1
|
Zhou X, Liu H, Hou F, Zheng ZQ, Cao X, Wang Q, Jiang W. REMR: Identification of RNA Editing-mediated MiRNA Regulation in Cancers. Comput Struct Biotechnol J 2024; 23:3418-3429. [PMID: 39386942 PMCID: PMC11462282 DOI: 10.1016/j.csbj.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Dysregulation of adenosine-to-inosine (A-to-I) RNA editing has been implicated in cancer progression. However, a comprehensive understanding of how A-to-I RNA editing is incorporated into miRNA regulation to modulate gene expression in cancer remains unclear, given the lack of effective identification methods. To this end, we introduced an information theory-based algorithm named REMR to systematically identify 12,006 A-to-I RNA editing-mediated miRNA regulatory triplets (RNA editing sites, miRNAs, and genes) across ten major cancer types based on multi-omics profiling data from The Cancer Genome Atlas (TCGA). Through analyses of functional enrichment, transcriptional regulatory networks, and protein-protein interaction (PPI) networks, we showed that RNA editing-mediated miRNA regulation potentially affects critical cancer-related functions, such as apoptosis, cell cycle, drug resistance, and immunity. Furthermore, triplets can serve as biomarkers for classifying cancer subtypes with distinct prognoses or drug responses, highlighting the clinical relevance of such regulation. In addition, an online resource (http://www.jianglab.cn/REMR/) was constructed to support the convenient retrieval of our findings. In summary, our study systematically dissected the RNA editing-mediated miRNA regulations, thereby providing a valuable resource for understanding the mechanism of RNA editing as an epitranscriptomic regulator in cancer.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Haizhou Liu
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Fei Hou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Zong-Qing Zheng
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350209, China
| | - Xinyu Cao
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Quan Wang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei Jiang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
2
|
Dailamy A, Lyu W, Nourreddine S, Tong M, Rainaldi J, McDonald D, Panwala R, Muotri A, Breen MS, Zhang K, Mali P. Charting and probing the activity of ADARs in human development and cell-fate specification. Nat Commun 2024; 15:9818. [PMID: 39537590 PMCID: PMC11561244 DOI: 10.1038/s41467-024-53973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) impact diverse cellular processes and pathological conditions, but their functions in early cell-fate specification remain less understood. To gain insights here, we began by charting time-course RNA editing profiles in human organs from fetal to adult stages. Next, we utilized hPSC differentiation to experimentally probe ADARs, harnessing brain organoids as neural specific, and teratomas as pan-tissue developmental models. We show that time-series teratomas faithfully recapitulate fetal developmental trends, and motivated by this, conducted pan-tissue, single-cell CRISPR-KO screens of ADARs in teratomas. Knocking out ADAR leads to a global decrease in RNA editing across all germ-layers. Intriguingly, knocking out ADAR leads to an enrichment of adipogenic cells, revealing a role for ADAR in human adipogenesis. Collectively, we present a multi-pronged framework charting time-resolved RNA editing profiles and coupled ADAR perturbations in developmental models, thereby shedding light on the role of ADARs in cell-fate specification.
Collapse
Affiliation(s)
- Amir Dailamy
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Weiqi Lyu
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Michael Tong
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Joseph Rainaldi
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Daniella McDonald
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Alysson Muotri
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | | | - Kun Zhang
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
3
|
Fu ZC, Gao BQ, Nan F, Ma XK, Yang L. DEMINING: A deep learning model embedded framework to distinguish RNA editing from DNA mutations in RNA sequencing data. Genome Biol 2024; 25:258. [PMID: 39380061 PMCID: PMC11463134 DOI: 10.1186/s13059-024-03397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Precise calling of promiscuous adenosine-to-inosine RNA editing sites from transcriptomic datasets is hindered by DNA mutations and sequencing/mapping errors. Here, we present a stepwise computational framework, called DEMINING, to distinguish RNA editing and DNA mutations directly from RNA sequencing datasets, with an embedded deep learning model named DeepDDR. After transfer learning, DEMINING can also classify RNA editing sites and DNA mutations from non-primate sequencing samples. When applied in samples from acute myeloid leukemia patients, DEMINING uncovers previously underappreciated DNA mutation and RNA editing sites; some associated with the upregulated expression of host genes or the production of neoantigens.
Collapse
Affiliation(s)
- Zhi-Can Fu
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bao-Qing Gao
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Nan
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xu-Kai Ma
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Eliad B, Schneider N, Ben-Naim Zgayer O, Amichan Y, Glaser F, Erdmann EA, Rajendren S, Hundley HA, Lamm AT. ADBP-1 regulates ADR-2 nuclear localization to control editing substrate selection. Nucleic Acids Res 2024; 52:9501-9518. [PMID: 39036970 PMCID: PMC11381337 DOI: 10.1093/nar/gkae641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is a prevalent and conserved RNA modification. While A-to-I RNA editing is essential in mammals, in Caenorhabditis elegans, it is not, making them invaluable for RNA editing research. In C. elegans, ADR-2 is the sole catalytic A-to-I editing enzyme, and ADR-1 is an RNA editing regulator. ADAR localization is well-studied in humans but not well-established in C. elegans. In this study, we examine the cellular and tissue-specific localization of ADR-2. We show that while ADR-2 is present in most cells in the embryo, at later developmental stages, its expression is both tissue- and cell-type-specific. Additionally, both ADARs are mainly in the nucleus. ADR-2 is adjacent to the chromosomes during the cell cycle. We show that the nuclear localization of endogenous ADR-2 depends on ADBP-1, not ADR-1. In adbp-1 mutant worms, ADR-2 is mislocalized, while ADR-1 is not, leading to decreased editing levels and de-novo editing, mostly in exons, suggesting that ADR-2 is also functional in the cytoplasm. Besides, mutated ADBP-1 affects gene expression. Furthermore, we show that ADR-2 targets adenosines with different surrounding nucleotides in exons and introns. Our findings indicate that ADR-2 cellular localization is highly regulated and affects its function.
Collapse
Affiliation(s)
- Berta Eliad
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Noa Schneider
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Orna Ben-Naim Zgayer
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Yarden Amichan
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Fabian Glaser
- Technion Center for Structural Biology, Technion Human Health Initiative, Technion, Haifa 32000, Israel
| | - Emily A Erdmann
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Suba Rajendren
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ayelet T Lamm
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| |
Collapse
|
5
|
Nian Z, Deng M, Ye L, Tong X, Xu Y, Xu Y, Chen R, Wang Y, Mao F, Xu C, Lu R, Mao Y, Xu H, Shen X, Xue X, Guo G. RNA epigenetic modifications in digestive tract cancers: Friends or foes. Pharmacol Res 2024; 206:107280. [PMID: 38914382 DOI: 10.1016/j.phrs.2024.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Digestive tract cancers are among the most common malignancies worldwide and have high incidence and mortality rates. Thus, the discovery of more effective diagnostic and therapeutic targets is urgently required. The development of technologies to accurately detect RNA modification has led to the identification of numerous RNA chemical modifications in humans (epitranscriptomics) that are involved in the occurrence and development of digestive tract cancers. RNA modifications can cooperatively regulate gene expression to facilitate normal physiological functions of the digestive system. However, the dysfunction of relevant RNA-modifying enzymes ("writers," "erasers," and "readers") can lead to the development of digestive tract cancers. Consequently, targeting dysregulated enzyme activity could represent a potent therapeutic strategy for the treatment of digestive tract cancers. In this review, we summarize the most widely studied roles and mechanisms of RNA modifications (m6A, m1A, m5C, m7G, A-to-I editing, pseudouridine [Ψ]) in relation to digestive tract cancers, highlight the crosstalk between RNA modifications, and discuss their roles in the interactions between the digestive system and microbiota during carcinogenesis. The clinical significance of novel therapeutic methods based on RNA-modifying enzymes is also discussed. This review will help guide future research into digestive tract cancers that are resistant to current therapeutics.
Collapse
Affiliation(s)
- Zekai Nian
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Ming Deng
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yixi Xu
- School of public administration, Hangzhou Normal University, Hangzhou, China
| | - Yiliu Xu
- Research Center of Fluid Machinery Engineering & Technology, Jiangsu University, Zhenjiang, China
| | - Ruoyao Chen
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yulin Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Feiyang Mao
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Chenyv Xu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruonan Lu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yicheng Mao
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Hanlu Xu
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
6
|
Mao XL, Eriani G, Zhou XL. ADATs: roles in tRNA editing and relevance to disease. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39034823 DOI: 10.3724/abbs.2024125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Transfer RNAs (tRNAs) play central roles in protein biosynthesis. Post-transcriptional RNA modifications affect tRNA function and stability. Among these modifications, RNA editing is a widespread RNA modification in three domains of life. Proteins of the adenosine deaminase acting on tRNA (ADAT) family were discovered more than 20 years ago. They catalyze the deamination of adenosine to inosine (A-to-I) or cytidine to uridine (C-to-U) during tRNA maturation. The most studied example is the TadA- or ADAT2/3-mediated A-to-I conversion of the tRNA wobble position in the anticodon of prokaryotic or eukaryotic tRNAs, respectively. This review provides detailed information on A-to-I and C-to-U editing of tRNAs in different domains of life, presents recent new findings on ADATs for DNA editing, and finally comments on the association of mutations in the ADAT3 gene with intellectual disability.
Collapse
Affiliation(s)
- Xue-Ling Mao
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Xiao-Long Zhou
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
7
|
Eliad B, Schneider N, Zgayer OBN, Amichan Y, Glaser F, Erdmann EA, Rajendren S, Hundley HA, Lamm AT. ADBP-1 regulates ADR-2 nuclear localization to control editing substrate selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.14.540679. [PMID: 38895382 PMCID: PMC11185548 DOI: 10.1101/2023.05.14.540679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is a prevalent and conserved RNA modification. While A-to-I RNA editing is essential in mammals, in Caenorhabditis elegans , it is not, making them invaluable for RNA editing research. In C. elegans , ADR-2 is the sole catalytic A-to-I editing enzyme, and ADR-1 is an RNA editing regulator. ADAR localization is well-studied in humans but not well-established in C. elegans . In this study, we examine the cellular and tissue-specific localization of ADR-2. We show that while ADR-2 is present in most cells in the embryo, at later developmental stages, its expression is both tissue- and cell-type-specific. Additionally, both ADARs are mainly in the nucleus. ADR-2 is adjacent to the chromosomes during the cell cycle. We show that the nuclear localization of endogenous ADR-2 depends on ADBP-1, not ADR-1. In adbp-1 mutant worms, ADR-2 is mislocalized, while ADR-1 is not, leading to decreased editing levels and de-novo editing, mostly in exons, suggesting that ADR-2 is also functional in the cytoplasm. Besides, mutated ADBP-1 affects gene expression. Furthermore, we show that ADR-2 targets adenosines with different surrounding nucleotides in exons and introns. Our findings indicate that ADR-2 cellular localization is highly regulated and affects its function.
Collapse
|
8
|
Hu SB, Li JB. RNA editing and immune control: from mechanism to therapy. Curr Opin Genet Dev 2024; 86:102195. [PMID: 38643591 PMCID: PMC11162905 DOI: 10.1016/j.gde.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024]
Abstract
Adenosine-to-inosine RNA editing, catalyzed by the enzymes ADAR1 and ADAR2, stands as a pervasive RNA modification. A primary function of ADAR1-mediated RNA editing lies in labeling endogenous double-stranded RNAs (dsRNAs) as 'self', thereby averting their potential to activate innate immune responses. Recent findings have highlighted additional roles of ADAR1, independent of RNA editing, that are crucial for immune control. Here, we focus on recent progress in understanding ADAR1's RNA editing-dependent and -independent roles in immune control. We describe how ADAR1 regulates various dsRNA innate immune receptors through distinct mechanisms. Furthermore, we discuss the implications of ADAR1 and RNA editing in diseases, including autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Shi-Bin Hu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Wang L, Wan W, Zhang S, Keswani T, Li G, Xiao J. RNA-mediated epigenetic regulation in exercised heart: Mechanisms and opportunities for intervention. Mol Aspects Med 2024; 97:101274. [PMID: 38653129 DOI: 10.1016/j.mam.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Physical exercise has been widely acknowledged as a beneficial lifestyle alteration and a potent non-pharmacological treatment for heart disease. Extensive investigations have revealed the beneficial effects of exercise on the heart and the underlying mechanisms involved. Exercise is considered one of the key factors that can lead to epigenetic alterations. The increasing number of identified molecules in the exercised heart has led to many studies in recent years that have explored the cellular function of ncRNAs and RNA modifications in the heart. Investigating the regulatory role of RNA-mediated epigenetic regulation in exercised hearts will contribute to the development of therapeutic strategies for the management of heart diseases. This review aims to summarize the positive impact of exercise on cardiac health. We will first provide an overview of the mechanisms through which exercise offers protection to the heart. Subsequently, we will delve into the current understanding of ncRNAs, specifically miRNAs, lncRNAs, and circRNAs, as well as RNA modification, focusing on RNA m6A and RNA A-to-I editing, and how they contribute to exercise-induced benefits for the heart. Lastly, we will explore the emerging therapeutic strategies that utilize exercise-mediated RNA epigenetic regulation in the treatment of heart diseases, while also addressing the challenges faced in this field.
Collapse
Affiliation(s)
- Lijun Wang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Wensi Wan
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Shuang Zhang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Tarun Keswani
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Junjie Xiao
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
10
|
de Reuver R, Maelfait J. Novel insights into double-stranded RNA-mediated immunopathology. Nat Rev Immunol 2024; 24:235-249. [PMID: 37752355 DOI: 10.1038/s41577-023-00940-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Recent progress in human and mouse genetics has transformed our understanding of the molecular mechanisms by which recognition of self double-stranded RNA (self-dsRNA) causes immunopathology. Novel mouse models recapitulate loss-of-function mutations in the RNA editing enzyme ADAR1 that are found in patients with Aicardi-Goutières syndrome (AGS) - a monogenic inflammatory disease associated with increased levels of type I interferon. Extensive analyses of the genotype-phenotype relationships in these mice have now firmly established a causal relationship between increased intracellular concentrations of endogenous immunostimulatory dsRNA and type I interferon-driven immunopathology. Activation of the dsRNA-specific immune sensor MDA5 perpetuates the overproduction of type I interferons, and chronic engagement of the interferon-inducible innate immune receptors PKR and ZBP1 by dsRNA drives immunopathology by activating an integrated stress response or by inducing excessive cell death. Biochemical and genetic data support a role for the p150 isoform of ADAR1 in the cytosol in suppressing the spontaneous, pathological response to self-dsRNA.
Collapse
Affiliation(s)
- Richard de Reuver
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Szabo B, Mandl TC, Woldrich B, Diensthuber G, Martin D, Jantsch MF, Licht K. RNA Pol II-dependent transcription efficiency fine-tunes A-to-I editing levels. Genome Res 2024; 34:231-242. [PMID: 38471738 PMCID: PMC10984384 DOI: 10.1101/gr.277686.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
A-to-I RNA editing is a widespread epitranscriptomic phenomenon leading to the conversion of adenosines to inosines, which are primarily interpreted as guanosines by cellular machines. Consequently, A-to-I editing can alter splicing or lead to recoding of transcripts. As misregulation of editing can cause a variety of human diseases, A-to-I editing requires tight regulation of the extent of deamination, particularly in protein-coding regions. The bulk of A-to-I editing occurs cotranscriptionally. Thus, we studied A-to-I editing regulation in the context of transcription and pre-mRNA processing. We show that stimulation of transcription impacts editing levels. Activation of the transcription factor MYC leads to an up-regulation of A-to-I editing, particularly in transcripts that are suppressed upon MYC activation. Moreover, low pre-mRNA synthesis rates and low pre-mRNA expression levels support high levels of editing. We also show that editing levels greatly differ between nascent pre-mRNA and mRNA in a cellular system, as well as in mouse tissues. Editing levels can increase or decrease from pre-mRNA to mRNA and can vary across editing targets and across tissues, showing that pre-mRNA processing is an important layer of editing regulation. Several lines of evidence suggest that the differences emerge during pre-mRNA splicing. Moreover, actinomycin D treatment of primary neuronal cells and editing level analysis suggests that regulation of editing levels also depends on transcription.
Collapse
Affiliation(s)
- Brigitta Szabo
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Therese C Mandl
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bernhard Woldrich
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Gregor Diensthuber
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - David Martin
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Konstantin Licht
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
12
|
Hong X, Wei Z, He L, Bu Q, Wu G, Chen G, He W, Deng Q, Huang S, Huang Y, Yu C, Luo X, Lin Y. High-throughput virtual screening to identify potential small molecule inhibitors of the Zα domain of the adenosine deaminases acting on RNA 1(ADAR1). Eur J Pharm Sci 2024; 193:106672. [PMID: 38103658 DOI: 10.1016/j.ejps.2023.106672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Changes in RNA editing are closely associated with diseases such as cancer, viral infections, and autoimmune disorders. Adenosine deaminase (ADAR1), which acts on RNA 1, plays a key role in adenosine to inosine editing and is a potential therapeutic target for these various diseases. The p150 subtype of ADAR1 is the only one that contains a Zα domain that binds to both Z-DNA and Z-RNA. The Zα domain modulates immune responses and may be suitable targets for antiviral therapy and cancer immunotherapy. In this study, we attempted to utilize molecular docking to identify potential inhibitors that bind to the ADAR1 Zα domain. The virtual docking method screened the potential activity of more than 100,000 compounds on the Zα domain of ADAR1 and filtered to obtain the highest scoring results.We identified 71 compounds promising to bind to ADAR1 and confirmed that two of them, lithospermic acid and Regaloside B, interacts with the ADAR1 Zα domain by surface plasmonic resonance technique. The molecular dynamics calculation of the complex of lithospermic acid and ADAR1 also showed that the binding effect of lithospermic acid to ADAR1 was stable.This study provides a new perspective for the search of ADAR1 inhibitors, and further studies on the anti-ADAR11 activity of these compounds have broad prospects.
Collapse
Affiliation(s)
- Xiaoshan Hong
- Department of gynecology, Guangdong Women and Children Medical Hospital, Guangzhou 511400, China
| | - Zhifu Wei
- Department of gynecology, The Affiliated Shunde Hospital of Jinan University, Foshan 528300, China
| | - Lulu He
- Department of gynecology, Guangdong Women and Children Medical Hospital, Guangzhou 511400, China
| | - Qiaowen Bu
- Department of gynecology, Guangdong Women and Children Medical Hospital, Guangzhou 511400, China
| | - Guosong Wu
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510006, China
| | - Guanqiao Chen
- Department of gynecology, Guangdong Women and Children Medical Hospital, Guangzhou 511400, China
| | - Wanshan He
- Department of gynecology, Guangdong Women and Children Medical Hospital, Guangzhou 511400, China
| | - Qiuhua Deng
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510006, China
| | - Shiqi Huang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510006, China
| | - Yongmei Huang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510006, China.
| | - Cai Yu
- College of Pharmacy, Jinan University, Guangzhou 511436, China.
| | - Xiping Luo
- Department of gynecology, Guangdong Women and Children Medical Hospital, Guangzhou 511400, China.
| | - Yu Lin
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510006, China; Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Jiao Y, Xu Y, Liu C, Miao R, Liu C, Wang Y, Liu J. The role of ADAR1 through and beyond its editing activity in cancer. Cell Commun Signal 2024; 22:42. [PMID: 38233935 PMCID: PMC10795376 DOI: 10.1186/s12964-023-01465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) editing of RNA, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, is a prevalent RNA modification in mammals. It has been shown that A-to-I editing plays a critical role in multiple diseases, such as cardiovascular disease, neurological disorder, and particularly cancer. ADARs are the family of enzymes, including ADAR1, ADAR2, and ADAR3, that catalyze the occurrence of A-to-I editing. Notably, A-to-I editing is mainly catalyzed by ADAR1. Given the significance of A-to-I editing in disease development, it is important to unravel the complex roles of ADAR1 in cancer for the development of novel therapeutic interventions.In this review, we briefly describe the progress of research on A-to-I editing and ADARs in cancer, mainly focusing on the role of ADAR1 in cancer from both editing-dependent and independent perspectives. In addition, we also summarized the factors affecting the expression and editing activity of ADAR1 in cancer.
Collapse
Affiliation(s)
- Yue Jiao
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yuqin Xu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Chengbin Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Rui Miao
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Chunyan Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yilong Wang
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Jiao Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
14
|
Crespo-García E, Bueno-Costa A, Esteller M. Single-cell analysis of the epitranscriptome: RNA modifications under the microscope. RNA Biol 2024; 21:1-8. [PMID: 38368619 PMCID: PMC10877985 DOI: 10.1080/15476286.2024.2315385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
The identification of mechanisms capable of modifying genetic information by the addition of covalent RNA modifications distinguishes a level of complexity in gene expression which challenges key long-standing concepts of RNA biology. One of the current challenges of molecular biology is to properly understand the molecular functions of these RNA modifications, with more than 170 different ones having been identified so far. However, it has not been possible to map specific RNA modifications at a single-cell resolution until very recently. This review will highlight the technological advances in single-cell methodologies aimed at assessing and testing the biological function of certain RNA modifications, focusing on m6A. These advances have allowed for the development of novel strategies that enable the study of the 'epitranscriptome'. Nevertheless, despite all these improvements, many challenges and difficulties still need fixing for these techniques to work efficiently.
Collapse
Affiliation(s)
- Eva Crespo-García
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Alberto Bueno-Costa
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|
15
|
Hu SB, Heraud-Farlow J, Sun T, Liang Z, Goradia A, Taylor S, Walkley CR, Li JB. ADAR1p150 prevents MDA5 and PKR activation via distinct mechanisms to avert fatal autoinflammation. Mol Cell 2023; 83:3869-3884.e7. [PMID: 37797622 DOI: 10.1016/j.molcel.2023.09.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/14/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
Effective immunity requires the innate immune system to distinguish foreign nucleic acids from cellular ones. Cellular double-stranded RNAs (dsRNAs) are edited by the RNA-editing enzyme ADAR1 to evade being recognized as viral dsRNA by cytoplasmic dsRNA sensors, including MDA5 and PKR. The loss of ADAR1-mediated RNA editing of cellular dsRNA activates MDA5. Additional RNA-editing-independent functions of ADAR1 have been proposed, but a specific mechanism has not been delineated. We now demonstrate that the loss of ADAR1-mediated RNA editing specifically activates MDA5, whereas loss of the cytoplasmic ADAR1p150 isoform or its dsRNA-binding activity enabled PKR activation. Deleting both MDA5 and PKR resulted in complete rescue of the embryonic lethality of Adar1p150-/- mice to adulthood, contrasting with the limited or no rescue by removing MDA5 or PKR alone. Our findings demonstrate that MDA5 and PKR are the primary in vivo effectors of fatal autoinflammation following the loss of ADAR1p150.
Collapse
Affiliation(s)
- Shi-Bin Hu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jacki Heraud-Farlow
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Tao Sun
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Zhen Liang
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Ankita Goradia
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Scott Taylor
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia.
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Datta R, Adamska JZ, Bhate A, Li JB. A-to-I RNA editing by ADAR and its therapeutic applications: From viral infections to cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1817. [PMID: 37718249 PMCID: PMC10947335 DOI: 10.1002/wrna.1817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
ADAR deaminases catalyze adenosine-to-inosine (A-to-I) editing on double-stranded RNA (dsRNA) substrates that regulate an umbrella of biological processes. One of the two catalytically active ADAR enzymes, ADAR1, plays a major role in innate immune responses by suppression of RNA sensing pathways which are orchestrated through the ADAR1-dsRNA-MDA5 axis. Unedited immunogenic dsRNA substrates are potent ligands for the cellular sensor MDA5. Upon activation, MDA5 leads to the induction of interferons and expression of hundreds of interferon-stimulated genes with potent antiviral activity. In this way, ADAR1 acts as a gatekeeper of the RNA sensing pathway by striking a fine balance between innate antiviral responses and prevention of autoimmunity. Reduced editing of immunogenic dsRNA by ADAR1 is strongly linked to the development of common autoimmune and inflammatory diseases. In viral infections, ADAR1 exhibits both antiviral and proviral effects. This is modulated by both editing-dependent and editing-independent functions, such as PKR antagonism. Several A-to-I RNA editing events have been identified in viruses, including in the insidious viral pathogen, SARS-CoV-2 which regulates viral fitness and infectivity, and could play a role in shaping viral evolution. Furthermore, ADAR1 is an attractive target for immuno-oncology therapy. Overexpression of ADAR1 and increased dsRNA editing have been observed in several human cancers. Silencing ADAR1, especially in cancers that are refractory to immune checkpoint inhibitors, is a promising therapeutic strategy for cancer immunotherapy in conjunction with epigenetic therapy. The mechanistic understanding of dsRNA editing by ADAR1 and dsRNA sensing by MDA5 and PKR holds great potential for therapeutic applications. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Rohini Datta
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julia Z Adamska
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Amruta Bhate
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Liang Z, Goradia A, Walkley CR, Heraud-Farlow JE. Generation of a new Adar1p150 -/- mouse demonstrates isoform-specific roles in embryonic development and adult homeostasis. RNA (NEW YORK, N.Y.) 2023; 29:1325-1338. [PMID: 37290963 PMCID: PMC10573302 DOI: 10.1261/rna.079509.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
The RNA editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) is an essential regulator of the innate immune response to both cellular and viral double-stranded RNA (dsRNA). Adenosine-to-inosine (A-to-I) editing by ADAR1 modifies the sequence and structure of endogenous dsRNA and masks it from the cytoplasmic dsRNA sensor melanoma differentiation-associated protein 5 (MDA5), preventing innate immune activation. Loss-of-function mutations in ADAR are associated with rare autoinflammatory disorders including Aicardi-Goutières syndrome (AGS), defined by a constitutive systemic up-regulation of type I interferon (IFN). The murine Adar gene encodes two protein isoforms with distinct functions: ADAR1p110 is constitutively expressed and localizes to the nucleus, whereas ADAR1p150 is primarily cytoplasmic and is inducible by IFN. Recent studies have demonstrated the critical requirement for ADAR1p150 to suppress innate immune activation by self dsRNAs. However, detailed in vivo characterization of the role of ADAR1p150 during development and in adult mice is lacking. We identified a new ADAR1p150-specific knockout mouse mutant based on a single nucleotide deletion that resulted in the loss of the ADAR1p150 protein without affecting ADAR1p110 expression. The Adar1p150 -/- died embryonically at E11.5-E12.5 accompanied by cell death in the fetal liver and an activated IFN response. Somatic loss of ADAR1p150 in adults was lethal and caused rapid hematopoietic failure, demonstrating an ongoing requirement for ADAR1p150 in vivo. The generation and characterization of this mouse model demonstrates the essential role of ADAR1p150 in vivo and provides a new tool for dissecting the functional differences between ADAR1 isoforms and their physiological contributions.
Collapse
Affiliation(s)
- Zhen Liang
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Ankita Goradia
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Jacki E Heraud-Farlow
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
18
|
Uchida S, Lau CYJ, Oba M, Miyata K. Polyplex designs for improving the stability and safety of RNA therapeutics. Adv Drug Deliv Rev 2023; 199:114972. [PMID: 37364611 DOI: 10.1016/j.addr.2023.114972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Nanoparticle-based delivery systems have contributed to the recent clinical success of RNA therapeutics, including siRNA and mRNA. RNA delivery using polymers has several distinct properties, such as enabling RNA delivery into extra-hepatic organs, modulation of immune responses to RNA, and regulation of intracellular RNA release. However, delivery systems should overcome safety and stability issues to achieve widespread therapeutic applications. Safety concerns include direct damage to cellular components, innate and adaptive immune responses, complement activation, and interaction with surrounding molecules and cells in the blood circulation. The stability of the delivery systems should balance extracellular RNA protection and controlled intracellular RNA release, which requires optimization for each RNA species. Further, polymer designs for improving safety and stability often conflict with each other. This review covers advances in polymer-based approaches to address these issues over several years, focusing on biological understanding and design concepts for delivery systems rather than material chemistry.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Chun Yin Jerry Lau
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Oba
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
19
|
Liu Z, Quinones-Valdez G, Fu T, Huang E, Choudhury M, Reese F, Mortazavi A, Xiao X. L-GIREMI uncovers RNA editing sites in long-read RNA-seq. Genome Biol 2023; 24:171. [PMID: 37474948 PMCID: PMC10360234 DOI: 10.1186/s13059-023-03012-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Although long-read RNA-seq is increasingly applied to characterize full-length transcripts it can also enable detection of nucleotide variants, such as genetic mutations or RNA editing sites, which is significantly under-explored. Here, we present an in-depth study to detect and analyze RNA editing sites in long-read RNA-seq. Our new method, L-GIREMI, effectively handles sequencing errors and read biases. Applied to PacBio RNA-seq data, L-GIREMI affords a high accuracy in RNA editing identification. Additionally, our analysis uncovered novel insights about RNA editing occurrences in single molecules and double-stranded RNA structures. L-GIREMI provides a valuable means to study nucleotide variants in long-read RNA-seq.
Collapse
Affiliation(s)
- Zhiheng Liu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Giovanni Quinones-Valdez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Ting Fu
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Elaine Huang
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Fairlie Reese
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Li Y, Yi Y, Lv J, Gao X, Yu Y, Babu S, Bruno I, Zhao D, Xia B, Peng W, Zhu J, Chen H, Zhang L, Cao Q, Chen K. Low RNA stability signifies increased post-transcriptional regulation of cell identity genes. Nucleic Acids Res 2023; 51:6020-6038. [PMID: 37125636 PMCID: PMC10325912 DOI: 10.1093/nar/gkad300] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Cell identity genes are distinct from other genes with respect to the epigenetic mechanisms to activate their transcription, e.g. by super-enhancers and broad H3K4me3 domains. However, it remains unclear whether their post-transcriptional regulation is also unique. We performed a systematic analysis of transcriptome-wide RNA stability in nine cell types and found that unstable transcripts were enriched in cell identity-related pathways while stable transcripts were enriched in housekeeping pathways. Joint analyses of RNA stability and chromatin state revealed significant enrichment of super-enhancers and broad H3K4me3 domains at the gene loci of unstable transcripts. Intriguingly, the RNA m6A methyltransferase, METTL3, preferentially binds to chromatin at super-enhancers, broad H3K4me3 domains and their associated genes. METTL3 binding intensity is positively correlated with RNA m6A methylation and negatively correlated with RNA stability of cell identity genes, probably due to co-transcriptional m6A modifications promoting RNA decay. Nanopore direct RNA-sequencing showed that METTL3 knockdown has a stronger effect on RNA m6A and mRNA stability for cell identity genes. Our data suggest a run-and-brake model, where cell identity genes undergo both frequent transcription and fast RNA decay to achieve precise regulation of RNA expression.
Collapse
Affiliation(s)
- Yanqiang Li
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Yang Yi
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jie Lv
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Xinlei Gao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Yang Yu
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sahana Suresh Babu
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Ivone Bruno
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Dongyu Zhao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Bo Xia
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - Jun Zhu
- Systems Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Qi Cao
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
- Broad Institute of MIT and Harvard, Boston, MA 02115, USA
- Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| |
Collapse
|
21
|
Lu D, Lu J, Liu Q, Zhang Q. Emerging role of the RNA-editing enzyme ADAR1 in stem cell fate and function. Biomark Res 2023; 11:61. [PMID: 37280687 DOI: 10.1186/s40364-023-00503-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/13/2023] [Indexed: 06/08/2023] Open
Abstract
Stem cells are critical for organism development and the maintenance of tissue homeostasis. Recent studies focusing on RNA editing have indicated how this mark controls stem cell fate and function in both normal and malignant states. RNA editing is mainly mediated by adenosine deaminase acting on RNA 1 (ADAR1). The RNA editing enzyme ADAR1 converts adenosine in a double-stranded RNA (dsRNA) substrate into inosine. ADAR1 is a multifunctional protein that regulate physiological processes including embryonic development, cell differentiation, and immune regulation, and even apply to the development of gene editing technologies. In this review, we summarize the structure and function of ADAR1 with a focus on how it can mediate distinct functions in stem cell self-renewal and differentiation. Targeting ADAR1 has emerged as a potential novel therapeutic strategy in both normal and dysregulated stem cell contexts.
Collapse
Affiliation(s)
- Di Lu
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jianxi Lu
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qiuli Liu
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Qi Zhang
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
22
|
Zhou X, Mitra R, Hou F, Zhou S, Wang L, Jiang W. Genomic Landscape and Potential Regulation of RNA Editing in Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207357. [PMID: 36912579 PMCID: PMC10190536 DOI: 10.1002/advs.202207357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/31/2023] [Indexed: 05/18/2023]
Abstract
Adenosine-to-inosine RNA editing critically affects the response of cancer therapies. However, comprehensive identification of drug resistance-related RNA editing events and systematic understanding of how RNA editing mediates anticancer drug resistance remain unclear. Here, 7157 differential editing sites (DESs) are identified from 98 127 informative RNA editing sites in tumor tissues, many of which are validated in cancer cell lines. Diverse editing patterns of DESs are discovered in resistant samples, which could not be fully explained by adenosine deaminase acting on RNA enzymes. Some RNA-binding proteins are identified that potentially regulate these editing events. Notably, the DESs are significantly enriched in 3'-untranslated regions (3'-UTRs). The impact of DESs in 3'-UTR on the microRNA (miRNA) regulations is explored, and some triplets (DES, miRNA, and gene) that may contribute to drug resistance are identified. In addition, it is determined that the functions of genes enriched with DESs are associated with drug resistance, such as apoptosis, drug metabolism, and DNA synthesis involved in DNA repair. An online resource (http://www.jianglab.cn/REDR/) to support convenient retrieval of DESs is also built. The findings reveal the landscape and potential regulatory mechanism of RNA editing in drug resistance, providing new therapeutic targets for reversing drug resistance.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Biomedical EngineeringNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Ramkrishna Mitra
- Department of PharmacologyPhysiology, and Cancer BiologySidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPennsylvania19107USA
| | - Fei Hou
- Department of Biomedical EngineeringNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Shunheng Zhou
- Department of Biomedical EngineeringNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Lihong Wang
- Department of PathophysiologySchool of MedicineSoutheast UniversityNanjing210009P. R. China
| | - Wei Jiang
- Department of Biomedical EngineeringNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| |
Collapse
|
23
|
Hu SB, Heraud-Farlow J, Sun T, Liang Z, Goradia A, Taylor S, Walkley CR, Li JB. ADAR1p150 Prevents MDA5 and PKR Activation via Distinct Mechanisms to Avert Fatal Autoinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525475. [PMID: 36747811 PMCID: PMC9900771 DOI: 10.1101/2023.01.25.525475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Effective immunity requires the innate immune system to distinguish foreign (non-self) nucleic acids from cellular (self) nucleic acids. Cellular double-stranded RNAs (dsRNAs) are edited by the RNA editing enzyme ADAR1 to prevent their dsRNA structure pattern being recognized as viral dsRNA by cytoplasmic dsRNA sensors including MDA5, PKR and ZBP1. A loss of ADAR1-mediated RNA editing of cellular dsRNA activates MDA5. However, additional RNA editing-independent functions of ADAR1 have been proposed, but a specific mechanism has not been delineated. We now demonstrate that the loss of ADAR1-mediated RNA editing specifically activates MDA5, while loss of the cytoplasmic ADAR1p150 isoform or its dsRNA binding activity enabled PKR activation. Deleting both MDA5 and PKR resulted in complete rescue of the embryonic lethality of Adar1p150 -/- mice to adulthood, contrasting with the limited or no rescue by removing MDA5, PKR or ZBP1 alone, demonstrating that this is a species conserved function of ADAR1p150. Our findings demonstrate that MDA5 and PKR are the primary in vivo effectors of fatal autoinflammation following the loss of ADAR1p150.
Collapse
|
24
|
Kim IS, Jo EK. Inosine: A bioactive metabolite with multimodal actions in human diseases. Front Pharmacol 2022; 13:1043970. [PMID: 36467085 PMCID: PMC9708727 DOI: 10.3389/fphar.2022.1043970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 08/04/2023] Open
Abstract
The nucleoside inosine is an essential metabolite for purine biosynthesis and degradation; it also acts as a bioactive molecule that regulates RNA editing, metabolic enzyme activity, and signaling pathways. As a result, inosine is emerging as a highly versatile bioactive compound and second messenger of signal transduction in cells with diverse functional abilities in different pathological states. Gut microbiota remodeling is closely associated with human disease pathogenesis and responses to dietary and medical supplementation. Recent studies have revealed a critical link between inosine and gut microbiota impacting anti-tumor, anti-inflammatory, and antimicrobial responses in a context-dependent manner. In this review, we summarize the latest progress in our understanding of the mechanistic function of inosine, to unravel its immunomodulatory actions in pathological settings such as cancer, infection, inflammation, and cardiovascular and neurological diseases. We also highlight the role of gut microbiota in connection with inosine metabolism in different pathophysiological conditions. A more thorough understanding of the mechanistic roles of inosine and how it regulates disease pathologies will pave the way for future development of therapeutic and preventive modalities for various human diseases.
Collapse
Affiliation(s)
- In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Kyoung Jo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| |
Collapse
|
25
|
RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther 2022; 7:334. [PMID: 36138023 PMCID: PMC9499983 DOI: 10.1038/s41392-022-01175-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
RNA modifications have become hot topics recently. By influencing RNA processes, including generation, transportation, function, and metabolization, they act as critical regulators of cell biology. The immune cell abnormality in human diseases is also a research focus and progressing rapidly these years. Studies have demonstrated that RNA modifications participate in the multiple biological processes of immune cells, including development, differentiation, activation, migration, and polarization, thereby modulating the immune responses and are involved in some immune related diseases. In this review, we present existing knowledge of the biological functions and underlying mechanisms of RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, and adenosine-to-inosine (A-to-I) RNA editing, and summarize their critical roles in immune cell biology. Via regulating the biological processes of immune cells, RNA modifications can participate in the pathogenesis of immune related diseases, such as cancers, infection, inflammatory and autoimmune diseases. We further highlight the challenges and future directions based on the existing knowledge. All in all, this review will provide helpful knowledge as well as novel ideas for the researchers in this area.
Collapse
|
26
|
Fu T, Chan TW, Bahn JH, Kim TH, Rowat AC, Xiao X. Multifaceted role of RNA editing in promoting loss-of-function of PODXL in cancer. iScience 2022; 25:104836. [PMID: 35992085 PMCID: PMC9382340 DOI: 10.1016/j.isci.2022.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
PODXL, a protein that is dysregulated in multiple cancers, plays an important role in promoting cancer metastasis. In this study, we report that RNA editing promotes the inclusion of a PODXL alternative exon. The resulting edited PODXL long isoform is more prone to protease digestion and has the strongest effects on reducing cell migration and cisplatin chemoresistance among the three PODXL isoforms (short, unedited long, and edited long isoforms). Importantly, the editing level of the PODXL recoding site and the inclusion level of the PODXL alternative exon are strongly associated with overall patient survival in Kidney Renal Clear Cell Carcinoma (KIRC). Supported by significant enrichment of exonic RNA editing sites in alternatively spliced exons, we hypothesize that exonic RNA editing sites may enhance proteomic diversity through alternative splicing, in addition to amino acid changes, a previously under-appreciated aspect of RNA editing function.
Collapse
Affiliation(s)
- Ting Fu
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tracey W. Chan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy C. Rowat
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinshu Xiao
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Felix AS, Quillin AL, Mousavi S, Heemstra JM. Harnessing Nature's Molecular Recognition Capabilities to Map and Study RNA Modifications. Acc Chem Res 2022; 55:2271-2279. [PMID: 35900335 PMCID: PMC9388579 DOI: 10.1021/acs.accounts.2c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RNA editing or "epitranscriptomic modification" refers to the processing of RNA that occurs after transcription to alter the sequence or structure of the nucleic acid. These chemical alterations can be found on either the ribose sugar or the nucleobase, and although many are "silent" and do not change the Watson-Crick-Franklin code of the RNA, others result in recoding events. More than 170 RNA modifications have been identified so far, each having a specific biological purpose. Additionally, dysregulated RNA editing has been linked to several types of diseases and disorders. As new modifications are discovered and our understanding of their functional impact grows, so does the need for selective methods of identifying and mapping editing sites in the transcriptome.The most common methods for studying RNA modifications rely on antibodies as affinity reagents; however, antibodies can be difficult to generate and often have undesirable off-target binding. More recently, selective chemical labeling has advanced the field by offering techniques that can be used for the detection, enrichment, and quantification of RNA modifications. In our method using acrylamide for inosine labeling, we demonstrated the versatility with which this approach enables pull-down or downstream functionalization with other tags or affinity handles. Although this method did enable the quantitative analysis of A-to-I editing levels, we found that selectivity posed a significant limitation, likely because of the similar reactivity profiles of inosine and pseudouridine or other nucleobases.Seeking to overcome the inherent limitations of antibodies and chemical labeling methods, a more recent approach to studying the epitranscriptome is through the repurposing of proteins and enzymes that recognize modified RNA. Our laboratory has used Endonuclease V, a repair enzyme that cleaves inosine-containing RNAs, and reprogrammed it to instead bind inosine. We first harnessed EndoV to develop a preparative technique for RNA sequencing that we termed EndoVIPER-seq. This method uses EndoV to enrich inosine-edited RNAs, providing better coverage in RNA sequencing and leading to the discovery of previously undetected A-to-I editing sites. We also leveraged EndoV to create a plate-based immunoassay (EndoVLISA) to quantify inosine in cellular RNA. This approach can detect differential A-to-I editing levels across tissue types or disease states while being independent of RNA sequencing, making it cost-effective and high-throughput. By harnessing the molecular recognition capabilities of this enzyme, we show that EndoV can be repurposed as an "anti-inosine antibody" to develop new methods of detecting and enriching inosine from cellular RNA.Nature has evolved a plethora of proteins and enzymes that selectively recognize and act on RNA modifications, and exploiting the affinity of these biomolecules offers a promising new direction for the field of epitranscriptomics.
Collapse
Affiliation(s)
- Ansley S. Felix
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Alexandria L. Quillin
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Shikufa Mousavi
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
28
|
Jain M, Weber A, Maly K, Manjaly G, Deek J, Tsvyetkova O, Stulić M, Toca‐Herrera JL, Jantsch MF. A-to-I RNA editing of Filamin A regulates cellular adhesion, migration and mechanical properties. FEBS J 2022; 289:4580-4601. [PMID: 35124883 PMCID: PMC9546289 DOI: 10.1111/febs.16391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 12/23/2021] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
A-to-I RNA editing by ADARs is an abundant epitranscriptomic RNA-modification in metazoa. In mammals, Flna pre-mRNA harbours a single conserved A-to-I RNA editing site that introduces a Q-to-R amino acid change in Ig repeat 22 of the encoded protein. Previously, we showed that FLNA editing regulates smooth muscle contraction in the cardiovascular system and affects cardiac health. The present study investigates how ADAR2-mediated A-to-I RNA editing of Flna affects actin crosslinking, cell mechanics, cellular adhesion and cell migration. Cellular assays and AFM measurements demonstrate that the edited version of FLNA increases cellular stiffness and adhesion but impairs cell migration in both, mouse fibroblasts and human tumour cells. In vitro, edited FLNA leads to increased actin crosslinking, forming actin gels of higher stress resistance. Our study shows that Flna RNA editing is a novel regulator of cytoskeletal organisation, affecting the mechanical property and mechanotransduction of cells.
Collapse
Affiliation(s)
- Mamta Jain
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Andreas Weber
- Department of NanobiotechnologyInstitute for BiophysicsUniversity of Natural Resources and Life Sciences Vienna (BOKU)Austria
| | - Kathrin Maly
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Greeshma Manjaly
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Joanna Deek
- Department of Physics, Cellular Biophysics E27Technical University of MunichGarchingGermany
| | - Olena Tsvyetkova
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - Maja Stulić
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| | - José L. Toca‐Herrera
- Department of NanobiotechnologyInstitute for BiophysicsUniversity of Natural Resources and Life Sciences Vienna (BOKU)Austria
| | - Michael F. Jantsch
- Division of Cell BiologyCenter for Anatomy and Cell BiologyMedical University of ViennaAustria
| |
Collapse
|
29
|
Raghava Kurup R, Oakes EK, Manning AC, Mukherjee P, Vadlamani P, Hundley HA. RNA binding by ADAR3 inhibits adenosine-to-inosine editing and promotes expression of immune response protein MAVS. J Biol Chem 2022; 298:102267. [PMID: 35850307 PMCID: PMC9418441 DOI: 10.1016/j.jbc.2022.102267] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022] Open
Abstract
Members of the ADAR family of double-stranded RNA–binding proteins regulate one of the most abundant RNA modifications in humans, the deamination of adenosine to inosine. Several transcriptome-wide studies have been carried out to identify RNA targets of the active deaminases ADAR1 and ADAR2. However, our understanding of ADAR3, the brain-specific deaminase-deficient ADAR family member, is limited to a few transcripts. In this study, we identified over 3300 transcripts bound by ADAR3 and observed that binding of ADAR3 correlated with reduced editing of over 400 sites in the glioblastoma transcriptome. We further investigated the impact of ADAR3 on gene regulation of the transcript that encodes MAVS, an essential protein in the innate immune response pathway. We observed reduced editing in the MAVS 3′ UTR in cells expressing increased ADAR3 or reduced ADAR1 suggesting ADAR3 acts as a negative regulator of ADAR1-mediated editing. While neither ADAR1 knockdown or ADAR3 overexpression affected MAVS mRNA expression, we demonstrate increased ADAR3 expression resulted in upregulation of MAVS protein expression. In addition, we created a novel genetic mutant of ADAR3 that exhibited enhanced RNA binding and MAVS upregulation compared with wildtype ADAR3. Interestingly, this ADAR3 mutant no longer repressed RNA editing, suggesting ADAR3 has a unique regulatory role beyond altering editing levels. Altogether, this study provides the first global view of ADAR3-bound RNAs in glioblastoma cells and identifies both a role for ADAR3 in repressing ADAR1-mediated editing and an RNA-binding dependent function of ADAR3 in regulating MAVS expression.
Collapse
Affiliation(s)
| | - Eimile K Oakes
- Department of Biology, Indiana University, Bloomington IN 47405, USA
| | - Aidan C Manning
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN 47405, USA
| | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN 47405, USA
| | - Pranathi Vadlamani
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN 47405, USA
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington IN 47405, USA.
| |
Collapse
|
30
|
Nguyen TA, Heng JWJ, Kaewsapsak P, Kok EPL, Stanojević D, Liu H, Cardilla A, Praditya A, Yi Z, Lin M, Aw JGA, Ho YY, Peh KLE, Wang Y, Zhong Q, Heraud-Farlow J, Xue S, Reversade B, Walkley C, Ho YS, Šikić M, Wan Y, Tan MH. Direct identification of A-to-I editing sites with nanopore native RNA sequencing. Nat Methods 2022; 19:833-844. [PMID: 35697834 DOI: 10.1038/s41592-022-01513-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/02/2022] [Indexed: 12/26/2022]
Abstract
Inosine is a prevalent RNA modification in animals and is formed when an adenosine is deaminated by the ADAR family of enzymes. Traditionally, inosines are identified indirectly as variants from Illumina RNA-sequencing data because they are interpreted as guanosines by cellular machineries. However, this indirect method performs poorly in protein-coding regions where exons are typically short, in non-model organisms with sparsely annotated single-nucleotide polymorphisms, or in disease contexts where unknown DNA mutations are pervasive. Here, we show that Oxford Nanopore direct RNA sequencing can be used to identify inosine-containing sites in native transcriptomes with high accuracy. We trained convolutional neural network models to distinguish inosine from adenosine and guanosine, and to estimate the modification rate at each editing site. Furthermore, we demonstrated their utility on the transcriptomes of human, mouse and Xenopus. Our approach expands the toolkit for studying adenosine-to-inosine editing and can be further extended to investigate other RNA modifications.
Collapse
Affiliation(s)
- Tram Anh Nguyen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Jia Wei Joel Heng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Pornchai Kaewsapsak
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore.,Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Eng Piew Louis Kok
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Dominik Stanojević
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore.,University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia
| | - Hao Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Angelysia Cardilla
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Albert Praditya
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Zirong Yi
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Mingwan Lin
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore.,National Junior College, Singapore, Singapore
| | - Jong Ghut Ashley Aw
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yin Ying Ho
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore, Singapore
| | - Kai Lay Esther Peh
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore, Singapore
| | - Yuanming Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Qixing Zhong
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Jacki Heraud-Farlow
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Shifeng Xue
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Bruno Reversade
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Medical Genetics, School of Medicine (KUSoM), Koç University, Istanbul, Turkey
| | - Carl Walkley
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore, Singapore
| | - Mile Šikić
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore.,University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia
| | - Yue Wan
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Meng How Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore. .,Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore. .,HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
31
|
Chen S, Zeng J, Huang L, Peng Y, Yan Z, Zhang A, Zhao X, Li J, Zhou Z, Wang S, Jing S, Hu M, Li Y, Wang D, Wang W, Yu H, Miao J, Li J, Deng Y, Li Y, Liu T, Xu D. RNA adenosine modifications related to prognosis and immune infiltration in osteosarcoma. J Transl Med 2022; 20:228. [PMID: 35568866 PMCID: PMC9107650 DOI: 10.1186/s12967-022-03415-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
Abstract
Background RNA adenosine modifications, which are primarily mediated by “writer” enzymes (RMWs), play a key role in epigenetic regulation in various biological processes, including tumorigenesis. However, the expression and prognostic role of these genes in osteosarcoma (OS) remain unclear. Methods Univariate and multivariate Cox analyses were used to construct the RMW signature for OS using Target datasets. RMW expression in OS tissue was detected by qPCR analysis. Xcell and GSVA were used to determine the relationship between RMWs and immune infiltration. The DGIdb and CMap databases were used for drug prediction. In vivo and in vitro experiments showed that strophanthidin elicited antitumor activity against OS. Results A 3-RMW (CSTF2, ADAR and WTAP) prognostic signature in OS was constructed using the Target dataset and verified using GEO datasets and 63 independent OS tissues via qPCR analysis. High-risk OS patients had poor overall survival, and the prognostic signature was an independent prognostic factor for OS. Functional studies showed that tumour-, metabolism-, cell cycle- and immune-related pathways were related to high risk. Next, we found that RMW-derived high-risk patients exhibited increased infiltration of M2 macrophages and cDCs. Furthermore, we predicted the potential drugs for OS using the DGIdb and CMap databases. In vivo and in vitro experiments showed that strophanthidin elicited antitumor activity against OS by repressing cell growth and inducing cell cycle arrest at the G1 phase. Conclusion The 3-RWM-based prognostic signature established in this study is a novel gene signature associated with immune infiltration, and strophanthidin was identified as a candidate therapy for OS by repressing OS cell growth and the cell cycle. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03415-6.
Collapse
Affiliation(s)
- Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Jin Zeng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Liping Huang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Yi Peng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Zuyun Yan
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Aiqian Zhang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, 138, Tongzipo Road, Changsha, 410013, China
| | - Xingping Zhao
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, 138, Tongzipo Road, Changsha, 410013, China
| | - Jun Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Rd, Hefei, 230601, Anhui, China
| | - Ziting Zhou
- The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Sidan Wang
- The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Shengyu Jing
- The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Minghua Hu
- Department of Anatomy, Histology, and Embryology, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
| | - Yuezhan Li
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Dong Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Weiguo Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Haiyang Yu
- School of Basic Medical Science, Central South University, 172 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Jinglei Miao
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Jinsong Li
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Yusheng Li
- Department of Orthopeadics, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, 410008, Hunan, China.
| | - Tang Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Rd, Changsha, 410011, Hunan, China.
| | - Dabao Xu
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, 138, Tongzipo Road, Changsha, 410013, China.
| |
Collapse
|
32
|
Lee AC, Lee Y, Choi A, Lee HB, Shin K, Lee H, Kim JY, Ryu HS, Kim HS, Ryu SY, Lee S, Cheun JH, Yoo DK, Lee S, Choi H, Ryu T, Yeom H, Kim N, Noh J, Lee Y, Kim I, Bae S, Kim J, Lee W, Kim O, Jung Y, Kim C, Song SW, Choi Y, Chung J, Kim BG, Han W, Kwon S. Spatial epitranscriptomics reveals A-to-I editome specific to cancer stem cell microniches. Nat Commun 2022; 13:2540. [PMID: 35534484 PMCID: PMC9085828 DOI: 10.1038/s41467-022-30299-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/25/2022] [Indexed: 01/20/2023] Open
Abstract
Epitranscriptomic features, such as single-base RNA editing, are sources of transcript diversity in cancer, but little is understood in terms of their spatial context in the tumour microenvironment. Here, we introduce spatial-histopathological examination-linked epitranscriptomics converged to transcriptomics with sequencing (Select-seq), which isolates regions of interest from immunofluorescence-stained tissue and obtains transcriptomic and epitranscriptomic data. With Select-seq, we analyse the cancer stem cell-like microniches in relation to the tumour microenvironment of triple-negative breast cancer patients. We identify alternative splice variants, perform complementarity-determining region analysis of infiltrating T cells and B cells, and assess adenosine-to-inosine base editing in tumour tissue sections. Especially, in triple-negative breast cancer microniches, adenosine-to-inosine editome specific to different microniche groups is identified.
Collapse
Affiliation(s)
- Amos C Lee
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yongju Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ahyoun Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Kyoungseob Shin
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Young Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Han Suk Ryu
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hoe Suk Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Seung Yeon Ryu
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Sangeun Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Jong-Ho Cheun
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Surgery, SMG-SNU Boramae Medical Center, Seoul, 03080, Republic of Korea
| | - Duck Kyun Yoo
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sumin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hansol Choi
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taehoon Ryu
- ATG LIfetech Inc, Seoul, 08507, Republic of Korea
| | - Huiran Yeom
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Namphil Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinsung Noh
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yonghee Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inyoung Kim
- Artificial Intelligence Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangwook Bae
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinhyun Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wooseok Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Okju Kim
- ATG LIfetech Inc, Seoul, 08507, Republic of Korea
| | - Yushin Jung
- ATG LIfetech Inc, Seoul, 08507, Republic of Korea
| | | | - Seo Woo Song
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeongjae Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61105, Republic of Korea
| | - Junho Chung
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Byung Gee Kim
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Sunghoon Kwon
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
- BK21+ Creative Research Engineer Development for IT, Seoul National University, Seoul, 08826, Republic of Korea.
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
33
|
Wu X, Wang L, Wang K, Li J, Chen R, Wu X, Ni G, Liu C, Das S, Sluijter JP, Li X, Xiao J. ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity. Mol Ther 2022; 30:400-414. [PMID: 34274534 PMCID: PMC8753375 DOI: 10.1016/j.ymthe.2021.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/12/2021] [Accepted: 06/25/2021] [Indexed: 01/07/2023] Open
Abstract
Exercise training benefits the heart. The knowledge of post-transcription regulation, especially RNA editing, in hearts remain rare. ADAR2 is an enzyme that edits adenosine to inosine nucleotides in double-stranded RNA, and RNA editing is associated with many human diseases. We found that ADAR2 was upregulated in hearts during exercise training. AAV9-mediated cardiac-specific ADAR2 overexpression attenuated acute myocardial infarction (AMI), MI remodeling, and doxorubicin (DOX)-induced cardiotoxicity. In vitro, overexpression of ADAR2 inhibited DOX-induced cardiomyocyte (CM) apoptosis. but it could also induce neonatal rat CM proliferation. Mechanistically, ADAR2 could regulate the abundance of mature miR-34a in CMs. Regulations of miR-34a or its target genes (Sirt1, Cyclin D1, and Bcl2) could affect the pro-proliferation and anti-apoptosis effects of ADAR2 on CMs. These data demonstrated that exercise-induced ADAR2 protects the heart from MI and DOX-induced cardiotoxicity. Our work suggests that ADAR2 overexpression or a post-transcriptional associated RNA editing via ADAR2 may be a promising therapeutic strategy for heart diseases.
Collapse
Affiliation(s)
- Xiaoting Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lijun Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jin Li
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Rui Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaodong Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chang Liu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Saumya Das
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Joost P.G. Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Utrecht, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands,UMC Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China,Corresponding author: Prof. Xinli Li, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Junjie Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China,Corresponding author: Prof. Junjie Xiao, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
34
|
Song B, Shiromoto Y, Minakuchi M, Nishikura K. The role of RNA editing enzyme ADAR1 in human disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1665. [PMID: 34105255 PMCID: PMC8651834 DOI: 10.1002/wrna.1665] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/02/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Adenosine deaminase acting on RNA (ADAR) catalyzes the posttranscriptional conversion of adenosine to inosine in double-stranded RNA (dsRNA), which can lead to the creation of missense mutations in coding sequences. Recent studies show that editing-dependent functions of ADAR1 protect dsRNA from dsRNA-sensing molecules and inhibit innate immunity and the interferon-mediated response. Deficiency in these ADAR1 functions underlie the pathogenesis of autoinflammatory diseases such as the type I interferonopathies Aicardi-Goutieres syndrome and dyschromatosis symmetrica hereditaria. ADAR1-mediated editing of endogenous coding and noncoding RNA as well as ADAR1 editing-independent interactions with DICER can also have oncogenic or tumor suppressive effects that affect tumor proliferation, invasion, and response to immunotherapy. The combination of proviral and antiviral roles played by ADAR1 in repressing the interferon response and editing viral RNAs alters viral morphogenesis and cell susceptibility to infection. This review analyzes the structure and function of ADAR1 with a focus on its position in human disease pathways and the mechanisms of its disease-associated effects. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Brian Song
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Yusuke Shiromoto
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Moeko Minakuchi
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kazuko Nishikura
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Guo X, Liu S, Yan R, Nguyen V, Zenati M, Billiar TR, Wang Q. ADAR1 RNA editing regulates endothelial cell functions via the MDA-5 RNA sensing signaling pathway. Life Sci Alliance 2022; 5:5/3/e202101191. [PMID: 34969816 PMCID: PMC8739526 DOI: 10.26508/lsa.202101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
The RNA-sensing signaling pathway has been well studied as an essential antiviral mechanism of innate immunity. However, its role in non-infected cells is yet to be thoroughly characterized. Here, we demonstrated that the RNA sensing signaling pathway also reacts to the endogenous cellular RNAs in endothelial cells (ECs), and this reaction is regulated by the RNA-editing enzyme ADAR1. Cellular RNA sequencing analysis showed that EC RNAs endure extensive RNA editing, especially in the RNA transcripts of short interspersed nuclear elements. The EC-specific deletion of ADAR1 dramatically reduced the editing level on short interspersed nuclear element RNAs, resulting in newborn death in mice with damage evident in multiple organs. Genome-wide gene expression analysis revealed a prominent innate immune activation with a dramatically elevated expression of interferon-stimulated genes. However, blocking the RNA sensing signaling pathway by deletion of the cellular RNA receptor MDA-5 prevented interferon-stimulated gene expression and rescued the newborn mice from death. This evidence demonstrated that the RNA-editing/RNA-sensing signaling pathway dramatically modulates EC function, representing a novel molecular mechanism for the regulation of EC functions.
Collapse
Affiliation(s)
- Xinfeng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rose Yan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vy Nguyen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mazen Zenati
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA .,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,VA Pittsburgh Health System, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Soler M, Davalos V, Sánchez-Castillo A, Mora-Martinez C, Setién F, Siqueira E, Castro de Moura M, Esteller M, Guil S. The transcribed ultraconserved region uc.160+ enhances processing and A-to-I editing of the miR-376 cluster: hypermethylation improves glioma prognosis. Mol Oncol 2021; 16:648-664. [PMID: 34665919 PMCID: PMC8807354 DOI: 10.1002/1878-0261.13121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/11/2022] Open
Abstract
Transcribed ultraconserved regions (T‐UCRs) are noncoding RNAs derived from DNA sequences that are entirely conserved across species. Their expression is altered in many tumor types, and, although a role for T‐UCRs as regulators of gene expression has been proposed, their functions remain largely unknown. Herein, we describe the epigenetic silencing of the uc.160+ T‐UCR in gliomas and mechanistically define a novel RNA–RNA regulatory network in which uc.160+ modulates the biogenesis of several members of the miR‐376 cluster. This includes the positive regulation of primary microRNA (pri‐miRNA) cleavage and an enhanced A‐to‐I editing on its mature sequence. As a consequence, the expression of uc.160+ affects the downstream, miR‐376‐regulated genes, including the transcriptional coregulators RING1 and YY1‐binding protein (RYBP) and forkhead box P2 (FOXP2). Finally, we elucidate the clinical impact of our findings, showing that hypermethylation of the uc.160+ CpG island is an independent prognostic factor associated with better overall survival in lower‐grade gliomas, highlighting the importance of T‐UCRs in cancer pathophysiology.
Collapse
Affiliation(s)
- Marta Soler
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands
| | - Carlos Mora-Martinez
- Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Finland
| | - Fernando Setién
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Edilene Siqueira
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), Brasilia, Brazil
| | | | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Germans Trias i Pujol Health Science Research Institute, Barcelona, Spain
| |
Collapse
|
37
|
Li M, Larsen PA. Primate-specific retrotransposons and the evolution of circadian networks in the human brain. Neurosci Biobehav Rev 2021; 131:988-1004. [PMID: 34592258 DOI: 10.1016/j.neubiorev.2021.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
The circadian rhythm of the human brain is attuned to sleep-wake cycles that entail global alterations in neuronal excitability. This periodicity involves a highly coordinated regulation of gene expression. A growing number of studies are documenting a fascinating connection between primate-specific retrotransposons (Alu elements) and key epigenetic regulatory processes in the primate brain. Collectively, these studies indicate that Alu elements embedded in the human neuronal genome mediate post-transcriptional processes that unite human-specific neuroepigenetic landscapes and circadian rhythm. Here, we review evidence linking Alu retrotransposon-mediated posttranscriptional pathways to circadian gene expression. We hypothesize that Alu retrotransposons participate in the organization of circadian brain function through multidimensional neuroepigenetic pathways. We anticipate that these pathways are closely tied to the evolution of human cognition and their perturbation contributes to the manifestation of human-specific neurological diseases. Finally, we address current challenges and accompanying opportunities in studying primate- and human-specific transposable elements.
Collapse
Affiliation(s)
- Manci Li
- University of Minnesota, St. Paul, MN, 55108, United States
| | - Peter A Larsen
- University of Minnesota, St. Paul, MN, 55108, United States.
| |
Collapse
|
38
|
Mukherjee P, Raghava Kurup R, Hundley HA. RNA immunoprecipitation to identify in vivo targets of RNA editing and modifying enzymes. Methods Enzymol 2021; 658:137-160. [PMID: 34517945 DOI: 10.1016/bs.mie.2021.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The past decade has seen an exponential increase in the identification of individual nucleobases that undergo base conversion and/or modification in transcriptomes. While the enzymes that catalyze these types of changes have been identified, the global interactome of these modifiers is still largely unknown. Furthermore, in some instances, redundancy among a family of enzymes leads to an inability to pinpoint the protein responsible for modifying a given transcript merely from high-throughput sequencing data. This chapter focuses on a method for global identification of transcripts recognized by an RNA modification/editing enzyme via capture of the RNAs that are bound in vivo, a method referred as RNA immunoprecipitation (RIP). We provide a guide of the major issues to consider when designing a RIP experiment, a detailed experimental protocol as well as troubleshooting advice. The RIP protocol presented here can be readily applied to any organism or cell line of interest as well as both RNA modification enzymes and RNA-binding proteins (RBPs) that regulate RNA modification levels. As mentioned at the end of the protocol, the RIP assay can be coupled to high-throughput sequencing to globally identify bound targets. For more quantitative investigations, such as how binding of an RNA modification enzyme/regulator to a given target changes during development/in specific tissues or assessing how the presence or absence of RNA modification affects transcript recognition by a particular RBP (irrespective of a role for the RBP in modulating modification levels); the RIP assay should be coupled to quantitative real-time PCR (qRT-PCR).
Collapse
Affiliation(s)
- Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, United States
| | | | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, United States.
| |
Collapse
|
39
|
Vesely C, Jantsch MF. An I for an A: Dynamic Regulation of Adenosine Deamination-Mediated RNA Editing. Genes (Basel) 2021; 12:1026. [PMID: 34356042 PMCID: PMC8304401 DOI: 10.3390/genes12071026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
RNA-editing by adenosine deaminases acting on RNA (ADARs) converts adenosines to inosines in structured RNAs. Inosines are read as guanosines by most cellular machineries. A to I editing has two major functions: first, marking endogenous RNAs as "self", therefore helping the innate immune system to distinguish repeat- and endogenous retrovirus-derived RNAs from invading pathogenic RNAs; and second, recoding the information of the coding RNAs, leading to the translation of proteins that differ from their genomically encoded versions. It is obvious that these two important biological functions of ADARs will differ during development, in different tissues, upon altered physiological conditions or after exposure to pathogens. Indeed, different levels of ADAR-mediated editing have been observed in different tissues, as a response to altered physiology or upon pathogen exposure. In this review, we describe the dynamics of A to I editing and summarize the known and likely mechanisms that will lead to global but also substrate-specific regulation of A to I editing.
Collapse
Affiliation(s)
| | - Michael F. Jantsch
- Division of Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria;
| |
Collapse
|
40
|
Suzuki H, Matsuoka M. Proline-arginine poly-dipeptide encoded by the C9orf72 repeat expansion inhibits adenosine deaminase acting on RNA. J Neurochem 2021; 158:753-765. [PMID: 34081786 DOI: 10.1111/jnc.15445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
A GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Unconventional translation of the hexanucleotide repeat expansion generates five dipeptide repeat proteins (DPRs). The molecular mechanism underlying the DPR-linked neurotoxicity is under investigation. In this study, using cell-based models, we show that poly-proline-arginine DPR (poly-PR), the most neurotoxic DPR in vitro, binds to adenosine deaminase acting on RNA (ADAR)1p110 and ADAR2 and inhibits their RNA editing activity. We further show that poly-PR impairs cellular stress response that is mediated by ADAR1p110. These results together suggest that the poly-PR-mediated inhibition of the ADAR activity contributes to C9-ALS/FTD-linked neurotoxicity.
Collapse
Affiliation(s)
- Hiroaki Suzuki
- Department of Pharmacology, School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Masaaki Matsuoka
- Department of Pharmacology, School of Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
41
|
Mathoux J, Henshall DC, Brennan GP. Regulatory Mechanisms of the RNA Modification m 6A and Significance in Brain Function in Health and Disease. Front Cell Neurosci 2021; 15:671932. [PMID: 34093133 PMCID: PMC8170084 DOI: 10.3389/fncel.2021.671932] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
RNA modifications have emerged as an additional layer of regulatory complexity governing the function of almost all species of RNA. N6-methyladenosine (m6A), the addition of methyl groups to adenine residues, is the most abundant and well understood RNA modification. The current review discusses the regulatory mechanisms governing m6A, how this influences neuronal development and function and how aberrant m6A signaling may contribute to neurological disease. M6A is known to regulate the stability of mRNA, the processing of microRNAs and function/processing of tRNAs among other roles. The development of antibodies against m6A has facilitated the application of next generation sequencing to profile methylated RNAs in both health and disease contexts, revealing the extent of this transcriptomic modification. The mechanisms by which m6A is deposited, processed, and potentially removed are increasingly understood. Writer enzymes include METTL3 and METTL14 while YTHDC1 and YTHDF1 are key reader proteins, which recognize and bind the m6A mark. Finally, FTO and ALKBH5 have been identified as potential erasers of m6A, although there in vivo activity and the dynamic nature of this modification requires further study. M6A is enriched in the brain and has emerged as a key regulator of neuronal activity and function in processes including neurodevelopment, learning and memory, synaptic plasticity, and the stress response. Changes to m6A have recently been linked with Schizophrenia and Alzheimer disease. Elucidating the functional consequences of m6A changes in these and other brain diseases may lead to novel insight into disease pathomechanisms, molecular biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Justine Mathoux
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin, Ireland
| | - Gary P Brennan
- FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin, Ireland.,UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
42
|
Schaefer MR. The Regulation of RNA Modification Systems: The Next Frontier in Epitranscriptomics? Genes (Basel) 2021; 12:345. [PMID: 33652758 PMCID: PMC7996938 DOI: 10.3390/genes12030345] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
RNA modifications, long considered to be molecular curiosities embellishing just abundant and non-coding RNAs, have now moved into the focus of both academic and applied research. Dedicated research efforts (epitranscriptomics) aim at deciphering the underlying principles by determining RNA modification landscapes and investigating the molecular mechanisms that establish, interpret and modulate the information potential of RNA beyond the combination of four canonical nucleotides. This has resulted in mapping various epitranscriptomes at high resolution and in cataloguing the effects caused by aberrant RNA modification circuitry. While the scope of the obtained insights has been complex and exciting, most of current epitranscriptomics appears to be stuck in the process of producing data, with very few efforts to disentangle cause from consequence when studying a specific RNA modification system. This article discusses various knowledge gaps in this field with the aim to raise one specific question: how are the enzymes regulated that dynamically install and modify RNA modifications? Furthermore, various technologies will be highlighted whose development and use might allow identifying specific and context-dependent regulators of epitranscriptomic mechanisms. Given the complexity of individual epitranscriptomes, determining their regulatory principles will become crucially important, especially when aiming at modifying specific aspects of an epitranscriptome both for experimental and, potentially, therapeutic purposes.
Collapse
Affiliation(s)
- Matthias R Schaefer
- Centre for Anatomy & Cell Biology, Division of Cell-and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Haus C, 1st Floor, 1090 Vienna, Austria
| |
Collapse
|
43
|
Tassinari V, Cesarini V, Tomaselli S, Ianniello Z, Silvestris DA, Ginistrelli LC, Martini M, De Angelis B, De Luca G, Vitiani LR, Fatica A, Locatelli F, Gallo A. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biol 2021; 22:51. [PMID: 33509238 PMCID: PMC7842030 DOI: 10.1186/s13059-021-02271-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/14/2021] [Indexed: 01/15/2023] Open
Abstract
Background N6-methyladenosine (m6A) and adenosine-to-inosine (A-to-I) RNA editing are two of the most abundant RNA modification events affecting adenosines in mammals. Both these RNA modifications determine mRNA fate and play a pivotal role in tumor development and progression. Results Here, we show that METTL3, upregulated in glioblastoma, methylates ADAR1 mRNA and increases its protein level leading to a pro-tumorigenic mechanism connecting METTL3, YTHDF1, and ADAR1. We show that ADAR1 plays a cancer-promoting role independently of its deaminase activity by binding CDK2 mRNA, underlining the importance of ADARs as essential RNA-binding proteins for cell homeostasis as well as cancer progression. Additionally, we show that ADAR1 knockdown is sufficient to strongly inhibit glioblastoma growth in vivo. Conclusions Hence, our findings underscore METTL3/ADAR1 axis as a novel crucial pathway in cancer progression that connects m6A and A-to-I editing post-transcriptional events. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02271-9.
Collapse
Affiliation(s)
- Valentina Tassinari
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy.,Present address: Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valeriana Cesarini
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy.,Present address: Department of Biomedical Sciences, Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Sara Tomaselli
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy
| | - Zaira Ianniello
- Department of Biology and Biotechnology "Charles Darwin", La Sapienza University of Rome, Rome, Italy
| | | | - Lavinia Ceci Ginistrelli
- Department of Biology and Biotechnology "Charles Darwin", La Sapienza University of Rome, Rome, Italy
| | - Maurizio Martini
- Department of Women's, Children's and Public Health Studies, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy.,Department of Health Science and Public Health, Institute of Pathology, Largo F. vito 1, 00168, Rome, Italy
| | - Biagio De Angelis
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Lucia Ricci Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology "Charles Darwin", La Sapienza University of Rome, Rome, Italy
| | - Franco Locatelli
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy.,Department of Pediatrics, La Sapienza University of Rome, Rome, Italy
| | - Angela Gallo
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy.
| |
Collapse
|
44
|
Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. To protect and modify double-stranded RNA - the critical roles of ADARs in development, immunity and oncogenesis. Crit Rev Biochem Mol Biol 2020; 56:54-87. [PMID: 33356612 DOI: 10.1080/10409238.2020.1856768] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.
Collapse
Affiliation(s)
- Emily A Erdmann
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| | - Boyoon Yang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| |
Collapse
|
45
|
Abstract
RNA editing is a post-transcriptional process increasing transcript diversity, thereby regulating different biological processes. We recently observed that mutations resulting from RNA editing due to hydrolytic deamination of adenosine increase during the development of mesothelioma, a rare cancer linked to chronic exposure to asbestos. This review gathers information from the published literature and public data mining to explore several aspects of RNA editing and their possible implications for cancer growth and therapy. We address possible links between RNA editing and particular types of mesothelioma genetic and epigenetic alterations and discuss the relevance of an edited substrate in the context of current chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Ananya Hariharan
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Suna Sun
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Martin Wipplinger
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| |
Collapse
|
46
|
Ye C, Jiang S, Gong M, Min Q, Fan M, Gao J, Meng Y. Expressional Localization and Functionally Identifying an RNA Editing Enzyme BmADARa of the Silkworm Bombyx mori. INSECTS 2020; 11:insects11080523. [PMID: 32806497 PMCID: PMC7469206 DOI: 10.3390/insects11080523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022]
Abstract
The most common type of RNA editing in metazoans is the deamination of adenosine into inosine (A-to-I) catalyzed by the adenosine deaminase acting on the RNA (ADAR) family of proteins. The deletion or dysfunction of ADAR enzymes in higher eukaryotes can affect the efficiency of substrate editing and cause neurological disorders. However, the information concerning A-to-I RNA editing and ADAR members in the silkworm, Bombyx mori (BmADAR), is limited. In this study, a first molecular comprehensive cloning and sequence analysis of BmADAR transcripts was presented. A complete open reading frame (ORF) (BmADARa) was obtained using RT-PCR and RACE and its expression pattern, subcellular localization and A-to-I RNA-editing function on the silkworm synaptotagmin I (BmSyt I) were investigated. Subcellular localization analysis observed that BmADARa was mainly localized in the nucleus. To further study the A-to-I RNA-editing function of BmADARa, BmSyt I-pIZ-EGFP was constructed and co-transfected with BmADARa-pIZ-EGFP into BmN cells. The result demonstrates that BmADARa can functionally edit the specific site of BmSyt I. Taken together, this study not only provides insight into the function of the first ADAR enzyme in B. mori, but also lays foundations for further exploration of the functional domain of BmADARa and its editing substrates and target sites.
Collapse
Affiliation(s)
- Chongjun Ye
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (C.Y.); (S.J.); (Q.M.); (M.F.)
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, 15 Huoshan Road, Hefei 230061, China
| | - Song Jiang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (C.Y.); (S.J.); (Q.M.); (M.F.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Meixia Gong
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, 10 Xiajun Road, Nanning 530007, China;
| | - Qin Min
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (C.Y.); (S.J.); (Q.M.); (M.F.)
| | - Manli Fan
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (C.Y.); (S.J.); (Q.M.); (M.F.)
| | - Junshan Gao
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (C.Y.); (S.J.); (Q.M.); (M.F.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei 230036, China
- Correspondence: (J.G.); (Y.M.); Tel.: +86-551-65786967 (Y.M.)
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (C.Y.); (S.J.); (Q.M.); (M.F.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei 230036, China
- Correspondence: (J.G.); (Y.M.); Tel.: +86-551-65786967 (Y.M.)
| |
Collapse
|
47
|
Non-Coding RNA Editing in Cancer Pathogenesis. Cancers (Basel) 2020; 12:cancers12071845. [PMID: 32650588 PMCID: PMC7408896 DOI: 10.3390/cancers12071845] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
In the last two decades, RNA post-transcriptional modifications, including RNA editing, have been the subject of increasing interest among the scientific community. The efforts of the Human Genome Project combined with the development of new sequencing technologies and dedicated bioinformatic approaches created to detect and profile RNA transcripts have served to further our understanding of RNA editing. Investigators have determined that non-coding RNA (ncRNA) A-to-I editing is often deregulated in cancer. This discovery has led to an increased number of published studies in the field. However, the eventual clinical application for these findings remains a work in progress. In this review, we provide an overview of the ncRNA editing phenomenon in cancer. We discuss the bioinformatic strategies for RNA editing detection as well as the potential roles for ncRNA A to I editing in tumor immunity and as clinical biomarkers.
Collapse
|
48
|
Ullah M, Akbar A, Yannarelli G. Clinical Applications of RNA Editing Technology for the Early Detection of Cancer and Future Directions. Technol Cancer Res Treat 2020; 19:1533033820964194. [PMID: 33124527 PMCID: PMC7607768 DOI: 10.1177/1533033820964194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Early detection of cancer has great clinical importance and potentially improves cure, survival rate and treatment outcome. RNA editing technology can be used as targeted and precise molecular scissors to cut and replace disease-causing genes with healthy ones. This is a post transcriptional modification that can lead to the recoding of proteins. RNA editing technology is in its infancy, but it can be used for early diagnoses and effective treatment of cancer. The full potential of precision medicine will be achieved by using the knowledge of RNA reversible-recoding to edit the protein. RNA editing technology could be used to expose chemo resistant cancer cells, dormant cancer stem cells and other malignant tumors. RNA editing generates RNA and protein diversity to accelerate and enhance the screening window for early detection of cancer. We propose that the RNA editing sites could be used as a novel tool for early detection of cancer.
Collapse
Affiliation(s)
- Mujib Ullah
- Institute for Immunity, Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, CA, USA
- Molecular Medicine, Department of Radiology, School of Medicine, Stanford University, CA, USA
| | - Asma Akbar
- Institute for Immunity, Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, CA, USA
- Molecular Medicine, Department of Radiology, School of Medicine, Stanford University, CA, USA
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| |
Collapse
|