1
|
Quansah E, Zhao J, Eduful KK, Amoako EK, Amenga-Etego L, Halm-Lai F, Luo Q, Shen J, Zhang C, Yu L. Low nucleotide diversity of the Plasmodium falciparum AP2-EXP2 gene among clinical samples from Ghana. Parasit Vectors 2024; 17:453. [PMID: 39501336 PMCID: PMC11539609 DOI: 10.1186/s13071-024-06545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND PfAP2-EXP2 is located within chromosome 6 of Plasmodium falciparum recently identified to be undergoing an extensive selective sweep in West African isolates. The gene encoding this transcription factor, PfAP2-EXP2, is essential and thus likely subject to purifying selection that limits variants in the parasite population despite its genomic location. METHODS 72 Plasmodium falciparum field samples and 801 clinical sequences from the Pf6 MalariaGEN dataset of Ghanaian origin, were integrated and analysed. RESULTS A total of 14 single nucleotide variants of which 5 were missense variants, were identified after quality checks and filtering. Except for one, all identified variants were rare among the clinical samples obtained in this study (Minor allelic frequency < 0.01). Further results revealed a considerably low dN/dS value (0.208) suggesting the presence of purifying selection. Further, all the mutant amino acids were wildtype residues in AP2-EXP2 orthologous proteins-tentatively suggesting a genus-level conservation of amino acid residues. Computational analysis and predictions corroborated these findings. CONCLUSIONS Despite the recent extensive selective sweep within chromosome 6 of West African isolates, PfAP2-EXP2 of Ghanaian origin exhibits low nucleotide diversity and very low dN/dS consistent with purifying selection acting to maintain the function of an essential gene. The conservation of AP2-EXP2 is an important factor that makes it a potential drug target.
Collapse
Affiliation(s)
- Elvis Quansah
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
- Akenten Appiah Menka University of Skills Training and Entrepreneurial Development, Asante Mampong, Ghana
| | - Ji Zhao
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Kenneth Kofi Eduful
- Department of Medical Laboratory, Health Service Directorate, Cape Coast Technical University, Cape Coast, Ghana
| | - Enock Kofi Amoako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Accra, Ghana
| | - Lucas Amenga-Etego
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana
| | - Faustina Halm-Lai
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Qingli Luo
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jilong Shen
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Chao Zhang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
2
|
Weibel CA, Wheeler AL, James JE, Willis SM, McShea H, Masel J. The protein domains of vertebrate species in which selection is more effective have greater intrinsic structural disorder. eLife 2024; 12:RP87335. [PMID: 39239703 PMCID: PMC11379457 DOI: 10.7554/elife.87335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
The nearly neutral theory of molecular evolution posits variation among species in the effectiveness of selection. In an idealized model, the census population size determines both this minimum magnitude of the selection coefficient required for deleterious variants to be reliably purged, and the amount of neutral diversity. Empirically, an 'effective population size' is often estimated from the amount of putatively neutral genetic diversity and is assumed to also capture a species' effectiveness of selection. A potentially more direct measure of the effectiveness of selection is the degree to which selection maintains preferred codons. However, past metrics that compare codon bias across species are confounded by among-species variation in %GC content and/or amino acid composition. Here, we propose a new Codon Adaptation Index of Species (CAIS), based on Kullback-Leibler divergence, that corrects for both confounders. We demonstrate the use of CAIS correlations, as well as the Effective Number of Codons, to show that the protein domains of more highly adapted vertebrate species evolve higher intrinsic structural disorder.
Collapse
Affiliation(s)
- Catherine A Weibel
- Department of Mathematics, University of Arizona, Tucson, United States
- Department of Physics, University of Arizona, Tucson, United States
| | - Andrew L Wheeler
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, United States
| | - Jennifer E James
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
| | - Sara M Willis
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
| | - Hanon McShea
- Department of Earth System Science, Stanford University, Stanford, United States
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
| |
Collapse
|
3
|
Devi C, Ranjan P, Raj S, Das P. Computational exploration of protein structure dynamics and RNA structural consequences of PKD1 missense variants: implications in ADPKD pathogenesis. 3 Biotech 2024; 14:211. [PMID: 39188533 PMCID: PMC11344749 DOI: 10.1007/s13205-024-04057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
We analyzed the impact of nine previously identified missense PKD1 variants from our studies, including c.6928G > A p.G2310R, c.8809G > A p.E2937K, c.2899 T > C p.W967R, c.6284A > G p.D2095G, c.6644G > A p.R2215Q, c.7810G > A p.D2604N, c.11249G > C p.R3750P, c.1001C > T p.T334M, and c.3101A > G p.N1034S on RNA structures and PC1 protein structure dynamics utilizing computational tools. RNA structure analysis was done using short RNA snippets of 41 nucleotides with the variant position at the 21st nucleotide, ensuring 20 bases on both sides. The secondary structures of these RNA snippets were predicted using RNAstructure. Structural changes of the mutants compared to the wild type were analyzed using the MutaRNA webserver. Molecular dynamics (MD) simulation of PC1 wild-type and mutant protein regions were performed using GROMACS 2018 (GROMOS96 54a7 force field). Findings revealed that five variants including c.8809G > A (p.E2937K), c.11249G > C (p.R3750P), c.3101A > G (p.N1034S), c.6928G > A (p.G2310R), c.6644G > A (p.R2215Q) exhibited major alterations in RNA structures and thereby their interactions with other proteins or RNAs affecting protein structure dynamics. While certain variants have minimal impact on RNA conformations, their observed alterations in MD simulations indicate impact on protein structure dynamics highlighting the importance of evaluating the functional consequences of genetic variants by considering both RNA and protein levels. The study also emphasizes that each missense variant exerts a unique impact on RNA stability, and protein structure dynamics, potentially contributing to the heterogeneous clinical manifestations and progression observed in Autosomal Dominant Polycystic Kidney Disease (ADPKD) patients offering a novel perspective in this direction. Thus, the utility of studying the structure dynamics through computational tools can help in prioritizing the variants for their functional implications, understanding the molecular mechanisms underlying variability in ADPKD presentation and developing targeted therapeutic interventions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04057-9.
Collapse
Affiliation(s)
- Chandra Devi
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Prashant Ranjan
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Sonam Raj
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Parimal Das
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
4
|
Gilbert MA, Keefer-Jacques E, Jadhav T, Antfolk D, Ming Q, Valente N, Shaw GTW, Sottolano CJ, Matwijec G, Luca VC, Loomes KM, Rajagopalan R, Hayeck TJ, Spinner NB. Functional characterization of 2,832 JAG1 variants supports reclassification for Alagille syndrome and improves guidance for clinical variant interpretation. Am J Hum Genet 2024; 111:1656-1672. [PMID: 39043182 PMCID: PMC11339624 DOI: 10.1016/j.ajhg.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Pathogenic variants in the JAG1 gene are a primary cause of the multi-system disorder Alagille syndrome. Although variant detection rates are high for this disease, there is uncertainty associated with the classification of missense variants that leads to reduced diagnostic yield. Consequently, up to 85% of reported JAG1 missense variants have uncertain or conflicting classifications. We generated a library of 2,832 JAG1 nucleotide variants within exons 1-7, a region with a high number of reported missense variants, and designed a high-throughput assay to measure JAG1 membrane expression, a requirement for normal function. After calibration using a set of 175 known or predicted pathogenic and benign variants included within the variant library, 486 variants were characterized as functionally abnormal (n = 277 abnormal and n = 209 likely abnormal), of which 439 (90.3%) were missense. We identified divergent membrane expression occurring at specific residues, indicating that loss of the wild-type residue itself does not drive pathogenicity, a finding supported by structural modeling data and with broad implications for clinical variant classification both for Alagille syndrome and globally across other disease genes. Of 144 uncertain variants reported in patients undergoing clinical or research testing, 27 had functionally abnormal membrane expression, and inclusion of our data resulted in the reclassification of 26 to likely pathogenic. Functional evidence augments the classification of genomic variants, reducing uncertainty and improving diagnostics. Inclusion of this repository of functional evidence during JAG1 variant reclassification will significantly affect resolution of variant pathogenicity, making a critical impact on the molecular diagnosis of Alagille syndrome.
Collapse
Affiliation(s)
- Melissa A Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Ernest Keefer-Jacques
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tanaya Jadhav
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel Antfolk
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Qianqian Ming
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Nicolette Valente
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Grace Tzun-Wen Shaw
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher J Sottolano
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace Matwijec
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Vincent C Luca
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kathleen M Loomes
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tristan J Hayeck
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy B Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Gordon MG, Kathail P, Choy B, Kim MC, Mazumder T, Gearing M, Ye CJ. Population Diversity at the Single-Cell Level. Annu Rev Genomics Hum Genet 2024; 25:27-49. [PMID: 38382493 DOI: 10.1146/annurev-genom-021623-083207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Population-scale single-cell genomics is a transformative approach for unraveling the intricate links between genetic and cellular variation. This approach is facilitated by cutting-edge experimental methodologies, including the development of high-throughput single-cell multiomics and advances in multiplexed environmental and genetic perturbations. Examining the effects of natural or synthetic genetic variants across cellular contexts provides insights into the mutual influence of genetics and the environment in shaping cellular heterogeneity. The development of computational methodologies further enables detailed quantitative analysis of molecular variation, offering an opportunity to examine the respective roles of stochastic, intercellular, and interindividual variation. Future opportunities lie in leveraging long-read sequencing, refining disease-relevant cellular models, and embracing predictive and generative machine learning models. These advancements hold the potential for a deeper understanding of the genetic architecture of human molecular traits, which in turn has important implications for understanding the genetic causes of human disease.
Collapse
Affiliation(s)
| | - Pooja Kathail
- Center for Computational Biology, University of California, Berkeley, California, USA
| | - Bryson Choy
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Min Cheol Kim
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Thomas Mazumder
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Melissa Gearing
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Chun Jimmie Ye
- Arc Institute, Palo Alto, California, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, Gladstone-UCSF Institute of Genomic Immunology, Parker Institute for Cancer Immunotherapy, Department of Epidemiology and Biostatistics, Department of Microbiology and Immunology, and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA;
| |
Collapse
|
6
|
Parsons BL, Beal MA, Dearfield KL, Douglas GR, Gi M, Gollapudi BB, Heflich RH, Horibata K, Kenyon M, Long AS, Lovell DP, Lynch AM, Myers MB, Pfuhler S, Vespa A, Zeller A, Johnson GE, White PA. Severity of effect considerations regarding the use of mutation as a toxicological endpoint for risk assessment: A report from the 8th International Workshop on Genotoxicity Testing (IWGT). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 38828778 DOI: 10.1002/em.22599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Exposure levels without appreciable human health risk may be determined by dividing a point of departure on a dose-response curve (e.g., benchmark dose) by a composite adjustment factor (AF). An "effect severity" AF (ESAF) is employed in some regulatory contexts. An ESAF of 10 may be incorporated in the derivation of a health-based guidance value (HBGV) when a "severe" toxicological endpoint, such as teratogenicity, irreversible reproductive effects, neurotoxicity, or cancer was observed in the reference study. Although mutation data have been used historically for hazard identification, this endpoint is suitable for quantitative dose-response modeling and risk assessment. As part of the 8th International Workshops on Genotoxicity Testing, a sub-group of the Quantitative Analysis Work Group (WG) explored how the concept of effect severity could be applied to mutation. To approach this question, the WG reviewed the prevailing regulatory guidance on how an ESAF is incorporated into risk assessments, evaluated current knowledge of associations between germline or somatic mutation and severe disease risk, and mined available data on the fraction of human germline mutations expected to cause severe disease. Based on this review and given that mutations are irreversible and some cause severe human disease, in regulatory settings where an ESAF is used, a majority of the WG recommends applying an ESAF value between 2 and 10 when deriving a HBGV from mutation data. This recommendation may need to be revisited in the future if direct measurement of disease-causing mutations by error-corrected next generation sequencing clarifies selection of ESAF values.
Collapse
Affiliation(s)
- Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Marc A Beal
- Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Kerry L Dearfield
- U.S. Environmental Protection Agency and U.S. Department of Agriculture, Washington, DC, USA
| | - George R Douglas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Min Gi
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | | | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Michelle Kenyon
- Portfolio and Regulatory Strategy, Drug Safety Research and Development, Pfizer, Groton, Connecticut, USA
| | - Alexandra S Long
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - David P Lovell
- Population Health Research Institute, St George's Medical School, University of London, London, UK
| | | | - Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Alisa Vespa
- Pharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - George E Johnson
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Radrizzani S, Kudla G, Izsvák Z, Hurst LD. Selection on synonymous sites: the unwanted transcript hypothesis. Nat Rev Genet 2024; 25:431-448. [PMID: 38297070 DOI: 10.1038/s41576-023-00686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 02/02/2024]
Abstract
Although translational selection to favour codons that match the most abundant tRNAs is not readily observed in humans, there is nonetheless selection in humans on synonymous mutations. We hypothesize that much of this synonymous site selection can be explained in terms of protection against unwanted RNAs - spurious transcripts, mis-spliced forms or RNAs derived from transposable elements or viruses. We propose not only that selection on synonymous sites functions to reduce the rate of creation of unwanted transcripts (for example, through selection on exonic splice enhancers and cryptic splice sites) but also that high-GC content (but low-CpG content), together with intron presence and position, is both particular to functional native mRNAs and used to recognize transcripts as native. In support of this hypothesis, transcription, nuclear export, liquid phase condensation and RNA degradation have all recently been shown to promote GC-rich transcripts and suppress AU/CpG-rich ones. With such 'traps' being set against AU/CpG-rich transcripts, the codon usage of native genes has, in turn, evolved to avoid such suppression. That parallel filters against AU/CpG-rich transcripts also affect the endosomal import of RNAs further supports the unwanted transcript hypothesis of synonymous site selection and explains the similar design rules that have enabled the successful use of transgenes and RNA vaccines.
Collapse
Affiliation(s)
- Sofia Radrizzani
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute for Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Laurence D Hurst
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK.
| |
Collapse
|
8
|
Khan D, Ramachandiran I, Vasu K, China A, Khan K, Cumbo F, Halawani D, Terenzi F, Zin I, Long B, Costain G, Blaser S, Carnevale A, Gogonea V, Dutta R, Blankenberg D, Yoon G, Fox PL. Homozygous EPRS1 missense variant causing hypomyelinating leukodystrophy-15 alters variant-distal mRNA m 6A site accessibility. Nat Commun 2024; 15:4284. [PMID: 38769304 PMCID: PMC11106242 DOI: 10.1038/s41467-024-48549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Hypomyelinating leukodystrophy (HLD) is an autosomal recessive disorder characterized by defective central nervous system myelination. Exome sequencing of two siblings with severe cognitive and motor impairment and progressive hypomyelination characteristic of HLD revealed homozygosity for a missense single-nucleotide variant (SNV) in EPRS1 (c.4444 C > A; p.Pro1482Thr), encoding glutamyl-prolyl-tRNA synthetase, consistent with HLD15. Patient lymphoblastoid cell lines express markedly reduced EPRS1 protein due to dual defects in nuclear export and cytoplasmic translation of variant EPRS1 mRNA. Variant mRNA exhibits reduced METTL3 methyltransferase-mediated writing of N6-methyladenosine (m6A) and reduced reading by YTHDC1 and YTHDF1/3 required for efficient mRNA nuclear export and translation, respectively. In contrast to current models, the variant does not alter the sequence of m6A target sites, but instead reduces their accessibility for modification. The defect was rescued by antisense morpholinos predicted to expose m6A sites on target EPRS1 mRNA, or by m6A modification of the mRNA by METTL3-dCas13b, a targeted RNA methylation editor. Our bioinformatic analysis predicts widespread occurrence of SNVs associated with human health and disease that similarly alter accessibility of distal mRNA m6A sites. These results reveal a new RNA-dependent etiologic mechanism by which SNVs can influence gene expression and disease, consequently generating opportunities for personalized, RNA-based therapeutics targeting these disorders.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Arnab China
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Fabio Cumbo
- Genomic Medicine Institute, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Dalia Halawani
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Fulvia Terenzi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Isaac Zin
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Briana Long
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Gregory Costain
- Department of Paediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Susan Blaser
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Amanda Carnevale
- Department of Paediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Ranjan Dutta
- Department of Neuroscience, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Daniel Blankenberg
- Genomic Medicine Institute, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Grace Yoon
- Department of Paediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
- Department of Paediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
9
|
Camara MD, Zhou Y, Dara A, Tékété MM, Nóbrega de Sousa T, Sissoko S, Dembélé L, Ouologuem N, Hamidou Togo A, Alhousseini ML, Fofana B, Sagara I, Djimde AA, Gil PJ, Lauschke VM. Population-specific variations in KCNH2 predispose patients to delayed ventricular repolarization upon dihydroartemisinin-piperaquine therapy. Antimicrob Agents Chemother 2024; 68:e0139023. [PMID: 38546223 PMCID: PMC11064487 DOI: 10.1128/aac.01390-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/05/2024] [Indexed: 05/03/2024] Open
Abstract
Dihydroartemisinin-piperaquine is efficacious for the treatment of uncomplicated malaria and its use is increasing globally. Despite the positive results in fighting malaria, inhibition of the Kv11.1 channel (hERG; encoded by the KCNH2 gene) by piperaquine has raised concerns about cardiac safety. Whether genetic factors could modulate the risk of piperaquine-mediated QT prolongations remained unclear. Here, we first profiled the genetic landscape of KCNH2 variability using data from 141,614 individuals. Overall, we found 1,007 exonic variants distributed over the entire gene body, 555 of which were missense. By optimizing the gene-specific parametrization of 16 partly orthogonal computational algorithms, we developed a KCNH2-specific ensemble classifier that identified a total of 116 putatively deleterious missense variations. To evaluate the clinical relevance of KCNH2 variability, we then sequenced 293 Malian patients with uncomplicated malaria and identified 13 variations within the voltage sensing and pore domains of Kv11.1 that directly interact with channel blockers. Cross-referencing of genetic and electrocardiographic data before and after piperaquine exposure revealed that carriers of two common variants, rs1805121 and rs41314375, experienced significantly higher QT prolongations (ΔQTc of 41.8 ms and 61 ms, respectively, vs 14.4 ms in controls) with more than 50% of carriers having increases in QTc >30 ms. Furthermore, we identified three carriers of rare population-specific variations who experienced clinically relevant delayed ventricular repolarization. Combined, our results map population-scale genetic variability of KCNH2 and identify genetic biomarkers for piperaquine-induced QT prolongation that could help to flag at-risk patients and optimize efficacy and adherence to antimalarial therapy.
Collapse
Affiliation(s)
- Mahamadou D. Camara
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Pharmacy, University of Science, Techniques and Technologies, Bamako, Mali
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Antoine Dara
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Pharmacy, University of Science, Techniques and Technologies, Bamako, Mali
| | - Mamadou M. Tékété
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Pharmacy, University of Science, Techniques and Technologies, Bamako, Mali
| | - Taís Nóbrega de Sousa
- Department of Microbiology and Tumour Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Sékou Sissoko
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Pharmacy, University of Science, Techniques and Technologies, Bamako, Mali
| | - Laurent Dembélé
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Pharmacy, University of Science, Techniques and Technologies, Bamako, Mali
| | - Nouhoun Ouologuem
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Pharmacy, University of Science, Techniques and Technologies, Bamako, Mali
| | - Amadou Hamidou Togo
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Pharmacy, University of Science, Techniques and Technologies, Bamako, Mali
| | - Mohamed L. Alhousseini
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Pharmacy, University of Science, Techniques and Technologies, Bamako, Mali
| | - Bakary Fofana
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Pharmacy, University of Science, Techniques and Technologies, Bamako, Mali
| | - Issaka Sagara
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Pharmacy, University of Science, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye A. Djimde
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, Faculty of Pharmacy, University of Science, Techniques and Technologies, Bamako, Mali
| | - Pedro J. Gil
- Department of Microbiology and Tumour Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Weibel CA, Wheeler AL, James JE, Willis SM, McShea H, Masel J. The protein domains of vertebrate species in which selection is more effective have greater intrinsic structural disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530449. [PMID: 38712167 PMCID: PMC11071303 DOI: 10.1101/2023.03.02.530449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The nearly neutral theory of molecular evolution posits variation among species in the effectiveness of selection. In an idealized model, the census population size determines both this minimum magnitude of the selection coefficient required for deleterious variants to be reliably purged, and the amount of neutral diversity. Empirically, an "effective population size" is often estimated from the amount of putatively neutral genetic diversity and is assumed to also capture a species' effectiveness of selection. A potentially more direct measure of the effectiveness of selection is the degree to which selection maintains preferred codons. However, past metrics that compare codon bias across species are confounded by among-species variation in %GC content and/or amino acid composition. Here we propose a new Codon Adaptation Index of Species (CAIS), based on Kullback-Leibler divergence, that corrects for both confounders. We demonstrate the use of CAIS correlations, as well as the Effective Number of Codons, to show that the protein domains of more highly adapted vertebrate species evolve higher intrinsic structural disorder.
Collapse
Affiliation(s)
- Catherine A. Weibel
- Department of Mathematics, University of Arizona, Tucson, Arizona 85721, USA
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
- present address: Department of Applied Physics, Stanford University, California, USA
| | - Andrew L. Wheeler
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona 85721, USA
| | - Jennifer E. James
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
- present address: Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Sweden
| | - Sara M. Willis
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
- present address: University Information Technology Services, University of Arizona, Tucson, Arizona 85721, USA
| | - Hanon McShea
- Department of Earth System Science, Stanford University
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
11
|
Zhang L, Lou H, Huang Y, Dong L, Gong X, Zhang X, Bao W, Xiao R. Identification of Synonymous Pathogenic Variants in Monogenic Disorders by Integrating Exome with Transcriptome Sequencing. J Mol Diagn 2024; 26:267-277. [PMID: 38280421 DOI: 10.1016/j.jmoldx.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/23/2023] [Accepted: 12/20/2023] [Indexed: 01/29/2024] Open
Abstract
Exome sequencing is becoming a first-tier clinical diagnostic test for Mendelian diseases, drastically reducing the time and cost of diagnostic odyssey and improving the diagnosis rate. Despite its success, exome sequencing faces practical challenges in assessing the pathogenicity of numerous intronic and synonymous variants, leaving a significant proportion of patients undiagnosed. In this study, a whole-blood transcriptome database was constructed that showed the expression profile of 2981 Online Mendelian Inheritance in Man disease genes in blood samples. Meanwhile, a workflow integrating exome sequencing, blood transcriptome sequencing, and in silico prediction tools to identify and validate splicing-altering intronic or synonymous variants was proposed. Following this pipeline, seven synonymous variants in eight patients were discovered. Of these, the functional evidence of c.981G>A (PIGN), c.1161A>G (ALPL), c.858G>A (ATP6AP2), and c.1011G>T (MTHFR) have not been reported previously. RNA sequencing validation confirmed that these variants induced aberrant splicing, expanding the disease-causing variant spectrum of these genes. Overall, this study shows the feasibility of combining multi-omics data to identify splicing-altering variants, especially the power of RNA sequencing. It also reveals that synonymous variants, which often are overlooked in standard diagnostic approaches, comprise an important portion of unresolved genetic diseases.
Collapse
Affiliation(s)
- Lin Zhang
- Prenatal Diagnosis Center, Peking University People's Hospital, Beijing, China.
| | | | - Yanhong Huang
- Prenatal Diagnosis Center, Liaocheng Maternal and Child Health Care Hospital, Liaocheng, China
| | - Liping Dong
- Newborn Screening Center, Zibo Maternal and Child Health Care Hospital, Zibo, China
| | - Xueye Gong
- Department of Medical Genetics and Prenatal Diagnosis, Binzhou Maternal and Child Health Care Hospital, Binzhou, China
| | - Xiaoning Zhang
- Department of the Clinical Laboratory, Binzhou Maternal and Child Health Care Hospital, Binzhou, China
| | - Wenqi Bao
- Becreative Lab Co., Ltd., Beijing, China
| | - Rui Xiao
- National Engineering Laboratory for Key Technology of Birth Defect Control and Prevention, Screening and Diagnostic R&D Center, Hangzhou, China
| |
Collapse
|
12
|
Hurabielle C, LaFlam TN, Gearing M, Ye CJ. Functional genomics in inborn errors of immunity. Immunol Rev 2024; 322:53-70. [PMID: 38329267 PMCID: PMC10950534 DOI: 10.1111/imr.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Inborn errors of immunity (IEI) comprise a diverse spectrum of 485 disorders as recognized by the International Union of Immunological Societies Committee on Inborn Error of Immunity in 2022. While IEI are monogenic by definition, they illuminate various pathways involved in the pathogenesis of polygenic immune dysregulation as in autoimmune or autoinflammatory syndromes, or in more common infectious diseases that may not have a significant genetic basis. Rapid improvement in genomic technologies has been the main driver of the accelerated rate of discovery of IEI and has led to the development of innovative treatment strategies. In this review, we will explore various facets of IEI, delving into the distinctions between PIDD and PIRD. We will examine how Mendelian inheritance patterns contribute to these disorders and discuss advancements in functional genomics that aid in characterizing new IEI. Additionally, we will explore how emerging genomic tools help to characterize new IEI as well as how they are paving the way for innovative treatment approaches for managing and potentially curing these complex immune conditions.
Collapse
Affiliation(s)
- Charlotte Hurabielle
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Taylor N LaFlam
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Melissa Gearing
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Institute of Computational Health Sciences, UCSF, San Francisco, California, USA
- Gladstone Genomic Immunology Institute, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, California, USA
- Arc Institute, Palo Alto, California, USA
| |
Collapse
|
13
|
Gao S, Su Z, Ma J, Ma J, Liu C, Li H, Zheng Z. Identification of a novel and plant height-independent QTL for coleoptile length in barley and validation of its effect using near isogenic lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:53. [PMID: 38381194 PMCID: PMC10881613 DOI: 10.1007/s00122-024-04561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
KEY MESSAGE This study reported the identification and validation of novel QTL conferring coleoptile length in barley and predicted candidate genes underlying the largest effect QTL based on orthologous analysis and comparison of the whole genome assemblies for both parental genotypes of the mapping population. Coleoptile length (CL) is one of the most important agronomic traits in cereal crops due to its direct influence on the optimal depth for seed sowing which facilitates better seedling establishment. Varieties with longer coleoptiles are preferred in drought-prone areas where less moisture maintains at the top layer of the soil. Compared to wheat, genetic study on coleoptile length is limited in barley. Here, we reported a study on detecting the genomic regions associated with CL in barley by assessing a population consisting of 201 recombinant inbred lines. Four putative QTL conferring CL were consistently identified on chromosomes 1H, 5H, 6H, and 7H in each of the trials conducted. Of these QTL, the two located on chromosomes 5H and 6H (designated as Qcl.caf-5H and Qcl.caf-6H) are likely novel and Qcl.caf-5H showed the most significant effect explaining up to 30.9% of phenotypic variance with a LOD value of 15.1. To further validate the effect of this putative QTL, five pairs of near isogenic lines (NILs) were then developed and assessed. Analysis of the NILs showed an average difference of 21.0% in CL between the two isolines. Notably, none of the other assessed morphological characteristics showed consistent differences between the two isolines for each pair of the NILs. Candidate genes underlying the Qcl.caf-5H locus were also predicted by employing orthologous analysis and comparing the genome assemblies for both parental genotypes of the mapping population in the present study. Taken together, these findings expand our understanding on genetic basis of CL and will be indicative for further gene cloning and functional analysis underly this locus in barley.
Collapse
Affiliation(s)
- Shang Gao
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China
| | - Zhouyang Su
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, 7205, Australia
| | - Jun Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunji Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China.
| | - Zhi Zheng
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia.
| |
Collapse
|
14
|
Mello AC, Leao D, Dias L, Colombelli F, Recamonde-Mendoza M, Turchetto-Zolet AC, Matte U. Broken silence: 22,841 predicted deleterious synonymous variants identified in the human exome through computational analysis. Genet Mol Biol 2024; 46:e20230125. [PMID: 38259032 PMCID: PMC10804382 DOI: 10.1590/1678-4685-gmb-2023-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/10/2023] [Indexed: 01/24/2024] Open
Abstract
Synonymous single nucleotide variants (sSNVs) do not alter the primary structure of a protein, thus it was previously accepted that they were neutral. Recently, several studies demonstrated their significance to a range of diseases. Still, variant prioritization strategies lack focus on sSNVs. Here, we identified 22,841 deleterious synonymous variants in 125,748 human exomes using two in silico predictors (SilVA and CADD). While 98.2% of synonymous variants are classified as neutral, 1.8% are predicted to be deleterious, yielding an average of 9.82 neutral and 0.18 deleterious sSNVs per exome. Further investigation of prediction features via Heterogeneous Ensemble Feature Selection revealed that impact on amino acid sequence and conservation carry the most weight for a deleterious prediction. Thirty nine detrimental sSNVs are not rare and are located on disease associated genes. Ten distinct putatively non-deleterious sSNVs are likely to be under positive selection in the North-Western European and East Asian populations. Taken together our analysis gives voice to the so-called silent mutations as we propose a robust framework for evaluating the deleteriousness of sSNVs in variant prioritization studies.
Collapse
Affiliation(s)
- Ana Carolina Mello
- Hospital de Clínicas de Porto Alegre, Núcleo de Bioinformática,
Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa
Experimental, Laboratório de Células, Tecidos e Genes, Porto Alegre, RS,
Brazil
- Universidade Federal do Rio Grande do Sul, Programa de
Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Delva Leao
- Universidade Federal do Rio Grande do Sul, Programa de
Pós-Graduação em Ciências Biológicas: Bioquímica, Porto Alegre, RS, Brazil
| | - Luis Dias
- Hospital de Clínicas de Porto Alegre, Núcleo de Bioinformática,
Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa
Experimental, Laboratório de Células, Tecidos e Genes, Porto Alegre, RS,
Brazil
| | - Felipe Colombelli
- Hospital de Clínicas de Porto Alegre, Núcleo de Bioinformática,
Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de
Informática, Porto Alegre, RS, Brazil
| | - Mariana Recamonde-Mendoza
- Hospital de Clínicas de Porto Alegre, Núcleo de Bioinformática,
Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de
Informática, Porto Alegre, RS, Brazil
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul, Programa de
Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de
Genética, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Hospital de Clínicas de Porto Alegre, Núcleo de Bioinformática,
Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa
Experimental, Laboratório de Células, Tecidos e Genes, Porto Alegre, RS,
Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de
Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Oelschlaeger P. Molecular Mechanisms and the Significance of Synonymous Mutations. Biomolecules 2024; 14:132. [PMID: 38275761 PMCID: PMC10813300 DOI: 10.3390/biom14010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Synonymous mutations result from the degeneracy of the genetic code. Most amino acids are encoded by two or more codons, and mutations that change a codon to another synonymous codon do not change the amino acid in the gene product. Historically, such mutations have been considered silent because they were assumed to have no to very little impact. However, research in the last few decades has produced several examples where synonymous mutations play important roles. These include optimizing expression by enhancing translation initiation and accelerating or decelerating translation elongation via codon usage and mRNA secondary structures, stabilizing mRNA molecules and preventing their breakdown before translation, and faulty protein folding or increased degradation due to enhanced ubiquitination and suboptimal secretion of proteins into the appropriate cell compartments. Some consequences of synonymous mutations, such as mRNA stability, can lead to different outcomes in prokaryotes and eukaryotes. Despite these examples, the significance of synonymous mutations in evolution and in causing disease in comparison to nonsynonymous mutations that do change amino acid residues in proteins remains controversial. Whether the molecular mechanisms described by which synonymous mutations affect organisms can be generalized remains poorly understood and warrants future research in this area.
Collapse
Affiliation(s)
- Peter Oelschlaeger
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
16
|
Monson E, Cideciyan AV, Roman AJ, Sumaroka A, Swider M, Wu V, Viarbitskaya I, Jacobson SG, Fliesler SJ, Pittler SJ. Inherited Retinal Degeneration Caused by Dehydrodolichyl Diphosphate Synthase Mutation-Effect of an ALG6 Modifier Variant. Int J Mol Sci 2024; 25:1004. [PMID: 38256083 PMCID: PMC10816542 DOI: 10.3390/ijms25021004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Modern advances in disease genetics have uncovered numerous modifier genes that play a role in the severity of disease expression. One such class of genetic conditions is known as inherited retinal degenerations (IRDs), a collection of retinal degenerative disorders caused by mutations in over 300 genes. A single missense mutation (K42E) in the gene encoding the enzyme dehydrodolichyl diphosphate synthase (DHDDS), which is required for protein N-glycosylation in all cells and tissues, causes DHDDS-IRD (retinitis pigmentosa type 59 (RP59; OMIM #613861)). Apart from a retinal phenotype, however, DHDDS-IRD is surprisingly non-syndromic (i.e., without any systemic manifestations). To explore disease pathology, we selected five glycosylation-related genes for analysis that are suggested to have disease modifier variants. These genes encode glycosyltransferases (ALG6, ALG8), an ER resident protein (DDOST), a high-mannose oligosaccharyl transferase (MPDU1), and a protein N-glycosylation regulatory protein (TNKS). DNA samples from 11 confirmed DHDDS (K42E)-IRD patients were sequenced at the site of each candidate genetic modifier. Quantitative measures of retinal structure and function were performed across five decades of life by evaluating foveal photoreceptor thickness, visual acuity, foveal sensitivity, macular and extramacular rod sensitivity, and kinetic visual field extent. The ALG6 variant, (F304S), was correlated with greater macular cone disease severity and less peripheral rod disease severity. Thus, modifier gene polymorphisms may account for a significant portion of phenotypic variation observed in human genetic disease. However, the consequences of the polymorphisms may be counterintuitively complex in terms of rod and cone populations affected in different regions of the retina.
Collapse
Affiliation(s)
- Elisha Monson
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Artur V. Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (A.S.); (M.S.); (V.W.); (I.V.)
| | - Alejandro J. Roman
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (A.S.); (M.S.); (V.W.); (I.V.)
| | - Alexander Sumaroka
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (A.S.); (M.S.); (V.W.); (I.V.)
| | - Malgorzata Swider
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (A.S.); (M.S.); (V.W.); (I.V.)
| | - Vivian Wu
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (A.S.); (M.S.); (V.W.); (I.V.)
| | - Iryna Viarbitskaya
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (A.S.); (M.S.); (V.W.); (I.V.)
| | - Samuel G. Jacobson
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (A.S.); (M.S.); (V.W.); (I.V.)
| | - Steven J. Fliesler
- Departments of Ophthalmology and Biochemistry, and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York—University at Buffalo, Buffalo, NY 14203, USA;
- Research Service, VA Western NY Healthcare System, Buffalo, NY 14215, USA
| | - Steven J. Pittler
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Vision Science Research Center, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
Xue B, Zhang C, Wang Y, Liu L, Wang W, Schiefelbein J, Yu F, An L. HECT-type ubiquitin ligase KAKTUS mediates the proteasome-dependent degradation of cyclin-dependent kinase inhibitor KRP2 during trichome morphogenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:871-886. [PMID: 37565606 DOI: 10.1111/tpj.16415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
SUMMARYTrichome development is a fascinating model to elaborate the plant cell differentiation and growth processes. A wealth of information has pointed to the contributions of the components associated with cell cycle control and ubiquitin/26S proteasome system (UPS) to trichome morphogenesis, but how these two pathways are connected remains obscure. Here, we report that HECT‐type ubiquitin ligase KAKTUS (KAK) targets the cyclin‐dependent kinase (CDK) inhibitor KRP2 (for kip‐related protein 2) for proteasome‐dependent degradation during trichome branching in Arabidopsis. We show that over‐expression of KRP2 promotes trichome branching and endoreduplication which is similar to kak loss of function mutants. KAK directly interacts with KRP2 and mediates KRP2 degradation. Mutation of KAK results in the accumulation of steady‐state KRP2. Consistently, in kak pKRP2:KRP2‐GFP plants, the trichome branching is further induced compared with the single mutant. Taken together, our studies bridge the cell cycle control and UPS pathways during trichome development and underscore the importance of post‐translational control in epidermal differentiation.
Collapse
Affiliation(s)
- Baoyong Xue
- State Key Laboratory of Crop Stress Biology for Arid Area and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Area and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yali Wang
- State Key Laboratory of Crop Stress Biology for Arid Area and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lu Liu
- State Key Laboratory of Crop Stress Biology for Arid Area and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenjia Wang
- CAS Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, 200032, China
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Area and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Area and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
18
|
Lv X, Wang C, Liu L, Yin G, Zhang W, Abdu FA, Shi T, Zhang Q, Che W. Screening and verifying the mutations in the LDLR and APOB genes in a Chinese family with familial hypercholesterolemia. Lipids Health Dis 2023; 22:175. [PMID: 37853441 PMCID: PMC10585857 DOI: 10.1186/s12944-023-01935-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an autosomal dominant genetic disorder. The primary objective of this study was to identify the major pathogenic mutations in a Chinese family with FH. METHODS Whole-genome sequencing (WGS) was used to identify variants of FH-related genes, including low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin 9 (PCSK9). Bioinformatics software was used to predict signal peptides, transmembrane structures, and spatial construction information of the mutated sequences. Western blotting was performed on the mutant protein to determine the presence of the major structural domains of the LDLR. The PCSK9 and APOB genes were screened and analyzed. Moreover, the proband and his brother were treated with a PCSK9 inhibitor for 1 year, and the effect of the treatment on lipid levels was assessed. RESULTS WGS revealed two potentially pathogenic mutations in the LDLR gene. One was a novel mutation, c.497delinsGGATCCCCCAGCTGCATCCCCCAG (p. Ala166fs), and the other was a known pathogenic mutation, c.2054C>T (p. Pro685Leu). Bioinformatics prediction and in vitro experiments revealed that the novel mutation could not be expressed on the cell membrane. Numerous gene variants were identified in the APOB gene that may have a significant impact on the family members with FH. Thus, it is suggested that the severe manifestation of FH in the proband primarily resulted from the cumulative genetic effects of variants in both LDLR and APOB. However, a subsequent study indicated that treatment with a PCSK9 inhibitor (Evolocumab) did not significantly reduce the blood lipid levels in the proband or his brother. CONCLUSIONS The cumulative effect of LDLR and APOB variants was the primary cause of elevated blood lipid levels in this family. However, PCSK9 inhibitor therapy did not appear to be beneficial for the proband. This study emphasizes the importance of genetic testing in determining the most suitable treatment options for patients with FH.
Collapse
Affiliation(s)
- Xian Lv
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Chunyue Wang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Lu Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Guoqing Yin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Wen Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Fuad A Abdu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Tingting Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Qingfeng Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
- Department of Cardiology, Shanghai Tenth People's Hospital Chongming Branch, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Abstract
AbstractEvolutionary biologists have thought about the role of genetic variation during adaptation for a very long time-before we understood the organization of the genetic code, the provenance of genetic variation, and how such variation influenced the phenotypes on which natural selection acts. Half a century after the discovery of the structure of DNA and the unraveling of the genetic code, we have a rich understanding of these problems and the means to both delve deeper and widen our perspective across organisms and natural populations. The 2022 Vice Presidential Symposium of the American Society of Naturalists highlighted examples of recent insights into the role of genetic variation in adaptive processes, which are compiled in this special section. The work was conducted in different parts of the world, included theoretical and empirical studies with diverse organisms, and addressed distinct aspects of how genetic variation influences adaptation. In our introductory article to the special section, we discuss some important recent insights about the generation and maintenance of genetic variation, its impacts on phenotype and fitness, its fate in natural populations, and its role in driving adaptation. By placing the special section articles in the broader context of recent developments, we hope that this overview will also serve as a useful introduction to the field.
Collapse
|
20
|
Muir WM, Lo CL, Bell RL, Zhou FC. Multi-animal-model study reveals mutations in neural plasticity and nociception genes linked to excessive alcohol drinking. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1478-1493. [PMID: 37336636 PMCID: PMC10728351 DOI: 10.1111/acer.15131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND The basis for familial alcohol use disorder (AUD) remains an enigma due to various biological and societal confounds. The present study used three of the most adopted and documented rat models, combining the alcohol-preferring/non-alcohol-preferring (P/NP) lines and high alcohol-drinking/low alcohol-drinking (HAD/LAD) replicated lines, of AUD as examined through the lens of whole genomic analyses. METHODS We used complete genome sequencing of the P/NP lines and previously published sequences of the HAD/LAD replicates to enhance the discovery of variants associated with AUD and to remove confounding with genetic background and random genetic drift. Specifically, we used high-order statistical methods to search for genetic variants whose frequency changes in whole sets of gene ontologies corresponded with phenotypic changes in the direction of selection, that is, ethanol-drinking preference. RESULTS Our first finding was that in addition to variants causing translational changes, the principal genetic changes associated with drinking predisposition were silent mutations and mutations in the 3' untranslated regions (3'UTR) of genes. Neither of these types of mutations alters the amino acid sequence of the translated protein but they influence both the rate and conformation of gene transcription, including its stability and posttranslational events that alter gene efficacy. This finding argues for refocusing human genomic studies on changes in gene efficacy. Among the key ontologies identified were the central genes associated with the Na+ voltage-gated channels of neurons and glia (including the Scn1a, Scn2a, Scn2b, Scn3a, Scn7a, and Scn9a subtypes) and excitatory glutamatergic secretion (including Grm2 and Myo6), both of which are essential in neuroplasticity. In addition, we identified "Nociception or Sensory Perception of Pain," which contained variants in nociception (Arrb1, Ccl3, Ephb1) and enlist sodium (Scn1a, Scn2a, Scn2b, Scn3a, Scn7a), pain activation (Scn9a), and potassium channel (Kcna1) genes. CONCLUSION The multi-model analyses used herein reduced the confounding effects of random drift and the "founders" genetic background. The most differentiated bidirectionally selected genes across all three animal models were Scn9a, Scn1a, and Kcna, all of which are annotated in the nociception ontology. The complexity of neuroplasticity and nociception adds strength to the hypothesis that neuroplasticity and pain (physical or psychological) are prominent phenotypes genetically linked to the development of AUD.
Collapse
Affiliation(s)
- William M. Muir
- Indiana Alcohol Research Center, Indiana University School of Medicine
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Chiao-Ling Lo
- Indiana Alcohol Research Center, Indiana University School of Medicine
| | - Richard L. Bell
- Indiana Alcohol Research Center, Indiana University School of Medicine
- Stark Neuroscience Research Institute, Indianapolis, Indiana, USA
| | - Feng C. Zhou
- Indiana Alcohol Research Center, Indiana University School of Medicine
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neuroscience Research Institute, Indianapolis, Indiana, USA
| |
Collapse
|
21
|
Luzuriaga-Neira AR, Ritchie AM, Payne BL, Carrillo-Parramon O, Liberles DA, Alvarez-Ponce D. Highly Abundant Proteins Are Highly Thermostable. Genome Biol Evol 2023; 15:evad112. [PMID: 37399326 DOI: 10.1093/gbe/evad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/05/2023] Open
Abstract
Highly abundant proteins tend to evolve slowly (a trend called E-R anticorrelation), and a number of hypotheses have been proposed to explain this phenomenon. The misfolding avoidance hypothesis attributes the E-R anticorrelation to the abundance-dependent toxic effects of protein misfolding. To avoid these toxic effects, protein sequences (particularly those of highly expressed proteins) would be under selection to fold properly. One prediction of the misfolding avoidance hypothesis is that highly abundant proteins should exhibit high thermostability (i.e., a highly negative free energy of folding, ΔG). Thus far, only a handful of analyses have tested for a relationship between protein abundance and thermostability, producing contradictory results. These analyses have been limited by 1) the scarcity of ΔG data, 2) the fact that these data have been obtained by different laboratories and under different experimental conditions, 3) the problems associated with using proteins' melting energy (Tm) as a proxy for ΔG, and 4) the difficulty of controlling for potentially confounding variables. Here, we use computational methods to compare the free energy of folding of pairs of human-mouse orthologous proteins with different expression levels. Even though the effect size is limited, the most highly expressed ortholog is often the one with a more negative ΔG of folding, indicating that highly expressed proteins are often more thermostable.
Collapse
Affiliation(s)
| | - Andrew M Ritchie
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | - David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
22
|
Zhang Y, Liu W, Shu Z, Li Y, Sun F, Li ZG, Han TX, Mao HW, Wang TY. Delayed-onset adenosine deaminase deficiency with a novel synonymous mutation and a case series from China. World J Pediatr 2023; 19:687-700. [PMID: 37154862 DOI: 10.1007/s12519-023-00729-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Adenosine deaminase (ADA) is a key enzyme in the purine salvage pathway. Genetic defects of the ADA gene can cause a subtype of severe combined immunodeficiency. To date, few Chinese cases have been reported. METHODS We retrospectively reviewed the medical records of patients diagnosed with ADA deficiency in Beijing Children's Hospital and summarized the previously published ADA deficiency cases from China in the literature. RESULTS Nine patients were identified with two novel mutations (W272X and Q202 =). Early-onset infection, thymic abnormalities and failure to thrive were the most common manifestations of Chinese ADA-deficient patients. The ADA genotype has a major effect on the clinical phenotype. Notably, a novel synonymous mutation (c.606G>A, p.Q202=) was identified in a delayed-onset patient, which affected pre-mRNA splicing leading to a frameshift and premature truncation of the protein. Furthermore, the patient showed γδT cells expansion with an increased effect or phenotype, which may be associated with the delayed onset of disease. In addition, we reported cerebral aneurysm and intracranial artery stenosis for the first time in ADA deficiency. Five patients died with a median age of four months, while two patients received stem cell transplantation and are alive. CONCLUSIONS This study described the first case series of Chinese ADA-deficient patients. Early-onset infection, thymic abnormalities and failure to thrive were the most common manifestations in our patients. We identified a synonymous mutation that affected pre-mRNA splicing in the ADA gene, which had never been reported in ADA deficiency. Furthermore, we reported cerebral aneurysm in a delayed-onset patient for the first time. Further study is warranted to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
| | - Wei Liu
- Hematology Oncology Center, Henan Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhou Shu
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
| | - Yan Li
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
| | - Fei Sun
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
| | - Zhi-Gang Li
- Hematologic Disease Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Tong-Xin Han
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
| | - Hua-Wei Mao
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China.
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| | - Tian-You Wang
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China.
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| |
Collapse
|
23
|
Giacoletto CJ, Rotter JI, Grody WW, Schiller MR. Synonymous Variants of Uncertain Silence. Int J Mol Sci 2023; 24:10556. [PMID: 37445732 DOI: 10.3390/ijms241310556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Synonymous variants, traditionally regarded as silent mutations due to their lack of impact on protein sequence, structure and function, have been the subject of increasing scrutiny. This commentary explores the emerging evidence challenging the notion of synonymous variants as functionally inert. Analysis of the activity of 70 synonymous variants in the HIV Tat transcription factor revealed that 50% of the variants exhibited significant deviations from wild-type activity. Our analysis supports previous work and raises important questions about the broader impact of non-silent synonymous variants in human genes. Considering the potential functional implications, the authors propose classifying such variants as "synonymous variants of uncertain silence" (sVUS), highlighting the need for cautious interpretation and further investigations in clinical and genetic testing settings.
Collapse
Affiliation(s)
- Christopher J Giacoletto
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
- Heligenics Inc., 10530 Discovery Drive, Las Vegas, NV 89135, USA
- School of Life Sciences, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Jerome I Rotter
- Heligenics Inc., 10530 Discovery Drive, Las Vegas, NV 89135, USA
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Wayne W Grody
- Department of Pathology and Laboratory Medicine, University of California Los Angeles School of Medicine, 10833 Le Conte Ave., 705, Los Angeles, CA 90095, USA
- Department of Pediatrics, University of California Los Angeles School of Medicine, 10833 Le Conte Ave., Los Angeles, CA 90095, USA
- Department of Human Genetics, University of California Los Angeles School of Medicine, 10833 Le Conte Ave., Los Angeles, CA 90095, USA
| | - Martin R Schiller
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
- Heligenics Inc., 10530 Discovery Drive, Las Vegas, NV 89135, USA
- School of Life Sciences, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| |
Collapse
|
24
|
Halder R, Nissley DA, Sitarik I, Jiang Y, Rao Y, Vu QV, Li MS, Pritchard J, O'Brien EP. How soluble misfolded proteins bypass chaperones at the molecular level. Nat Commun 2023; 14:3689. [PMID: 37344452 DOI: 10.1038/s41467-023-38962-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Subpopulations of soluble, misfolded proteins can bypass chaperones within cells. The extent of this phenomenon and how it happens at the molecular level are unknown. Through a meta-analysis of the experimental literature we find that in all quantitative protein refolding studies there is always a subpopulation of soluble but misfolded protein that does not fold in the presence of one or more chaperones, and can take days or longer to do so. Thus, some misfolded subpopulations commonly bypass chaperones. Using multi-scale simulation models we observe that the misfolded structures that bypass various chaperones can do so because their structures are highly native like, leading to a situation where chaperones do not distinguish between the folded and near-native-misfolded states. More broadly, these results provide a mechanism by which long-time scale changes in protein structure and function can persist in cells because some misfolded states can bypass components of the proteostasis machinery.
Collapse
Affiliation(s)
- Ritaban Halder
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel A Nissley
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yiyun Rao
- Molecular, Cellular and Integrative Biosciences Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Quyen V Vu
- Institute of Physics, Polish Academy of Sciences; Al. Lotnikow 32/46, 02-668, Warsaw, Poland
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences; Al. Lotnikow 32/46, 02-668, Warsaw, Poland
- Institute for Computational Sciences and Technology; Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Justin Pritchard
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA, 16802, USA
- Huck Institute for the Life Sciences, Pennsylvania State University, State College, PA, 16802, USA
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA.
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
25
|
Su Y, Ran CQ, Liu ZL, Yang Y, Yuan G, Hu SH, Yu XF, He WT. Case report: Autosomal recessive type 3 Stickler syndrome caused by compound heterozygous mutations in COL11A2. Front Genet 2023; 14:1154087. [PMID: 37347055 PMCID: PMC10279880 DOI: 10.3389/fgene.2023.1154087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Stickler syndrome (SS) is a group of hereditary collagenopathies caused by a variety of collagen and non-collagen genes. Affected patients have characteristic manifestations involving ophthalmic, articular, craniofacial and auditory disorders. SS is classified into several subtypes according to clinical and molecular features. Type 3 SS is an ultra-rare disease, known as non-ocular SS or otospondylomegaepiphyseal dysplasia (OSMED) with only a few pathogenic COL11A2 variants reported to date. Case presentation: A 29-year-old Chinese male was referred to our hospital for hearing loss and multiple joint pain. He presented a phenotype highly suggestive of OSMED, including progressive sensorineural deafness, spondyloepiphyseal dysplasia with large epiphyses, platyspondyly, degenerative osteoarthritis, and sunken nasal bridge. We detected compound heterozygous mutations in COL11A2, both of which were predicted to be splicing mutations. One is synonymous mutation c.3774C>T (p.Gly1258Gly) supposed to be a splice site mutation, the other is a novel intron mutation c.4750 + 5 G>A, which is a highly conservative site across several species. We also present a review of the current known pathogenic mutation spectrum of COL11A2 in patients with type 3 SS. Conclusion: Both synonymous extonic and intronic variants are easily overlooked by whole-exome sequencing. For patients with clinical manifestations suspected of SS syndrome, next-generation whole-genome sequencing is necessary for precision diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Ying Su
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Chun-Qiong Ran
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Zhe-Long Liu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Yan Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Gang Yuan
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Shu-Hong Hu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Xue-Feng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Wen-Tao He
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| |
Collapse
|
26
|
Gao S, Jiang Y, Zhou H, Liu Y, Li H, Liu C, Zheng Z. Fine mapping of a Fusarium crown rot resistant locus on chromosome arm 6HL in barley by exploiting near isogenic lines, transcriptome profiling, and a large near isogenic line-derived population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:137. [PMID: 37233855 DOI: 10.1007/s00122-023-04387-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE This study reported validation and fine mapping of a Fusarium crown rot resistant locus on chromosome arm 6HL in barley using near isogenic lines, transcriptome sequences, and a large near isogenic line-derived population. Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, is a chronic and serious disease affecting cereal production in semi-arid regions globally. The increasing prevalence of this disease in recent years is attributed to the widespread adoption of minimum tillage and stubble retention practices. In the study reported here, we generated eight pairs of near isogenic lines (NILs) targeting a putative QTL (Qcrs.caf-6H) conferring FCR resistance in barley. Assessing the NILs confirmed the large effect of this locus. Aimed to develop markers that can be reliably used in incorporating this resistant allele into breeding programs and identify candidate genes, transcriptomic analyses were conducted against three of the NIL pairs and a large NIL-derived population consisting of 1085 F7 recombinant inbred lines generated. By analyzing the transcriptomic data and the fine mapping population, Qcrs.caf-6H was delineated into an interval of 0.9 cM covering a physical distance of ~ 547 kb. Six markers co-segregating with this locus were developed. Based on differential gene expression and SNP variations between the two isolines among the three NIL pairs, candidate genes underlying the resistance at this locus were detected. These results would improve the efficiency of incorporating the targeted locus into barley breeding programs and facilitate the cloning of causal gene(s) responsible for the resistance.
Collapse
Affiliation(s)
- Shang Gao
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China
| | - Yunfeng Jiang
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hong Zhou
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China
| | - Chunji Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia.
| | - Zhi Zheng
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia.
| |
Collapse
|
27
|
Lin BC, Katneni U, Jankowska KI, Meyer D, Kimchi-Sarfaty C. In silico methods for predicting functional synonymous variants. Genome Biol 2023; 24:126. [PMID: 37217943 PMCID: PMC10204308 DOI: 10.1186/s13059-023-02966-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Single nucleotide variants (SNVs) contribute to human genomic diversity. Synonymous SNVs are previously considered to be "silent," but mounting evidence has revealed that these variants can cause RNA and protein changes and are implicated in over 85 human diseases and cancers. Recent improvements in computational platforms have led to the development of numerous machine-learning tools, which can be used to advance synonymous SNV research. In this review, we discuss tools that should be used to investigate synonymous variants. We provide supportive examples from seminal studies that demonstrate how these tools have driven new discoveries of functional synonymous SNVs.
Collapse
Affiliation(s)
- Brian C Lin
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Upendra Katneni
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Katarzyna I Jankowska
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Douglas Meyer
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA.
| |
Collapse
|
28
|
Wang J, Su W, Zhang T, Zhang S, Lei H, Ma F, Shi M, Shi W, Xie X, Di C. Aberrant Cyclin D1 splicing in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis 2023; 14:244. [PMID: 37024471 PMCID: PMC10079974 DOI: 10.1038/s41419-023-05763-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Cyclin D1 (CCND1), a crucial mediator of cell cycle progression, possesses many mutation types with different mutation frequencies in human cancers. The G870A mutation is the most common mutation in CCND1, which produces two isoforms: full-length CCND1a and divergent C-terminal CCND1b. The dysregulation of the CCND1 isoforms is associated with multiple human cancers. Exploring the molecular mechanism of CCND1 isoforms has offer new insight for cancer treatment. On this basis, the alterations of CCND1 gene are described, including amplification, overexpression, and mutation, especially the G870A mutation. Subsequently, we review the characteristics of CCND1 isoforms caused by G870A mutation. Additionally, we summarize cis-regulatory elements, trans-acting factors, and the splice mutation involved in splicing regulation of CCND1. Furthermore, we highlight the function of CCND1 isoforms in cell cycle, invasion, and metastasis in cancers. Importantly, the clinical role of CCND1 isoforms is also discussed, particularly concerning prognosis, chemotherapy, and radiotherapy. Last, emphasis is given to the corrective strategies that modulate the cancerous CCND1 isoforms. Thus, it is highlighting significance of aberrant isoforms of CCND1 as targets for cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huiwen Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
29
|
Most synonymous allelic variants in HIV tat are not silent. Genomics 2023; 115:110603. [PMID: 36893872 DOI: 10.1016/j.ygeno.2023.110603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
The genetic code has degenerate codons that produce no change in the translated protein sequence and are generally thought to be silent. However, some synonymous variants are clearly not silent. Herein, we questioned the frequency of non-silent synonymous variants. We tested how random synonymous variants in the HIV Tat transcription factor effect transcription of an LTR-GFP reporter. Our model system has the advantage of directly measuring the function of the gene in human cells. Approximately, 67% of synonymous variants in Tat were non-silent, either having reduced activity or were full loss-of-function alleles. Eight mutant codons had higher codon usage than wild type, accompanied by reduced transcriptional activity. These were clustered on a loop in the Tat structure. We conclude that most synonymous Tat variants are not silent in human cells, and 25% are associated with changes in codon usage, likely effecting protein folding.
Collapse
|
30
|
Identification and in silico characterization of CSRP3 synonymous variants in dilated cardiomyopathy. Mol Biol Rep 2023; 50:4105-4117. [PMID: 36877346 DOI: 10.1007/s11033-023-08314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Synonymous variations have always been ignored while studying the underlying genetic mechanisms for most of the human diseases. However, recent studies have suggested that these silent changes in the genome can alter the protein expression and folding. METHODS AND RESULTS CSRP3, which is a well-known candidate gene associated with dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), was screened for 100 idiopathic DCM cases and 100 controls. Three synonymous variations were identified viz., c.96G > A, p.K32=; c.336G > A, p.A112=; c.354G > A, p.E118=. A comprehensive in silico analysis was performed using various web based widely accepted tools, Mfold, Codon Usage, HSF3.1 and RNA22. Mfold predicted structural changes in all the variants except c.96 G > A (p.K32=), however it predicted changes in the stability of mRNA due to all the synonymous variants. Codon bias was observed as evident by the Relative Synonymous Codon Usage and Log Ratio of Codon Usage Frequencies. The Human Splicing Finder also predicted remarkable changes in the regulatory elements in the variants c.336G > A and c.354 G > A. The miRNA target prediction using varied modes available in RNA22 revealed that 70.6% of the target sites of miRNAs in CSRP3 were altered due to variant c.336G > A while 29.41% sites were completely lost. CONCLUSION Findings of the present study suggest that synonymous variants revealed striking deviations in the structural conformation of mRNA, stability of mRNA, relative synonymous codon usage, splicing and miRNA binding sites from the wild type suggesting their possible role in the pathogenesis of DCM, either by destabilizing the mRNA structure, or codon usage bias or else altering the cis-acting regulatory elements during splicing.
Collapse
|
31
|
Densi A, Iyer RS, Bhat PJ. Synonymous and Nonsynonymous Substitutions in Dictyostelium discoideum Ammonium Transporter amtA Are Necessary for Functional Complementation in Saccharomyces cerevisiae. Microbiol Spectr 2023; 11:e0384722. [PMID: 36840598 PMCID: PMC10100761 DOI: 10.1128/spectrum.03847-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Ammonium transporters are present in all three domains of life. They have undergone extensive horizontal gene transfer (HGT), gene duplication, and functional diversification and therefore offer an excellent paradigm to study protein evolution. We attempted to complement a mep1Δmep2Δmep3Δ strain of Saccharomyces cerevisiae (triple-deletion strain), which otherwise cannot grow on ammonium as a sole nitrogen source at concentrations of <3 mM, with amtA of Dictyostelium discoideum, an orthologue of S. cerevisiae MEP2. We observed that amtA did not complement the triple-deletion strain of S. cerevisiae for growth on low-ammonium medium. We isolated two mutant derivatives of amtA (amtA M1 and amtA M2) from a PCR-generated mutant plasmid library that complemented the triple-deletion strain of S. cerevisiae. amtA M1 bears three nonsynonymous and two synonymous substitutions, which are necessary for its functionality. amtA M2 bears two nonsynonymous substitutions and one synonymous substitution, all of which are necessary for functionality. Interestingly, AmtA M1 transports ammonium but does not confer methylamine toxicity, while AmtA M2 transports ammonium and confers methylamine toxicity, demonstrating functional diversification. Preliminary biochemical analyses indicated that the mutants differ in their conformations as well as their mechanisms of ammonium transport. These intriguing results clearly point out that protein evolution cannot be fathomed by studying nonsynonymous and synonymous substitutions in isolation. The above-described observations have significant implications for various facets of biological processes and are discussed in detail. IMPORTANCE Functional diversification following gene duplication is one of the major driving forces of protein evolution. While the role of nonsynonymous substitutions in the functional diversification of proteins is well recognized, knowledge of the role of synonymous substitutions in protein evolution is in its infancy. Using functional complementation, we isolated two functional alleles of the D. discoideum ammonium transporter gene (amtA), which otherwise does not function in S. cerevisiae as an ammonium transporters. One of them is an ammonium transporter, while the other is an ammonium transporter that also confers methylammonium (ammonium analogue) toxicity, suggesting functional diversification. Surprisingly, both alleles require a combination of synonymous and nonsynonymous substitutions for their functionality. These results bring out a hitherto-unknown pathway of protein evolution and pave the way for not only understanding protein evolution but also interpreting single nucleotide polymorphisms (SNPs).
Collapse
Affiliation(s)
- Asha Densi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Revathi S. Iyer
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Paike Jayadeva Bhat
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
32
|
Moreira-Ramos S, Arias L, Flores R, Katz A, Levicán G, Orellana O. Synonymous mutations in the phosphoglycerate kinase 1 gene induce an altered response to protein misfolding in Schizosaccharomyces pombe. Front Microbiol 2023; 13:1074741. [PMID: 36713198 PMCID: PMC9875302 DOI: 10.3389/fmicb.2022.1074741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Background Proteostasis refers to the processes that regulate the biogenesis, folding, trafficking, and degradation of proteins. Any alteration in these processes can lead to cell malfunction. Protein synthesis, a key proteostatic process, is highly-regulated at multiple levels to ensure adequate adaptation to environmental and physiological challenges such as different stressors, proteotoxic conditions and aging, among other factors. Because alterations in protein translation can lead to protein misfolding, examining how protein translation is regulated may also help to elucidate in part how proteostasis is controlled. Codon usage bias has been implicated in the fine-tuning of translation rate, as more-frequent codons might be read faster than their less-frequent counterparts. Thus, alterations in codon usage due to synonymous mutations may alter translation kinetics and thereby affect the folding of the nascent polypeptide, without altering its primary structure. To date, it has been difficult to predict the effect of synonymous mutations on protein folding and cellular fitness due to a scarcity of relevant data. Thus, the purpose of this work was to assess the effect of synonymous mutations in discrete regions of the gene that encodes the highly-expressed enzyme 3-phosphoglycerate kinase 1 (pgk1) in the fission yeast Schizosaccharomyces pombe. Results By means of systematic replacement of synonymous codons along pgk1, we found slightly-altered protein folding and activity in a region-specific manner. However, alterations in protein aggregation, heat stress as well as changes in proteasome activity occurred independently of the mutated region. Concomitantly, reduced mRNA levels of the chaperones Hsp9 and Hsp16 were observed. Conclusion Taken together, these data suggest that codon usage bias of the gene encoding this highly-expressed protein is an important regulator of protein function and proteostasis.
Collapse
Affiliation(s)
- Sandra Moreira-Ramos
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Loreto Arias
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Flores
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Assaf Katz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile,*Correspondence: Omar Orellana,
| |
Collapse
|
33
|
Wang Y, Xia Y, Chen Y, Xu L, Sun X, Li J, Huang G, Li X, Xie Z, Zhou Z. Association analysis between the TLR9 gene polymorphism rs352140 and type 1 diabetes. Front Endocrinol (Lausanne) 2023; 14:1030736. [PMID: 37139337 PMCID: PMC10150994 DOI: 10.3389/fendo.2023.1030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Background To a great extent, genetic factors contribute to the susceptibility to type 1 diabetes (T1D) development, and by triggering immune imbalance, Toll-like receptor (TLR) 9 is involved in the development of T1D. However, there is a lack of evidence supporting a genetic association between polymorphisms in the TLR9 gene and T1D. Methods In total, 1513 individuals, including T1D patients (n=738) and healthy control individuals (n=775), from the Han Chinese population were recruited for an association analysis of the rs352140 polymorphism of the TLR9 gene and T1D. rs352140 was genotyped by MassARRAY. The allele and genotype distributions of rs352140 in the T1D and healthy groups and those in different T1D subgroups were analyzed by the chi-squared test and binary logistic regression model. The chi-square test and Kruskal-Wallis H test were performed to explore the association between genotype and phenotype in T1D patients. Results The allele and genotype distributions of rs352140 were significantly different in T1D patients and healthy control individuals (p=0.019, p=0.035). Specifically, the T allele and TT genotype of rs352140 conferred a higher risk of T1D (OR=1.194, 95% CI=1.029-1.385, p=0.019, OR=1.535, 95% CI=1.108-2.126, p=0.010). The allele and genotype distributions of rs352140 were not significantly different between childhood-onset and adult-onset T1D and between T1D with a single islet autoantibody and T1D with multiple islet autoantibodies (p=0.603, p=0.743). rs352140 was associated with T1D susceptibility according to the recessive and additive models (p=0.015, p=0.019) but was not associated with T1D susceptibility in the dominant and overdominant models (p=0.117, p=0.928). Moreover, genotype-phenotype association analysis showed that the TT genotype of rs352140 was associated with higher fasting C-peptide levels (p=0.017). Conclusion In the Han Chinese population, the TLR9 polymorphism rs352140 is associated with T1D and is a risk factor for susceptibility to T1D.
Collapse
|
34
|
Katneni U, Kimchi-Sarfaty C. Multiple mechanisms contribute to the phenotypic effects of synonymous variants. Hum Mutat 2022; 43:2324-2325. [PMID: 35842783 DOI: 10.1002/humu.24441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 01/25/2023]
Affiliation(s)
- Upendra Katneni
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, Maryland, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, Maryland, USA
| |
Collapse
|
35
|
Danilchenko VY, Zytsar MV, Maslova EA, Posukh OL. Selection of Diagnostically Significant Regions of the SLC26A4 Gene Involved in Hearing Loss. Int J Mol Sci 2022; 23:ijms232113453. [PMID: 36362242 PMCID: PMC9655724 DOI: 10.3390/ijms232113453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Screening pathogenic variants in the SLC26A4 gene is an important part of molecular genetic testing for hearing loss (HL) since they are one of the common causes of hereditary HL in many populations. However, a large size of the SLC26A4 gene (20 coding exons) predetermines the difficulties of its complete mutational analysis, especially in large samples of patients. In addition, the regional or ethno-specific prevalence of SLC26A4 pathogenic variants has not yet been fully elucidated, except variants c.919-2A>G and c.2168A>G (p.His723Arg), which have been proven to be most common in Asian populations. We explored the distribution of currently known pathogenic and likely pathogenic (PLP) variants across the SLC26A4 gene sequence presented in the Deafness Variation Database for the selection of potential diagnostically important parts of this gene. As a result of this bioinformatic analysis, we found that molecular testing ten SLC26A4 exons (4, 6, 10, 11, 13−17 and 19) with flanking intronic regions can provide a diagnostic rate of 61.9% for all PLP variants in the SLC26A4 gene. The primary sequencing of these SLC26A4 regions may be applied as an initial effective diagnostic testing in samples of patients of unknown ethnicity or as a subsequent step after the targeted testing of already-known ethno- or region-specific pathogenic SLC26A4 variants.
Collapse
Affiliation(s)
- Valeriia Yu. Danilchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina V. Zytsar
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ekaterina A. Maslova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga L. Posukh
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
36
|
The Enigmatic Etiology of Oculo-Auriculo-Vertebral Spectrum (OAVS): An Exploratory Gene Variant Interaction Approach in Candidate Genes. Life (Basel) 2022; 12:life12111723. [PMID: 36362878 PMCID: PMC9693117 DOI: 10.3390/life12111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The clinical diagnosis of oculo-auriculo-vertebral spectrum (OAVS) is established when microtia is present in association with hemifacial hypoplasia (HH) and/or ocular, vertebral, and/or renal malformations. Genetic and non-genetic factors have been associated with microtia/OAVS. Although the etiology remains unknown in most patients, some cases may have an autosomal dominant, autosomal recessive, or multifactorial inheritance. Among the possible genetic factors, gene−gene interactions may play important roles in the etiology of complex diseases, but the literature lacks related reports in OAVS patients. Therefore, we performed a gene−variant interaction analysis within five microtia/OAVS candidate genes (HOXA2, TCOF1, SALL1, EYA1 and TBX1) in 49 unrelated OAVS Mexican patients (25 familial and 24 sporadic cases). A statistically significant intergenic interaction (p-value < 0.001) was identified between variants p.(Pro1099Arg) TCOF1 (rs1136103) and p.(Leu858=) SALL1 (rs1965024). This intergenic interaction may suggest that the products of these genes could participate in pathways related to craniofacial alterations, such as the retinoic acid (RA) pathway. The absence of clearly pathogenic variants in any of the analyzed genes does not support a monogenic etiology for microtia/OAVS involving these genes in our patients. Our findings could suggest that in addition to high-throughput genomic approaches, future gene−gene interaction analyses could contribute to improving our understanding of the etiology of microtia/OAVS.
Collapse
|
37
|
Hart AF, Verbeeck J, Ariza D, Cejas D, Ghisbain G, Honchar H, Radchenko VG, Straka J, Ljubomirov T, Lecocq T, Dániel-Ferreira J, Flaminio S, Bortolotti L, Karise R, Meeus I, Smagghe G, Vereecken N, Vandamme P, Michez D, Maebe K. Signals of adaptation to agricultural stress in the genomes of two European bumblebees. Front Genet 2022; 13:993416. [PMID: 36276969 PMCID: PMC9579324 DOI: 10.3389/fgene.2022.993416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Human-induced environmental impacts on wildlife are widespread, causing major biodiversity losses. One major threat is agricultural intensification, typically characterised by large areas of monoculture, mechanical tillage, and the use of agrochemicals. Intensification leads to the fragmentation and loss of natural habitats, native vegetation, and nesting and breeding sites. Understanding the adaptability of insects to these changing environmental conditions is critical to predicting their survival. Bumblebees, key pollinators of wild and cultivated plants, are used as model species to assess insect adaptation to anthropogenic stressors. We investigated the effects of agricultural pressures on two common European bumblebees, Bombus pascuorum and B. lapidarius. Restriction-site Associated DNA Sequencing was used to identify loci under selective pressure across agricultural-natural gradients over 97 locations in Europe. 191 unique loci in B. pascuorum and 260 in B. lapidarius were identified as under selective pressure, and associated with agricultural stressors. Further investigation suggested several candidate proteins including several neurodevelopment, muscle, and detoxification proteins, but these have yet to be validated. These results provide insights into agriculture as a stressor for bumblebees, and signal for conservation action in light of ongoing anthropogenic changes.
Collapse
Affiliation(s)
- Alex F. Hart
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Ghent, Belgium
| | - Jaro Verbeeck
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Ghent, Belgium
| | - Daniel Ariza
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Ghent, Belgium
| | - Diego Cejas
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Guillaume Ghisbain
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Hanna Honchar
- Institute for Evolutionary Ecology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vladimir G. Radchenko
- Institute for Evolutionary Ecology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Jakub Straka
- Charles University, Faculty of Science, Department of Zoology, Praha, Czech Republic
| | - Toshko Ljubomirov
- Institute of Biodiversity and Ecosystem Research—Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Thomas Lecocq
- Université de Lorraine, INRAE, URAFPA, Nancy, France
| | | | - Simone Flaminio
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Bologna, Italy
| | - Laura Bortolotti
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Bologna, Italy
| | - Reet Karise
- Estonian University of Life Sciences, Institute of Agricultural and Environmental Sciences, Tartu, Estonia
| | - Ivan Meeus
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Ghent, Belgium
| | - Guy Smagghe
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Ghent, Belgium
| | - Nicolas Vereecken
- Agroecology Lab, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Kevin Maebe
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Ghent, Belgium
- *Correspondence: Kevin Maebe,
| |
Collapse
|
38
|
de Mello FDSB, Coradini ALV, Carazzolle MF, Maneira C, Furlan M, Pereira GAG, Teixeira GS. Genetic mapping of a bioethanol yeast strain reveals new targets for hydroxymethylfurfural- and thermotolerance. Microbiol Res 2022; 263:127138. [DOI: 10.1016/j.micres.2022.127138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 10/16/2022]
|
39
|
Katneni UK, Alexaki A, Hunt RC, Hamasaki-Katagiri N, Hettiarachchi GK, Kames JM, McGill JR, Holcomb DD, Athey JC, Lin B, Parunov LA, Kafri T, Lu Q, Peters R, Ovanesov MV, Freedberg DI, Bar H, Komar AA, Sauna ZE, Kimchi-Sarfaty C. Structural, functional, and immunogenicity implications of F9 gene recoding. Blood Adv 2022; 6:3932-3944. [PMID: 35413099 PMCID: PMC9278298 DOI: 10.1182/bloodadvances.2022007094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022] Open
Abstract
Hemophilia B is a blood clotting disorder caused by deficient activity of coagulation factor IX (FIX). Multiple recombinant FIX proteins are currently approved to treat hemophilia B, and several gene therapy products are currently being developed. Codon optimization is a frequently used technique in the pharmaceutical industry to improve recombinant protein expression by recoding a coding sequence using multiple synonymous codon substitutions. The underlying assumption of this gene recoding is that synonymous substitutions do not alter protein characteristics because the primary sequence of the protein remains unchanged. However, a critical body of evidence shows that synonymous variants can affect cotranslational folding and protein function. Gene recoding could potentially alter the structure, function, and in vivo immunogenicity of recoded therapeutic proteins. Here, we evaluated multiple recoded variants of F9 designed to further explore the effects of codon usage bias on protein properties. The detailed evaluation of these constructs showed altered conformations, and assessment of translation kinetics by ribosome profiling revealed differences in local translation kinetics. Assessment of wild-type and recoded constructs using a major histocompatibility complex (MHC)-associated peptide proteomics assay showed distinct presentation of FIX-derived peptides bound to MHC class II molecules, suggesting that despite identical amino acid sequence, recoded proteins could exhibit different immunogenicity risks. Posttranslational modification analysis indicated that overexpression from gene recoding results in suboptimal posttranslational processing. Overall, our results highlight potential functional and immunogenicity concerns associated with gene-recoded F9 products. These findings have general applicability and implications for other gene-recoded recombinant proteins.
Collapse
Affiliation(s)
- Upendra K. Katneni
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Aikaterini Alexaki
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Ryan C. Hunt
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Nobuko Hamasaki-Katagiri
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Gaya K. Hettiarachchi
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Jacob M. Kames
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Joseph R. McGill
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - David D. Holcomb
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - John C. Athey
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Brian Lin
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Leonid A. Parunov
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | - Mikhail V. Ovanesov
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Darón I. Freedberg
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD
| | - Haim Bar
- Department of Statistics, University of Connecticut, Storrs, CT; and
| | - Anton A. Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH
| | - Zuben E. Sauna
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| | - Chava Kimchi-Sarfaty
- Division of Plasma Protein Therapeutics, Hemostasis Branch, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration (FDA), Silver Spring, MD
| |
Collapse
|
40
|
Breeding Sustainable Beef Cows: Reducing Weight and Increasing Productivity. Animals (Basel) 2022; 12:ani12141745. [PMID: 35883292 PMCID: PMC9311566 DOI: 10.3390/ani12141745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022] Open
Abstract
Programs for sustainable beef production are established, but the specific role of beef cows in these systems is not well defined. This work characterized cows for two traits related to sustainability, cow weight (CW) and cumulative weight weaned (WtW). Cow weight indicates nutrient requirements and enteric methane emissions. Cumulative weight weaned reflects reproductive performance and avoidance of premature culling for characteristics related to animal health, welfare, and worker safety. Both traits were evaluated with random regression models with records from a crossbred population representing 18 breeds that conduct US national cattle evaluations. The genomic REML analyses included additive and dominance components, with relationships among 22,776 animals constructed from genotypes of 181,286 potentially functional variants imputed from a low-pass sequence. Projected to 8 years of age, the additive heritability estimate for CW was 0.57 and 0.11 for WtW. Dominance heritability was 0.02 for CW and 0.19 for WtW. Many variants with significant associations with CW were within previously described quantitative trait loci (QTL) for growth-related production, meat, and carcass traits. Significant additive WtW variants were covered by QTL for traits related to reproduction and structural soundness. All breeds contributed to groups of cows with high and low total genetic values (additive + dominance effects) for both traits. The high WtW cows and cows above the WtW mean but below the CW mean had larger heterosis values and fewer bases in runs of homozygosity. The high additive heritability of CW and dominance effects on WtW indicate that breeding to improve beef cow sustainability should involve selection to reduce CW and mate selection to maintain heterosis and reduce runs of homozygosity.
Collapse
|
41
|
Gómez-Aguado I, Rodríguez-Castejón J, Beraza-Millor M, Rodríguez-Gascón A, Del Pozo-Rodríguez A, Solinís MÁ. mRNA delivery technologies: Toward clinical translation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:207-293. [PMID: 36064265 DOI: 10.1016/bs.ircmb.2022.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Messenger RNA (mRNA)-therapies have recently taken a huge step toward clinic thanks to the first mRNA-based medicinal products marketed. mRNA features for clinical purposes are improved by chemical modifications, but the inclusion in a delivery system is a regular requirement. mRNA nanomedicines must be designed for the specific therapeutic purpose, protecting the nucleic acid and facilitating the overcoming of biological barriers. Polymers, polypeptides, and cationic lipids are the main used materials to design mRNA delivery systems. Among them, lipid nanoparticles (LNPs) are the most advanced ones, and currently they are at the forefront of preclinical and clinical evaluation in several fields, including immunotherapy (against infectious diseases and cancer), protein replacement, gene editing and regenerative medicine. This chapter includes an overview on mRNA delivery technologies, with special interest in LNPs, and the most recent advances in their clinical application. Liposomes are the mRNA delivery technology with the highest clinical translation among LNPs, whereas the first clinical trial of a therapeutic mRNA formulated in exosomes has been recently approved for protein replacement therapy. The first mRNA products approved by the regulatory agencies worldwide are LNP-based mRNA vaccines against viral infections, specifically against the 2019 coronavirus disease (COVID-19). The clinical translation of mRNA-therapies for cancer is mainly focused on three strategies: anti-cancer vaccination by means of delivering cancer antigens or acting as an adjuvant, mRNA-engineered chimeric antigen receptors (CARs) and T-cell receptors (TCRs), and expression of antibodies and immunomodulators. Cancer immunotherapy and, more recently, COVID-19 vaccines spearhead the advance of mRNA clinical use.
Collapse
Affiliation(s)
- Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain.
| |
Collapse
|
42
|
Zhang H, Chen C, Wu X, Lou C, Liang Q, Wu W, Wang X, Ding Q. Effects of 14 F9 synonymous codon variants on hemophilia B expression: Alteration of splicing along with protein expression. Hum Mutat 2022; 43:928-939. [PMID: 35391506 DOI: 10.1002/humu.24377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/25/2023]
Abstract
There is growing evidence that synonymous codon variants (SCVs) can cause disease through the disruption of different processes of protein production. The aim of the study is to investigate whether the 14 SCVs reported in the F9 variant database were the pathogenic causes of hemophilia B. The impacts of SCVs on splicing and protein expression were detected using a combination of in silico prediction, in vitro minigene splicing assay and cell expression detection. The splicing transcripts were identified and quantified by co-amplification fluorescent PCR. The mechanism of splicing was verified by a modified pU1snRNA and pU7snRNA approach. Aberrant splicing patterns were found in eight SCVs. Five of the 8 SCVs produced almost all aberrant splicing isoforms, which were expected to truncate protein, three of them presented a partial defect on both splicing and protein secretion, the overall effects were consistent with the residual Factor IX activity of the affected cases. Neither the pre-messenger RNA (mRNA) splicing process nor the protein function was impaired in the rest six SCVs. In conclusion, our study firstly revealed the pathogenic mechanism of the 14 F9 SCVs and highlighted the importance of performing mRNA splicing analysis and protein expression studies of SCVs in inherited disorders.
Collapse
Affiliation(s)
- Huayang Zhang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Can Lou
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Panzer M, Viveiros A, Schaefer B, Baumgartner N, Seppi K, Djamshidian A, Todorov T, Griffiths WJH, Schott E, Schuelke M, Eurich D, Stättermayer AF, Bomford A, Foskett P, Vodopiutz J, Stauber R, Pertler E, Morell B, Tilg H, Müller T, Kiechl S, Jimenez-Heredia R, Weiss KH, Hahn SH, Janecke A, Ferenci P, Zoller H. Synonymous mutation in adenosine triphosphatase copper-transporting beta causes enhanced exon skipping in Wilson disease. Hepatol Commun 2022; 6:1611-1619. [PMID: 35271763 PMCID: PMC9234614 DOI: 10.1002/hep4.1922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/25/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022] Open
Abstract
Wilson disease (WD) is caused by biallelic pathogenic variants in adenosine triphosphatase copper-transporting beta (ATP7B); however, genetic testing identifies only one or no pathogenic ATP7B variant in a number of patients with WD. Synonymous single-nucleotide sequence variants have been recognized as pathogenic in individual families. The aim of the present study was to evaluate the prevalence and disease mechanism of the synonymous variant c.2292C>T (p.Phe764=) in WD. A cohort of 280 patients with WD heterozygous for a single ATP7B variant was investigated for the presence of c.2292C>T (p.Phe764=). In this cohort of otherwise genetically unexplained WD, the allele frequency of c.2292C>T (p.Phe764=) was 2.5% (14 of 560) compared to 7.1 × 10-6 in the general population (2 of 280,964 in the Genome Aggregation Database; p < 10-5 ; Fisher exact test). In an independent United Kingdom (UK) cohort, 2 patients with WD homozygous for p.Phe764= were identified. RNA analysis of ATP7B transcripts from patients homozygous or heterozygous for c.2292C>T and control fibroblasts showed that this variant caused high expression of an ATP7B transcript variant lacking exon 8. Conclusion: The synonymous ATP7B variant c.2292C>T (p.Phe764=) causes abnormal messenger RNA processing of ATP7B transcripts and is associated with WD in compound heterozygotes and homozygotes.
Collapse
Affiliation(s)
- Marlene Panzer
- Department of Medicine IMedical University of InnsbruckInnsbruckAustria.,VASCage Research Center on Vascular Ageing and StrokeInnsbruckAustria
| | - André Viveiros
- Department of Medicine IMedical University of InnsbruckInnsbruckAustria
| | - Benedikt Schaefer
- Department of Medicine IMedical University of InnsbruckInnsbruckAustria
| | - Nadja Baumgartner
- Department of Medicine IMedical University of InnsbruckInnsbruckAustria
| | - Klaus Seppi
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Atbin Djamshidian
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Theodor Todorov
- Department of Medical Genetics and Molecular BiologyUniversity Hospital LozenetzSofiaBulgaria
| | - William J H Griffiths
- Cambridge Liver UnitCambridge University Hospitals National Health Service (NHS) Foundation TrustCambridgeUK
| | - Eckart Schott
- Helios Klinikum Emil von Behring GmbHKlinik für Innere Medizin IIBerlinGermany
| | - Markus Schuelke
- Department of NeuropediatricsCharité University Medical Center BerlinBerlinGermany
| | - Dennis Eurich
- Department of SurgeryCharité University Medical Center BerlinBerlinGermany
| | - Albert Friedrich Stättermayer
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University ViennaViennaAustria
| | - Adrian Bomford
- Institute of Liver StudiesKing's College Hospital NHS Foundation TrustLondonUK
| | - Pierre Foskett
- Institute of Liver StudiesKing's College Hospital NHS Foundation TrustLondonUK
| | - Julia Vodopiutz
- Division of Pediatric Pulmology, Allergology, and EndocrinologyDepartment of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Rudolf Stauber
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineMedical University of GrazGrazAustria
| | - Elke Pertler
- Department of Medicine IMedical University of InnsbruckInnsbruckAustria.,Christian Doppler Laboratory on Iron and Phosphate BiologyInnsbruckAustria
| | - Bernhard Morell
- Department of Gastroenterology and HepatologyUniversity Hospital ZurichZurichSwitzerland
| | - Herbert Tilg
- Department of Medicine IMedical University of InnsbruckInnsbruckAustria
| | - Thomas Müller
- Department of Pediatrics IMedical University of InnsbruckInnsbruckAustria
| | - Stefan Kiechl
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Raul Jimenez-Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria.,Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria.,St. Anna Children's Cancer Research InstituteViennaAustria
| | - Karl Heinz Weiss
- Internal MedicineKrankenhaus Salem der Evangelischen StadtmissionHeidelbergGermany
| | - Si Houn Hahn
- University of Washington School of MedicineSeattle Children's HospitalSeattleWashingtonUSA
| | - Andreas Janecke
- Department of Pediatrics IMedical University of InnsbruckInnsbruckAustria
| | - Peter Ferenci
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University ViennaViennaAustria
| | - Heinz Zoller
- Department of Medicine IMedical University of InnsbruckInnsbruckAustria.,Christian Doppler Laboratory on Iron and Phosphate BiologyInnsbruckAustria
| |
Collapse
|
44
|
Gonçalves-Anjo N, Requicha J, Teixeira A, Dias I, Viegas C, Bastos E. Genomic Medicine in Periodontal Disease: Old Issue, New Insights. J Vet Dent 2022; 39:314-322. [PMID: 35765214 PMCID: PMC9638704 DOI: 10.1177/08987564221109102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Genetic variability is the main cause of phenotypic variation. Some variants may
be associated with several diseases and can be used as risk biomarkers,
identifying animals with higher susceptibility to develop the pathology. Genomic
medicine uses this genetic information for risk calculation, clinical diagnosis
and prognosis, allowing the implementation of more effective preventive
strategies and/or personalized therapies. Periodontal disease (PD) is the
inflammation of the periodontium induced mainly by bacterial plaque and is the
leading cause of tooth loss. Microbial factors are responsible for the PD
initiation; however, several studies support the genetic influence on the PD
progression. The main purpose of the present publication is to highlight the
main steps involved in the genomic medicine applied to veterinary patients,
describing the flowchart from the characterization of the genetic variants to
the identification of potential associations with specific clinical data. After
investigating which genes might potentially be implicated in canine PD, the
RANK gene, involved in the regulation of
osteoclastogenesis, was selected to illustrate this approach. A case-control
study was performed using DNA samples from a population of 90 dogs – 50 being
healthy and 40 with PD. This analysis allowed for the discovery of four new
intronic variations that were banked in GenBank (g.85A>G, g.151G>T,
g.268A>G and g.492T>C). The results of this study are not intended to be
applied exclusively to PD. On the contrary, this genetic information is intended
to be used by other researchers as a foundation for the development of multiple
applications in the veterinary clinical field.
Collapse
Affiliation(s)
- Nuno Gonçalves-Anjo
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, 56066University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,Centre of the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), UTAD, Vila Real, Portugal
| | - João Requicha
- 511313Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal.,Animal Research Centre (CECAV), UTAD, Vila Real, Portugal.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Andreia Teixeira
- Centre of the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), UTAD, Vila Real, Portugal
| | - Isabel Dias
- 511313Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal.,Animal Research Centre (CECAV), UTAD, Vila Real, Portugal.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Carlos Viegas
- 511313Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal.,Animal Research Centre (CECAV), UTAD, Vila Real, Portugal.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Estela Bastos
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, 56066University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,Centre of the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), UTAD, Vila Real, Portugal
| |
Collapse
|
45
|
Deng Z, Tian Y, Song J, An G, Yang P. mRNA Vaccines: The Dawn of a New Era of Cancer Immunotherapy. Front Immunol 2022; 13:887125. [PMID: 35720301 PMCID: PMC9201022 DOI: 10.3389/fimmu.2022.887125] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
mRNA therapy is a novel anticancer strategy based on in vitro transcription (IVT), which has potential for the treatment of malignant tumors. The outbreak of the COVID-19 pandemic in the early 21st century has promoted the application of mRNA technologies in SARS-CoV-2 vaccines, and there has been a great deal of interest in the research and development of mRNA cancer vaccines. There has been progress in a number of key technologies, including mRNA production strategies, delivery systems, antitumor immune strategies, etc. These technologies have accelerated the progress and clinical applications of mRNA therapy, overcoming problems encountered in the past, such as instability, inefficient delivery, and weak immunogenicity of mRNA vaccines. This review provides a detailed overview of the production, delivery systems, immunological mechanisms, and antitumor immune response strategies for mRNA cancer vaccines. We list some mRNA cancer vaccines that are candidates for cancer treatment and discuss clinical trials in the field of tumor immunotherapy. In addition, we discuss the immunological mechanism of action by which mRNA vaccines destroy tumors as well as challenges and prospects for the future.
Collapse
Affiliation(s)
- Zhuoya Deng
- Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuying Tian
- Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Guangwen An
- Department of Pharmacy, No. 984 Hospital of the PLA, Beijing, China
| | - Penghui Yang
- Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
46
|
Magyar CL, Murdock DR, Burrage LC, Dai H, Lalani SR, Lewis RA, Lin Y, Astudillo MF, Rosenfeld JA, Tran AA, Gibson JB, Bacino CA, Lee BH, Chao HT. PRUNE1 c.933G>A synonymous variant induces exon 7 skipping, disrupts the DHHA2 domain, and leads to an atypical NMIHBA syndrome presentation: Case report and review of the literature. Am J Med Genet A 2022; 188:1868-1874. [PMID: 35194938 PMCID: PMC11149102 DOI: 10.1002/ajmg.a.62704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/12/2021] [Accepted: 02/05/2022] [Indexed: 11/09/2022]
Abstract
Prune exopolyphosphatase-1 (PRUNE1) encodes a member of the aspartic acid-histidine-histidine (DHH) phosphodiesterase superfamily that regulates cell migration and proliferation during brain development. In 2015, biallelic PRUNE1 loss-of-function variants were identified to cause the neurodevelopmental disorder with microcephaly, hypotonia, and variable brain abnormalities (NMIHBA, OMIM#617481). NMIHBA is characterized by the namesake features and structural brain anomalies including thinning of the corpus callosum, cerebral and cerebellar atrophy, and delayed myelination. To date, 47 individuals have been reported in the literature, but the phenotypic spectrum of PRUNE1-related disorders and their causative variants remains to be characterized fully. Here, we report a novel homozygous PRUNE1 NM_021222.2:c.933G>A synonymous variant identified in a 6-year-old boy with intellectual and developmental disabilities, hypotonia, and spastic diplegia, but with the absence of microcephaly, brain anomalies, or seizures. Fibroblast RNA sequencing revealed that the PRUNE1 NM_021222.1:c.933G>A variant resulted in an in-frame skipping of the penultimate exon 7, removing 53 amino acids from an important protein domain. This case represents the first synonymous variant and the third pathogenic variant known to date affecting the DHH-associated domain (DHHA2 domain). These findings extend the genotypic and phenotypic spectrums in PRUNE1-related disorders and highlight the importance of considering synonymous splice site variants in atypical presentations.
Collapse
Affiliation(s)
- Christina L Magyar
- Graduate Program in Genetics and Genomics, Medical Scientist Training Program, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Yuezhen Lin
- Department of Pediatrics, Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Marcela F Astudillo
- Department of Pediatrics, Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alyssa A Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James B Gibson
- Section of Metabolic Genetics, Dell Children's Medical Group, Austin, Texas, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Hsiao-Tuan Chao
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
47
|
Ye L, Li M, Yang Q, Zhu Z. RHD alleles contributing to serologically weak D phenotypes in China: A single-centre study over 10 years. Vox Sang 2022; 117:949-957. [PMID: 35510963 DOI: 10.1111/vox.13275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVES In cases of serologically weak D phenotypes, RHD genotyping may identify discrepant serotyping results and protect the patient against allogeneic immunization. This study aimed to conduct a comprehensive analysis of weak D alleles in China. MATERIALS AND METHODS We collected samples carrying weak D antigen during a 10-year period from 2005 to 2014. The intensity and epitopes of D were analysed serologically. Genomic DNA was extracted and used for RHD sequencing and heterozygote analysis. In particular, an in vitro expression method for functional verification of the rare and novel in-frame deletion mutation was developed and then combined with homologous modelling results for analysis. RESULTS We studied a total of 283 weak D samples from volunteer blood donors and identified 45 RHD alleles among them, 11 of which were reported for the first time. Ten (3.5%) samples surprisingly carried DEL allelic variants and as many as 40 (14.1%) carried the wild-type RHD genotype. Combination of the results of functional experiments and in silico analysis suggested that the rare in-frame deletion mutation may reduce the expression of D antigen by affecting the RhD protein structure. CONCLUSIONS This study provides an enhanced overview of the distribution characteristics of RHD alleles in Chinese subjects with serologically weak D. An in vitro method to predict the biological significance of variant RHD alleles was also provided. We found inconsistent genotyping and phenotypic results in some samples, indicating the existence of additional regulatory mechanisms.
Collapse
Affiliation(s)
- Luyi Ye
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Centre, Shanghai, China
| | - Minghao Li
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Centre, Shanghai, China
| | - Qixiu Yang
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Centre, Shanghai, China
| | - Ziyan Zhu
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Centre, Shanghai, China
| |
Collapse
|
48
|
Geysels RC, Bernal Barquero CE, Martín M, Peyret V, Nocent M, Sobrero G, Muñoz L, Signorino M, Testa G, Castro RB, Masini-Repiso AM, Miras MB, Nicola JP. Silent but Not Harmless: A Synonymous SLC5A5 Gene Variant Leading to Dyshormonogenic Congenital Hypothyroidism. Front Endocrinol (Lausanne) 2022; 13:868891. [PMID: 35600585 PMCID: PMC9114739 DOI: 10.3389/fendo.2022.868891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
Background Congenital iodide transport defect (ITD) is an uncommon cause of dyshormonogenic congenital hypothyroidism characterized by the absence of active iodide accumulation in the thyroid gland. ITD is an autosomal recessive disorder caused by loss-of-function variants in the sodium/iodide symporter (NIS)-coding SLC5A5 gene. Objective We aimed to identify, and if so to functionally characterize, novel ITD-causing SLC5A5 gene variants in a cohort of five unrelated pediatric patients diagnosed with dyshormonogenic congenital hypothyroidism with minimal to absent 99mTc-pertechnetate accumulation in the thyroid gland. Methods The coding region of the SLC5A5 gene was sequenced using Sanger sequencing. In silico analysis and functional in vitro characterization of a novel synonymous variant were performed. Results Sanger sequencing revealed a novel homozygous synonymous SLC5A5 gene variant (c.1326A>C in exon 11). In silico analysis revealed that the c.1326A>C variant is potentially deleterious for NIS pre-mRNA splicing. The c.1326A>C variant was predicted to lie within a putative exonic splicing enhancer reducing the binding of splicing regulatory trans-acting protein SRSF5. Splicing minigene reporter assay revealed that c.1326A>C causes exon 11 or exon 11 and 12 skipping during NIS pre-mRNA splicing leading to the NIS pathogenic variants p.G415_P443del and p.G415Lfs*32, respectively. Significantly, the frameshift variant p.G415Lfs*32 is predicted to be subjected to degradation by nonsense-mediated decay. Conclusions We identified the first exonic synonymous SLC5A5 gene variant causing aberrant NIS pre-mRNA splicing, thus expanding the mutational landscape of the SLC5A5 gene leading to dyshormonogenic congenital hypothyroidism.
Collapse
Affiliation(s)
- Romina Celeste Geysels
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Carlos Eduardo Bernal Barquero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Mariano Martín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Victoria Peyret
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Martina Nocent
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Gabriela Sobrero
- Programa Provincial de Pesquisa Neonatal, Servicio de Endocrinología, Hospital de Niños de la Santísima Trinidad de Córdoba, Córdoba, Argentina
| | - Liliana Muñoz
- Programa Provincial de Pesquisa Neonatal, Servicio de Endocrinología, Hospital de Niños de la Santísima Trinidad de Córdoba, Córdoba, Argentina
| | - Malvina Signorino
- Programa Provincial de Pesquisa Neonatal, Servicio de Endocrinología, Hospital de Niños de la Santísima Trinidad de Córdoba, Córdoba, Argentina
| | - Graciela Testa
- Programa Provincial de Pesquisa Neonatal, Servicio de Endocrinología, Hospital de Niños de la Santísima Trinidad de Córdoba, Córdoba, Argentina
| | | | - Ana María Masini-Repiso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Mirta Beatriz Miras
- Programa Provincial de Pesquisa Neonatal, Servicio de Endocrinología, Hospital de Niños de la Santísima Trinidad de Córdoba, Córdoba, Argentina
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| |
Collapse
|
49
|
Kaissarian NM, Meyer D, Kimchi-Sarfaty C. Synonymous Variants: Necessary Nuance in our Understanding of Cancer Drivers and Treatment Outcomes. J Natl Cancer Inst 2022; 114:1072-1094. [PMID: 35477782 PMCID: PMC9360466 DOI: 10.1093/jnci/djac090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Once called "silent mutations" and assumed to have no effect on protein structure and function, synonymous variants are now recognized to be drivers for some cancers. There have been significant advances in our understanding of the numerous mechanisms by which synonymous single nucleotide variants (sSNVs) can affect protein structure and function by affecting pre-mRNA splicing, mRNA expression, stability, folding, miRNA binding, translation kinetics, and co-translational folding. This review highlights the need for considering sSNVs in cancer biology to gain a better understanding of the genetic determinants of human cancers and to improve their diagnosis and treatment. We surveyed the literature for reports of sSNVs in cancer and found numerous studies on the consequences of sSNVs on gene function with supporting in vitro evidence. We also found reports of sSNVs that have statistically significant associations with specific cancer types but for which in vitro studies are lacking to support the reported associations. Additionally, we found reports of germline and somatic sSNVs that were observed in numerous clinical studies and for which in silico analysis predicts possible effects on gene function. We provide a review of these investigations and discuss necessary future studies to elucidate the mechanisms by which sSNVs disrupt protein function and are play a role in tumorigeneses, cancer progression, and treatment efficacy. As splicing dysregulation is one of the most well recognized mechanisms by which sSNVs impact protein function, we also include our own in silico analysis for predicting which sSNVs may disrupt pre-mRNA splicing.
Collapse
Affiliation(s)
- Nayiri M Kaissarian
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Douglas Meyer
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
50
|
Zheng GL, Zhu ZX, Cui JL, Yu JM. Evolutionary Analyses of Emerging GII.2[P16] and GII.4 Sydney [P16] Noroviruses. Virus Evol 2022; 8:veac030. [PMID: 35450165 PMCID: PMC9019527 DOI: 10.1093/ve/veac030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 11/14/2022] Open
Abstract
GII.2[P16] and GII.4 Sydney [P16] are currently the two predominant norovirus genotypes. This study sought to clarify their evolutionary patterns by analyzing the major capsid VP1 and RNA-dependent RNA polymerase (RdRp) genes. Sequence diversities were analyzed at both nucleotide and amino acid levels. Selective pressures were evaluated with the Hyphy package in different models. Phylogenetic trees were constructed by the maximum likelihood method from full VP1 sequences, and evolutionary rates were estimated by the Bayesian Markov Chain Monte Carlo approach. The results showed that (1) several groups of tightly linked mutations between the RdRp and VP1 genes were detected in the GII.2[P16] and GII.4[P16] noroviruses, and most of these mutations were synonymous, which may lead to a better viral fitness to the host; (2) although the pattern of having new GII.4 variants every 2–4 years has been broken, both the pre- and the post-2015 Sydney VP1 had comparable evolutionary rates to previously epidemic GII.4 variants, and half of the major antigenic sites on GII.4 Sydney had residue substitutions and several caused obvious changes in the carbohydrate-binding surface that may potentially alter the property of the virus; and (3) GII.4 Sydney variants during 2018–21 showed geographical specificity in East Asia, South Asia, and North America; the antigenic sites of GII.2 are strictly conserved, but the GII.2 VP1 chronologically evolved into nine different sublineages over time, with sublineage IX being the most prevalent one since 2018. This study suggested that both VP1 and RdRp of the GII.2[P16] and GII.4 Sydney [P16] noroviruses exhibited different evolutionary directions. GII.4[P16] is likely to generate potential novel epidemic variants by accumulating mutations in the P2 domain, similar to previously epidemic GII.4 variants, while GII.2[P16] has conserved predicted antigenicity and may evolve by changing the properties of nonstructural proteins, such as polymerase replicational fidelity and efficiency. This study expands the understanding of the evolutionary dynamics of GII.2[P16] and GII.4[P16] noroviruses and may predict the emergence of new variants.
Collapse
Affiliation(s)
- Guo-li Zheng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Zheng-xi Zhu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jia-le Cui
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jie-mei Yu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|