1
|
Kleijwegt C, Déjardin J. [Heterochromatin and epigenetic control of repeat sequences]. Med Sci (Paris) 2024; 40:904-913. [PMID: 39705561 DOI: 10.1051/medsci/2024176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
L’hétérochromatine est une structure décrite comme restrictive et répressive. On la retrouve notamment au niveau des séquences répétées qui représentent près de la moitié du génome humain. Ces séquences, dont l’origine reste incertaine, peuvent jouer un rôle structural, protecteur ou régulateur. Cependant, leur homologie de séquence ou leur capacité à transposer pour certaines, peuvent compromettre la stabilité du génome, et la formation d’hétérochromatine au niveau de ces régions permet de les réguler. Souvent imaginée comme une structure dont la composition est stable, l’hétérochromatine est en réalité bien plus hétérogène, en fonction du locus et du type cellulaire où elle est établie.
Collapse
Affiliation(s)
- Constance Kleijwegt
- Institut de génétique humaine, CNRS, Université de Montpellier, UMR 9002, Montpellier, France
| | - Jérôme Déjardin
- Institut de génétique humaine, CNRS, Université de Montpellier, UMR 9002, Montpellier, France
| |
Collapse
|
2
|
Mazur AK, Gladyshev E. C-DNA may facilitate homologous DNA pairing. Trends Genet 2023:S0168-9525(23)00023-9. [PMID: 36804168 DOI: 10.1016/j.tig.2023.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Recombination-independent homologous pairing represents a prominent yet largely enigmatic feature of chromosome biology. As suggested by studies in the fungus Neurospora crassa, this process may be based on the direct pairing of homologous DNA molecules. Theoretical search for the DNA structures consistent with those genetic results has led to an all-atom model in which the B-DNA conformation of the paired double helices is strongly shifted toward C-DNA. Coincidentally, C-DNA also features a very shallow major groove that could permit initial homologous contacts without atom-atom clashes. The hereby conjectured role of C-DNA in homologous pairing should encourage the efforts to discover its biological functions and may also clarify the mechanism of recombination-independent recognition of DNA homology.
Collapse
Affiliation(s)
- Alexey K Mazur
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, Paris, France; Institut Pasteur, Université Paris Cité, Group Fungal Epigenomics, Paris, France.
| | - Eugene Gladyshev
- Institut Pasteur, Université Paris Cité, Group Fungal Epigenomics, Paris, France.
| |
Collapse
|
3
|
Chung YC, Bisht M, Thuma J, Tu LC. Single-chromosome dynamics reveals locus-dependent dynamics and chromosome territory orientation. J Cell Sci 2023; 136:jcs260137. [PMID: 36718642 PMCID: PMC10022681 DOI: 10.1242/jcs.260137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Dynamic chromatin organization instantly influences DNA accessibility through modulating local macromolecular density and interactions, driving changes in transcription activities. Chromatin dynamics have been reported to be locally confined but contribute to coherent chromatin motion across the entire nucleus. However, the regulation of dynamics, nuclear orientation and compaction of subregions along a single chromosome are not well-understood. We used CRISPR-based real-time single-particle tracking and polymer models to characterize the dynamics of specific genomic loci and determine compaction levels of large human chromosomal domains. Our studies showed that chromosome compaction changed during interphase and that compactions of two arms on chromosome 19 were different. The dynamics of genomic loci were subdiffusive and dependent on chromosome regions and transcription states. Surprisingly, the correlation between locus-dependent nuclear localization and mobility was negligible. Strong tethering interactions detected at the pericentromeric region implies local condensation or associations with organelles within local nuclear microenvironments, such as chromatin-nuclear body association. Based on our findings, we propose a 'guided radial model' for the nuclear orientation of the long arm of chromosome 19.
Collapse
Affiliation(s)
- Yu-Chieh Chung
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Madhoolika Bisht
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Jenna Thuma
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Li-Chun Tu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Lopes M, Louzada S, Ferreira D, Veríssimo G, Eleutério D, Gama-Carvalho M, Chaves R. Human Satellite 1A analysis provides evidence of pericentromeric transcription. BMC Biol 2023; 21:28. [PMID: 36755311 PMCID: PMC9909926 DOI: 10.1186/s12915-023-01521-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Pericentromeric regions of human chromosomes are composed of tandem-repeated and highly organized sequences named satellite DNAs. Human classical satellite DNAs are classified into three families named HSat1, HSat2, and HSat3, which have historically posed a challenge for the assembly of the human reference genome where they are misrepresented due to their repetitive nature. Although being known for a long time as the most AT-rich fraction of the human genome, classical satellite HSat1A has been disregarded in genomic and transcriptional studies, falling behind other human satellites in terms of functional knowledge. Here, we aim to characterize and provide an understanding on the biological relevance of HSat1A. RESULTS The path followed herein trails with HSat1A isolation and cloning, followed by in silico analysis. Monomer copy number and expression data was obtained in a wide variety of human cell lines, with greatly varying profiles in tumoral/non-tumoral samples. HSat1A was mapped in human chromosomes and applied in in situ transcriptional assays. Additionally, it was possible to observe the nuclear organization of HSat1A transcripts and further characterize them by 3' RACE-Seq. Size-varying polyadenylated HSat1A transcripts were detected, which possibly accounts for the intricate regulation of alternative polyadenylation. CONCLUSION As far as we know, this work pioneers HSat1A transcription studies. With the emergence of new human genome assemblies, acrocentric pericentromeres are becoming relevant characters in disease and other biological contexts. HSat1A sequences and associated noncoding RNAs will most certainly prove significant in the future of HSat research.
Collapse
Affiliation(s)
- Mariana Lopes
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Sandra Louzada
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniela Ferreira
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Gabriela Veríssimo
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniel Eleutério
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Margarida Gama-Carvalho
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal. .,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
5
|
Carlier F, Nguyen TS, Mazur AK, Gladyshev E. Modulation of C-to-T mutation by recombination-independent pairing of closely positioned DNA repeats. Biophys J 2021; 120:4325-4336. [PMID: 34509507 DOI: 10.1016/j.bpj.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
Repeat-induced point mutation is a genetic process that creates cytosine-to-thymine (C-to-T) transitions in duplicated genomic sequences in fungi. Repeat-induced point mutation detects duplications (irrespective of their origin, specific sequence, coding capacity, and genomic positions) by a recombination-independent mechanism that likely matches intact DNA double helices directly, without relying on the annealing of complementary single strands. In the fungus Neurospora crassa, closely positioned repeats can induce mutation of the adjoining nonrepetitive regions. This process is related to heterochromatin assembly and requires the cytosine methyltransferase DIM-2. Using DIM-2-dependent mutation as a readout of homologous pairing, we find that GC-rich repeats produce a much stronger response than AT-rich repeats, independently of their intrinsic propensity to become mutated. We also report that direct repeats trigger much stronger DIM-2-dependent mutation than inverted repeats. These results can be rationalized in the light of a recently proposed model of homologous DNA pairing, in which DNA double helices associate by forming sequence-specific quadruplex-based contacts with a concomitant release of supercoiling. A similar process featuring pairing-induced supercoiling may initiate epigenetic silencing of repetitive DNA in other organisms, including humans.
Collapse
Affiliation(s)
- Florian Carlier
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France
| | - Tinh-Suong Nguyen
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France
| | - Alexey K Mazur
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France; CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France.
| | - Eugene Gladyshev
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France.
| |
Collapse
|
6
|
Vojvoda Zeljko T, Ugarković Đ, Pezer Ž. Differential enrichment of H3K9me3 at annotated satellite DNA repeats in human cell lines and during fetal development in mouse. Epigenetics Chromatin 2021; 14:47. [PMID: 34663449 PMCID: PMC8524813 DOI: 10.1186/s13072-021-00423-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/05/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Trimethylation of histone H3 on lysine 9 (H3K9me3) at satellite DNA sequences has been primarily studied at (peri)centromeric regions, where its level shows differences associated with various processes such as development and malignant transformation. However, the dynamics of H3K9me3 at distal satellite DNA repeats has not been thoroughly investigated. RESULTS We exploit the sets of publicly available data derived from chromatin immunoprecipitation combined with massively parallel DNA sequencing (ChIP-Seq), produced by the The Encyclopedia of DNA Elements (ENCODE) project, to analyze H3K9me3 at assembled satellite DNA repeats in genomes of human cell lines and during mouse fetal development. We show that annotated satellite elements are generally enriched for H3K9me3, but its level in cancer cell lines is on average lower than in normal cell lines. We find 407 satellite DNA instances with differential H3K9me3 enrichment between cancer and normal cells including a large 115-kb cluster of GSATII elements on chromosome 12. Differentially enriched regions are not limited to satellite DNA instances, but instead encompass a wider region of flanking sequences. We found no correlation between the levels of H3K9me3 and noncoding RNA at corresponding satellite DNA loci. The analysis of data derived from multiple tissues identified 864 instances of satellite DNA sequences in the mouse reference genome that are differentially enriched between fetal developmental stages. CONCLUSIONS Our study reveals significant differences in H3K9me3 level at a subset of satellite repeats between biological states and as such contributes to understanding of the role of satellite DNA repeats in epigenetic regulation during development and carcinogenesis.
Collapse
Affiliation(s)
| | | | - Željka Pezer
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia.
| |
Collapse
|
7
|
Jing R, Ma B, Qi T, Hu C, Liao C, Wen C, Shao Y, Pei C. Long Noncoding RNA OIP5-AS1 Promotes Cell Apoptosis and Cataract Formation by Blocking POLG Expression Under Oxidative Stress. Invest Ophthalmol Vis Sci 2021; 61:3. [PMID: 33006594 PMCID: PMC7545078 DOI: 10.1167/iovs.61.12.3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Cataract, a clouding of the intraocular lens, is the leading cause of blindness. The lens-expressed long noncoding RNA OIP5-AS1 was upregulated in lens epithelial cells from patients with cataracts, suggesting its pathogenic role in cataracts. We investigated the regulatory role of OIP5-AS1 in the development of cataracts as well as potential RNA binding proteins, downstream target genes, and upstream transcription factors. Methods Clinical capsules and ex vivo and in vitro cataract models were used to test OIP5-AS1 expression. Cell apoptosis was detected using Western blots, JC-1 staining, and flow cytometry. Ribonucleoprotein immunoprecipitation-qPCR was performed to confirm the interaction of OIP5-AS1 and POLG. Chromatin immunoprecipitation-qPCR was used to determine the binding of TFAP2A and the OIP5-AS1 promoter region. Results OIP5-AS1 was upregulated in cataract lenses and B3 cells under oxidative stress. OIP5-AS1 knockdown protected B3 cells from H2O2-induced apoptosis and alleviated lens opacity in the ex vivo cataract model. HuR functioned as a scaffold carrying OIP5-AS1 and POLG mRNA and mediated the decay of POLG mRNA. POLG was downregulated in the cataract lens and oxidative-stressed B3 cells, and POLG depletion decreased the mtDNA copy number and MMP, increased reactive oxygen species production, and sensitized B3 cells to oxidative stress-induced apoptosis. POLG overexpression reversed these effects. TFAP2A bound the OIP5-AS1 promoter and contributed to OIP5-AS1 expression. Conclusions We demonstrated that OIP5-AS1, activated by TFAP2A, contributed to cataract formation by inhibiting POLG expression mediated by HuR, thus leading to increased apoptosis of lens epithelial cells and aggravated lens opacity, suggesting that OIP5-AS1 is a potential target for cataract treatment.
Collapse
Affiliation(s)
- Ruihua Jing
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tiantian Qi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Conghui Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chongbing Liao
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chan Wen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yongping Shao
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Kundu S, Ray MD, Sharma A. Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer. J Genet Genomics 2021; 48:184-197. [PMID: 33840602 DOI: 10.1016/j.jgg.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/07/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022]
Abstract
In eukaryotic genome biology, the genomic organization inside the three-dimensional (3D) nucleus is highly complex, and whether this organization governs gene expression is poorly understood. Nuclear lamina (NL) is a filamentous meshwork of proteins present at the lining of inner nuclear membrane that serves as an anchoring platform for genome organization. Large chromatin domains termed as lamina-associated domains (LADs), play a major role in silencing genes at the nuclear periphery. The interaction of the NL and genome is dynamic and stochastic. Furthermore, many genes change their positions during developmental processes or under disease conditions such as cancer, to activate certain sorts of genes and/or silence others. Pericentromeric heterochromatin (PCH) is mostly in the silenced region within the genome, which localizes at the nuclear periphery. Studies show that several genes located at the PCH are aberrantly expressed in cancer. The interesting question is that despite being localized in the pericentromeric region, how these genes still manage to overcome pericentromeric repression. Although epigenetic mechanisms control the expression of the pericentromeric region, recent studies about genome organization and genome-nuclear lamina interaction have shed light on a new aspect of pericentromeric gene regulation through a complex and coordinated interplay between epigenomic remodeling and genomic organization in cancer.
Collapse
Affiliation(s)
- Subhadip Kundu
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - M D Ray
- Department of Surgical Oncology, IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashok Sharma
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
9
|
Chappell GA, Wikoff DS, Thompson CM. Assessment of Mechanistic Data for Hexavalent Chromium-Induced Rodent Intestinal Cancer Using the Key Characteristics of Carcinogens. Toxicol Sci 2021; 180:38-50. [PMID: 33404626 PMCID: PMC7916733 DOI: 10.1093/toxsci/kfaa187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oral exposure to hexavalent chromium (Cr[VI]) induces intestinal tumors in mice. Mutagenic and nonmutagenic modes of action (MOAs) have been accepted by different regulatory bodies globally, the latter involving cytotoxicity-induced regenerative cell proliferation. However, concerns persist that all possible MOAs have not been fully considered. To address the potential for alternative MOAs, mechanistic data not represented in the existing two MOAs were evaluated. Relevant data were identified and organized by key characteristics of carcinogens (KCCs); literature related to epigenetics, immunosuppression, receptor-mediated effects, and immortalization were reviewed to identify potential key events associated with an alternative MOA. Over 200 references were screened for these four KCCs and further prioritized based on relevance to the research objective (ie, in vivo, oral exposure, gastrointestinal tissue). Minimal data were available specific to the intestine for these KCCs, and there was no evidence of any underlying mechanisms or key events that are not already represented in the two proposed MOAs. For example, while epigenetic dysregulation of DNA repair genes has been demonstrated, epigenetic effects were not measured in intestinal tissue, and it has been shown that Cr(VI) does not cause DNA damage in intestinal tissue. High-throughput screening data related to the KCCs were also evaluated, with activity generally limited to the two recognized MOAs. Collectively, no plausible alternative MOAs (or key events) were identified in addition to those previously proposed for Cr(VI) small intestine tumors.
Collapse
|
10
|
Martins NMC, Cisneros-Soberanis F, Pesenti E, Kochanova NY, Shang WH, Hori T, Nagase T, Kimura H, Larionov V, Masumoto H, Fukagawa T, Earnshaw WC. H3K9me3 maintenance on a human artificial chromosome is required for segregation but not centromere epigenetic memory. J Cell Sci 2020; 133:jcs242610. [PMID: 32576667 PMCID: PMC7390644 DOI: 10.1242/jcs.242610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Most eukaryotic centromeres are located within heterochromatic regions. Paradoxically, heterochromatin can also antagonize de novo centromere formation, and some centromeres lack it altogether. In order to investigate the importance of heterochromatin at centromeres, we used epigenetic engineering of a synthetic alphoidtetO human artificial chromosome (HAC), to which chimeric proteins can be targeted. By tethering the JMJD2D demethylase (also known as KDM4D), we removed heterochromatin mark H3K9me3 (histone 3 lysine 9 trimethylation) specifically from the HAC centromere. This caused no short-term defects, but long-term tethering reduced HAC centromere protein levels and triggered HAC mis-segregation. However, centromeric CENP-A was maintained at a reduced level. Furthermore, HAC centromere function was compatible with an alternative low-H3K9me3, high-H3K27me3 chromatin signature, as long as residual levels of H3K9me3 remained. When JMJD2D was released from the HAC, H3K9me3 levels recovered over several days back to initial levels along with CENP-A and CENP-C centromere levels, and mitotic segregation fidelity. Our results suggest that a minimal level of heterochromatin is required to stabilize mitotic centromere function but not for maintaining centromere epigenetic memory, and that a homeostatic pathway maintains heterochromatin at centromeres.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
| | | | - Elisa Pesenti
- Wellcome Trust Centre for Cell Biology, Edinburgh, UK
| | | | - Wei-Hao Shang
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Vladimir Larionov
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | | | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | |
Collapse
|
11
|
H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction. Proc Natl Acad Sci U S A 2020; 117:14251-14258. [PMID: 32513732 DOI: 10.1073/pnas.1920725117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.
Collapse
|
12
|
Navarro-Cobos MJ, Balaton BP, Brown CJ. Genes that escape from X-chromosome inactivation: Potential contributors to Klinefelter syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:226-238. [PMID: 32441398 PMCID: PMC7384012 DOI: 10.1002/ajmg.c.31800] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
Abstract
One of the two X chromosomes in females is epigenetically inactivated, thereby compensating for the dosage difference in X-linked genes between XX females and XY males. Not all X-linked genes are completely inactivated, however, with 12% of genes escaping X chromosome inactivation and another 15% of genes varying in their X chromosome inactivation status across individuals, tissues or cells. Expression of these genes from the second and otherwise inactive X chromosome may underlie sex differences between males and females, and feature in many of the symptoms of XXY Klinefelter males, who have both an inactive X and a Y chromosome. We review the approaches used to identify genes that escape from X-chromosome inactivation and discuss the nature of their sex-biased expression. These genes are enriched on the short arm of the X chromosome, and, in addition to genes in the pseudoautosomal regions, include genes with and without Y-chromosomal counterparts. We highlight candidate escape genes for some of the features of Klinefelter syndrome and discuss our current understanding of the mechanisms underlying silencing and escape on the X chromosome as well as additional differences between the X in males and females that may contribute to Klinefelter syndrome.
Collapse
Affiliation(s)
- Maria Jose Navarro-Cobos
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Bradley P Balaton
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Johansen S, Gjerstorff MF. Interaction between Polycomb and SSX Proteins in Pericentromeric Heterochromatin Function and Its Implication in Cancer. Cells 2020; 9:cells9010226. [PMID: 31963307 PMCID: PMC7016822 DOI: 10.3390/cells9010226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/10/2023] Open
Abstract
The stability of pericentromeric heterochromatin is maintained by repressive epigenetic control mechanisms, and failure to maintain this stability may cause severe diseases such as immune deficiency and cancer. Thus, deeper insight into the epigenetic regulation and deregulation of pericentromeric heterochromatin is of high priority. We and others have recently demonstrated that pericentromeric heterochromatin domains are often epigenetically reprogrammed by Polycomb proteins in premalignant and malignant cells to form large subnuclear structures known as Polycomb bodies. This may affect the regulation and stability of pericentromeric heterochromatin domains and/or the distribution of Polycomb factors to support tumorigeneses. Importantly, Polycomb bodies in cancer cells may be targeted by the cancer/testis-related SSX proteins to cause derepression and genomic instability of pericentromeric heterochromatin. This review will discuss the interplay between SSX and Polycomb factors in the repression and stability of pericentromeric heterochromatin and its possible implications for tumor biology.
Collapse
Affiliation(s)
- Simone Johansen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark;
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark;
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5000 Odense, Denmark
- Correspondence: ; Tel.: +45-21261563
| |
Collapse
|
14
|
Toubiana S, Gagliardi M, Papa M, Manco R, Tzukerman M, Matarazzo MR, Selig S. Persistent epigenetic memory impedes rescue of the telomeric phenotype in human ICF iPSCs following DNMT3B correction. eLife 2019; 8:e47859. [PMID: 31738163 PMCID: PMC6897513 DOI: 10.7554/elife.47859] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022] Open
Abstract
DNA methyltransferase 3B (DNMT3B) is the major DNMT that methylates mammalian genomes during early development. Mutations in human DNMT3B disrupt genome-wide DNA methylation patterns and result in ICF syndrome type 1 (ICF1). To study whether normal DNA methylation patterns may be restored in ICF1 cells, we corrected DNMT3B mutations in induced pluripotent stem cells from ICF1 patients. Focusing on repetitive regions, we show that in contrast to pericentromeric repeats, which reacquire normal methylation, the majority of subtelomeres acquire only partial DNA methylation and, accordingly, the ICF1 telomeric phenotype persists. Subtelomeres resistant to de novo methylation were characterized by abnormally high H3K4 trimethylation (H3K4me3), and short-term reduction of H3K4me3 by pharmacological intervention partially restored subtelomeric DNA methylation. These findings demonstrate that the abnormal epigenetic landscape established in ICF1 cells restricts the recruitment of DNMT3B, and suggest that rescue of epigenetic diseases with genome-wide disruptions will demand further manipulation beyond mutation correction.
Collapse
Affiliation(s)
- Shir Toubiana
- Molecular Medicine LaboratoryRappaport Faculty of Medicine, TechnionHaifaIsrael
- Rambam Health Care CampusHaifaIsrael
| | | | | | - Roberta Manco
- Institute of Genetics and Biophysics, ABT CNRNaplesItaly
| | - Maty Tzukerman
- Molecular Medicine LaboratoryRappaport Faculty of Medicine, TechnionHaifaIsrael
- Rambam Health Care CampusHaifaIsrael
| | | | - Sara Selig
- Molecular Medicine LaboratoryRappaport Faculty of Medicine, TechnionHaifaIsrael
- Rambam Health Care CampusHaifaIsrael
| |
Collapse
|
15
|
Mazur AK, Nguyen TS, Gladyshev E. Direct Homologous dsDNA-dsDNA Pairing: How, Where, and Why? J Mol Biol 2019; 432:737-744. [PMID: 31726060 DOI: 10.1016/j.jmb.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
The ability of homologous chromosomes (or selected chromosomal loci) to pair specifically in the apparent absence of DNA breakage and recombination represents a prominent feature of eukaryotic biology. The mechanism of homology recognition at the basis of such recombination-independent pairing has remained elusive. A number of studies have supported the idea that sequence homology can be sensed between intact DNA double helices in vivo. In particular, recent analyses of the two silencing phenomena in fungi, known as "repeat-induced point mutation" (RIP) and "meiotic silencing by unpaired DNA" (MSUD), have provided genetic evidence for the existence of the direct homologous dsDNA-dsDNA pairing. Both RIP and MSUD likely rely on the same search strategy, by which dsDNA segments are matched as arrays of interspersed base-pair triplets. This process is general and very efficient, yet it proceeds normally without the RecA/Rad51/Dmc1 proteins. Further studies of RIP and MSUD may yield surprising insights into the function of DNA in the cell.
Collapse
Affiliation(s)
- Alexey K Mazur
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France; Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris 75015, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Tinh-Suong Nguyen
- Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris 75015, France
| | - Eugene Gladyshev
- Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris 75015, France.
| |
Collapse
|
16
|
Sánchez OF, Mendonca A, Min A, Liu J, Yuan C. Monitoring Histone Methylation (H3K9me3) Changes in Live Cells. ACS OMEGA 2019; 4:13250-13259. [PMID: 31460452 PMCID: PMC6705211 DOI: 10.1021/acsomega.9b01413] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/19/2019] [Indexed: 05/16/2023]
Abstract
H3K9me3 (methylation of lysine 9 of histone H3) is an epigenetic modification that acts as a repressor mark. Several diseases, including cancers and neurological disorders, have been associated with aberrant changes in H3K9me3 levels. Different tools have been developed to enable detection and quantification of H3K9me3 levels in cells. Most techniques, however, lack live cell compatibility. To address this concern, we have engineered recombinant protein sensors for probing H3K9me3 in situ. A heterodimeric sensor containing a chromodomain and chromo shadow domain from HP1a was found to be optimal in recognizing H3K9me3 and exhibited similar spatial resolution to commercial antibodies. Our sensor offers similar quantitative accuracy in characterizing changes in H3K9me3 compared to antibodies but claims single cell resolution. The sensor was applied to evaluate changes in H3K9me3 responding to environmental chemical atrazine (ATZ). ATZ was found to result in significant reductions in H3K9me3 levels after 24 h of exposure. Its impact on the distribution of H3K9me3 among cell populations was also assessed and found to be distinctive. We foresee the application of our sensors in multiple toxicity and drug-screening applications.
Collapse
Affiliation(s)
- Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
| | - Agnes Mendonca
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
| | - Alan Min
- Department of Computer Science, Purdue University, West Lafayette 47907, Indiana, United States
| | - Jichang Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
- Purdue University Center for Cancer Research, West Lafayette 47907, Indiana, United States
| |
Collapse
|
17
|
Gauchier M, Kan S, Barral A, Sauzet S, Agirre E, Bonnell E, Saksouk N, Barth TK, Ide S, Urbach S, Wellinger RJ, Luco RF, Imhof A, Déjardin J. SETDB1-dependent heterochromatin stimulates alternative lengthening of telomeres. SCIENCE ADVANCES 2019; 5:eaav3673. [PMID: 31086817 PMCID: PMC6506250 DOI: 10.1126/sciadv.aav3673] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/27/2019] [Indexed: 05/25/2023]
Abstract
Alternative lengthening of telomeres, or ALT, is a recombination-based process that maintains telomeres to render some cancer cells immortal. The prevailing view is that ALT is inhibited by heterochromatin because heterochromatin prevents recombination. To test this model, we used telomere-specific quantitative proteomics on cells with heterochromatin deficiencies. In contrast to expectations, we found that ALT does not result from a lack of heterochromatin; rather, ALT is a consequence of heterochromatin formation at telomeres, which is seeded by the histone methyltransferase SETDB1. Heterochromatin stimulates transcriptional elongation at telomeres together with the recruitment of recombination factors, while disrupting heterochromatin had the opposite effect. Consistently, loss of SETDB1, disrupts telomeric heterochromatin and abrogates ALT. Thus, inhibiting telomeric heterochromatin formation in ALT cells might offer a new therapeutic approach to cancer treatment.
Collapse
Affiliation(s)
- Mathilde Gauchier
- Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier 34000, France
| | - Sophie Kan
- Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier 34000, France
| | - Amandine Barral
- Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier 34000, France
| | - Sandrine Sauzet
- Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier 34000, France
| | - Eneritz Agirre
- Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier 34000, France
| | - Erin Bonnell
- Department of Microbiology and Infectious Diseases, PRAC-Université de Sherbrooke 3201 Jean-Mignault, Sherbrooke, Qc J1E 4K8, Canada
| | - Nehmé Saksouk
- Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier 34000, France
| | - Teresa K. Barth
- Munich Centre of Integrated Protein Science and Division of Molecular Biology Biomedical Center, Faculty of Medicine, LMU Munich, Großhaderner Str.9 82152 Planegg, Martinsried, Germany
| | - Satoru Ide
- Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier 34000, France
| | - Serge Urbach
- Functional Proteomics Facility, Institute of Functional Genomics, 141 rue de la Cardonille, 34000 Montpellier, France
| | - Raymund J. Wellinger
- Department of Microbiology and Infectious Diseases, PRAC-Université de Sherbrooke 3201 Jean-Mignault, Sherbrooke, Qc J1E 4K8, Canada
| | - Reini F. Luco
- Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier 34000, France
| | - Axel Imhof
- Munich Centre of Integrated Protein Science and Division of Molecular Biology Biomedical Center, Faculty of Medicine, LMU Munich, Großhaderner Str.9 82152 Planegg, Martinsried, Germany
| | - Jérôme Déjardin
- Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier 34000, France
| |
Collapse
|
18
|
Sharma A, Albahrani M, Zhang W, Kufel CN, James SR, Odunsi K, Klinkebiel D, Karpf AR. Epigenetic activation of POTE genes in ovarian cancer. Epigenetics 2019; 14:185-197. [PMID: 30764732 DOI: 10.1080/15592294.2019.1581590] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The POTE gene family consists of 14 homologous genes localized to autosomal pericentromeres, and a sub-set of POTEs are cancer-testis antigen (CTA) genes. POTEs are over-expressed in epithelial ovarian cancer (EOC), including the high-grade serous subtype (HGSC), and expression of individual POTEs correlates with chemoresistance and reduced survival in HGSC. The mechanisms driving POTE overexpression in EOC and other cancers is unknown. Here, we investigated the role of epigenetics in regulating POTE expression, with a focus on DNA hypomethylation. Consistent with their pericentromeric localization, Pan-POTE expression in EOC correlated with expression of the pericentromeric repeat NBL2, which was not the case for non-pericentromeric CTAs. POTE genomic regions contain LINE-1 (L1) sequences, and Pan-POTE expression correlated with both global and POTE-specific L1 hypomethylation in EOC. Analysis of individual POTEs using RNA-seq and DNA methylome data from fallopian tube epithelia (FTE) and HGSC revealed that POTEs C, E, and F have increased expression in HGSC in conjunction with DNA hypomethylation at 5' promoter or enhancer regions. Moreover, POTEs C/E/F showed additional increased expression in recurrent HGSC in conjunction with 5' hypomethylation, using patient-matched samples. Experiments using decitabine treatment and DNMT knockout cell lines verified a functional contribution of DNA methylation to POTE repression, and epigenetic drug combinations targeting histone deacetylases (HDACs) and histone methyltransferases (HMTs) in combination with decitabine further increased POTE expression. In summary, several alterations of the cancer epigenome, including pericentromeric activation, global and locus-specific L1 hypomethylation, and locus-specific 5' CpG hypomethylation, converge to promote POTE expression in ovarian cancer.
Collapse
Affiliation(s)
- Ashok Sharma
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Mustafa Albahrani
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Wa Zhang
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Christina N Kufel
- c Department of Pharmacology and Therapeutics , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Smitha R James
- c Department of Pharmacology and Therapeutics , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Kunle Odunsi
- d Department of Immunology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA.,e Department of Gynecologic Oncology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA.,f Center for Immunotherapy , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - David Klinkebiel
- b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,g Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Adam R Karpf
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,c Department of Pharmacology and Therapeutics , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| |
Collapse
|
19
|
Gurova KV. Chromatin Stability as a Target for Cancer Treatment. Bioessays 2019; 41:e1800141. [PMID: 30566250 PMCID: PMC6522245 DOI: 10.1002/bies.201800141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/29/2018] [Indexed: 12/14/2022]
Abstract
In this essay, I propose that DNA-binding anti-cancer drugs work more via chromatin disruption than DNA damage. Success of long-awaited drugs targeting cancer-specific drivers is limited by the heterogeneity of tumors. Therefore, chemotherapy acting via universal targets (e.g., DNA) is still the mainstream treatment for cancer. Nevertheless, the problem with targeting DNA is insufficient efficacy due to high toxicity. I propose that this problem stems from the presumption that DNA damage is critical for the anti-cancer activity of these drugs. DNA in cells exists as chromatin, and many DNA-targeting drugs alter chromatin structure by destabilizing nucleosomes and inducing histone eviction from chromatin. This effect has been largely ignored because DNA damage is seen as the major reason for anti-cancer activity. I discuss how DNA-binding molecules destabilize chromatin, why this effect is more toxic to tumoral than normal cells, and why cells die as a result of chromatin destabilization.
Collapse
Affiliation(s)
- Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263. Tel 1-716-845-4760,
| |
Collapse
|
20
|
Laisné M, Gupta N, Kirsh O, Pradhan S, Defossez PA. Mechanisms of DNA Methyltransferase Recruitment in Mammals. Genes (Basel) 2018; 9:genes9120617. [PMID: 30544749 PMCID: PMC6316769 DOI: 10.3390/genes9120617] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
DNA methylation is an essential epigenetic mark in mammals. The proper distribution of this mark depends on accurate deposition and maintenance mechanisms, and underpins its functional role. This, in turn, depends on the precise recruitment and activation of de novo and maintenance DNA methyltransferases (DNMTs). In this review, we discuss mechanisms of recruitment of DNMTs by transcription factors and chromatin modifiers—and by RNA—and place these mechanisms in the context of biologically meaningful epigenetic events. We present hypotheses and speculations for future research, and underline the fundamental and practical benefits of better understanding the mechanisms that govern the recruitment of DNMTs.
Collapse
Affiliation(s)
- Marthe Laisné
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Nikhil Gupta
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Olivier Kirsh
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | | | - Pierre-Antoine Defossez
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| |
Collapse
|
21
|
Tosolini M, Brochard V, Adenot P, Chebrout M, Grillo G, Navia V, Beaujean N, Francastel C, Bonnet-Garnier A, Jouneau A. Contrasting epigenetic states of heterochromatin in the different types of mouse pluripotent stem cells. Sci Rep 2018; 8:5776. [PMID: 29636490 PMCID: PMC5893598 DOI: 10.1038/s41598-018-23822-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/15/2018] [Indexed: 11/09/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) represent naive and primed pluripotency states, respectively, and are maintained in vitro by specific signalling pathways. Furthermore, ESCs cultured in serum-free medium with two kinase inhibitors (2i-ESCs) are thought to be the ground naïve pluripotent state. Here, we present a comparative study of the epigenetic and transcriptional states of pericentromeric heterochromatin satellite sequences found in these pluripotent states. We show that 2i-ESCs are distinguished from other pluripotent cells by a prominent enrichment in H3K27me3 and low levels of DNA methylation at pericentromeric heterochromatin. In contrast, serum-containing ESCs exhibit higher levels of major satellite repeat transcription, which is lower in 2i-ESCs and even more repressed in primed EpiSCs. Removal of either DNA methylation or H3K9me3 at PCH in 2i-ESCs leads to enhanced deposition of H3K27me3 with few changes in satellite transcript levels. In contrast, their removal in EpiSCs does not lead to deposition of H3K27me3 but rather removes transcriptional repression. Altogether, our data show that the epigenetic state of PCH is modified during transition from naive to primed pluripotency states towards a more repressive state, which tightly represses the transcription of satellite repeats.
Collapse
Affiliation(s)
- Matteo Tosolini
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - Vincent Brochard
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - Pierre Adenot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - Martine Chebrout
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - Giacomo Grillo
- UMR7216 Epigenetics and cell fate, Université Paris Diderot Paris 7, 75013, Paris, France
| | - Violette Navia
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - Nathalie Beaujean
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France.,Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRA, Stem Cell and Brain Research Institute U1208, USC1361, 69500, Bron, France
| | - Claire Francastel
- UMR7216 Epigenetics and cell fate, Université Paris Diderot Paris 7, 75013, Paris, France
| | | | - Alice Jouneau
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France.
| |
Collapse
|
22
|
Gurrion C, Uriostegui M, Zurita M. Heterochromatin Reduction Correlates with the Increase of the KDM4B and KDM6A Demethylases and the Expression of Pericentromeric DNA during the Acquisition of a Transformed Phenotype. J Cancer 2017; 8:2866-2875. [PMID: 28928876 PMCID: PMC5604219 DOI: 10.7150/jca.19477] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/04/2017] [Indexed: 01/19/2023] Open
Abstract
Cancer cells have alterations in chromatin organization, mostly a reduction in heterochromatin. How this process occurs during transformation and if it participates in the maintenance of a cancerous phenotype is not well understood. Here, using a transformation-inducible cell line, we analyzed the changes that occur in heterochromatin during transformation to a cancerous phenotype. After transformation, there is a reduction in heterochromatin bodies and a nuclear reorganization of HP1α. These occurrences correlate with reductions in H3K9me3 and H3K27me3 levels and with some of the enzymes that introduce these modifications. At the same time, there are increases in the KDM4B and KDM6A/UTX demethylases and an enhancement in the transcription of pericentromeric DNA that correlate with the reduction of H3K9me3 and the recruitment of KDM4B to these elements. The depletion of KDM4B and KDM6A/UTX has a more deleterious effect in transformed cells than in their progenitors, suggesting an important role for these enzymes in the survival of cancerous cells. These results provide new insights into heterochromatin dynamics during transformation to a cancerous phenotype as well as some of the participating mechanisms.
Collapse
Affiliation(s)
- Cinthya Gurrion
- Departamento de Genética del Desarrollo y Fisiología Molecular. Instituto de Biotecnología, Universidad Nacional Autónoma de México. 62250 Cuernavaca Morelos, México
| | - Maritere Uriostegui
- Departamento de Genética del Desarrollo y Fisiología Molecular. Instituto de Biotecnología, Universidad Nacional Autónoma de México. 62250 Cuernavaca Morelos, México
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular. Instituto de Biotecnología, Universidad Nacional Autónoma de México. 62250 Cuernavaca Morelos, México
| |
Collapse
|
23
|
Lađinović D, Novotná J, Jakšová S, Raška I, Vacík T. A demethylation deficient isoform of the lysine demethylase KDM2A interacts with pericentromeric heterochromatin in an HP1a-dependent manner. Nucleus 2017; 8:563-572. [PMID: 28816576 DOI: 10.1080/19491034.2017.1342915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Histone modifications have a profound impact on the chromatin structure and gene expression and their correct establishment and recognition is essential for correct cell functioning. Malfunction of histone modifying proteins is associated with developmental defects and diseases and detailed characterization of these proteins is therefore very important. The lysine specific demethylase KDM2A is a CpG island binding protein that has been studied predominantly for its ability to regulate CpG island-associated gene promoters by demethylating their H3K36me2. However, very little attention has been paid to the alternative KDM2A isoform that lacks the N-terminal demethylation domain, KDM2A-SF. Here we characterized KDM2A-SF more in detail and we found that, unlike the canonical full length KDM2A-LF isoform, KDM2A-SF forms distinct nuclear heterochromatic bodies in an HP1a dependent manner. Our chromatin immunoprecipitation experiments further showed that KDM2A binds to transcriptionally silent pericentromeric regions that exhibit high levels of H3K36me2. H3K36me2 is the substrate of the KDM2A demethylation activity and the high levels of this histone modification in the KDM2A-bound pericentromeric regions imply that these regions are occupied by the demethylation deficient KDM2A-SF isoform.
Collapse
Affiliation(s)
- Dijana Lađinović
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Jitka Novotná
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Soňa Jakšová
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Ivan Raška
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Tomáš Vacík
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| |
Collapse
|
24
|
Three-Dimensional Genome Organization and Function in Drosophila. Genetics 2017; 205:5-24. [PMID: 28049701 PMCID: PMC5223523 DOI: 10.1534/genetics.115.185132] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/15/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques.
Collapse
|
25
|
Rout MP, Obado SO, Schenkman S, Field MC. Specialising the parasite nucleus: Pores, lamins, chromatin, and diversity. PLoS Pathog 2017; 13:e1006170. [PMID: 28253370 PMCID: PMC5333908 DOI: 10.1371/journal.ppat.1006170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Michael P. Rout
- The Rockefeller University, New York, New York, United States of America
| | - Samson O. Obado
- The Rockefeller University, New York, New York, United States of America
| | | | - Mark C. Field
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
26
|
McFadden VC, Shalaby RE, Iram S, Oropeza CE, Landolfi JA, Lyubimov AV, Maienschein-Cline M, Green SJ, Kaestner KH, McLachlan A. Hepatic deficiency of the pioneer transcription factor FoxA restricts hepatitis B virus biosynthesis by the developmental regulation of viral DNA methylation. PLoS Pathog 2017; 13:e1006239. [PMID: 28235042 PMCID: PMC5342274 DOI: 10.1371/journal.ppat.1006239] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/08/2017] [Accepted: 02/14/2017] [Indexed: 12/17/2022] Open
Abstract
The FoxA family of pioneer transcription factors regulates hepatitis B virus (HBV) transcription, and hence viral replication. Hepatocyte-specific FoxA-deficiency in the HBV transgenic mouse model of chronic infection prevents the transcription of the viral DNA genome as a result of the failure of the developmentally controlled conversion of 5-methylcytosine residues to cytosine during postnatal hepatic maturation. These observations suggest that pioneer transcription factors such as FoxA, which mark genes for expression at subsequent developmental steps in the cellular differentiation program, mediate their effects by reversing the DNA methylation status of their target genes to permit their ensuing expression when the appropriate tissue-specific transcription factor combinations arise during development. Furthermore, as the FoxA-deficient HBV transgenic mice are viable, the specific developmental timing, abundance and isoform type of pioneer factor expression must permit all essential liver gene expression to occur at a level sufficient to support adequate liver function. This implies that pioneer transcription factors can recognize and mark their target genes in distinct developmental manners dependent upon, at least in part, the concentration and affinity of FoxA for its binding sites within enhancer and promoter regulatory sequence elements. This selective marking of cellular genes for expression by the FoxA pioneer factor compared to HBV may offer the opportunity for the specific silencing of HBV gene expression and hence the resolution of chronic HBV infections which are responsible for approximately one million deaths worldwide annually due to liver cirrhosis and hepatocellular carcinoma. This study demonstrates the connection between FoxA expression and gene silencing by DNA methylation in vivo during liver maturation. Insufficient FoxA expression results in selective developmentally regulated hepatitis B virus (HBV) silencing by DNA methylation. To our knowledge, this is the first in vivo demonstration that pioneer factors such as FoxA function by mediating the developmental demethylation of their target genes, leading to their tissue specific gene expression. Furthermore, our results strongly imply that the marking of cellular target genes for subsequent transcription later in development is dependent upon the level and timing of FoxA expression plus its affinity for its target sequences within enhancer and promoter regions. Consequently, these findings suggest that the appropriate control of FoxA activity during development could lead to the transcriptional inactivation of nuclear HBV covalently closed circular DNA by methylation and hence resolution of chronic HBV infection. This represents a clinical goal that current therapies are unable to attain, and hence suggests a potential route to a cure for this chronic infection which kills approximately 1 million individuals annually.
Collapse
Affiliation(s)
- Vanessa C. McFadden
- Department of Microbiology and Immunology College of Medicine University of Illinois at Chicago 909 South Wolcott Avenue Chicago, IL, United States of America
| | - Rasha E. Shalaby
- Department of Microbiology and Immunology College of Medicine University of Illinois at Chicago 909 South Wolcott Avenue Chicago, IL, United States of America
| | - Saira Iram
- Department of Microbiology and Immunology College of Medicine University of Illinois at Chicago 909 South Wolcott Avenue Chicago, IL, United States of America
| | - Claudia E. Oropeza
- Department of Microbiology and Immunology College of Medicine University of Illinois at Chicago 909 South Wolcott Avenue Chicago, IL, United States of America
| | - Jennifer A. Landolfi
- Toxicology Research Laboratory Department of Pharmacology College of Medicine University of Illinois at Chicago Chicago, IL, United States of America
| | - Alexander V. Lyubimov
- Toxicology Research Laboratory Department of Pharmacology College of Medicine University of Illinois at Chicago Chicago, IL, United States of America
| | - Mark Maienschein-Cline
- Research Resources Center College of Medicine University of Illinois at Chicago 835 South Wolcott Avenue Chicago, IL, United States of America
| | - Stefan J. Green
- Research Resources Center College of Medicine University of Illinois at Chicago 835 South Wolcott Avenue Chicago, IL, United States of America
| | - Klaus H. Kaestner
- Department of Genetics University of Pennsylvania School of Medicine Philadelphia, PA, United States of America
| | - Alan McLachlan
- Department of Microbiology and Immunology College of Medicine University of Illinois at Chicago 909 South Wolcott Avenue Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
27
|
Nishibuchi G, Déjardin J. The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals. Chromosome Res 2017; 25:77-87. [PMID: 28078514 DOI: 10.1007/s10577-016-9547-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
Abstract
Constitutive heterochromatin is composed mainly of repetitive elements and represents the typical inert chromatin structure in eukaryotic cells. Approximately half of the mammalian genome is made of repeat sequences, such as satellite DNA, telomeric DNA, and transposable elements. As essential genes are not present in these regions, most of these repeat sequences were considered as junk DNA in the past. However, it is now clear that these regions are essential for chromosome stability and the silencing of neighboring genes. Genetic and biochemical studies have revealed that histone methylation at H3K9 and its recognition by heterochromatin protein 1 represent the fundamental mechanism by which heterochromatin forms. Although this molecular mechanism is highly conserved from yeast to human cells, its detailed epigenetic regulation is more complex and dynamic for each distinct constitutive heterochromatin structure in higher eukaryotes. It can also vary according to the developmental stage. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis is a powerful tool to investigate the epigenetic regulation of eukaryote genomes, but non-unique reads are usually discarded during standard ChIP-seq data alignment to reference genome databases. Therefore, specific methods to obtain global epigenetic information concerning repetitive elements are needed. In this review, we focus on such approaches and we summarize the latest molecular models for distinct constitutive heterochromatin types in mammals.
Collapse
Affiliation(s)
- Gohei Nishibuchi
- Biology of Repetitive Sequences, CNRS UPR1142, 141 rue de la Cardonille, 34000, Montpellier, France
| | - Jérôme Déjardin
- Biology of Repetitive Sequences, CNRS UPR1142, 141 rue de la Cardonille, 34000, Montpellier, France.
| |
Collapse
|
28
|
Li Y, Shen Y, Hohensinner P, Ju J, Wen Z, Goodman SB, Zhang H, Goronzy JJ, Weyand CM. Deficient Activity of the Nuclease MRE11A Induces T Cell Aging and Promotes Arthritogenic Effector Functions in Patients with Rheumatoid Arthritis. Immunity 2016; 45:903-916. [PMID: 27742546 DOI: 10.1016/j.immuni.2016.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023]
Abstract
Immune aging manifests with a combination of failing adaptive immunity and insufficiently restrained inflammation. In patients with rheumatoid arthritis (RA), T cell aging occurs prematurely, but the mechanisms involved and their contribution to tissue-destructive inflammation remain unclear. We found that RA CD4+ T cells showed signs of aging during their primary immune responses and differentiated into tissue-invasive, proinflammatory effector cells. RA T cells had low expression of the double-strand-break repair nuclease MRE11A, leading to telomeric damage, juxtacentromeric heterochromatin unraveling, and senescence marker upregulation. Inhibition of MRE11A activity in healthy T cells induced the aging phenotype, whereas MRE11A overexpression in RA T cells reversed it. In human-synovium chimeric mice, MRE11Alow T cells were tissue-invasive and pro-arthritogenic, and MRE11A reconstitution mitigated synovitis. Our findings link premature T cell aging and tissue-invasiveness to telomere deprotection and heterochromatin unpacking, identifying MRE11A as a therapeutic target to combat immune aging and suppress dysregulated tissue inflammation.
Collapse
Affiliation(s)
- Yinyin Li
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Shen
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philipp Hohensinner
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Internal Medicine II/Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jihang Ju
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhenke Wen
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stuart B Goodman
- Department of Orthopedic Surgery and Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hui Zhang
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Samuelsson JK, Dumbovic G, Polo C, Moreta C, Alibés A, Ruiz-Larroya T, Giménez-Bonafé P, Alonso S, Forcales SV, Manuel P. Helicase Lymphoid-Specific Enzyme Contributes to the Maintenance of Methylation of SST1 Pericentromeric Repeats That Are Frequently Demethylated in Colon Cancer and Associate with Genomic Damage. EPIGENOMES 2016; 1. [PMID: 31867127 PMCID: PMC6924650 DOI: 10.3390/epigenomes1010002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DNA hypomethylation at repetitive elements accounts for the genome-wide DNA hypomethylation common in cancer, including colorectal cancer (CRC). We identified a pericentromeric repeat element called SST1 frequently hypomethylated (>5% demethylation compared with matched normal tissue) in several cancers, including 28 of 128 (22%) CRCs. SST1 somatic demethylation associated with genome damage, especially in tumors with wild-type TP53. Seven percent of the 128 CRCs exhibited a higher (“severe”) level of demethylation (≥10%) that co-occurred with TP53 mutations. SST1 demethylation correlated with distinct histone marks in CRC cell lines and primary tumors: demethylated SST1 associated with high levels of the repressive histone 3 lysine 27 trimethylation (H3K27me3) mark and lower levels of histone 3 lysine 9 trimethylation (H3K9me3). Furthermore, induced demethylation of SST1 by 5-aza-dC led to increased H3K27me3 and reduced H3K9me3. Thus, in some CRCs, SST1 demethylation reflects an epigenetic reprogramming associated with changes in chromatin structure that may affect chromosomal integrity. The chromatin remodeler factor, the helicase lymphoid-specific (HELLS) enzyme, called the “epigenetic guardian of repetitive elements”, interacted with SST1 as shown by chromatin immunoprecipitation, and down-regulation of HELLS by shRNA resulted in demethylation of SST1 in vitro. Altogether these results suggest that HELLS contributes to SST1 methylation maintenance. Alterations in HELLS recruitment and function could contribute to the somatic demethylation of SST1 repeat elements undergone before and/or during CRC pathogenesis.
Collapse
Affiliation(s)
- Johanna K. Samuelsson
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Active Motif, 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA
| | - Gabrijela Dumbovic
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona 08916, Barcelona, Spain
| | - Cristian Polo
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona 08916, Barcelona, Spain
| | - Cristina Moreta
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona 08916, Barcelona, Spain
| | - Andreu Alibés
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona 08916, Barcelona, Spain
| | | | - Pepita Giménez-Bonafé
- Departament de Ciències Fisiòlogiques, Facultat de Medicina i Ciències de la Salut, Campus Ciències de la Salut, Bellvitge, Universitat de Barcelona, Hospitalet del Llobregat 08916, Barcelona, Spain
| | - Sergio Alonso
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona 08916, Barcelona, Spain
| | - Sonia-V. Forcales
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona 08916, Barcelona, Spain
- Correspondence: (S.-V.F.); (M.P.)
| | - Perucho Manuel
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona 08916, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
- Correspondence: (S.-V.F.); (M.P.)
| |
Collapse
|
30
|
Demond H, Trapphoff T, Dankert D, Heiligentag M, Grümmer R, Horsthemke B, Eichenlaub-Ritter U. Preovulatory Aging In Vivo and In Vitro Affects Maturation Rates, Abundance of Selected Proteins, Histone Methylation Pattern and Spindle Integrity in Murine Oocytes. PLoS One 2016; 11:e0162722. [PMID: 27611906 PMCID: PMC5017692 DOI: 10.1371/journal.pone.0162722] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/26/2016] [Indexed: 11/18/2022] Open
Abstract
Delayed ovulation and delayed fertilization can lead to reduced developmental competence of the oocyte. In contrast to the consequences of postovulatory aging of the oocyte, hardly anything is known about the molecular processes occurring during oocyte maturation if ovulation is delayed (preovulatory aging). We investigated several aspects of oocyte maturation in two models of preovulatory aging: an in vitro follicle culture and an in vivo mouse model in which ovulation was postponed using the GnRH antagonist cetrorelix. Both models showed significantly reduced oocyte maturation rates after aging. Furthermore, in vitro preovulatory aging deregulated the protein abundance of the maternal effect genes Smarca4 and Nlrp5, decreased the levels of histone H3K9 trimethylation and caused major deterioration of chromosome alignment and spindle conformation. Protein abundance of YBX2, an important regulator of mRNA stability, storage and recruitment in the oocyte, was not affected by in vitro aging. In contrast, in vivo preovulatory aging led to reduction in Ybx2 transcript and YBX2 protein abundance. Taken together, preovulatory aging seems to affect various processes in the oocyte, which could explain the low maturation rates and the previously described failures in fertilization and embryonic development.
Collapse
Affiliation(s)
- Hannah Demond
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tom Trapphoff
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - Deborah Dankert
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Martyna Heiligentag
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - Ruth Grümmer
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail:
| | | |
Collapse
|
31
|
The nuclear envelope and gene organization in parasitic protozoa: Specializations associated with disease. Mol Biochem Parasitol 2016; 209:104-113. [PMID: 27475118 DOI: 10.1016/j.molbiopara.2016.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/12/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022]
Abstract
The parasitic protozoa Trypanosoma brucei and Plasmodium falciparum are lethal human parasites that have developed elegant strategies of immune evasion by antigenic variation. Despite the vast evolutionary distance between the two taxa, both parasites employ strict monoallelic expression of their membrane proteins, variant surface glycoproteins in Trypanosomes and the var, rif and stevor genes in Plasmodium, in order to evade their host's immune system. Additionally, both telomeric location and epigenetic controls are prominent features of these membrane proteins. As such, telomeres, chromatin structure and nuclear organization all contribute to control of gene expression and immune evasion. Here, we discuss the importance of epigenetics and sub-nuclear context for the survival of these disease-causing parasites.
Collapse
|