1
|
Clark B, Hickey A, Marconi A, Fischer B, Elkin J, Mateus R, Santos ME. Developmental plasticity and variability in the formation of egg-spots, a pigmentation ornament in the cichlid Astatotilapia calliptera. Evol Dev 2024; 26:e12475. [PMID: 38555511 DOI: 10.1111/ede.12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Vertebrate pigmentation patterns are highly diverse, yet we have a limited understanding of how evolutionary changes to genetic, cellular, and developmental mechanisms generate variation. To address this, we examine the formation of a sexually-selected male ornament exhibiting inter- and intraspecific variation, the egg-spot pattern, consisting of circular yellow-orange markings on the male anal fins of haplochromine cichlid fishes. We focus on Astatotilapia calliptera, the ancestor-type species of the Malawi cichlid adaptive radiation of over 850 species. We identify a key role for iridophores in initializing egg-spot aggregations composed of iridophore-xanthophore associations. Despite adult sexual dimorphism, aggregations initially form in both males and females, with development only diverging between the sexes at later stages. Unexpectedly, we found that the timing of egg-spot initialization is plastic. The earlier individuals are socially isolated, the earlier the aggregations form, with iridophores being the cell type that responds to changes to the social environment. Furthermore, we observe apparent competitive interactions between adjacent egg-spot aggregations, which strongly suggests that egg-spot patterning results mostly from cell-autonomous cellular interactions. Together, these results demonstrate that A. calliptera egg-spot development is an exciting model for investigating pigment pattern formation at the cellular level in a system with developmental plasticity, sexual dimorphism, and intraspecific variation. As A. calliptera represents the ancestral bauplan for egg-spots, these findings provide a baseline for informed comparisons across the incredibly diverse Malawi cichlid radiation.
Collapse
Affiliation(s)
- Bethan Clark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Aaron Hickey
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Joel Elkin
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Rita Mateus
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Zhou Z, Sun Y, Yang J, Abliz Z. Mapping the Metabolic Characteristics and Perturbation of Adult Casper Zebrafish by Ambient Mass Spectrometry Imaging. Metabolites 2024; 14:204. [PMID: 38668332 PMCID: PMC11051737 DOI: 10.3390/metabo14040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Casper, a type of transparent mutant-line zebrafish, was generated to overcome the opaque trunk of an adult zebrafish for tumor modeling to realize real-time visualization of transplanted cells in vivo. However, the molecular information at the metabolic level has not received much attention. Herein, a spatially resolved metabolomics method based on an airflow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) system for whole-body zebrafish was used to investigate small molecules and the distribution of adult casper (Mitfaw2/w2, roya9/a9) and the differences from wild-type zebrafish. Finally, the spatial distribution information of more than 1500 endogenous ions was obtained in positive and negative detection modes, and 186 metabolites belonging to a variety of structural categories were identified or annotated. Compared with wild-type samples, 85 variables, including 37 known metabolites, were screened out. In addition, the disordered metabolic pathways caused by the genetic mutation were excavated, involving downregulation of purine metabolism and arachidonic acid metabolism, upregulation of glycerophospholipid metabolism, and biosynthesis of unsaturated fatty acids. All these results were observed in the most intuitive way through MSI. This study revealed important metabolic characteristics of and perturbation in adult casper zebrafish, and provides indispensable fundamental knowledge for tumor research based on it.
Collapse
Affiliation(s)
- Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China;
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China; (Y.S.); (J.Y.)
| | - Yue Sun
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China; (Y.S.); (J.Y.)
| | - Ji Yang
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China; (Y.S.); (J.Y.)
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China;
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Baltazar-Soares M, Karell P, Wright D, Nilsson JÅ, Brommer JE. Genomic basis of melanin-associated phenotypes suggests colour-specific environmental adaptations in tawny owls. Mol Ecol 2024; 33:e17247. [PMID: 38173194 DOI: 10.1111/mec.17247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Feathers comprise a series of evolutionary innovations but also harbour colour, a key biological trait known to co-vary with life history or complex traits. Those relationships are particularly true in melanin-based pigmentation species due to known pleiotropic effects of the melanocortin pathway - originating from melanin-associated phenotypes. Here, we explore the molecular basis of melanin colouration and expected co-variation at the molecular level in the melanin-based, colour polymorphic system of the tawny owl (Strix aluco). An extensive body of literature has revealed that grey and brown tawny owl colour morphs differ in a series of life history and behavioural traits. Thus, it is plausible to expect co-variation also at molecular level between colour morphs. To investigate this possibility, we assembled the first draft genome of the species against which we mapped ddRADseq reads from 220 grey and 150 brown morphs - representing 10 years of pedigree data from a population in Southern Finland - and explored genome-wide associations with colour phenotype. Our results revealed putative molecular signatures of cold adaptation strongly associated with the grey phenotype, namely, a non-synonymous substitution in MCHR1, plus 2 substitutions in non-coding regions of FTCD and FAM135A whose genotype combinations obtained a predictive power of up to 100% (predicting grey colour). These suggest a molecular basis of cold environment adaptations predicted to be grey-morph specific. Our results potentially reveal part of the molecular machinery of melanin-associated phenotypes and provide novel insights towards understanding the functional genomics of colour polymorphism in melanin-based pigmented species.
Collapse
Affiliation(s)
| | - Patrik Karell
- Department of Biology, Section of Evolutionary Ecology, Lund University, Lund, Sweden
- Department of Ecology and Genetics, University of Uppsala, Uppsala, Sweden
- Department of Bioeconomy, Novia University of Applied Sciences, Ekenäs, Finland
| | | | - Jan-Åke Nilsson
- Department of Biology, Section of Evolutionary Ecology, Lund University, Lund, Sweden
| | - Jon E Brommer
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Coulmance F, Akkaynak D, Le Poul Y, Höppner MP, McMillan WO, Puebla O. Phenotypic and genomic dissection of colour pattern variation in a reef fish radiation. Mol Ecol 2024; 33:e17047. [PMID: 37337919 DOI: 10.1111/mec.17047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Coral reefs rank among the most diverse species assemblages on Earth. A particularly striking aspect of coral reef communities is the variety of colour patterns displayed by reef fishes. Colour pattern is known to play a central role in the ecology and evolution of reef fishes through, for example, signalling or camouflage. Nevertheless, colour pattern is a complex trait in reef fishes-actually a collection of traits-that is difficult to analyse in a quantitative and standardized way. This is the challenge that we address in this study using the hamlets (Hypoplectrus spp., Serranidae) as a model system. Our approach involves a custom underwater camera system to take orientation- and size-standardized photographs in situ, colour correction, alignment of the fish images with a combination of landmarks and Bézier curves, and principal component analysis on the colour value of each pixel of each aligned fish. This approach identifies the major colour pattern elements that contribute to phenotypic variation in the group. Furthermore, we complement the image analysis with whole-genome sequencing to run a multivariate genome-wide association study for colour pattern variation. This second layer of analysis reveals sharp association peaks along the hamlet genome for each colour pattern element and allows to characterize the phenotypic effect of the single nucleotide polymorphisms that are most strongly associated with colour pattern variation at each association peak. Our results suggest that the diversity of colour patterns displayed by the hamlets is generated by a modular genomic and phenotypic architecture.
Collapse
Affiliation(s)
- Floriane Coulmance
- Leibniz Center for Tropical Marine Research, Bremen, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg, Germany
- Smithsonian Tropical Research Institute (STRI), Panama, Republic of Panama
| | - Derya Akkaynak
- Hatter Department of Marine Technologies, University of Haifa, Haifa, Israel
- Interuniversity Institute of Marine Sciences, Eilat, Israel
| | - Yann Le Poul
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marc P Höppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - W Owen McMillan
- Smithsonian Tropical Research Institute (STRI), Panama, Republic of Panama
| | - Oscar Puebla
- Leibniz Center for Tropical Marine Research, Bremen, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg, Germany
- Smithsonian Tropical Research Institute (STRI), Panama, Republic of Panama
| |
Collapse
|
5
|
Souto-Neto JA, David DD, Zanetti G, Sua-Cespedes C, Freret-Meurer NV, Moraes MN, de Assis LVM, Castrucci AMDL. Light-specific wavelengths differentially affect the exploration rate, opercular beat, skin color change, opsin transcripts, and the oxi-redox system of the longsnout seahorse Hippocampus reidi. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111551. [PMID: 37972916 DOI: 10.1016/j.cbpa.2023.111551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Light is a strong stimulus for the sensory and endocrine systems. The opsins constitute a large family of proteins that can respond to specific light wavelengths. Hippocampus reidi is a near-threatened seahorse that has a diverse color pattern and sexual dimorphism. Over the years, H. reidi's unique characteristics, coupled with its high demand and over-exploitation for the aquarium trade, have raised concerns about its conservation, primarily due to their significant impact on wild populations. Here, we characterized chromatophore types in juvenile and adult H. reidi in captivity, and the effects of specific light wavelengths with the same irradiance (1.20 mW/cm2) on color change, growth, and survival rate. The xanthophores and melanophores were the major components of H. reidi pigmentation with differences in density and distribution between life stages and sexes. In the eye and skin of juveniles, the yellow (585 nm) wavelength induced a substantial increase in melanin levels compared to the individuals kept under white light (WL), blue (442 nm), or red (650 nm) wavelengths. In addition, blue and yellow wavelengths led to a higher juvenile mortality rate in comparison to the other treatments. Adult seahorses showed a rhythmic color change over 24 h, the highest reflectance values were obtained in the light phase, representing a daytime skin lightening for individuals under WL, blue and yellow wavelength, with changes in the acrophase. The yellow wavelength was more effective on juvenile seahorse pigmentation, while the blue wavelength exerted a stronger effect on the regulation of adult physiological color change. Dramatic changes in the opsin mRNA levels were life stage-dependent, which may infer ontogenetic opsin functions throughout seahorses' development. Exposure to specific wavelengths differentially affected the opsins mRNA levels in the skin and eyes of juveniles. In the juveniles, skin transcripts of visual (rh1, rh2, and lws) and non-visual opsins (opn3 and opn4x) were higher in individuals under yellow light. While in the juvenile's eyes, only rh1 and rh2 had increased transcripts influenced by yellow light; the lws and opn3 mRNA levels were higher in juveniles' eyes under WL. Prolonged exposure to yellow wavelength stimulates a robust increase in the antioxidant enzymes sod1 and sod2 mRNA levels. Our findings indicate that changes in the visible light spectrum alter physiological processes at different stages of life in H. reidi and may serve as the basis for a broader discussion about the implications of artificial light for aquatic species in captivity.
Collapse
Affiliation(s)
- José Araújo Souto-Neto
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Laboratory of Micropollutants, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Daniela Dantas David
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Giovanna Zanetti
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Cristhian Sua-Cespedes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Maria Nathália Moraes
- Laboratory of Molecular Chronobiology, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, United States.
| |
Collapse
|
6
|
Frédérich B. Diving into the diversity of colour patterns in reef fishes. Mol Ecol 2024; 33:e17281. [PMID: 38247292 DOI: 10.1111/mec.17281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Colours and associated patterns are probably some of the most obvious phenotypic traits in animals and reef teleost fishes are often cited as a textbook example for illustrating this type of diversity. Even if it is well established that colour patterns play a central role in the ecology and evolution of reef fishes, we still lack the necessary toolkits to fully grasp the mechanisms driving the diversification of this obvious phenotypic trait. On the one hand, genotyping power seems now limitless thanks to current DNA sequencing technologies. Today, entire genomes of fishes can be easily produced for large sets of species. On the other hand, the description of colour patterns and the quantification of their variation across reef fishes might be highly challenging. In a cover manuscript in this issue of Molecular Ecology, Coulmance et al. (2023) introduced an innovative approach for extracting and quantifying the major colour pattern elements present in the hamlets (Hypoplectrus spp., Serranidae), a recent reef fish radiation from the Caribbean. Then, they intelligently used the quantified colour pattern variation as a phenotypic trait for a genome-wide association study (GWAS). Interestingly, using a method that required no a priori knowledge, they were able to recover well-established marks (e.g., vertical bars) and to highlight less expected colour pattern elements (e.g., dark to light gradient on ventral part as well as caudal and anal fins), which show strong association peaks on linkage group (LG) 12 and 04. Beyond the demonstration of the potential of their new quantitative analysis of colour pattern variation in reef fishes combined with GWAS, their findings offer new perspectives on our understanding of the intrinsic and extrinsic factors generating this outstanding diversity of the fish world.
Collapse
Affiliation(s)
- Bruno Frédérich
- Laboratory of Evolutionary Ecology, FOCUS, University of Liège, Liège, Belgium
| |
Collapse
|
7
|
Hayashi K, Locke NJM, Laudet V. Counting Nemo: anemonefish Amphiprion ocellaris identify species by number of white bars. J Exp Biol 2024; 227:jeb246357. [PMID: 38301046 DOI: 10.1242/jeb.246357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
The brilliant colors of coral reef fish have received much research attention. This is well exemplified by anemonefish, which have distinct white bar patterns and inhabit host anemones and defend them as a territory. The 28 described species have between 0 and 3 white bars present, which has been suggested to be important for species recognition. In the present study, we found that Amphiprion ocellaris (a species that displays three white bars) hatched and reared in aquaria, when faced with an intruder fish, attacked their own species more frequently than other species of intruding anemonefish. Additionally, we explicitly tested whether this species could distinguish models with different numbers of bars. For this, 120 individuals of A. ocellaris were presented with four different models (no bars, and 1, 2 and 3 bars) and we compared whether the frequency of aggressive behavior towards the model differed according to the number of bars. The frequency of aggressive behavior toward the 3-bar model was the same as against living A. ocellaris, and was higher than towards any of the other models. We conclude that A. ocellaris use the number of white bars as a cue to identify and attack only competitors that might use the same host. We considered this as an important behavior for efficient host defense.
Collapse
Affiliation(s)
- Kina Hayashi
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Noah J M Locke
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, Taiwan
| |
Collapse
|
8
|
Herrera M, Ravasi T, Laudet V. Anemonefishes: A model system for evolutionary genomics. F1000Res 2023; 12:204. [PMID: 37928172 PMCID: PMC10624958 DOI: 10.12688/f1000research.130752.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Anemonefishes are an iconic group of coral reef fish particularly known for their mutualistic relationship with sea anemones. This mutualism is especially intriguing as it likely prompted the rapid diversification of anemonefish. Understanding the genomic architecture underlying this process has indeed become one of the holy grails of evolutionary research in these fishes. Recently, anemonefishes have also been used as a model system to study the molecular basis of highly complex traits such as color patterning, social sex change, larval dispersal and life span. Extensive genomic resources including several high-quality reference genomes, a linkage map, and various genetic tools have indeed enabled the identification of genomic features controlling some of these fascinating attributes, but also provided insights into the molecular mechanisms underlying adaptive responses to changing environments. Here, we review the latest findings and new avenues of research that have led to this group of fish being regarded as a model for evolutionary genomics.
Collapse
Affiliation(s)
- Marcela Herrera
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi I-Lan 262, Taiwan
| |
Collapse
|
9
|
Hayashi K, Tachihara K, Reimer JD, Laudet V. Colour patterns influence symbiosis and competition in the anemonefish-host anemone symbiosis system. Proc Biol Sci 2022; 289:20221576. [PMID: 36196541 PMCID: PMC9532990 DOI: 10.1098/rspb.2022.1576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022] Open
Abstract
Colour patterns in fish are often used as an important medium for communication. Anemonefish, characterized by specific patterns of white bars, inhabit host anemones and defend the area around an anemone as their territory. The host anemone is used not only by the anemonefish, but also by other fish species that use anemones as temporary shelters. Anemonefish may be able to identify potential competitors by their colour patterns. We first examined the colour patterns of fish using host anemones inhabited by Amphiprion ocellaris as shelter and compared them with the patterns of fish using surrounding scleractinian corals. There were no fish with bars sheltering in host anemones, although many fish with bars were found in surrounding corals. Next, two fish models, one with white bars and the other with white stripes on a black background, were presented to an A. ocellaris colony. The duration of aggressive behaviour towards the bar model was significantly longer than that towards the stripe model. We conclude that differences in aggressive behaviour by the anemonefish possibly select the colour patterns of cohabiting fish. This study indicates that colour patterns may influence not only intraspecific interactions but also interspecific interactions in coral reef ecosystems.
Collapse
Affiliation(s)
- Kina Hayashi
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Katsunori Tachihara
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - James Davis Reimer
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi I-Lan 262, Taiwan
| |
Collapse
|
10
|
Langlois J, Guilhaumon F, Baletaud F, Casajus N, De Almeida Braga C, Fleuré V, Kulbicki M, Loiseau N, Mouillot D, Renoult JP, Stahl A, Stuart Smith RD, Tribot AS, Mouquet N. The aesthetic value of reef fishes is globally mismatched to their conservation priorities. PLoS Biol 2022; 20:e3001640. [PMID: 35671265 PMCID: PMC9173608 DOI: 10.1371/journal.pbio.3001640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Reef fishes are closely connected to many human populations, yet their contributions to society are mostly considered through their economic and ecological values. Cultural and intrinsic values of reef fishes to the public can be critical drivers of conservation investment and success, but remain challenging to quantify. Aesthetic value represents one of the most immediate and direct means by which human societies engage with biodiversity, and can be evaluated from species to ecosystems. Here, we provide the aesthetic value of 2,417 ray-finned reef fish species by combining intensive evaluation of photographs of fishes by humans with predicted values from machine learning. We identified important biases in species’ aesthetic value relating to evolutionary history, ecological traits, and International Union for Conservation of Nature (IUCN) threat status. The most beautiful fishes are tightly packed into small parts of both the phylogenetic tree and the ecological trait space. In contrast, the less attractive fishes are the most ecologically and evolutionary distinct species and those recognized as threatened. Our study highlights likely important mismatches between potential public support for conservation and the species most in need of this support. It also provides a pathway for scaling-up our understanding of what are both an important nonmaterial facet of biodiversity and a key component of nature’s contribution to people, which could help better anticipate consequences of species loss and assist in developing appropriate communication strategies. The most beautiful reef fish are tightly packed into small regions of both the phylogenetic tree and the ecological trait space of the world’s reef fish fauna and are less threatened than unattractive fish. This study highlights likely important mismatches between potential public support for conservation and the species most in need of this support.
Collapse
Affiliation(s)
| | - François Guilhaumon
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- UMR 9220 ENTROPIE, IRD, Université de la Réunion, Université de la Nouvelle-Calédonie, IFREMER, CNRS, La Réunion, France
| | - Florian Baletaud
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | | | - Valentine Fleuré
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | - Nicolas Loiseau
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France, 1 rue Descartes, Paris, France
| | - Julien P. Renoult
- CEFE, UMR 5175, CNRS, Univ Montpellier, University Paul Valery Montpellier, EPHE, Montpellier, France
| | - Aliénor Stahl
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Rick D. Stuart Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Anne-Sophie Tribot
- MIO, Univ Aix-Marseille, Univ Toulon, CNRS, IRD, Marseille, France
- UMR TELEMMe, Univ Aix-Marseille, CNRS, Aix-en-Provence, France
| | - Nicolas Mouquet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- FRB–CESAB, Montpellier, France
- * E-mail:
| |
Collapse
|
11
|
Rossi V, Unitt R, McNamara M, Zorzin R, Carnevale G. Skin patterning and internal anatomy in a fossil moonfish from the Eocene Bolca Lagerstätte illuminate the ecology of ancient reef fish communities. PALAEONTOLOGY 2022; 65:e12600. [PMID: 35915728 PMCID: PMC9324815 DOI: 10.1111/pala.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 06/15/2023]
Abstract
Colour patterning in extant animals can be used as a reliable indicator of their biology and, in extant fish, can inform on feeding strategy. Fossil fish with preserved colour patterns may thus illuminate the evolution of fish behaviour and community structure, but are understudied. Here we report preserved melanin-based integumentary colour patterning and internal anatomy of the fossil moonfish Mene rhombea (Menidae) from the Bolca Lagerstätte (Eocene (Ypresian), north-east Italy). The melanosome-based longitudinal stripes of M. rhombea differ from the dorsal rows of black spots in its extant relative M. maculata, suggesting that the ecology of moonfish has changed during the Cenozoic. Extant moonfish are coastal schooling fish that feed on benthic invertebrates, but the longitudinal stripes and stomach contents with fish remains in M. rhombea suggest unstructured open marine ecologies and a piscivorous diet. The localized distribution of extant moonfish species in the Indo-Pacific Ocean may reflect, at least in part, tectonically-driven reorganization of global oceanographic patterns during the Cenozoic. It is likely that shifts in habitat and colour patterning genes promoted colour pattern evolution in the menid lineage.
Collapse
Affiliation(s)
- Valentina Rossi
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkT23 TK30Ireland
- Museo di Scienze Naturali dell’Alto AdigeBolzano39100Italy
- Environmental Research InstituteUniversity College CorkCorkT23 XE10Ireland
| | - Richard Unitt
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkT23 TK30Ireland
- Environmental Research InstituteUniversity College CorkCorkT23 XE10Ireland
| | - Maria McNamara
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkT23 TK30Ireland
- Environmental Research InstituteUniversity College CorkCorkT23 XE10Ireland
| | - Roberto Zorzin
- Sezione di Geologia e PaleontologiaMuseo Civico di Storia Naturale di VeronaLungadige Porta Vittoria 937129VeronaItaly
| | - Giorgio Carnevale
- Dipartimento di Scienze della TerraUniversità degli Studi di TorinoVia Valperga Caluso 3510125TorinoItaly
| |
Collapse
|
12
|
Anjos LEFD, Gawryszewski FM, Bessa E. Water column use by reef fishes of different color patterns. NEOTROPICAL ICHTHYOLOGY 2022. [DOI: 10.1590/1982-0224-2021-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Color in animals responds to selective pressures and mediates the relationship between organism and environment. Reef fishes have the amplest variety of pigment cell types. This color patterns’ variety may function as camouflage and be related to spatial use. We tested the hypothesis that the coloration of reef fish relates to water column stratum occupation. We predicted that sedentary animals connected to the background take advantage of background matching or disruptive patterns; more mobile demersal species apply disruptive coloration or motion-dazzle; and that pelagic species tend to have silvery bodies. We classified color patterns and categorized the water column stratum use for the Brazilian reef fishes in FishBase. Our analyses confirmed that irregular contrasting contour breaks, suggestive of disruptive coloration, occurs in benthic species and that silvering color was more prevalent in the pelagic stratum. Our raw data suggested a higher frequency of contrasting regular stripes, typical of motion-dazzle, in demersal species. However, the considerable uncertainty around estimates did not confirm this pattern. Reef fishes coloration is correlated to occupation of different strata in the water column. This can be interpreted as fishes being adapted to these habitats and partially explaining the richness of color patterns among them.
Collapse
Affiliation(s)
| | | | - Eduardo Bessa
- Universidade de Brasília, Brazil; Universidade de Brasília, Brazil
| |
Collapse
|
13
|
Salis P, Lee S, Roux N, Lecchini D, Laudet V. The real Nemo movie: Description of embryonic development in Amphiprion ocellaris from first division to hatching. Dev Dyn 2021; 250:1651-1667. [PMID: 33899313 PMCID: PMC8597122 DOI: 10.1002/dvdy.354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Amphiprion ocellaris is one of the rare reef fish species that can be reared in aquaria. It is increasingly used as a model species for Eco-Evo-Devo. Therefore, it is important to have an embryonic development table based on high quality images that will allow for standardized sampling by the scientific community. RESULTS Here we provide high-resolution time-lapse videos to accompany a detailed description of embryonic development in A ocellaris. We describe a series of developmental stages and we define six broad periods of embryogenesis: zygote, cleavage, blastula, gastrula, segmentation, and organogenesis that we further subdivide into 32 stages. These periods highlight the changing spectrum of major developmental processes that occur during embryonic development. CONCLUSIONS We provide an easy system for the determination of embryonic stages, enabling the development of A ocellaris as a coral reef fish model species. This work will facilitate evolutionary development studies, in particular studies of the relationship between climate change and developmental trajectories in the context of coral reefs. Thanks to its lifestyle, complex behavior, and ecology, A ocellaris will undoubtedly become a very attractive model in a wide range of biological fields.
Collapse
Affiliation(s)
- Pauline Salis
- Observatoire Océanologique de Banyuls‐sur‐Mer, UMR CNRS 7232 BIOMSorbonne Université ParisBanyuls‐sur‐MerFrance
- EPHE‐UPVD‐CNRS, USR 3278 CRIOBEPSL UniversityMooreaFrench Polynesia
| | - Shu‐hua Lee
- Lab of Marine Eco‐Evo‐Devo, Marine Research StationInstitute of Cellular and Organismic Biology, Academia SinicaTaipeiTaiwan
| | - Natacha Roux
- Observatoire Océanologique de Banyuls‐sur‐Mer, UMR CNRS 7232 BIOMSorbonne Université ParisBanyuls‐sur‐MerFrance
| | - David Lecchini
- EPHE‐UPVD‐CNRS, USR 3278 CRIOBEPSL UniversityMooreaFrench Polynesia
| | - Vincent Laudet
- Lab of Marine Eco‐Evo‐Devo, Marine Research StationInstitute of Cellular and Organismic Biology, Academia SinicaTaipeiTaiwan
- Marine Eco‐Evo‐Devo UnitOkinawa Institute of Science and TechnologyOnna sonOkinawaJapan
| |
Collapse
|
14
|
Maeda K, Kobayashi H, Palla HP, Shinzato C, Koyanagi R, Montenegro J, Nagano AJ, Saeki T, Kunishima T, Mukai T, Tachihara K, Laudet V, Satoh N, Yamahira K. Do colour-morphs of an amphidromous goby represent different species? Taxonomy of Lentipes (Gobiiformes) from Japan and Palawan, Philippines, with phylogenomic approaches. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1971792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ken Maeda
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Hirozumi Kobayashi
- University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Herminie P. Palla
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa Campus, Puerto Princesa City, 5300, Palawan, Philippines
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Ryo Koyanagi
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Javier Montenegro
- University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | | | | | - Taiga Kunishima
- Wakayama Prefectural Museum of Natural History, 370-1 Funoo, Kainan, Wakayama, 642-0001, Japan
| | - Takahiko Mukai
- Faculty of Regional Studies, Gifu University, Gifu, 501-1193, Japan
| | | | - Vincent Laudet
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Kazunori Yamahira
- University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
15
|
McCulloch GA, Guhlin J, Dutoit L, Harrop TWR, Dearden PK, Waters JM. Genomic signatures of parallel alpine adaptation in recently evolved flightless insects. Mol Ecol 2021; 30:6677-6686. [PMID: 34592029 DOI: 10.1111/mec.16204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/01/2022]
Abstract
Natural selection along elevational gradients has potential to drive predictable adaptations across distinct lineages, but the extent of such repeated evolution remains poorly studied for many widespread alpine taxa. We present parallel genomic analyses of two recently evolved flightless alpine insect lineages to test for molecular signatures of repeated alpine adaptation. Specifically, we compare low-elevation vs. alpine stonefly ecotypes from parallel stream populations in which flightless upland ecotypes have been independently derived. We map 67,922 polymorphic genetic markers, generated across 176 Zelandoperla fenestrata specimens from two independent alpine stream populations in New Zealand's Rock and Pillar Range, to a newly developed plecopteran reference genome. Genome-wide scans revealed 31 regions with outlier single nucleotide polymorphisms (SNPs) differentiating lowland vs. alpine ecotypes in Lug Creek, and 37 regions with outliers differentiating ecotypes in Six Mile Creek. Of these regions, 13% (8/60) yielded outlier SNPs across both within-stream ecotype comparisons, implying comparable genomic shifts contribute to this repeated alpine adaptation. Candidate genes closely linked to repeated outlier regions include several with documented roles in insect wing-development (e.g., dishevelled), suggesting that they may contribute to repeated alpine wing reduction. Additional candidate genes have been shown to influence insect fecundity (e.g., ovo) and lifespan (e.g., Mrp4), implying that they might contribute to life history differentiation between upland and lowland ecotypes. Additional outlier genes have potential roles in the evolution of reproductive isolation among ecotypes (hedgehog and Desaturase 1). These results demonstrate how replicated outlier tests across independent lineages can potentially contribute to the discovery of genes underpinning repeated adaptation.
Collapse
Affiliation(s)
| | - Joseph Guhlin
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Thomas W R Harrop
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
16
|
Schwartz ST, Alfaro ME. Sashimi
: A toolkit for facilitating high‐throughput organismal image segmentation using deep learning. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shawn T. Schwartz
- Department of Ecology and Evolutionary Biology University of California Los Angeles California USA
| | - Michael E. Alfaro
- Department of Ecology and Evolutionary Biology University of California Los Angeles California USA
| |
Collapse
|
17
|
Korshunova TA, Driessen FMF, Picton BE, Martynov AV. The multilevel organismal diversity approach deciphers difficult to distinguish nudibranch species complex. Sci Rep 2021; 11:18323. [PMID: 34526521 PMCID: PMC8443629 DOI: 10.1038/s41598-021-94863-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
Species identification is a key procedure for broad-scoped ecological, phylogeographic and evolutionary studies. However, to perform a taxonomic study in the molecular era is a complicated task that has many pitfalls. In the present study we use particular examples of common but difficult to distinguish European species within the genus of Polycera (Nudibranchia, Mollusca) to discuss the general issues of the "cryptic species" problem that has broad biological and interdisciplinary importance and can significantly impede ecological, evolutionary, and other biodiversity-related research. The largest dataset of molecular and morphological information for European nudibranchs ever applied encompasses a wide geographical area and shapes a robust framework in this study. Four species are recognized in the species complex, including a new one. It is shown that a lack of appropriate taxonomic analysis led recently to considerable errors in species identity assessment of this complex. Chromatic polymorphism for each species is mapped in a periodic-like framework and combined with statistical analysis of the diagnostic features that considerably facilitates identification of particular species in the complex for biologists and practitioners. The present study evidently shows that "cryptic" and "non-cryptic" components are present within the same species. Therefore, this species complex is well suited for the exploring and testing of general biological problems. One of the main conclusions of this study is that division of biological diversity into "cryptic" and "non-cryptic" components is counterproductive. We propose that the central biological phenomenon of a species can instead be universally designated as multilevel organismal diversity thereby provide a practical set of methods for its investigation.
Collapse
Affiliation(s)
- Tatiana A Korshunova
- Koltzov Institute of Developmental Biology RAS, 26 Vavilova Str., 119334, Moscow, Russia
| | - Floor M F Driessen
- Bureau Waardenburg BV, Aquatic Ecology, Varkensmarkt 9, 4101 CK, Culemborg, The Netherlands.,Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, 1790 AB, Den Burg, The Netherlands
| | - Bernard E Picton
- National Museums Northern Ireland, Holywood, Northern Ireland, BT18 0EU, UK.,Queen's University, Belfast, Northern Ireland, UK
| | - Alexander V Martynov
- Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009, Moscow, Russia.
| |
Collapse
|
18
|
Klann M, Mercader M, Carlu L, Hayashi K, Reimer JD, Laudet V. Variation on a theme: pigmentation variants and mutants of anemonefish. EvoDevo 2021; 12:8. [PMID: 34147131 PMCID: PMC8214269 DOI: 10.1186/s13227-021-00178-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
Pigmentation patterning systems are of great interest to understand how changes in developmental mechanisms can lead to a wide variety of patterns. These patterns are often conspicuous, but their origins remain elusive for many marine fish species. Dismantling a biological system allows a better understanding of the required components and the deciphering of how such complex systems are established and function. Valuable information can be obtained from detailed analyses and comparisons of pigmentation patterns of mutants and/or variants from normal patterns. Anemonefishes have been popular marine fish in aquaculture for many years, which has led to the isolation of several mutant lines, and in particular color alterations, that have become very popular in the pet trade. Additionally, scattered information about naturally occurring aberrant anemonefish is available on various websites and image platforms. In this review, the available information on anemonefish color pattern alterations has been gathered and compiled in order to characterize and compare different mutations. With the global picture of anemonefish mutants and variants emerging from this, such as presence or absence of certain phenotypes, information on the patterning system itself can be gained.
Collapse
Affiliation(s)
- Marleen Klann
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Manon Mercader
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Lilian Carlu
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Kina Hayashi
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Molecular Invertebrate Systematics and Ecology Lab, Graduate School of the Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Lab, Graduate School of the Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, I-Lan, Taiwan.
| |
Collapse
|
19
|
Thyroid hormones regulate the formation and environmental plasticity of white bars in clownfishes. Proc Natl Acad Sci U S A 2021; 118:2101634118. [PMID: 34031155 DOI: 10.1073/pnas.2101634118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Determining how plasticity of developmental traits responds to environmental conditions is a challenge that must combine evolutionary sciences, ecology, and developmental biology. During metamorphosis, fish alter their morphology and color pattern according to environmental cues. We observed that juvenile clownfish (Amphiprion percula) modulate the developmental timing of their adult white bar formation during metamorphosis depending on the sea anemone species in which they are recruited. We observed an earlier formation of white bars when clownfish developed with Stichodactyla gigantea (Sg) than with Heteractis magnifica (Hm). As these bars, composed of iridophores, form during metamorphosis, we hypothesized that timing of their development may be thyroid hormone (TH) dependent. We treated clownfish larvae with TH and found that white bars developed earlier than in control fish. We further observed higher TH levels, associated with rapid white bar formation, in juveniles recruited in Sg than in Hm, explaining the faster white bar formation. Transcriptomic analysis of Sg recruits revealed higher expression of duox, a dual oxidase implicated in TH production as compared to Hm recruits. Finally, we showed that duox is an essential regulator of iridophore pattern timing in zebrafish. Taken together, our results suggest that TH controls the timing of adult color pattern formation and that shifts in duox expression and TH levels are associated with ecological differences resulting in divergent ontogenetic trajectories in color pattern development.
Collapse
|
20
|
Parichy DM. Evolution of pigment cells and patterns: recent insights from teleost fishes. Curr Opin Genet Dev 2021; 69:88-96. [PMID: 33743392 DOI: 10.1016/j.gde.2021.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023]
Abstract
Skin pigment patterns of vertebrates are stunningly diverse, and nowhere more so than in teleost fishes. Several species, including relatives of zebrafish, recently evolved cichlid fishes of East Africa, clownfishes, deep sea fishes, and others are providing insights into pigment pattern evolution. This overview describes recent advances in understanding periodic patterns, like stripes and spots, the loss of patterns, and the role of cell-type diversification in generating pigmentation phenotypes. Advances in this area are being facilitated by the application of modern methods of gene editing, genomics, computational analysis, and other approaches to non-traditional model organisms having interesting pigmentary phenotypes. Several topics worthy of future attention are outlined as well.
Collapse
Affiliation(s)
- David M Parichy
- Department of Biology, Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, United States.
| |
Collapse
|
21
|
Yang BT, Wen B, Ji Y, Wang Q, Zhang HR, Zhang Y, Gao JZ, Chen ZZ. Comparative metabolomics analysis of pigmentary and structural coloration in discus fish (Symphysodon haraldi). J Proteomics 2020; 233:104085. [PMID: 33378721 DOI: 10.1016/j.jprot.2020.104085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
Discus fish have a variety of body colors including pigmentary and structural colors, studies on specific substances and related metabolic pathways associated with body coloration, however, are scarce to the present. Here, we used single-color (blue, yellow and white) of discus for comparative metabolomics analysis of pigmentary and structural coloration. Statistical model showed significant separations between three colors of discus, suggesting the distinct metabolite profiles of discus pigmentary and structural colors. More astaxanthin was found in yellow discus, which might be the cause of yellow pigmentary color. Moreover, docosahexaenoic acid, arachidonic acid, linoleic acid, eicosapentaenoic acid, 1-stearoyl-2-oleoyl-sn-glycerol 3-phosphocholine, dodecanoic acid and myristic acid related to lipid metabolism and pathways of ABC transporters and biosynthesis of unsaturated fatty acids were more enriched in yellow discus. More adenine, xanthine and hypoxanthine were enriched in blue discus, which might account for the blue structural color. Moreover, amino acids associated with purine biosynthesis, e.g., L-alanine and L-isoleucine, were reduced but pathways of protein digestion and absorption, aminoacyl-tRNA biosynthesis, purine metabolism and glycine, serine and threonine metabolism were enriched in blue discus. Overall, these results reveal specific chromophores and related metabolic pathways involved in pigmentary and structural coloration of discus fish. SIGNIFICANCE: We detected specific chromophores present in skin of pigmentary and structural colors of discus and revealed potential metabolic pathways associated with body coloration. These results contribute to our understanding of the mechanism of body color formation in discus fish.
Collapse
Affiliation(s)
- Bo-Tian Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Yu Ji
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Qin Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Hao-Ran Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yuan Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jian-Zhong Gao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
22
|
Roux N, Salis P, Lee SH, Besseau L, Laudet V. Anemonefish, a model for Eco-Evo-Devo. EvoDevo 2020; 11:20. [PMID: 33042514 PMCID: PMC7539381 DOI: 10.1186/s13227-020-00166-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
Anemonefish, are a group of about 30 species of damselfish (Pomacentridae) that have long aroused the interest of coral reef fish ecologists. Combining a series of original biological traits and practical features in their breeding that are described in this paper, anemonefish are now emerging as an experimental system of interest for developmental biology, ecology and evolutionary sciences. They are small sized and relatively easy to breed in specific husbandries, unlike the large-sized marine fish used for aquaculture. Because they live in highly structured social groups in sea anemones, anemonefish allow addressing a series of relevant scientific questions such as the social control of growth and sex change, the mechanisms controlling symbiosis, the establishment and variation of complex color patterns, and the regulation of aging. Combined with the use of behavioral experiments, that can be performed in the lab or directly in the wild, as well as functional genetics and genomics, anemonefish provide an attractive experimental system for Eco-Evo-Devo.
Collapse
Affiliation(s)
- Natacha Roux
- Sorbonne Université, CNRS, UMR « Biologie Intégrative Des Organismes Marins », BIOM, 1, 66650 Banyuls-sur-Mer, France
| | - Pauline Salis
- Sorbonne Université, CNRS, UMR « Biologie Intégrative Des Organismes Marins », BIOM, 1, 66650 Banyuls-sur-Mer, France
| | - Shu-Hua Lee
- Lab of Marine Eco-Evo-Devo, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Laurence Besseau
- Sorbonne Université, CNRS, UMR « Biologie Intégrative Des Organismes Marins », BIOM, 1, 66650 Banyuls-sur-Mer, France
| | - Vincent Laudet
- Lab of Marine Eco-Evo-Devo, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna son, Okinawa, 904-0495 Japan
| |
Collapse
|
23
|
Volkening A. Linking genotype, cell behavior, and phenotype: multidisciplinary perspectives with a basis in zebrafish patterns. Curr Opin Genet Dev 2020; 63:78-85. [PMID: 32604031 DOI: 10.1016/j.gde.2020.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Zebrafish are characterized by dark and light stripes, but mutants display a rich variety of altered patterns. These patterns arise from the interactions of brightly colored pigment cells, making zebrafish a self-organization problem. The diversity of patterns present in zebrafish and other emerging fish models provides an excellent system for elucidating how genes, cell behavior, and visible animal characteristics are related. With the goal of highlighting how experimental and mathematical approaches can be used to link these scales, I overview current descriptions of zebrafish patterning, describe advances in the understanding of the mechanisms underlying cell communication, and discuss new work that moves beyond zebrafish to explore patterning in evolutionary relatives.
Collapse
Affiliation(s)
- Alexandria Volkening
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA; Department of Engineering Sciences and Applied Mathematics, Evanston, IL 60208, USA.
| |
Collapse
|
24
|
Cortesi F, Mitchell LJ, Tettamanti V, Fogg LG, de Busserolles F, Cheney KL, Marshall NJ. Visual system diversity in coral reef fishes. Semin Cell Dev Biol 2020; 106:31-42. [PMID: 32593517 DOI: 10.1016/j.semcdb.2020.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Coral reefs are one of the most species rich and colourful habitats on earth and for many coral reef teleosts, vision is central to their survival and reproduction. The diversity of reef fish visual systems arises from variations in ocular and retinal anatomy, neural processing and, perhaps most easily revealed by, the peak spectral absorbance of visual pigments. This review examines the interplay between retinal morphology and light environment across a number of reef fish species, but mainly focusses on visual adaptations at the molecular level (i.e. visual pigment structure). Generally, visual pigments tend to match the overall light environment or micro-habitat, with fish inhabiting greener, inshore waters possessing longer wavelength-shifted visual pigments than open water blue-shifted species. In marine fishes, particularly those that live on the reef, most species have between two (likely dichromatic) to four (possible tetrachromatic) cone spectral sensitivities and a single rod for crepuscular vision; however, most are trichromatic with three spectral sensitivities. In addition to variation in spectral sensitivity number, spectral placement of the absorbance maximum (λmax) also has a surprising degree of variability. Variation in ocular and retinal anatomy is also observed at several levels in reef fishes but is best represented by differences in arrangement, density and distribution of neural cell types across the retina (i.e. retinal topography). Here, we focus on the seven reef fish families most comprehensively studied to date to examine and compare how behaviour, environment, activity period, ontogeny and phylogeny might interact to generate the exceptional diversity in visual system design that we observe.
Collapse
Affiliation(s)
- Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Laurie J Mitchell
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Valerio Tettamanti
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lily G Fogg
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
25
|
Ding B, Patterson EL, Holalu SV, Li J, Johnson GA, Stanley LE, Greenlee AB, Peng F, Bradshaw HD, Blinov ML, Blackman BK, Yuan YW. Two MYB Proteins in a Self-Organizing Activator-Inhibitor System Produce Spotted Pigmentation Patterns. Curr Biol 2020; 30:802-814.e8. [PMID: 32155414 PMCID: PMC7156294 DOI: 10.1016/j.cub.2019.12.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/24/2019] [Accepted: 12/20/2019] [Indexed: 11/19/2022]
Abstract
Many organisms exhibit visually striking spotted or striped pigmentation patterns. Developmental models predict that such spatial patterns can form when a local autocatalytic feedback loop and a long-range inhibitory feedback loop interact. At its simplest, this self-organizing network only requires one self-activating activator that also activates a repressor, which inhibits the activator and diffuses to neighboring cells. However, the molecular activators and inhibitors fully fitting this versatile model remain elusive in pigmentation systems. Here, we characterize an R2R3-MYB activator and an R3-MYB repressor in monkeyflowers (Mimulus). Through experimental perturbation and mathematical modeling, we demonstrate that the properties of these two proteins correspond to an activator-inhibitor pair in a two-component, reaction-diffusion system, explaining the formation of dispersed anthocyanin spots in monkeyflower petals. Notably, disrupting this pattern impacts pollinator visitation. Thus, subtle changes in simple activator-inhibitor systems are likely essential contributors to the evolution of the remarkable diversity of pigmentation patterns in flowers.
Collapse
Affiliation(s)
- Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Erin L Patterson
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall #3102, Berkeley, CA 94720, USA; Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904, USA
| | - Srinidhi V Holalu
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall #3102, Berkeley, CA 94720, USA; Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904, USA
| | - Jingjian Li
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269, USA; College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Grace A Johnson
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall #3102, Berkeley, CA 94720, USA
| | - Lauren E Stanley
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Anna B Greenlee
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904, USA
| | - Foen Peng
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - H D Bradshaw
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Michael L Blinov
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall #3102, Berkeley, CA 94720, USA; Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904, USA.
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
26
|
Korshunova T, Malmberg K, Prkić J, Petani A, Fletcher K, Lundin K, Martynov A. Fine-scale species delimitation: speciation in process and periodic patterns in nudibranch diversity. Zookeys 2020; 917:15-50. [PMID: 32206016 PMCID: PMC7076062 DOI: 10.3897/zookeys.917.47444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/02/2020] [Indexed: 11/12/2022] Open
Abstract
Using the nudibranch genus Amphorina as a model, ongoing speciation is demonstrated, as well as how periodic-like patterns in colouration can be included in an integrated method of fine-scale species delimitation. By combining several methods, including BPP analysis and the study of molecular, morphological, and ecological data from a large number of specimens within a broad geographic range from northern Europe to the Mediterranean, five species are recognised within the genus Amphorina, reviewed here for the first time. Two new species from the southwestern coast of Sweden are described, A. viriola sp. nov. and A. andra sp. nov. Evidence is provided of a recent speciation process between the two closely related, yet separate, species which inhabit the same geographic localities but demonstrate strict water depth differentiation, with one species inhabiting the shallow brackish top layer above the halocline and the other species inhabiting the underlying saltier water. The results presented here are of relevance for currently debated issues such as conservation in relation to speciation, fine species delimitation, and integration of molecular, morphological and ecological information in biodiversity studies. The periodic approach to biological taxonomy has considerable practical potential for various organismal groups.
Collapse
Affiliation(s)
- Tatiana Korshunova
- Koltzov Institute of Developmental Biology RAS, 26 Vavilova Str., 119334 Moscow, Russia Koltzov Institute of Developmental Biology RAS Moscow Russia.,Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009 Moscow, Russia Moscow State University Moscow Russia
| | - Klas Malmberg
- Aquatilis, Nostravägen 11, S-41743, Gothenburg, Sweden Aquatilis Gothenburgh Sweden
| | - Jakov Prkić
- Getaldiceva 11, C 21000 Split, Croatia Unaffiliated Split Croatia
| | - Alen Petani
- Put Kotlara 6, C 23000 Zadar, Croatia Unaffiliated Zadar Croatia
| | - Karin Fletcher
- Port Orchard, Washington, 98366, USA Unaffiliated Port Orchard United States of America
| | - Kennet Lundin
- Gothenburg Natural History Museum, Box 7283, SE-40235, Gothenburg, Sweden Gothenburg Natural History Museum Gothenburg Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-40530, Gothenburg, Sweden Gothenburg Global Biodiversity Centre Gothenburg Sweden
| | - Alexander Martynov
- Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009 Moscow, Russia Moscow State University Moscow Russia
| |
Collapse
|
27
|
Caetano-Lopes J, Henke K, Urso K, Duryea J, Charles JF, Warman ML, Harris MP. Unique and non-redundant function of csf1r paralogues in regulation and evolution of post-embryonic development of the zebrafish. Development 2020; 147:dev.181834. [PMID: 31932352 DOI: 10.1242/dev.181834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/19/2019] [Indexed: 01/26/2023]
Abstract
Evolution is replete with reuse of genes in different contexts, leading to multifunctional roles of signaling factors during development. Here, we explore osteoclast regulation during skeletal development through analysis of colony-stimulating factor 1 receptor (csf1r) function in the zebrafish. A primary role of Csf1r signaling is to regulate the proliferation, differentiation and function of myelomonocytic cells, including osteoclasts. We demonstrate the retention of two functional paralogues of csf1r in zebrafish. Mutant analysis indicates that the paralogues have shared, non-redundant roles in regulating osteoclast activity during the formation of the adult skeleton. csf1ra, however, has adopted unique roles in pigment cell patterning not seen in the second paralogue. We identify a unique noncoding element within csf1ra of fishes that is sufficient for controlling gene expression in pigment cells during development. As a role for Csf1r signaling in pigmentation is not observed in mammals or birds, it is likely that the overlapping roles of the two paralogues released functional constraints on csf1ra, allowing the signaling capacity of Csf1r to serve a novel function in the evolution of pigment pattern in fishes.
Collapse
Affiliation(s)
- Joana Caetano-Lopes
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Katrin Henke
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Katia Urso
- Departments of Orthopaedics and Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey Duryea
- Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Julia F Charles
- Departments of Orthopaedics and Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Matthew L Warman
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew P Harris
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, MA 02115, USA .,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
28
|
Alfaro ME, Karan EA, Schwartz ST, Shultz AJ. The Evolution of Color Pattern in Butterflyfishes (Chaetodontidae). Integr Comp Biol 2019; 59:604-615. [DOI: 10.1093/icb/icz119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Coral reef fishes constitute one of the most diverse assemblages of vertebrates on the planet. Color patterns are known to serve a number of functions including intra- and inter-specific signaling, camouflage, mimicry, and defense. However, the relative importance of these and other factors in shaping color pattern evolution is poorly understood. Here we conduct a comparative phylogenetic analysis of color pattern evolution in the butterflyfishes (Chaetodontidae). Using recently developed tools for quantifying color pattern geometry as well as machine learning approaches, we investigate the tempo of evolution of color pattern elements and test whether ecological variables relating to defense, depth, and social behavior predict color pattern evolution. Butterflyfishes exhibit high diversity in measures of chromatic conspicuousness and the degrees of fine versus gross scale color patterning. Surprisingly, most diversity in color pattern was not predicted by any of the measures of ecology in our study, although we did find a significant but weak relationship between the level of fine scale patterning and some aspects of defensive morphology. We find that the tempo of color pattern diversification in butterflyfishes has increased toward the present and suggest that rapid evolution, presumably in response to evolutionary pressures surrounding speciation and lineage divergence, has effectively decoupled color pattern geometry from some aspects of ecology. Machine learning classification of color pattern appears to rely on a set of features that are weakly correlated with current color pattern geometry descriptors, but that may be better suited for the detection of discrete components of color pattern. A key challenge for future studies lies in determining whether rapid evolution has generally decoupled color patterns from ecology, or whether convergence in function produces convergence in color pattern at phylogenetic scales.
Collapse
Affiliation(s)
- Michael E Alfaro
- Department of Ecology and Evolutionary Biology, Terasaki 2149, University of California, Los Angeles, CA 90095, USA
| | - Elizabeth A Karan
- Department of Ecology and Evolutionary Biology, Terasaki 2149, University of California, Los Angeles, CA 90095, USA
| | - Shawn T Schwartz
- Department of Ecology and Evolutionary Biology, Terasaki 2149, University of California, Los Angeles, CA 90095, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| |
Collapse
|