
|
Resistance to plague of Mus spretus SEG/Pas mice requires the combined action of at least four genetic factors. Genes Immun 2012; 14:35-41. [DOI: 10.1038/gene.2012.50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Exploration of the genetic organization of morphological modularity on the mouse mandible using a set of interspecific recombinant congenic strains between C57BL/6 and mice of the Mus spretus species. G3-GENES GENOMES GENETICS 2012; 2:1257-68. [PMID: 23050236 PMCID: PMC3464118 DOI: 10.1534/g3.112.003285] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/20/2012] [Indexed: 01/03/2023]
Abstract
Morphological integration and modularity within semi-autonomous modules are essential mechanisms for the evolution of morphological traits. However, the genetic makeup responsible for the control of variational modularity is still relatively unknown. In our study, we tested the hypothesis that the genetic variation for mandible shape clustered into two morphogenetic components: the alveolar group and the ascending ramus. We used the mouse as a model system to investigate genetics determinants of mandible shape. To do this, we used a combination of geometric morphometric tools and a set of 18 interspecific recombinant congenic strains (IRCS) derived from the distantly related species, Mus spretus SEG/Pas and Mus musculus C57BL/6. Quantitative trait loci (QTL) analysis comparing mandible morphometry between the C57BL/6 and the IRCSs identified 42 putative SEG/Pas segments responsible for the genetic variation. The magnitude of the QTL effects was dependent on the proportion of SEG/Pas genome inherited. Using a multivariate correlation coefficient adapted for modularity assessment and a two-block partial least squares analysis to explore the morphological integration, we found that these QTL clustered into two well-integrated morphogenetic groups, corresponding to the ascending ramus and the alveolar region. Together, these results provide evidence that the mouse mandible is subjected to genetic coordination in a modular manner.
Collapse
|
49
|
Bender HS, Murchison EP, Pickett HA, Deakin JE, Strong MA, Conlan C, McMillan DA, Neumann AA, Greider CW, Hannon GJ, Reddel RR, Graves JAM. Extreme telomere length dimorphism in the Tasmanian devil and related marsupials suggests parental control of telomere length. PLoS One 2012; 7:e46195. [PMID: 23049977 PMCID: PMC3458001 DOI: 10.1371/journal.pone.0046195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/27/2012] [Indexed: 01/21/2023] Open
Abstract
Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii) are of particular interest in light of the emergence of devil facial tumour disease (DFTD), a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago.
Collapse
Affiliation(s)
- Hannah S Bender
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abril N, Ruiz-Laguna J, Pueyo C. Differential expression of the Gstp2 gene between the aboriginal species Mus spretus and the laboratory mouse Mus musculus. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 747:53-61. [DOI: 10.1016/j.mrgentox.2012.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 01/11/2012] [Accepted: 03/28/2012] [Indexed: 11/24/2022]
|