1
|
Xia B, Hu R, Chen J, Shan S, Xu F, Zhang G, Zhou Z, Fan Y, Hu Z, Liang XJ. Oral Administration Properties Evaluation of Three Milk-Derived Extracellular Vesicles Based on Ultracentrifugation Extraction Methods. Adv Healthc Mater 2024; 13:e2401370. [PMID: 38767497 DOI: 10.1002/adhm.202401370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Milk-derived extracellular vesicles (M-EVs) are low-cost, can be prepared in large quantities, and can cross the gastrointestinal barrier for oral administration. However, the composition of milk is complex, and M-EVs obtained by different extraction methods may affect their oral delivery. Based on this, a new method for extracting M-EVs based on cryogenic freezing treatment (Cryo-M-EVs) is proposed and compared with the previously reported acetic acid treatment (Acid-M-EVs) method and the conventional ultracentrifugation method (Ulltr-M-EVs). The new method simplifies the pretreatment step and achieves 25-fold and twofold higher yields than Acid-M-EVs and Ulltr-M-EVs. And it is interesting to note that Cryo-M-EVs and Acid-M-EVs have higher cellular uptake efficiency, and Cryo-M-EVs present the best transepithelial transport effect. After oral administration of the three M-EVs extracted by three methods in mice, Cryo-M-EVs effectively successfully cross the gastrointestinal barrier and achieve hepatic accumulation, whereas Acid-M-EVs and Ultr-M-EVs mostly reside in the intestine. The M-EVs obtained by the three extraction methods show a favorable safety profile at the cellular as well as animal level. Therefore, when M-EVs obtained by different extraction methods are used for oral drug delivery, their accumulation properties at different sites can be utilized to better deal with different diseases.
Collapse
Affiliation(s)
- Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Runjing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junge Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing, 100083, China
| | - Shaobo Shan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, P. R. China
| | - Fengfei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziran Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing, 100083, China
| | - Zhongbo Hu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Tevlek A. Diagnostic use of circulating cells and sub-cellular bio-particles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 192:19-36. [PMID: 39159788 DOI: 10.1016/j.pbiomolbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
In the bloodstream or other physiological fluids, "circulating cells and sub-cellular bio-particles" include many microscopic biological elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, microRNAs, platelets, immune cells, and proteins are the most well-known and investigated. These structures are crucial biomarkers in healthcare and medical research for the early detection of cancer and other disorders, enabling treatment to commence before the onset of clinical symptoms and enhancing the efficacy of treatments. As the size of these biomarkers to be detected decreases and their numbers in body fluids diminishes, the detection materials, ranging from visual inspection to advanced microscopy techniques, begin to become smaller, more sensitive, faster, and more effective, thanks to developing nanotechnology. This review first defines the circulating cells and subcellular bio-particles with their biological, physical, and mechanical properties and second focuses on their diagnostic importance, including their most recent applications as biomarkers, the biosensors that are utilized to detect them, the present obstacles that must be surmounted, and prospective developments in the domain. As technology advances and biomolecular pathways are deepens, diagnostic tests will become more sensitive, specific, and thorough. Finally, integrating recent advances in the diagnostic use of circulating cells and bioparticles into clinical practice is promising for precision medicine and patient outcomes.
Collapse
Affiliation(s)
- Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, 06836, Turkey.
| |
Collapse
|
3
|
Fazzio A, Caponnetto A, Ferrara C, Purrello M, Di Pietro C, Battaglia R. From Germ Cells to Implantation: The Role of Extracellular Vesicles. J Dev Biol 2024; 12:22. [PMID: 39311117 PMCID: PMC11417829 DOI: 10.3390/jdb12030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Extracellular vesicles represent a large heterogeneous class of near and long-distance intercellular communication mediators, released by both prokaryotic and eukaryotic cells. Specifically, the scientific community has shown growing interest in exosomes, which are nano-sized vesicles with an endosomal origin. Not so long ago, the physiological goal of exosome generation was largely unknown and required more investigation; at first, it was hypothesized that exosomes are able to remove excess, reject and unnecessary constituents from cells to preserve cellular homeostasis. However, thanks to recent studies, the central role of exosomes in regulating cellular communication has emerged. Exosomes act as vectors in cell-cell signaling by their cargo, proteins, lipids, and nucleic acids, and influence physiological and pathological processes. The findings on exosomes are widespread in a large spectrum of biomedical applications from diagnosis and prognosis to therapies. In this review, we describe exosome biogenesis and the current methods for their isolation and characterization, emphasizing the role of their cargo in female reproductive processes, from gametogenesis to implantation, and the potential involvement in human female disorders.
Collapse
Affiliation(s)
- Anna Fazzio
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
| | - Carmen Ferrara
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
| |
Collapse
|
4
|
Xu X, Zhang Z, Shen T, Pan H, Chang D. Visual dual-mode aptasensor for non-small cell lung cancer exosome detection via HRP self-coupling enhanced oxidized iridium nanoparticle aggregation. ANAL SCI 2024; 40:1459-1473. [PMID: 38900232 DOI: 10.1007/s44211-024-00582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 06/21/2024]
Abstract
The main reason for the high mortality rate of non-small cell lung cancer is that patients are usually diagnosed at an advanced stage of the disease. Exosomes, small membrane vesicles secreted by normal cells or tumor cells, play a significant role in the progression of NSCLC. This study successfully optimized the preparation of artificial nanoenzymes self-coupling with horseradish peroxidase (IrO2NPs@HRP-AptCD63), without adding any ligand, demonstrating remarkable catalytic activity suitable for detecting the EGFR protein on the surface of NSCLC exosomes. When fused with the CD63 aptamer for identifying NSCLC exosomes, IrO2NPs@HRP showed enhanced catalytic activity in the 3,3',5,5'-tetramethylbenzidine-H2O2 oxidation-reduction system, thereby enhancing the colorimetric signal. This phenomenon can be distinguished by the naked eye and quantified using a UV-Vis spectrophotometer. Meanwhile, as the redox reaction occurs, the current signal of 3,3',5,5'-tetramethylbenzidine-H2O2, acting as an electrolyte, changes. The developed aptasensor generates dual-mode signal outputs, firstly, to visually assess the samples for their positive or negative status, and subsequently employ more in-depth electrochemical or colorimetric analysis methods for a detailed quantitative analysis of suspected positive samples. The detection limits of electrochemical analysis and colorimetric analysis were 0.9 × 103 particles/mL and 0.14 × 103 particles/mL, respectively. Compared with traditional biomarkers such as CA125, this method exhibits exceptional specificity, capable of simultaneously distinguishing serum exosomes of healthy volunteers, COPD patients, and NSCLC patients, promoting exosome detection in mouse models for tumor monitoring. Additionally, it elucidates the changes in EGFR protein expression on the surface of serum exosomes throughout the developmental trajectory.
Collapse
Affiliation(s)
- Xin Xu
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Ze Zhang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Tong Shen
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
- Hebei Medical University, Hebei, 050011, China
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201399, China.
| | - Dong Chang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
5
|
Skryabin GO, Beliaeva AA, Enikeev AD, Tchevkina EM. Extracellular Vesicle miRNAs in Diagnostics of Gastric Cancer. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1211-1238. [PMID: 39218020 DOI: 10.1134/s0006297924070058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024]
Abstract
Gastric cancer (GC) poses a significant global health challenge because of its high mortality rate attributed to the late-stage diagnosis and lack of early symptoms. Early cancer diagnostics is crucial for improving the survival rates in GC patients, which emphasizes the importance of identifying GC markers for liquid biopsy. The review discusses a potential use of extracellular vesicle microRNAs (EV miRNAs) as biomarkers for the diagnostics and prognostics of GC. Methods. Original articles on the identification of EV miRNA as GC markers published in the Web of Science and Scopus indexed issues were selected from the PubMed and Google Scholar databases. We focused on the methodological aspects of EV analysis, including the choice of body fluid, methods for EV isolation and validation, and approaches for EV miRNA analysis. Conclusions. Out of 33 found articles, the majority of authors investigated blood-derived extracellular vesicles (EVs); only a few utilized EVs from other body fluids, including tissue-specific local biofluids (washing the tumor growth areas), which may be a promising source of EVs in the context of cancer diagnostics. GC-associated miRNAs identified in different studies using different methods of EV isolation and analysis varied considerably. However, three miRNAs (miR-10b, miR-21, and miR-92a) have been found in several independent studies and shown to be associated with GC in experimental models. Further studies are needed to determine the optimal miRNA marker panel. Another essential step necessary to improve the reliability and reproducibility of EV-based diagnostics is standardization of methodologies for EV handling and analysis of EV miRNA.
Collapse
Affiliation(s)
- Gleb O Skryabin
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia.
| | - Anastasiya A Beliaeva
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Adel D Enikeev
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Elena M Tchevkina
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| |
Collapse
|
6
|
Cheng CA. Before Translating Extracellular Vesicles into Personalized Diagnostics and Therapeutics: What We Could Do. Mol Pharm 2024; 21:2625-2636. [PMID: 38771015 DOI: 10.1021/acs.molpharmaceut.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Extracellular vesicle (EV) research is rapidly advancing from fundamental science to translational applications in EV-based personalized therapeutics and diagnostics. Yet, fundamental questions persist regarding EV biology and mechanisms, particularly concerning the heterogeneous interactions between EVs and cells. While we have made strides in understanding virus delivery and intracellular vesicle transport, our comprehension of EV trafficking remains limited. EVs are believed to mediate intercellular communication through cargo transfer, but uncertainties persist regarding the occurrence and quantification of EV-cargo delivery within acceptor cells. This ambiguity is crucial to address, given the significant translational impact of EVs on therapeutics and diagnostics. This perspective article does not seek to provide exhaustive recommendations and guidance on EV-related studies, as these are well-articulated in position papers and statements by the International Society for Extracellular Vesicles (ISEV), including the 'Minimum Information for Studies of Extracellular Vesicles' (MISEV) 2014, MISEV2018, and the recent MISEV2023. Instead, recognizing the multilayered heterogeneity of EVs as both a challenge and an opportunity, this perspective emphasizes novel approaches to facilitate our understanding of diverse EV biology, address uncertainties, and leverage this knowledge to advance EV-based personalized diagnostics and therapeutics. Specifically, this perspective synthesizes current insights, identifies opportunities, and highlights exciting technological advancements in ultrasensitive single EV or "digital" profiling developed within the author's multidisciplinary group. These newly developed technologies address technical gaps in dissecting the molecular contents of EV subsets, contributing to the evolution of EVs as next-generation liquid biopsies for diagnostics and providing better quality control for EV-based therapeutics.
Collapse
Affiliation(s)
- Chi-An Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
| |
Collapse
|
7
|
Arima J, Yoshino H, Fukumoto W, Kawahara I, Saito S, Li G, Fukuda I, Iizasa S, Mitsuke A, Sakaguchi T, Inoguchi S, Matsushita R, Nakagawa M, Tatarano S, Yamada Y, Enokida H. LncRNA BCYRN1 as a Potential Therapeutic Target and Diagnostic Marker in Serum Exosomes in Bladder Cancer. Int J Mol Sci 2024; 25:5955. [PMID: 38892143 PMCID: PMC11172611 DOI: 10.3390/ijms25115955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Bladder cancer (BC) is a common genitourinary malignancy that exhibits silent morbidity and high mortality rates because of a lack of diagnostic markers and limited effective treatments. Here, we evaluated the role of the lncRNA brain cytoplasmic RNA 1 (BCYRN1) in BC. We performed loss-of-function assays to examine the effects of BCYRN1 downregulation in T24 and BOY BC cells. We found that BCYRN1 downregulation significantly inhibited the proliferation, migration, invasion, and three-dimensional spheroid formation ability and induced apoptosis in BC cells. Additionally, gene set enrichment analysis (GSEA) using RNA sequences from tumor fractions showed that BCYRN1 downregulation decreased the expression of mRNAs associated with the cell cycle. These findings were supported by observations of G2/M arrest in flow cytometry assays. Finally, we examined the expression of serum exosomal BCYRN1 as a biomarker. Clinically, BCYRN1 expression in serum exosomes from patients with BC (n = 31) was significantly higher than that in healthy donors (n = 19; mean difference: 4.1-fold higher, p < 0.01). Moreover, in patients who had undergone complete resection of BC, serum exosomal BCYRN1 levels were significantly decreased (n = 8). Thus, serum exosomal BCYRN1 may be a promising diagnostic marker and therapeutic target in patients with BC.
Collapse
Affiliation(s)
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang X, Song D, Zhu B, Jin Y, Cai C, Wang Z. Urinary exosomal mRNA as a biomarker for the diagnosis of bladder cancer. Anticancer Drugs 2024; 35:362-370. [PMID: 38385960 PMCID: PMC10919263 DOI: 10.1097/cad.0000000000001571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 02/23/2024]
Abstract
OBJECTIVE To study the diagnostic value of mRNA expression in urinary exocrine body in bladder cancer. METHODS From February 2022 to December 2022, 60 patients diagnosed with bladder cancer by pathology in the Department of Urology, Affiliated Hospital of Chengde Medical University were selected as the case group. In total, 40 healthy subjects receiving physical examinations were selected as the control group. 100 mL of morning urine samples were collected from the subjects in both groups based on the same standard. Three subjects were randomly selected from each group. Urinary exosomes were extracted by differential ultracentrifugation. High-throughput sequencing (RNA-seq) was used to detect mRNA expression profiles in urinary exosomes and identify differentially expressed genes. Bioinformatic analysis was performed to predict major biological functions of differentially expressed genes and related signaling pathways. RT-PCR validated expression levels of differentially expressed genes in urinary exosomes between the two groups. ROC curves evaluated the diagnostic value of differential genes for bladder cancer. Spearman's correlation analysis determined correlations between differentially expressed genes and the occurrence of bladder cancer. ROC curves speculated the diagnostic value of using combined differentially expressed genes. RESULTS Compared with normal subjects, there were 189 significantly differentially expressed genes in urinary exosomes of bladder cancer patients, including 33 up-regulated and 156 down-regulated. According to go and kyoto encyclopedia of genes and genomes (KEGG) analysis, the above differentially expressed genes may participate in the occurrence and development of bladder cancer through the MAPK pathway, PPAP signaling pathway, PI3K Akt signaling pathway and Hippo signaling pathway, affect protein and lipid metabolism, RNase activity, polysaccharide synthesis, signal transduction and other biological processes, and participate in cell proliferation, death, movement and adhesion, as well as cell differentiation and signal transduction. RT-PCR verified that the expression of tmeff1, SDPR, ACBD7, SCG2 and COL6A2 in the two groups of samples was statistically significant ( P < 0.05). The ROC curve showed that the area under curve area under the curve of the five differential genes were 0.6934, 0.7746, 0.7239, 0.6396 and 0.6610, respectively. The sensitivity was 42.11%, 64.86%, 47.37%, 73.53% and 76.47%, and the specificity was 90%, 81.36%, 96.36%, 61.02% and 58.18%, respectively. Spearman correlation analysis showed that tmeff1, SDPR and acbd7 were associated with the occurrence of bladder cancer. The ROC curve of the combined diagnosis of the three and the two combined diagnoses suggested that the area under the curve of the combined diagnosis of SDPR and acbd7 was 0.7945, the sensitivity was 89.09%, and the specificity was 60.53%. CONCLUSION The gene expression profile in urinary exosomes of bladder cancer patients has changed significantly, and the differential genes may play an important biological role in the occurrence and development of bladder cancer. The combined detection of urinary exosome SDPR and ACBD7 has a certain diagnostic value for bladder cancer.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Urinary Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Dianbin Song
- Department of Urinary Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Baoxing Zhu
- Department of Urinary Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yang Jin
- Department of Urinary Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Caisen Cai
- Department of Urinary Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zhiyong Wang
- Department of Urinary Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
9
|
Virtuoso A, D’Amico G, Scalia F, De Luca C, Papa M, Maugeri G, D’Agata V, Caruso Bavisotto C, D’Amico AG. The Interplay between Glioblastoma Cells and Tumor Microenvironment: New Perspectives for Early Diagnosis and Targeted Cancer Therapy. Brain Sci 2024; 14:331. [PMID: 38671983 PMCID: PMC11048111 DOI: 10.3390/brainsci14040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) stands out as the most tremendous brain tumor, constituting 60% of primary brain cancers, accompanied by dismal survival rates. Despite advancements in research, therapeutic options remain limited to chemotherapy and surgery. GBM molecular heterogeneity, the intricate interaction with the tumor microenvironment (TME), and non-selective treatments contribute to the neoplastic relapse. Diagnostic challenges arise from GBM advanced-stage detection, necessitating the exploration of novel biomarkers for early diagnosis. Using data from the literature and a bioinformatic tool, the current manuscript delineates the molecular interplay between human GBM, astrocytes, and myeloid cells, underscoring selected protein pathways belonging to astroglia and myeloid lineage, which can be considered for targeted therapies. Moreover, the pivotal role of extracellular vesicles (EVs) in orchestrating a favorable microenvironment for cancer progression is highlighted, suggesting their utility in identifying biomarkers for GBM early diagnosis.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.); (M.P.)
| | - Giuseppa D’Amico
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy; (G.D.); (F.S.)
| | - Federica Scalia
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy; (G.D.); (F.S.)
| | - Ciro De Luca
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.); (M.P.)
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.); (M.P.)
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (V.D.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (V.D.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BiND), Human Anatomy Section, University of Palermo, 90127 Palermo, Italy; (G.D.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Agata Grazia D’Amico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
10
|
Pei Y, Guo Y, Wang W, Wang B, Zeng F, Shi Q, Xu J, Guo L, Ding C, Xie X, Ren T, Guo W. Extracellular vesicles as a new frontier of diagnostic biomarkers in osteosarcoma diseases: a bibliometric and visualized study. Front Oncol 2024; 14:1359807. [PMID: 38500663 PMCID: PMC10944918 DOI: 10.3389/fonc.2024.1359807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
The use of liquid biopsy in cancer research has grown exponentially, offering potential for early detection, treatment stratification, and monitoring residual disease and recurrence. Exosomes, released by cancer cells, contain tumor-derived materials and are stable in biofluids, making them valuable biomarkers for clinical evaluation. Bibliometric research on osteosarcoma (OS) and exosome-derived diagnostic biomarkers is scarce. Therefore, we aimed to conduct a bibliometric evaluation of studies on OS and exosome-derived biomarkers. Using the Web of Science Core Collection database, Microsoft Excel, the R "Bibliometrix" package, CiteSpace, and VOSviewer software, quantitative analyses of the country, author, annual publications, journals, institutions, and keywords of studies on exosome-derived biomarkers for OS from 1995 to 2023 were performed. High-quality records (average citation rate ≥ 10/year) were filtered. The corresponding authors were mainly from China, the USA, Australia, and Canada. The University of Kansas Medical Center, National Cancer Center, Japan, and University of Kansas were major institutions, with limited cooperation reported by the University of Kansas Medical Center. Keyword analysis revealed a shift from cancer progression to mesenchymal stem cells, exosome expression, biogenesis, and prognostic biomarkers. Qualitative analysis highlighted exosome cargo, including miRNAs, circRNAs, lncRNAs, and proteins, as potential diagnostic OS biomarkers. This research emphasizes the rapid enhancement of exosomes as a diagnostic frontier, offering guidance for the clinical application of exosome-based liquid biopsy in OS, contributing to the evolving landscape of cancer diagnosis.
Collapse
Affiliation(s)
- Yanhong Pei
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Yu Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Boyang Wang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Fanwei Zeng
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Qianyu Shi
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Lei Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Chaowei Ding
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Xiangpang Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Cangnan, Zhejiang, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| |
Collapse
|
11
|
Wang Z, Wang Q, Qin F, Chen J. Exosomes: a promising avenue for cancer diagnosis beyond treatment. Front Cell Dev Biol 2024; 12:1344705. [PMID: 38419843 PMCID: PMC10900531 DOI: 10.3389/fcell.2024.1344705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes, extracellular vesicles secreted by cells, have garnered significant attention in recent years for their remarkable therapeutic potential. These nanoscale carriers can be harnessed for the targeted delivery of therapeutic agents, such as pharmaceuticals, proteins, and nucleic acids, across biological barriers. This versatile attribute of exosomes is a promising modality for precision medicine applications, notably in the realm of cancer therapy. However, despite their substantial therapeutic potential, exosomes still confront challenges tied to standardization and scalability that impede their practice in clinical applications. Moreover, heterogeneity in isolation methodologies and limited cargo loading mechanisms pose obstacles to ensuring consistent outcomes, thereby constraining their therapeutic utility. In contrast, exosomes exhibit a distinct advantage in cancer diagnosis, as they harbor specific signatures reflective of the tumor's genetic and proteomic profile. This characteristic endows them with the potential to serve as valuable liquid biopsies for non-invasive and real-time monitoring, making possible early cancer detection for the development of personalized treatment strategies. In this review, we provide an extensive evaluation of the advancements in exosome research, critically examining their advantages and limitations in the context of cancer therapy and early diagnosis. Furthermore, we present a curated overview of the most recent technological innovations utilizing exosomes, with a focus on enhancing the efficacy of early cancer detection.
Collapse
Affiliation(s)
- Zhu Wang
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Qin
- School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jie Chen
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Dhoundiyal S, Alam MA. Advancements in Biotechnology and Stem Cell Therapies for Breast Cancer Patients. Curr Stem Cell Res Ther 2024; 19:1072-1083. [PMID: 37815191 DOI: 10.2174/011574888x268109230924233850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 10/11/2023]
Abstract
This comprehensive review article examines the integration of biotechnology and stem cell therapy in breast cancer diagnosis and treatment. It discusses the use of biotechnological tools such as liquid biopsies, genomic profiling, and imaging technologies for accurate diagnosis and monitoring of treatment response. Stem cell-based approaches, their role in modeling breast cancer progression, and their potential for breast reconstruction post-mastectomy are explored. The review highlights the importance of personalized treatment strategies that combine biotechnological tools and stem cell therapies. Ethical considerations, challenges in clinical translation, and regulatory frameworks are also addressed. The article concludes by emphasizing the potential of integrating biotechnology and stem cell therapy to improve breast cancer outcomes, highlighting the need for continued research and collaboration in this field.
Collapse
Affiliation(s)
- Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar
Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar
Pradesh, India
| |
Collapse
|
13
|
Cheng C, Hou K, Hsu C, Chiang L. Ultrasensitive and High-Resolution Protein Spatially Decoding Framework for Tumor Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304926. [PMID: 37984870 PMCID: PMC10797477 DOI: 10.1002/advs.202304926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/28/2023] [Indexed: 11/22/2023]
Abstract
Proteins localized on the surface or within the lumen of tumor-derived extracellular vesicles (EVs) play distinct roles in cancer progression. However, quantifying both populations of proteins within EVs has been hampered due to the limited sensitivity of the existing protein detection methods and inefficient EV isolation techniques. In this study, the eSimoa framework, an innovative approach enabling spatial decoding of EV protein biomarkers with unmatched sensitivity and specificity is presented. Using the luminal eSimoa pipeline, the absolute concentration of luminal RAS or KRASG12D proteins is released and measured, uncovering their prevalence in pancreatic tumor-derived EVs. The pulldown eSimoa pipeline measured absolute protein concentrations from low-abundance EV subpopulations. The eSimoa assays detected EVs in both PBS and plasma samples, confirming their applicability across diverse clinical sample types. Overall, the eSimoa framework offers a valuable tool to (1) detect EVs at concentrations as low as 105 EV mL-1 in plasma, (2) quantify absolute EV protein concentrations as low as fM, and (3) decode the spatial distribution of EV proteins. This study highlights the potential of eSimoa in identifying disease-specific EV protein biomarkers in clinical samples with minimal pre-purification, thereby driving advancements in clinical translation.
Collapse
Affiliation(s)
- Chi‐An Cheng
- School of PharmacyCollege of MedicineNational Taiwan UniversityTaipei10050Taiwan
| | - Kuan‐Chu Hou
- Department of MedicineCollege of MedicineNational Taiwan UniversityTaipei10050Taiwan
| | - Chen‐Wei Hsu
- School of PharmacyCollege of MedicineNational Taiwan UniversityTaipei10050Taiwan
| | - Li‐Chiao Chiang
- School of PharmacyCollege of MedicineNational Taiwan UniversityTaipei10050Taiwan
| |
Collapse
|
14
|
Wei YN, Yan CY, Zhao ML, Zhao XH. The role and application of vesicles in triple-negative breast cancer: Opportunities and challenges. Mol Ther Oncolytics 2023; 31:100752. [PMID: 38130701 PMCID: PMC10733704 DOI: 10.1016/j.omto.2023.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Extracellular vesicles (EVs) carry DNA, RNA, protein, and other substances involved in intercellular crosstalk and can be used for the targeted delivery of drugs. Triple-negative breast cancer (TNBC) is rich in recurrent and metastatic disease and lacks therapeutic targets. Studies have proved the role of EVs in the different stages of the genesis and development of TNBC. Cancer cells actively secrete various biomolecules, which play a significant part establishing the tumor microenvironment via EVs. In this article, we describe the roles of EVs in the tumor immune microenvironment, metabolic microenvironment, and vascular remodeling, and summarize the application of EVs for objective delivery of chemotherapeutic drugs, immune antigens, and cancer vaccine adjuvants. EVs-based therapy may represent the next-generation tool for targeted drug delivery for the cure of a variety of diseases lacking effective drug treatment.
Collapse
Affiliation(s)
- Ya-Nan Wei
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Chun-Yan Yan
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
15
|
Li C, Shao J, Li P, Feng J, Li J, Wang C. Circulating tumor DNA as liquid biopsy in lung cancer: Biological characteristics and clinical integration. Cancer Lett 2023; 577:216365. [PMID: 37634743 DOI: 10.1016/j.canlet.2023.216365] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Lung cancer maintains high morbidity and mortality rate globally despite significant advancements in diagnosis and treatment in the era of precision medicine. Pathological analysis of tumor tissue, the current gold standard for lung cancer diagnosis, is intrusive and intrinsically confined to evaluating the limited amount of tissues that could be physically extracted. However, tissue biopsy has several limitations, including the invasiveness of the procedure and difficulty in obtaining samples for patients at advanced stages., there Additionally,has been no major breakthrough in tumor biomarkers with high specificity and sensitivity, particularly for early-stage lung cancer. Liquid biopsy has been considered a feasible auxiliary tool for tearly dianosis, evaluating treatment responses and monitoring prognosis of lung cancer. Circulating tumor DNA (ctDNA), an ideal biomarker of liquid biopsy, has emerged as one of the most reliable tools for monitoring tumor processes at molecular levels. Herein, this review focuses on tumor heterogeneity to elucidate the superiority of liquid biopsy and retrospectively discussdeciphersolution. We systematically elaborate ctDNA biological characteristics, introduce methods for ctDNA detection, and discuss the current role of plasma ctDNA in lung cancer management. Finally, we summarize the drawbacks of ctDNA analysis and highlight its potential clinical application in lung cancer.
Collapse
Affiliation(s)
- Changshu Li
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peiyi Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaming Feng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jingwei Li
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
17
|
Xue J, Qin S, Ren N, Guo B, Shi X, Jia E. Extracellular vesicle biomarkers in circulation for the diagnosis of gastric cancer: A systematic review and meta‑analysis. Oncol Lett 2023; 26:423. [PMID: 37664665 PMCID: PMC10472029 DOI: 10.3892/ol.2023.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/14/2023] [Indexed: 09/05/2023] Open
Abstract
The prognosis of a gastric cancer (GC) diagnosis is poor due to the current lack of effective early diagnostic methods. Extracellular vesicle (EV) biomarkers have previously demonstrated strong diagnostic efficiency for certain types of cancer, including pancreatic and lung cancer. The present review aimed to summarize the diagnostic value of circulating EV biomarkers for early stage GC. The PubMed, Medline and Web of Science databases were searched from May 1983 to September 18, 2022. All studies that reported the diagnostic performance of EV biomarkers for GC were included for analysis. Overall, 27 studies were selected containing 2,831 patients with GC and 2,117 controls. A total of 58 EV RNAs were reported in 26 studies, including 39 microRNAs (miRNAs), 10 long non-coding RNAs (lncRNAs), five circular RNAs, three PIWI-interacting RNAs and one mRNA, in addition to one protein in the remaining study. Meta-analysis of the aforementioned studies demonstrated that the pooled sensitivity, specificity and AUC value of the total RNAs were 84, 67% and 0.822, respectively. The diagnostic values of miRNAs were consistent with the total RNA, as the pooled sensitivity, specificity and AUC value were 84, 67% and 0.808, respectively. The pooled sensitivity, specificity and AUC values of lncRNAs were 89, 69% and 0.872, respectively, markedly higher compared with that of miRNAs. A total of five studies reported the diagnostic performance of EV RNA panels for early stage GC and reported powerful diagnostic values with a pooled sensitivity, specificity and AUC value of 80, 77% and 0.879, respectively. Circulating EV RNAs could have the potential to be used in the future as effective, noninvasive biomarkers for early GC diagnosis. Further research in this field is necessary to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Jinru Xue
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Shaoyou Qin
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Na Ren
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Bo Guo
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| | - Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, P.R. China
| | - Erna Jia
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Jilin, Changchun 130000, P.R. China
| |
Collapse
|
18
|
Santini D, Botticelli A, Galvano A, Iuliani M, Incorvaia L, Gristina V, Taffon C, Foderaro S, Paccagnella E, Simonetti S, Fazio F, Scagnoli S, Pomati G, Pantano F, Perrone G, De Falco E, Russo A, Spinelli GP. Network approach in liquidomics landscape. J Exp Clin Cancer Res 2023; 42:193. [PMID: 37542343 PMCID: PMC10401883 DOI: 10.1186/s13046-023-02743-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 08/06/2023] Open
Abstract
Tissue-based biopsy is the present main tool to explore the molecular landscape of cancer, but it also has many limits to be frequently executed, being too invasive with the risk of side effects. These limits and the ability of cancer to constantly evolve its genomic profile, have recently led to the need of a less invasive and more accurate alternative, such as liquid biopsy. By searching Circulating Tumor Cells and residues of their nucleic acids or other tumor products in body fluids, especially in blood, but also in urine, stools and saliva, liquid biopsy is becoming the future of clinical oncology. Despite the current lack of a standardization for its workflows, that makes it hard to be reproduced, liquid biopsy has already obtained promising results for cancer screening, diagnosis, prognosis, and risk of recurrence.Through a more accessible molecular profiling of tumors, it could become easier to identify biomarkers predictive of response to treatment, such as EGFR mutations in non-small cell lung cancer and KRAS mutations in colorectal cancer, or Microsatellite Instability and Mismatch Repair as predictive markers of pembrolizumab response.By monitoring circulating tumor DNA in longitudinal repeated sampling of blood we could also predict Minimal Residual Disease and the risk of recurrence in already radically resected patients.In this review we will discuss about the current knowledge of limitations and strengths of the different forms of liquid biopsies for its inclusion in normal cancer management, with a brief nod to their newest biomarkers and its future implications.
Collapse
Affiliation(s)
- Daniele Santini
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | - Andrea Botticelli
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | - Antonio Galvano
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Michele Iuliani
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Lorena Incorvaia
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Chiara Taffon
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Simone Foderaro
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Elisa Paccagnella
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.So Della Repubblica 79, 04100, Latina, Italy
| | - Sonia Simonetti
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Federico Fazio
- UOC Oncologia Territoriale, Polo Pontino, La Sapienza Università Di Roma, Latina, Italy.
| | - Simone Scagnoli
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | | | - Francesco Pantano
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Giuseppe Perrone
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.So Della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, 80122, Naples, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Gian Paolo Spinelli
- UOC Oncologia Territoriale, Polo Pontino, La Sapienza Università Di Roma, Latina, Italy
| |
Collapse
|
19
|
Sun Y, Li M, Zhang X, Xu D, Wu J, Gu X, Khan A, Shen H, Li Z. A simple and available measurement of onco-sEV dsDNA to protein ratio as a potential tumor marker. BMC Cancer 2023; 23:614. [PMID: 37400751 DOI: 10.1186/s12885-023-10886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/25/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Small extracellular vesicles (sEVs) have great potential as new biomarkers in liquid biopsy. However, due to the limitations of sEVs extraction and component analysis procedures, further clinical applications of sEVs are hampered. Carcinoembryonic antigen (CEA) is a commonly used broad-spectrum tumor marker that is strongly expressed in a variety of malignancies. RESULTS In this study, CEA+ sEVs were directly separated from serum using immunomagnetic beads, and the nucleic acid to protein ultraviolet absorption ratio (NPr) of CEA+ sEVs was determined. It was found that the NPr of CEA+ sEVs in tumor group was higher than that of healthy group. We further analyzed the sEV-derived nucleic acid components using fluorescent staining and found that the concentration ratio of double-stranded DNA to protein (dsDPr) in CEA+ sEVs was also significantly different between the two groups, with a sensitivity of 100% and a specificity of 41.67% for the diagnosis of pan-cancer. The AUC of dsDPr combined with NPr was 0.87 and the ACU of dsDPr combined with CA242 could reach 0.94, showing good diagnostic performance for pan-cancer. CONCLUSIONS This study demonstrates that the dsDPr of CEA+ sEVs can effectively distinguish sEVs derived from tumor patients and healthy individuals, which can be employed as a simple and cost-effective non-invasive screening technology to assist tumor diagnosis.
Collapse
Affiliation(s)
- Yifan Sun
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Miao Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoshan Zhang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Dongjie Xu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Jie Wu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Xinrui Gu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University, Southeast University, Nanjing, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China.
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Zhiyang Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China.
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
20
|
Jha P, Lenaerts L, Vermeesch J, Norton M, Amant F, Glanc P, Poder L. Noninvasive prenatal screening and maternal malignancy: role of imaging. Abdom Radiol (NY) 2023; 48:1590-1598. [PMID: 37095202 DOI: 10.1007/s00261-023-03913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 04/26/2023]
Abstract
Noninvasive prenatal screening (NIPS) tests for fetal chromosomal anomalies through maternal blood sampling. It is becoming widely available and standard of care for pregnant women in many countries. It is performed in the first trimester of pregnancy, usually between 9 and 12 weeks. Fragments of fetal cell-free deoxyribonucleic acid (DNA) floating in maternal plasma are detected and analyzed by this test to assess for chromosomal aberrations. Similarly, maternal tumor-derived cell-free DNA (ctDNA) released from the tumor cells also circulates in the plasma. Hence, the presence of genomic anomalies originating from maternal tumor-derived DNA may be detected on the NIPS-based fetal risk assessment in pregnant patients. Presence of multiple aneuploidies or autosomal monosomies are the most commonly reported NIPS abnormalities detected with occult maternal malignancies. When such results are received, the search for an occult maternal malignancy begins, in which imaging plays a crucial role. The most commonly detected malignancies via NIPS are leukemia, lymphoma, breast and colon cancers. Ultrasound is a reasonable radiation-free modality for imaging during pregnancy, specially when there are localizing symptoms or findings, such as palpable lumps. While there are no consensus guidelines on the imaging evaluation for these patients, when there are no localizing symptoms or clinically palpable findings, whole body MRI is recommended as the radiation-free modality of choice to search for an occult malignancy. Based on clinical symptoms, practice patterns, and available resources, breast ultrasound, chest radiographs, and targeted ultrasound evaluations can also be performed initially or as a follow-up for MRI findings. CT is reserved for exceptional circumstances due to its higher radiation dose. This article intends to increase awareness of this rare but stressful clinical scenario and guide imaging evaluation for occult malignancy detected via NIPS during pregnancy.
Collapse
Affiliation(s)
- Priyanka Jha
- Department of Radiology, Division of Body Imaging, Stanford University School of Medicine, Palo Alto, CA, USA.
| | | | - Joris Vermeesch
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Mary Norton
- Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, USA
| | - Frédéric Amant
- Department of Oncology, KU Leuven, Leuven, Belgium
- Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
- Center for Gynecological Oncology Amsterdam, Academic Medical Centre Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
- The Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Phyllis Glanc
- Department of Radiology, Obstetrics & Gynecology, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Liina Poder
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
Luo H, Zhang H, Mao J, Cao H, Tao Y, Zhao G, Zhang Z, Zhang N, Liu Z, Zhang J, Luo P, Xia Y, Cheng Y, Xie Z, Cheng Q, Liu G. Exosome-based nanoimmunotherapy targeting TAMs, a promising strategy for glioma. Cell Death Dis 2023; 14:235. [PMID: 37012233 PMCID: PMC10070666 DOI: 10.1038/s41419-023-05753-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023]
Abstract
Exosomes, the cell-derived small extracellular vehicles, play a vital role in intracellular communication by reciprocally transporting DNA, RNA, bioactive protein, chains of glucose, and metabolites. With great potential to be developed as targeted drug carriers, cancer vaccines and noninvasive biomarkers for diagnosis, treatment response evaluation, prognosis prediction, exosomes show extensive advantages of relatively high drug loading capacity, adjustable therapeutic agents release, enhanced permeation and retention effect, striking biodegradability, excellent biocompatibility, low toxicity, etc. With the rapid progression of basic exosome research, exosome-based therapeutics are gaining increasing attention in recent years. Glioma, the standard primary central nervous system (CNS) tumor, is still up against significant challenges as current traditional therapies of surgery resection combined with radiotherapy and chemotherapy and numerous efforts into new drugs showed little clinical curative effect. The emerging immunotherapy strategy presents convincing results in many tumors and is driving researchers to exert its potential in glioma. As the crucial component of the glioma microenvironment, tumor-associated macrophages (TAMs) significantly contribute to the immunosuppressive microenvironment and strongly influence glioma progression via various signaling molecules, simultaneously providing new insight into therapeutic strategies. Exosomes would substantially assist the TAMs-centered treatment as drug delivery vehicles and liquid biopsy biomarkers. Here we review the current potential exosome-mediated immunotherapeutics targeting TAMs in glioma and conclude the recent investigation on the fundamental mechanisms of diversiform molecular signaling events by TAMs that promote glioma progression.
Collapse
Affiliation(s)
- Hong Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jinning Mao
- Health management center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guanjian Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiwen Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuguo Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
David P, Mittelstädt A, Kouhestani D, Anthuber A, Kahlert C, Sohn K, Weber GF. Current Applications of Liquid Biopsy in Gastrointestinal Cancer Disease-From Early Cancer Detection to Individualized Cancer Treatment. Cancers (Basel) 2023; 15:cancers15071924. [PMID: 37046585 PMCID: PMC10093361 DOI: 10.3390/cancers15071924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Worldwide, gastrointestinal (GI) cancers account for a significant amount of cancer-related mortality. Tests that allow an early diagnosis could lead to an improvement in patient survival. Liquid biopsies (LBs) due to their non-invasive nature as well as low risk are the current focus of cancer research and could be a promising tool for early cancer detection. LB involves the sampling of any biological fluid (e.g., blood, urine, saliva) to enrich and analyze the tumor's biological material. LBs can detect tumor-associated components such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), and circulating tumor cells (CTCs). These components can reflect the status of the disease and can facilitate clinical decisions. LBs offer a unique and new way to assess cancers at all stages of treatment, from cancer screenings to prognosis to management of multidisciplinary therapies. In this review, we will provide insights into the current status of the various types of LBs enabling early detection and monitoring of GI cancers and their use in in vitro diagnostics.
Collapse
Affiliation(s)
- Paul David
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anke Mittelstädt
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dina Kouhestani
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Anthuber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christoph Kahlert
- Department of Surgery, Carl Gustav Carus University Hospital, 01307 Dresden, Germany
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
| | - Georg F Weber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
23
|
Paired Comparison of Routine Molecular Screening of Patient Samples with Advanced Non-Small Cell Lung Cancer in Circulating Cell-Free DNA Using Three Targeted Assays. Cancers (Basel) 2023; 15:cancers15051574. [PMID: 36900363 PMCID: PMC10001056 DOI: 10.3390/cancers15051574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
INTRODUCTION Progressive advanced non-small cell lung cancer (NSCLC) accounts for about 80-85% of all lung cancers. Approximately 10-50% of patients with NSCLC harbor targetable activating mutations, such as in-frame deletions in Exon 19 (Ex19del) of EGFR. Currently, for patients with advanced NSCLC, testing for sensitizing mutations in EGFR is mandatory prior to the administration of tyrosine kinase inhibitors. PATIENTS AND METHODS Plasma was collected from patients with NSCLC. We carried out targeted NGS using the Plasma-SeqSensei™ SOLID CANCER IVD kit on cfDNA (circulating free DNA). Clinical concordance for plasma detection of known oncogenic drivers was reported. In a subset of cases, validation was carried out using an orthogonal OncoBEAMTM EGFR V2 assay, as well as with our custom validated NGS assay. Somatic alterations were filtered, removing somatic mutations attributable to clonal hematopoiesis for our custom validated NGS assay. RESULTS In the plasma samples, driver targetable mutations were studied, with a mutant allele frequency (MAF) ranging from 0.00% (negative detection) to 82.25%, using the targeted next-generation sequencing Plasma-SeqSensei™ SOLID CANCER IVD Kit. In comparison with the OncoBEAMTM EGFR V2 kit, the EGFR concordance is 89.16% (based on the common genomic regions). The sensitivity and specificity rates based on the genomic regions (EGFR exons 18, 19, 20, and 21) were 84.62% and 94.67%. Furthermore, the observed clinical genomic discordances were present in 25% of the samples: 5% in those linked to the lower of coverage of the OncoBEAMTM EGFR V2 kit, 7% in those induced by the sensitivity limit on the EGFR with the Plasma-SeqSensei™ SOLID CANCER IVD Kit, and 13% in the samples linked to the larger KRAS, PIK3CA, BRAF coverage of the Plasma-SeqSensei™ SOLID CANCER IVD kit. Most of these somatic alterations were cross validated in our orthogonal custom validated NGS assay, used in the routine management of patients. The concordance is 82.19% in the common genomic regions (EGFR exons 18, 19, 20, 21; KRAS exons 2, 3, 4; BRAF exons 11, 15; and PIK3CA exons 10, 21). The sensitivity and specificity rates were 89.38% and 76.12%, respectively. The 32% of genomic discordances were composed of 5% caused by the limit of coverage of the Plasma-SeqSensei™ SOLID CANCER IVD kit, 11% induced by the sensitivity limit of our custom validated NGS assay, and 16% linked to the additional oncodriver analysis, which is only covered by our custom validated NGS assay. CONCLUSIONS The Plasma-SeqSensei™ SOLID CANCER IVD kit resulted in de novo detection of targetable oncogenic drivers and resistance alterations, with a high sensitivity and accuracy for low and high cfDNA inputs. Thus, this assay is a sensitive, robust, and accurate test.
Collapse
|
24
|
Vallejos PA, Gonda A, Yu J, Sullivan BG, Ostowari A, Kwong ML, Choi A, Selleck MJ, Kabagwira J, Fuller RN, Gironda DJ, Levine EA, Hughes CCW, Wall NR, Miller LD, Senthil M. Plasma Exosome Gene Signature Differentiates Colon Cancer from Healthy Controls. Ann Surg Oncol 2023; 30:3833-3844. [PMID: 36864326 PMCID: PMC10175396 DOI: 10.1245/s10434-023-13219-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/02/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND Liquid biopsies have become an integral part of cancer management as minimally invasive options to detect molecular and genetic changes. However, current options show poor sensitivity in peritoneal carcinomatosis (PC). Novel exosome-based liquid biopsies may provide critical information on these challenging tumors. In this initial feasibility analysis, we identified an exosome gene signature of 445 genes (ExoSig445) from colon cancer patients, including those with PC, that is distinct from healthy controls. METHODS Plasma exosomes from 42 patients with metastatic and non-metastatic colon cancer and 10 healthy controls were isolated and verified. RNAseq analysis of exosomal RNA was performed and differentially expressed genes (DEGs) were identified by the DESeq2 algorithm. The ability of RNA transcripts to discriminate control and cancer cases was assessed by principal component analysis (PCA) and Bayesian compound covariate predictor classification. An exosomal gene signature was compared with tumor expression profiles of The Cancer Genome Atlas. RESULTS Unsupervised PCA using exosomal genes with greatest expression variance showed stark separation between controls and patient samples. Using separate training and test sets, gene classifiers were constructed capable of discriminating control and patient samples with 100% accuracy. Using a stringent statistical threshold, 445 DEGs fully delineated control from cancer samples. Furthermore, 58 of these exosomal DEGs were found to be overexpressed in colon tumors. CONCLUSIONS Plasma exosomal RNAs can robustly discriminate colon cancer patients, including patients with PC, from healthy controls. ExoSig445 can potentially be developed as a highly sensitive liquid biopsy test in colon cancer.
Collapse
Affiliation(s)
- Paul A Vallejos
- Department of Basic Science, Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Amber Gonda
- Department of Surgery, Division of Surgical Oncology, University of California, Irvine Medical Center, Orange, CA, USA
| | - Jingjing Yu
- Department of Surgery, Division of Surgical Oncology, University of California, Irvine Medical Center, Orange, CA, USA
| | - Brittany G Sullivan
- Department of Surgery, Division of Surgical Oncology, University of California, Irvine Medical Center, Orange, CA, USA
| | - Arsha Ostowari
- Department of Surgery, Division of Surgical Oncology, University of California, Irvine Medical Center, Orange, CA, USA
| | - Mei Li Kwong
- Division of Surgical Oncology, Loma Linda University Health, Loma Linda, CA, USA
| | - Audrey Choi
- Division of Surgical Oncology, Loma Linda University Health, Loma Linda, CA, USA
| | - Matthew J Selleck
- Division of Surgical Oncology, Loma Linda University Health, Loma Linda, CA, USA
| | - Janviere Kabagwira
- Department of Basic Science, Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Ryan N Fuller
- Department of Basic Science, Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Daniel J Gironda
- Department of Cancer Biology, Wake Forest Health, Winston-Salem, NC, USA
| | - Edward A Levine
- Department of Surgery, Division of Surgical Oncology, Wake Forest Health, Winston-Salem, NC, USA
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Nathan R Wall
- Department of Basic Science, Division of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest Health, Winston-Salem, NC, USA
| | - Maheswari Senthil
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
25
|
Lee Y, Ni J, Beretov J, Wasinger VC, Graham P, Li Y. Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis. Mol Cancer 2023; 22:33. [PMID: 36797736 PMCID: PMC9933347 DOI: 10.1186/s12943-023-01741-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Current clinical tools for breast cancer (BC) diagnosis are insufficient but liquid biopsy of different bodily fluids has recently emerged as a minimally invasive strategy that provides a real-time snapshot of tumour biomarkers for early diagnosis, active surveillance of progression, and post-treatment recurrence. Extracellular vesicles (EVs) are nano-sized membranous structures 50-1000 nm in diameter that are released by cells into biological fluids. EVs contain proteins, nucleic acids, and lipids which play pivotal roles in tumourigenesis and metastasis through cell-to-cell communication. Proteins and miRNAs from small EVs (sEV), which range in size from 50-150 nm, are being investigated as a potential source for novel BC biomarkers using mass spectrometry-based proteomics and next-generation sequencing. This review covers recent developments in sEV isolation and single sEV analysis technologies and summarises the sEV protein and miRNA biomarkers identified for BC diagnosis, prognosis, and chemoresistance. The limitations of current sEV biomarker research are discussed along with future perspective applications.
Collapse
Affiliation(s)
- Yujin Lee
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Jie Ni
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Julia Beretov
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia ,grid.416398.10000 0004 0417 5393Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Valerie C. Wasinger
- grid.1005.40000 0004 4902 0432Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Medical Science, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Peter Graham
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Yong Li
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia. .,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia.
| |
Collapse
|
26
|
Expression of Epithelial and Mesenchymal Markers in Plasmatic Extracellular Vesicles as a Diagnostic Tool for Neoplastic Processes. Int J Mol Sci 2023; 24:ijms24043578. [PMID: 36834987 PMCID: PMC9964693 DOI: 10.3390/ijms24043578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Tumor-derived extracellular vesicles (TD-EVs) have active roles as cancer hallmark enablers. EVs RNA of epithelial and stromal cells carry information that facilitates the communication processes that contribute to oncological progression, so the objective of this work was to validate by RT-PCR the presence of epithelial (KRT19; CEA) and stromal (COL1A2; COL11A1) markers in RNA of plasmatic EVs in healthy and diverse-malignancy patients for the development of a non-invasive cancer diagnosis system using liquid biopsy. Ten asymptomatic controls and 20 cancer patients were included in the study, and results showed that the isolated plasmatic EVs by scanning transmission electron microscopy (STEM) andBiomedical Research Institute A Coruña nanoparticle tracking analysis (NTA) contained most exosome structures with also a considerable percentage of microvesicles. No differences were found in concentration and size distribution between the two cohorts of patients, but significant gene expression in epithelial and mesenchymal markers between healthy donors and patients with active oncological disease was shown. Results of quantitative RT-PCR are solid and reliable for KRT19, COL1A2, and COL11A1, so the analysis of RNA extracted from TD-EVs could be a correct approach to develop a diagnostic tool in oncological processes.
Collapse
|
27
|
Mazurek AM, Rutkowski TW. Practical Application of Circulating Tumor-Related DNA of Human Papillomavirus in Liquid Biopsy to Evaluate the Molecular Response in Patients with Oropharyngeal Cancer. Cancers (Basel) 2023; 15:1047. [PMID: 36831390 PMCID: PMC9953792 DOI: 10.3390/cancers15041047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Recent findings have shown that human papillomavirus (HPV) DNA is present in the blood as a tumor-specific biomarker (circulating tumor-related HPV; ctHPV) in patients with HPV-related oropharyngeal cancer (HPV-related OPC). The molecular response (MR) in patients with HPV-related OPC can be defined as the change in the number of ctHPV copies in relation to its initial quantity. The optimal model for assessing the MR using a liquid biopsy (LB) should be based on the E6/E7 sequences of the viral genome. MR assessment can help to evaluate the intensity of ongoing treatments in relation to the tumor response. The evaluation of the residual disease at the end of therapy may also be performed by MR assessment. If a partial MR (pMR) is found, caution is indicated and a subsequent LB should be considered, due to the likelihood of disease progression. Complete radiological and clinical responses together with a complete MR (cMR) convincingly indicate a low risk of treatment failure. Moreover, molecular recurrence (Mrec) during a follow-up, confirmed in two consecutive assays, even despite the lack of any other clinical or radiological symptoms of progression, indicates patients at high risk of disease recurrence. In conclusion, MR by ctHPV assessment may hasten the early detection of disease progression, at any stage of the management of the patient with HPV-related OPC.
Collapse
Affiliation(s)
- Agnieszka M. Mazurek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland
| | - Tomasz W. Rutkowski
- I Radiation and Clinical Oncology Department, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland
- Radiotherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland
| |
Collapse
|
28
|
Calapre L, Giardina T, Beasley AB, Reid AL, Stewart C, Amanuel B, Meniawy TM, Gray ES. Identification of TP53 mutations in circulating tumour DNA in high grade serous ovarian carcinoma using next generation sequencing technologies. Sci Rep 2023; 13:278. [PMID: 36609632 PMCID: PMC9822997 DOI: 10.1038/s41598-023-27445-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Plasma circulating tumour DNA (ctDNA) has been suggested to be a viable biomarker of response to treatment in patients with high grade serous ovarian carcinoma (HGSOC). TP53 mutations are present in more than 90% of HGSOCs but somatic variants are distributed across all exonic regions of the gene, requiring next generation sequencing (NGS) technologies for mutational analysis. In this study, we compared the suitability of the Accel (Swift) and Oncomine (ThermoFisher) panels for identification of TP53 mutations in ctDNA of HGSOC patients (N = 10). Only 6 patients (60%) were found to have TP53 mutations using the ACCEL panel but the addition of molecular tags in the Oncomine panel improved ctDNA detection with at least one mutation detected in all cases (100%). Orthogonal validation of the 14 somatic variants found by Oncomine, using droplet digital PCR, confirmed 79% (11/14) of the identified mutations. Overall, the Oncomine panel with unique molecular identifiers (UMI) appears more useful for ctDNA analysis in HGSOC.
Collapse
Affiliation(s)
- Leslie Calapre
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia
| | - Tindaro Giardina
- grid.415461.30000 0004 6091 201XAnatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA Australia
| | - Aaron B. Beasley
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia ,grid.1038.a0000 0004 0389 4302Centre for Precision Health, Edith Cowan University, Joondalup, WA Australia
| | - Anna L. Reid
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia ,grid.1038.a0000 0004 0389 4302Centre for Precision Health, Edith Cowan University, Joondalup, WA Australia
| | - Colin Stewart
- grid.415461.30000 0004 6091 201XAnatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA Australia ,grid.1012.20000 0004 1936 7910Medical School, University of Western Australia, Crawley, WA Australia
| | - Benhur Amanuel
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia ,grid.415461.30000 0004 6091 201XAnatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA Australia ,grid.1012.20000 0004 1936 7910Medical School, University of Western Australia, Crawley, WA Australia
| | - Tarek M. Meniawy
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia ,grid.1012.20000 0004 1936 7910Medical School, University of Western Australia, Crawley, WA Australia ,grid.3521.50000 0004 0437 5942Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA Australia
| | - Elin S. Gray
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia ,grid.415461.30000 0004 6091 201XAnatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA Australia
| |
Collapse
|
29
|
Visan KS, Wu LY, Voss S, Wuethrich A, Möller A. Status quo of Extracellular Vesicle isolation and detection methods for clinical utility. Semin Cancer Biol 2023; 88:157-171. [PMID: 36581020 DOI: 10.1016/j.semcancer.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
Extracellular vesicles (EVs) are nano-sized particles that hold tremendous potential in the clinical space, as their biomolecular profiles hold a key to non-invasive liquid biopsy for cancer diagnosis and prognosis. EVs are present in most bodily fluids, hence are easily obtainable from patients, advantageous to that of traditional, invasive tissue biopsies and imaging techniques. However, there are certain constraints that hinder clinical use of EVs. The translation of EV biomarkers from "bench-to-bedside" is encumbered by the methods of EV isolation and subsequent biomarker detection currently implemented in laboratories. Although current isolation and detection methods are effective, they lack practicality, with their requirement for high bodily fluid volumes, low equipment availability, slow turnaround times and high costs. The high demand for techniques that overcome these limitations has resulted in significant advancements in nanotechnological devices. These devices are designed to integrate EV isolation and biomarker detection into a one-step method of direct EV detection from bodily fluids. This provides promise for the acceleration of EVs into current clinical standards. This review highlights the importance of EVs as cancer biomarkers, the methodological obstacles currently faced in clinical studies and how novel nanodevices could advance clinical translation.
Collapse
Affiliation(s)
- Kekoolani S Visan
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Li-Ying Wu
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Sarah Voss
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
30
|
Desai PP, Narra K, James JD, Jones HP, Tripathi AK, Vishwanatha JK. Combination of Small Extracellular Vesicle-Derived Annexin A2 Protein and mRNA as a Potential Predictive Biomarker for Chemotherapy Responsiveness in Aggressive Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010212. [PMID: 36612209 PMCID: PMC9818227 DOI: 10.3390/cancers15010212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Small extracellular vesicles (sEVs), mainly exosomes, are nanovesicles that shed from the membrane as intraluminal vesicles of the multivesicular bodies, serve as vehicles that carry cargo influential in modulating the tumor microenvironment for the multi-step process of cancer metastasis. Annexin A2 (AnxA2), a calcium(Ca2+)-dependent phospholipid-binding protein, is among sEV cargoes. sEV-derived AnxA2 (sEV-AnxA2) protein is involved in the process of metastasis in triple-negative breast cancer (TNBC). The objective of the current study is to determine whether sEV-AnxA2 protein and/or mRNA could be a useful biomarkers to predict the responsiveness of chemotherapy in TNBC. Removal of Immunoglobulin G (IgG) from the serum as well as using the System Bioscience's ExoQuick Ultra kit resulted in efficient sEV isolation and detection of sEV-AnxA2 protein and mRNA compared to the ultracentrifugation method. The standardized method was applied to the twenty TNBC patient sera for sEV isolation. High levels of sEV-AnxA2 protein and/or mRNA were associated with stage 3 and above in TNBC. Four patients who responded to neoadjuvant chemotherapy had high expression of AnxA2 protein and/or mRNA in sEVs, while other four who did not respond to chemotherapy had low levels of AnxA2 protein and mRNA in sEVs. Our data suggest that the sEV-AnxA2 protein and mRNA could be a combined predictive biomarker for responsiveness to chemotherapy in aggressive TNBC.
Collapse
Affiliation(s)
- Priyanka P. Desai
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, TX 76107, USA
| | - Kalyani Narra
- Department of Internal Medicine, John Peter Smith (JPS) Oncology Infusion Center, Fort Worth, Texas, TX 76104, USA
| | - Johanna D. James
- Biosample Repository Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Harlan P. Jones
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, TX 76107, USA
| | - Amit K. Tripathi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, TX 76107, USA
| | - Jamboor K. Vishwanatha
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, TX 76107, USA
- Correspondence:
| |
Collapse
|
31
|
Xu D, Di K, Fan B, Wu J, Gu X, Sun Y, Khan A, Li P, Li Z. MicroRNAs in extracellular vesicles: Sorting mechanisms, diagnostic value, isolation, and detection technology. Front Bioeng Biotechnol 2022; 10:948959. [PMID: 36324901 PMCID: PMC9618890 DOI: 10.3389/fbioe.2022.948959] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short, single-stranded, noncoding RNAs, with a length of about 18–22 nucleotides. Extracellular vesicles (EVs) are derived from cells and play a vital role in the development of diseases and can be used as biomarkers for liquid biopsy, as they are the carriers of miRNA. Existing studies have found that most of the functions of miRNA are mainly realized through intercellular transmission of EVs, which can protect and sort miRNAs. Meanwhile, detection sensitivity and specificity of EV-derived miRNA are higher than those of conventional serum biomarkers. In recent years, EVs have been expected to become a new marker for liquid biopsy. This review summarizes recent progress in several aspects of EVs, including sorting mechanisms, diagnostic value, and technology for isolation of EVs and detection of EV-derived miRNAs. In addition, the study reviews challenges and future research avenues in the field of EVs, providing a basis for the application of EV-derived miRNAs as a disease marker to be used in clinical diagnosis and even for the development of point-of-care testing (POCT) platforms.
Collapse
Affiliation(s)
- Dongjie Xu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Kaili Di
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Boyue Fan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinrui Gu
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifan Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), Southeast University, Nanjing, China
| | - Peng Li
- College of Animal Science, Yangtze University, Jingzhou, China
- *Correspondence: Peng Li, ; Zhiyang Li,
| | - Zhiyang Li
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Peng Li, ; Zhiyang Li,
| |
Collapse
|
32
|
Wu Y, Wang Y, Lu Y, Luo X, Huang Y, Xie T, Pilarsky C, Dang Y, Zhang J. Microfluidic Technology for the Isolation and Analysis of Exosomes. MICROMACHINES 2022; 13:1571. [PMID: 36295924 PMCID: PMC9607600 DOI: 10.3390/mi13101571] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Exosomes are lipid-bilayer enclosed vesicles with diameters of 30-150 nm, which play a pivotal role in cell communication by transporting their cargoes such as proteins, lipids, and genetic materials. In recent years, exosomes have been under intense investigation, as they show great promise in numerous areas, especially as bio-markers in liquid biopsies. However, due to the high heterogeneity and the nano size of exosomes, the separation of exosomes is not easy. This review will deliver an outline of the conventional methods and the microfluidic-based technologies for exosome separation. Particular attention is devoted to microfluidic devices, highlighting the efficiency of exosome isolation by these methods. Additionally, this review will introduce advances made in the integrated microfluidics technologies that enable the separation and analysis of exosomes.
Collapse
Affiliation(s)
- Yusong Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuqing Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yanjun Lu
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaomei Luo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yinghong Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ting Xie
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Christian Pilarsky
- Department of Surgery, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), University Hospital of Erlangen, 91054 Erlangen, Germany
| | - Yuanye Dang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
33
|
Macaraniag C, Luan Q, Zhou J, Papautsky I. Microfluidic techniques for isolation, formation, and characterization of circulating tumor cells and clusters. APL Bioeng 2022; 6:031501. [PMID: 35856010 PMCID: PMC9288269 DOI: 10.1063/5.0093806] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cell (CTC) clusters that are shed from the primary tumor into the bloodstream are associated with a poor prognosis, elevated metastatic potential, higher proliferation rate, and distinct molecular features compared to single CTCs. Studying CTC clusters may give us information on the differences in the genetic profiles, somatic mutations, and epigenetic changes in circulating cells compared to the primary tumor and metastatic sites. Microfluidic systems offer the means of studying CTC clusters through the ability to efficiently isolate these rare cells from the whole blood of patients in a liquid biopsy. Microfluidics can also be used to develop in vitro models of CTC clusters and make possible their characterization and analysis. Ultimately, microfluidic systems can offer the means to gather insight on the complexities of the metastatic process, the biology of cancer, and the potential for developing novel or personalized therapies. In this review, we aim to discuss the advantages and challenges of the existing microfluidic systems for working with CTC clusters. We hope that an improved understanding of the role microfluidics can play in isolation, formation, and characterization of CTC clusters, which can lead to increased sophistication of microfluidic platforms in cancer research.
Collapse
Affiliation(s)
- Celine Macaraniag
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Qiyue Luan
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Jian Zhou
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
34
|
Uslu-Beşli L. Circulating Biomarkers in Thyroid Cancer. Biomark Med 2022. [DOI: 10.2174/9789815040463122010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thyroid cancer is the most important endocrine cancer with increasing
incidence. While thyroid cancers, especially papillary thyroid cancers, are known to
exhibit generally a favorable outcome with excellent survival rates, some thyroid
cancers are more aggressive with a poor prognosis. Several different biomarkers have
been introduced for the diagnosis of disease, identification of tumor load, assessment of
therapy response, and the detection of recurrence during follow-up of the thyroid
cancer patients. This chapter gives a brief overview of the circulating biomarkers used
in thyroid cancer patients.
Collapse
Affiliation(s)
- Lebriz Uslu-Beşli
- Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa,
Istanbul, Turkey
| |
Collapse
|
35
|
Raza A, Khan AQ, Inchakalody VP, Mestiri S, Yoosuf ZSKM, Bedhiafi T, El-Ella DMA, Taib N, Hydrose S, Akbar S, Fernandes Q, Al-Zaidan L, Krishnankutty R, Merhi M, Uddin S, Dermime S. Dynamic liquid biopsy components as predictive and prognostic biomarkers in colorectal cancer. J Exp Clin Cancer Res 2022; 41:99. [PMID: 35292091 PMCID: PMC8922757 DOI: 10.1186/s13046-022-02318-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The diagnosis, prognosis and therapeutic monitoring of CRC depends largely on tissue biopsy. However, due to tumor heterogeneity and limitations such as invasiveness, high cost and limited applicability in longitudinal monitoring, liquid biopsy has gathered immense attention in CRC. Liquid biopsy has several advantages over tissue biopsy including ease of sampling, effective monitoring, and longitudinal assessment of treatment dynamics. Furthermore, the importance of liquid biopsy is signified by approval of several liquid biopsy assays by regulatory bodies indicating the powerful approach of liquid biopsy for comprehensive CRC screening, diagnostic and prognostics. Several liquid biopsy biomarkers such as novel components of the microbiome, non-coding RNAs, extracellular vesicles and circulating tumor DNA are extensively being researched for their role in CRC management. Majority of these components have shown promising results on their clinical application in CRC including early detection, observe tumor heterogeneity for treatment and response, prediction of metastases and relapse and detection of minimal residual disease. Therefore, in this review, we aim to provide updated information on various novel liquid biopsy markers such as a) oral microbiota related bacterial network b) gut microbiome-associated serum metabolites c) PIWI-interacting RNAs (piRNAs), microRNA(miRNAs), Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and d) circulating tumor DNAs (ctDNA) and circulating tumor cells (CTC) for their role in disease diagnosis, prognosis, treatment monitoring and their applicability for personalized management of CRC.
Collapse
Affiliation(s)
- Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | | | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shereena Hydrose
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shayista Akbar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.,College of Medicine, Qatar University, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
36
|
Yang JC, Hu JJ, Li YX, Luo W, Liu JZ, Ye DW. Clinical Applications of Liquid Biopsy in Hepatocellular Carcinoma. Front Oncol 2022; 12:781820. [PMID: 35211399 PMCID: PMC8860830 DOI: 10.3389/fonc.2022.781820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality and poor prognosis in the world. The low rate of early diagnosis, as well as the high risk of postoperative metastasis and recurrence, led to the poor clinical prognosis of HCC patients. Currently, it mainly depends on serum markers, imaging examination, and tissue biopsy to diagnose and determine the recurrence and metastasis of HCC after treatments. Nevertheless, the accuracy and sensitivity of serum markers and imaging for early HCC diagnosis are suboptimal. Tissue biopsy, containing limited tissue samples, is insufficient to reveal comprehensive tumor biology information and is inappropriate to monitor dynamic tumor progression due to its invasiveness. Thus, low invasive diagnostic methods and novel biomarkers with high sensitivity and reliability must be found to improve HCC detection and prediction. As a non-invasive, dynamic, and repeatable detection method, “liquid biopsy”, has attracted much attention to early diagnosis and monitoring of treatment response, which promotes the progress of precision medicine. This review summarizes the clinical applications of liquid biopsy in HCC, including circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosome in early diagnosis, prognostic evaluation, disease monitoring, and guiding personalized treatment.
Collapse
Affiliation(s)
- Jin-Cui Yang
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Jie Hu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Xin Li
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Luo
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Zhou Liu
- Department of Pain Management, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pancreatic-Biliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
37
|
Yu D, Li Y, Wang M, Gu J, Xu W, Cai H, Fang X, Zhang X. Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer 2022; 21:56. [PMID: 35180868 PMCID: PMC8855550 DOI: 10.1186/s12943-022-01509-9] [Citation(s) in RCA: 322] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/15/2022] [Indexed: 02/08/2023] Open
Abstract
Liquid biopsy, characterized by minimally invasive detection through biofluids such as blood, saliva, and urine, has emerged as a revolutionary strategy for cancer diagnosis and prognosis prediction. Exosomes are a subset of extracellular vesicles (EVs) that shuttle molecular cargoes from donor cells to recipient cells and play a crucial role in mediating intercellular communication. Increasing studies suggest that exosomes have a great promise to serve as novel biomarkers in liquid biopsy, since large quantities of exosomes are enriched in body fluids and are involved in numerous physiological and pathological processes. However, the further clinical application of exosomes has been greatly restrained by the lack of high-quality separation and component analysis methods. This review aims to provide a comprehensive overview on the conventional and novel technologies for exosome isolation, characterization and content detection. Additionally, the roles of exosomes serving as potential biomarkers in liquid biopsy for the diagnosis, treatment monitoring, and prognosis prediction of cancer are summarized. Finally, the prospects and challenges of applying exosome-based liquid biopsy to precision medicine are evaluated.
Collapse
Affiliation(s)
- Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yixin Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, 226361, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Hospital of Jiangsu University, Lanzhou, 730000, Gansu, China
| | - Xinjian Fang
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, 222000, Jiangsu, China.
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Hospital of Jiangsu University, Lanzhou, 730000, Gansu, China.
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
38
|
Hosseini K, Ranjbar M, Pirpour Tazehkand A, Asgharian P, Montazersaheb S, Tarhriz V, Ghasemnejad T. Evaluation of exosomal non-coding RNAs in cancer using high-throughput sequencing. J Transl Med 2022; 20:30. [PMID: 35033106 PMCID: PMC8760667 DOI: 10.1186/s12967-022-03231-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Clinical oncologists need more reliable and non-invasive diagnostic and prognostic biomarkers to follow-up cancer patients. However, the existing biomarkers are often invasive and costly, emphasizing the need for the development of biomarkers to provide convenient and precise detection. Extracellular vesicles especially exosomes have recently been the focus of translational research to develop non-invasive and reliable biomarkers for several diseases such as cancers, suggesting as a valuable source of tumor markers. Exosomes are nano-sized extracellular vesicles secreted by various living cells that can be found in all body fluids including serum, urine, saliva, cerebrospinal fluid, and ascites. Different molecular and genetic contents of their origin such as nucleic acids, proteins, lipids, and glycans in a stable form make exosomes a promising approach for various cancers' diagnoses, prediction, and follow-up in a minimally invasive manner. Since exosomes are used by cancer cells for intercellular communication, they play a critical role in the disease process, highlighting the importance of their use as clinically relevant biomarkers. However, regardless of the advantages that exosome-based diagnostics have, they suffer from problems regarding their isolation, detection, and characterization of their contents. This study reviews the history and biogenesis of exosomes and discusses non-coding RNAs (ncRNAs) and their potential as tumor markers in different types of cancer, with a focus on next generation sequencing (NGS) as a detection method. Moreover, the advantages and challenges associated with exosome-based diagnostics are also presented.
Collapse
Affiliation(s)
- Kamran Hosseini
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Ranjbar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazehkand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parina Asgharian
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Phan TH, Kim SY, Rudge C, Chrzanowski W. Made by cells for cells - extracellular vesicles as next-generation mainstream medicines. J Cell Sci 2022; 135:273969. [PMID: 35019142 DOI: 10.1242/jcs.259166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Current medicine has only taken us so far in reducing disease and tissue damage. Extracellular vesicles (EVs), which are membranous nanostructures produced naturally by cells, have been hailed as a next-generation medicine. EVs deliver various biomolecules, including proteins, lipids and nucleic acids, which can influence the behaviour of specific target cells. Since EVs not only mirror composition of their parent cells but also modify the recipient cells, they can be used in three key areas of medicine: regenerative medicine, disease detection and drug delivery. In this Review, we discuss the transformational and translational progress witnessed in EV-based medicine to date, focusing on two key elements: the mechanisms by which EVs aid tissue repair (for example, skin and bone tissue regeneration) and the potential of EVs to detect diseases at an early stage with high sensitivity and specificity (for example, detection of glioblastoma). Furthermore, we describe the progress and results of clinical trials of EVs and demonstrate the benefits of EVs when compared with traditional medicine, including cell therapy in regenerative medicine and solid biopsy in disease detection. Finally, we present the challenges, opportunities and regulatory framework confronting the clinical application of EV-based products.
Collapse
Affiliation(s)
- Thanh Huyen Phan
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney School of Pharmacy, Pharmacy and Bank Building A15, Camperdown, NSW 2006, Australia
| | - Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Christopher Rudge
- The University of Sydney, Sydney Health Law, New Law Building F10, Camperdown, NSW 2006, Australia
| | - Wojciech Chrzanowski
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney School of Pharmacy, Pharmacy and Bank Building A15, Camperdown, NSW 2006, Australia
| |
Collapse
|
40
|
Liang R, Li X, Li W, Zhu X, Li C. DNA methylation in lung cancer patients: Opening a "window of life" under precision medicine. Biomed Pharmacother 2021; 144:112202. [PMID: 34654591 DOI: 10.1016/j.biopha.2021.112202] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
DNA methylation is a work of adding a methyl group to the 5th carbon atom of cytosine in DNA sequence under the catalysis of DNA methyltransferase (DNMT) to produce 5-methyl cytosine. Some current studies have elucidated the mechanism of lung cancer occurrence and causes of lung cancer progression and metastasis from the perspective of DNA methylation. Moreover, many studies have shown that smoking can change the methylation status of some gene loci, leading to the occurrence of lung cancer, especially central lung cancer. This review mainly introduces the role of DNA methylation in the pathogenesis, early diagnosis and screening, progression and metastasis, treatment, and prognosis of lung cancer, as well as the latest progress. We point out that methylation markers, sample tests, and methylation detection limit the clinical application of DNA methylation. If the liquid biopsy is to become the main force in lung cancer diagnosis, it must make efficient use of limited samples and improve the sensitivity and specificity of the tests. In addition, we also put forward our views on the future development direction of DNA methylation.
Collapse
Affiliation(s)
- Runzhang Liang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310053, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524023, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Weiquan Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524023, China
| | - Xiao Zhu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310053, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524023, China.
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin 14195, Germany.
| |
Collapse
|
41
|
Dhawan A. Extracellular miRNA biomarkers in neurologic disease: is cerebrospinal fluid helpful? Biomark Med 2021; 15:1377-1388. [PMID: 34514843 DOI: 10.2217/bmm-2021-0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: The aim of our work is to aggregate data from publications of cerebrospinal fluid extracellular miRNA to identify candidate diagnostic biomarkers, and those warranting further study. Materials & methods: Data were pooled from nine studies, encompassing 864 patients across 16 diseases. Unsupervised clustering grouped patients by a broad category of diseases. Results & conclusion: Compared with healthy controls, in patients with Alzheimer's disease, hsa-miR-767-5p was overexpressed (p < 0.001) and in patients with Huntington's disease, hsa-miR-361-3p was underexpressed (p < 10-4). We also define a subset of extracellular miRNA as candidate biomarkers that are robustly detected across patients, studies and diseases; thereby, warranting further study.
Collapse
Affiliation(s)
- Andrew Dhawan
- Department of Neurology, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| |
Collapse
|
42
|
Kato T, Vykoukal JV, Fahrmann JF, Hanash S. Extracellular Vesicles in Lung Cancer: Prospects for Diagnostic and Therapeutic Applications. Cancers (Basel) 2021; 13:cancers13184604. [PMID: 34572829 PMCID: PMC8469977 DOI: 10.3390/cancers13184604] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized lipid-bound particles containing proteins, nucleic acids and metabolites released by cells. They have been identified in body fluids including blood, saliva, sputum and pleural effusions. In tumors, EVs derived from cancer and immune cells mediate intercellular communication and exchange, and can affect immunomodulatory functions. In the context of lung cancer, emerging evidence implicates EV involvement during various stages of tumor development and progression, including angiogenesis, epithelial to mesenchymal transformation, immune system suppression, metastasis and drug resistance. Additionally, tumor-derived EVs (TDEs) have potential as a liquid biopsy source and as a means of therapeutic targeting, and there is considerable interest in developing clinical applications for EVs in these contexts. In this review, we consider the biogenesis, components, biological functions and isolation methods of EVs, and the implications for their clinical utility for diagnostic and therapeutic applications in lung cancer.
Collapse
Affiliation(s)
- Taketo Kato
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (T.K.); (J.V.V.); (J.F.F.)
| | - Jody V. Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (T.K.); (J.V.V.); (J.F.F.)
- The McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (T.K.); (J.V.V.); (J.F.F.)
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (T.K.); (J.V.V.); (J.F.F.)
- The McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
43
|
Lannoo L, Lenaerts L, Van Den Bogaert K, Che H, Brison N, Devriendt K, Amant F, Vermeesch JR, Van Calsteren K. Non-invasive prenatal testing suggesting a maternal malignancy: What do we tell the prospective parents in Belgium? Prenat Diagn 2021; 41:1264-1272. [PMID: 34405430 DOI: 10.1002/pd.6031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022]
Abstract
Cancer is diagnosed in one in 1000 to 1500 pregnancies. Most frequently encountered malignancies during pregnancy are breast cancer, hematological cancer, cervical cancer and malignant melanoma. Maternal cancer is associated with an increased risk of IUGR and preterm labor, especially in patients with systemic disease or those receiving chemotherapy during pregnancy, requiring a high-risk obstetrical follow-up. Fetal aneuploidy screening by non-invasive prenatal testing (NIPT) can lead to the incidental identification of copy number alterations derived from non-fetal cell-free DNA (cfDNA), as seen in certain cases of maternal malignancy. The identification of tumor-derived cfDNA requires further clinical, biochemical, radiographic and histological investigations to confirm the diagnosis. In such cases, reliable risk estimation for fetal trisomy 21, 18 and 13 is impossible. Therefore, invasive testing should be offered when ultrasonographic screening reveals an increased risk for chromosomal anomalies, or when a more accurate test is desired. When the fetal karyotype is normal, long term implications for the fetus refer to the consequences of the maternal disease and treatment during pregnancy. This manuscript addresses parental questions when NIPT suggests a maternal malignancy. Based on current evidence and our own experience, a clinical management scheme in a multidisciplinary setting is proposed.
Collapse
Affiliation(s)
- Lore Lannoo
- Department of Development and Regeneration, Division Woman and Child, Clinical Department Obstetrics and Gynaecology, University Hospital Leuven, KULeuven, Leuven, Belgium
| | | | | | - Huiwen Che
- Department of Human Genetics, KULeuven, Leuven, Belgium
| | | | | | - Frédéric Amant
- Department of Gynaecological Oncology, KULeuven, Leuven, Belgium.,Center for Gynecological Oncology Amsterdam, Academic Medical Centre Amsterdam, University of Amsterdam, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | | | - Kristel Van Calsteren
- Department of Development and Regeneration, Division Woman and Child, Clinical Department Obstetrics and Gynaecology, University Hospital Leuven, KULeuven, Leuven, Belgium
| |
Collapse
|
44
|
Zhang X, Zhao D, Yin Y, Yang T, You Z, Li D, Chen Y, Jiang Y, Xu S, Geng J, Zhao Y, Wang J, Li H, Tao J, Lei S, Jiang Z, Chen Z, Yu S, Fan JB, Pang D. Circulating cell-free DNA-based methylation patterns for breast cancer diagnosis. NPJ Breast Cancer 2021; 7:106. [PMID: 34400642 PMCID: PMC8367945 DOI: 10.1038/s41523-021-00316-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/26/2021] [Indexed: 01/02/2023] Open
Abstract
Mammography is used to detect breast cancer (BC), but its sensitivity is limited, especially for dense breasts. Circulating cell-free DNA (cfDNA) methylation tests is expected to compensate for the deficiency of mammography. We derived a specific panel of markers based on computational analysis of the DNA methylation profiles from The Cancer Genome Atlas (TCGA). Through training (n = 160) and validation set (n = 69), we developed a diagnostic prediction model with 26 markers, which yielded a sensitivity of 89.37% and a specificity of 100% for differentiating malignant disease from normal lesions [AUROC = 0.9816 (95% CI: 96.09-100%), and AUPRC = 0.9704 (95% CI: 94.54–99.46%)]. A simplified 4-marker model including cg23035715, cg16304215, cg20072171, and cg21501525 had a similar diagnostic power [AUROC = 0.9796 (95% CI: 95.56–100%), and AUPRC = 0.9220 (95% CI: 91.02–94.37%)]. We found that a single cfDNA methylation marker, cg23035715, has a high diagnostic power [AUROC = 0.9395 (95% CI: 89.72–99.27%), and AUPRC = 0.9111 (95% CI: 88.45–93.76%)], with a sensitivity of 84.90% and a specificity of 93.88%. In an independent testing dataset (n = 104), the obtained diagnostic prediction model discriminated BC patients from normal controls with high accuracy [AUROC = 0.9449 (95% CI: 90.07–98.91%), and AUPRC = 0.8640 (95% CI: 82.82–89.98%)]. We compared the diagnostic power of cfDNA methylation and mammography. Our model yielded a sensitivity of 94.79% (95% CI: 78.72–97.87%) and a specificity of 98.70% (95% CI: 86.36–100%) for differentiating malignant disease from normal lesions [AUROC = 0.9815 (95% CI: 96.75–99.55%), and AUPRC = 0.9800 (95% CI: 96.6–99.4%)], with better diagnostic power and had better diagnostic power than that of using mammography [AUROC = 0.9315 (95% CI: 89.95–96.34%), and AUPRC = 0.9490 (95% CI: 91.7–98.1%)]. In addition, hypermethylation profiling provided insights into lymph node metastasis stratifications (p < 0.05). In conclusion, we developed and tested a cfDNA methylation model for BC diagnosis with better performance than mammography.
Collapse
Affiliation(s)
- Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dezhi Zhao
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ting Yang
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Zilong You
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dalin Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanbo Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yongdong Jiang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingshu Geng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yashuang Zhao
- Department of Epidemiology, Harbin Medical University, Harbin, China
| | - Jun Wang
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Hui Li
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Jinsheng Tao
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Shan Lei
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Zeyu Jiang
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Zhiwei Chen
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China.,AnchorDx, Inc., Fremont, California, USA
| | - Shihui Yu
- Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Jian-Bing Fan
- Department of Research and Development, AnchorDx Medical Co., Ltd., Guangzhou, China. .,Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
45
|
Tay TKY, Tan PH. Liquid Biopsy in Breast Cancer: A Focused Review. Arch Pathol Lab Med 2021; 145:678-686. [PMID: 32045277 DOI: 10.5858/arpa.2019-0559-ra] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2019] [Indexed: 01/27/2023]
Abstract
CONTEXT.— The role of liquid biopsy in cancer management has been gaining increased prominence in the past decade, with well-defined clinical applications now being established in lung cancer. Recently, the US Food and Drug Administration also approved the Therascreen PIK3CA RGQ polymerase chain reaction assay as a companion diagnostic assay to detect PIK3CA mutations in breast cancer for both tissue and liquid biopsies, bringing the role of liquid biopsy in breast cancer management to the fore. Its utility in other aspects of breast cancer, however, is yet to be clearly defined. OBJECTIVE.— To review the studies that looked at liquid biopsies in breast cancer and examine their potential for clinical application in the areas of early diagnosis, prognostication, monitoring disease response, detecting minimal residual disease, and predicting risk of progression or relapse. We focus mainly on circulating tumor cells and circulating tumor DNA. DATA SOURCES.— Peer-reviewed articles in PubMed. CONCLUSIONS.— Liquid biopsies in breast cancers have yielded promising results, especially in the areas of monitoring treatment response and predicting disease progression or relapse. With further study, and hopefully coupled with continued improvements in technologies that isolate tumor-derived materials, liquid biopsies may go on to play a greater role in the breast cancer clinic.
Collapse
Affiliation(s)
- Timothy Kwang Yong Tay
- From the Department of Anatomical Pathology (Tay, Tan), Singapore General Hospital, Singapore
| | - Puay Hoon Tan
- From the Department of Anatomical Pathology (Tay, Tan), Singapore General Hospital, Singapore.,The Division of Pathology (Tan), Singapore General Hospital, Singapore
| |
Collapse
|
46
|
Liu L, Chen X, Petinrin OO, Zhang W, Rahaman S, Tang ZR, Wong KC. Machine Learning Protocols in Early Cancer Detection Based on Liquid Biopsy: A Survey. Life (Basel) 2021; 11:638. [PMID: 34209249 PMCID: PMC8308091 DOI: 10.3390/life11070638] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
With the advances of liquid biopsy technology, there is increasing evidence that body fluid such as blood, urine, and saliva could harbor the potential biomarkers associated with tumor origin. Traditional correlation analysis methods are no longer sufficient to capture the high-resolution complex relationships between biomarkers and cancer subtype heterogeneity. To address the challenge, researchers proposed machine learning techniques with liquid biopsy data to explore the essence of tumor origin together. In this survey, we review the machine learning protocols and provide corresponding code demos for the approaches mentioned. We discuss algorithmic principles and frameworks extensively developed to reveal cancer mechanisms and consider the future prospects in biomarker exploration and cancer diagnostics.
Collapse
Affiliation(s)
- Linjing Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China; (L.L.); (X.C.); (O.O.P.); (W.Z.); (S.R.); (Z.-R.T.)
| | - Xingjian Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, China; (L.L.); (X.C.); (O.O.P.); (W.Z.); (S.R.); (Z.-R.T.)
| | - Olutomilayo Olayemi Petinrin
- Department of Computer Science, City University of Hong Kong, Hong Kong, China; (L.L.); (X.C.); (O.O.P.); (W.Z.); (S.R.); (Z.-R.T.)
| | - Weitong Zhang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China; (L.L.); (X.C.); (O.O.P.); (W.Z.); (S.R.); (Z.-R.T.)
| | - Saifur Rahaman
- Department of Computer Science, City University of Hong Kong, Hong Kong, China; (L.L.); (X.C.); (O.O.P.); (W.Z.); (S.R.); (Z.-R.T.)
| | - Zhi-Ri Tang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China; (L.L.); (X.C.); (O.O.P.); (W.Z.); (S.R.); (Z.-R.T.)
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, China; (L.L.); (X.C.); (O.O.P.); (W.Z.); (S.R.); (Z.-R.T.)
- Hong Kong Institute for Data Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
47
|
Role of Extracellular Vesicles in Placental Inflammation and Local Immune Balance. Mediators Inflamm 2021; 2021:5558048. [PMID: 34239366 PMCID: PMC8235987 DOI: 10.1155/2021/5558048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/26/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background Pregnancy maintenance depends on the formation of normal placentas accompanied by trophoblast invasion and vascular remodeling. Various types of cells, such as trophoblasts, endothelial cells, immune cells, mesenchymal stem cells (MSCs), and adipocytes, mediate cell-to-cell interactions through soluble factors to maintain normal placental development. Extracellular vesicles (EVs) are diverse nanosized to microsized membrane-bound particles released from various cells. EVs contain tens to thousands of different RNA, proteins, small molecules, DNA fragments, and bioactive lipids. EV-derived microRNAs (miRNAs) and proteins regulate inflammation and trophoblast invasion in the placental microenvironment. Maternal-fetal communication through EV can regulate the key signaling pathways involved in pregnancy maintenance, from implantation to immune regulation. Therefore, EVs and the encapsulating factors play important roles in pregnancy, some of which might be potential biomarkers. Conclusion In this review, we have summarized published studies about the EVs in the placentation and pregnancy-related diseases. By summarizing the role of EVs and their delivering active molecules in pregnancy-related diseases, it provides novel insight into the diagnosis and treatment of diseases.
Collapse
|
48
|
Hamzah RN, Alghazali KM, Biris AS, Griffin RJ. Exosome Traceability and Cell Source Dependence on Composition and Cell-Cell Cross Talk. Int J Mol Sci 2021; 22:5346. [PMID: 34069542 PMCID: PMC8161017 DOI: 10.3390/ijms22105346] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small vesicles with an average diameter of 100 nm that are produced by many, if not all, cell types. Exosome cargo includes lipids, proteins, and nucleic acids arranged specifically in the endosomes of donor cells. Exosomes can transfer the donor cell components to target cells and can affect cell signaling, proliferation, and differentiation. Important new information about exosomes' remote communication with other cells is rapidly being accumulated. Recent data indicates that the results of this communication depend on the donor cell type and the environment of the host cell. In the field of cancer research, major questions remain, such as whether tumor cell exosomes are equally taken up by cancer cells and normal cells and whether exosomes secreted by normal cells are specifically taken up by other normal cells or also tumor cells. Furthermore, we do not know how exosome uptake is made selective, how we can trace exosome uptake selectivity, or what the most appropriate methods are to study exosome uptake and selectivity. This review will explain the effect of exosome source and the impact of the donor cell growth environment on tumor and normal cell interaction and communication. The review will also summarize the methods that have been used to label and trace exosomes to date.
Collapse
Affiliation(s)
- Rabab N. Hamzah
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (A.S.B.)
| | - Karrer M. Alghazali
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (A.S.B.)
- Nushores Biosciences LLC, Little Rock, AR 72211, USA
| | - Alexandru S. Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (A.S.B.)
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
49
|
Practices and expectations on the use of circulating tumor DNA in colorectal cancer patients: A bi-national AGEO/AIOM/GERCOR/FFCD/FRENCH survey. Clin Res Hepatol Gastroenterol 2021; 45:101681. [PMID: 33785445 DOI: 10.1016/j.clinre.2021.101681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/22/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Increasing evidence shows that circulating tumor DNA (ctDNA) is a valuable tool in providing molecular, prognostic, predictive and dynamic information in colorectal cancer (CRC) patients. This study aimed to make a picture of knowledge, practice, attitudes and expectations about ctDNA in CRC patients. MATERIAL AND METHODS An online CRC-ctdna survey was distributed from November 2019 to January 2020 to French and Italian cooperative and scientific groups of Hepato-Gastroenterologists (HGE), Medical Oncologists (MO), Radiotherapists (RT) and Digestive Surgeons (DS). RESULTS Overall, 307 physicians completed the survey (57% Italian; 43% French). Most of them were MO (62%) and HGE (24%). Affiliations were University Hospital (48%), Cancer Center (21%), General Hospital (21%) and Private Hospital (10%). Notably, half of respondents declared to have access to ctDNA in their daily practice. Of them, 53% uses ctDNA to assess RAS/BRAF status only, 46% for RAS/BRAF with other mutations and 1% only for other mutations. MO and HGE identified quick RAS profiling (P = 0.031) as the main reason of interest in the use of ctDNA. Physicians from University Hospitals and Cancer Centers prescribed more ctDNA (P < 0.001) and more often in house (P < 0.001). The main future expectations concerning ctDNA were to guide therapeutic strategies in metastatic (78%) and adjuvant (73%) settings, and to better/quicker profile disease at baseline (56%). CONCLUSION Half of participants can order ctDNA in their daily practice. Molecular profiling of metastatic patients remains the main goal of ctDNA use and ctDNA-based therapeutic strategies are an expectation for the future in both adjuvant and metastatic settings.
Collapse
|
50
|
Bunda S, Zuccato JA, Voisin MR, Wang JZ, Nassiri F, Patil V, Mansouri S, Zadeh G. Liquid Biomarkers for Improved Diagnosis and Classification of CNS Tumors. Int J Mol Sci 2021; 22:4548. [PMID: 33925295 PMCID: PMC8123653 DOI: 10.3390/ijms22094548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
Liquid biopsy, as a non-invasive technique for cancer diagnosis, has emerged as a major step forward in conquering tumors. Current practice in diagnosis of central nervous system (CNS) tumors involves invasive acquisition of tumor biopsy upon detection of tumor on neuroimaging. Liquid biopsy enables non-invasive, rapid, precise and, in particular, real-time cancer detection, prognosis and treatment monitoring, especially for CNS tumors. This approach can also uncover the heterogeneity of these tumors and will likely replace tissue biopsy in the future. Key components of liquid biopsy mainly include circulating tumor cells (CTC), circulating tumor nucleic acids (ctDNA, miRNA) and exosomes and samples can be obtained from the cerebrospinal fluid, plasma and serum of patients with CNS malignancies. This review covers current progress in application of liquid biopsies for diagnosis and monitoring of CNS malignancies.
Collapse
Affiliation(s)
- Severa Bunda
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
| | - Jeffrey A. Zuccato
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Mathew R. Voisin
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Justin Z. Wang
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Farshad Nassiri
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Vikas Patil
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
| | - Sheila Mansouri
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
| | - Gelareh Zadeh
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| |
Collapse
|