1
|
Moya ND, Yan SM, McCoy RC, Andersen EC. The long and short of hyperdivergent regions. Trends Genet 2024:S0168-9525(24)00269-5. [PMID: 39706705 DOI: 10.1016/j.tig.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
The increasing prevalence of genome sequencing and assembly has uncovered evidence of hyperdivergent genomic regions - loci with excess genetic diversity - in species across the tree of life. Hyperdivergent regions are often enriched for genes that mediate environmental responses, such as immunity, parasitism, and sensory perception. Especially in self-fertilizing species where the majority of the genome is homozygous, the existence of hyperdivergent regions might imply the historical action of evolutionary forces such as introgression and/or balancing selection. We anticipate that the application of new sequencing technologies, broader taxonomic sampling, and evolutionary modeling of hyperdivergent regions will provide insights into the mechanisms that generate and maintain genetic diversity within and between species.
Collapse
Affiliation(s)
- Nicolas D Moya
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Stephanie M Yan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Zhang L, Deng T, Liufu Z, Liu X, Chen B, Hu Z, Liu C, Tracy ME, Lu X, Wen HJ, Wu CI. The theory of massively repeated evolution and full identifications of cancer-driving nucleotides (CDNs). eLife 2024; 13:RP99340. [PMID: 39688960 DOI: 10.7554/elife.99340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Tumorigenesis, like most complex genetic traits, is driven by the joint actions of many mutations. At the nucleotide level, such mutations are cancer-driving nucleotides (CDNs). The full sets of CDNs are necessary, and perhaps even sufficient, for the understanding and treatment of each cancer patient. Currently, only a small fraction of CDNs is known as most mutations accrued in tumors are not drivers. We now develop the theory of CDNs on the basis that cancer evolution is massively repeated in millions of individuals. Hence, any advantageous mutation should recur frequently and, conversely, any mutation that does not is either a passenger or deleterious mutation. In the TCGA cancer database (sample size n=300-1000), point mutations may recur in i out of n patients. This study explores a wide range of mutation characteristics to determine the limit of recurrences (i*) driven solely by neutral evolution. Since no neutral mutation can reach i*=3, all mutations recurring at i≥3 are CDNs. The theory shows the feasibility of identifying almost all CDNs if n increases to 100,000 for each cancer type. At present, only <10% of CDNs have been identified. When the full sets of CDNs are identified, the evolutionary mechanism of tumorigenesis in each case can be known and, importantly, gene targeted therapy will be far more effective in treatment and robust against drug resistance.
Collapse
Affiliation(s)
- Lingjie Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tong Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongqi Liufu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Xueyu Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bingjie Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zheng Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenli Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Miles E Tracy
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Resources and Evolution/Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Hai-Jun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, Sun Yat-sen University, Guangzhou, China
- Department of Ecology and Evolution, University of Chicago, Chicago, United States
| |
Collapse
|
3
|
Lee S, Choi JH, Park SY, Kim J. Gastric Organoid, a Promising Modeling for Gastric Stem Cell Homeostasis and Therapeutic Application. Int J Stem Cells 2024; 17:337-346. [PMID: 38698632 PMCID: PMC11612215 DOI: 10.15283/ijsc23075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
The elucidation of the pathophysiology underlying various diseases necessitates the development of research platforms that faithfully mimic in vivo conditions. Traditional model systems such as two-dimensional cell cultures and animal models have proven inadequate in capturing the complexities of human disease modeling. However, recent strides in organoid culture systems have opened up new avenues for comprehending gastric stem cell homeostasis and associated diseases, notably gastric cancer. Given the significance of gastric cancer, a thorough understanding of its pathophysiology and molecular underpinnings is imperative. To this end, the utilization of patient-derived organoid libraries emerges as a remarkable platform, as it faithfully mirrors patient-specific characteristics, including mutation profiles and drug sensitivities. Furthermore, genetic manipulation of gastric organoids facilitates the exploration of molecular mechanisms underlying gastric cancer development. This review provides a comprehensive overview of recent advancements in various adult stem cell-derived gastric organoid models and their diverse applications.
Collapse
Affiliation(s)
- Subin Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Korea
| | - Jang-Hyun Choi
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
| | - So-Yeon Park
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jihoon Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Korea
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
| |
Collapse
|
4
|
Zhou B, Arthur JG, Guo H, Kim T, Huang Y, Pattni R, Wang T, Kundu S, Luo JXJ, Lee H, Nachun DC, Purmann C, Monte EM, Weimer AK, Qu PP, Shi M, Jiang L, Yang X, Fullard JF, Bendl J, Girdhar K, Kim M, Chen X, Greenleaf WJ, Duncan L, Ji HP, Zhu X, Song G, Montgomery SB, Palejev D, Zu Dohna H, Roussos P, Kundaje A, Hallmayer JF, Snyder MP, Wong WH, Urban AE. Detection and analysis of complex structural variation in human genomes across populations and in brains of donors with psychiatric disorders. Cell 2024; 187:6687-6706.e25. [PMID: 39353437 DOI: 10.1016/j.cell.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/01/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Complex structural variations (cxSVs) are often overlooked in genome analyses due to detection challenges. We developed ARC-SV, a probabilistic and machine-learning-based method that enables accurate detection and reconstruction of cxSVs from standard datasets. By applying ARC-SV across 4,262 genomes representing all continental populations, we identified cxSVs as a significant source of natural human genetic variation. Rare cxSVs have a propensity to occur in neural genes and loci that underwent rapid human-specific evolution, including those regulating corticogenesis. By performing single-nucleus multiomics in postmortem brains, we discovered cxSVs associated with differential gene expression and chromatin accessibility across various brain regions and cell types. Additionally, cxSVs detected in brains of psychiatric cases are enriched for linkage with psychiatric GWAS risk alleles detected in the same brains. Furthermore, our analysis revealed significantly decreased brain-region- and cell-type-specific expression of cxSV genes, specifically for psychiatric cases, implicating cxSVs in the molecular etiology of major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Joseph G Arthur
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Hanmin Guo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Statistics, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Taeyoung Kim
- School of Computer Science and Engineering, Pusan National University, Busan 46241, South Korea
| | - Yiling Huang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Tao Wang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Soumya Kundu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Jay X J Luo
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - HoJoon Lee
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Daniel C Nachun
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Carolin Purmann
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emma M Monte
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Annika K Weimer
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ping-Ping Qu
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Minyi Shi
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lixia Jiang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Xinqiong Yang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minsu Kim
- School of Computer Science and Engineering, Pusan National University, Busan 46241, South Korea
| | - Xi Chen
- Department of Statistics, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | | | - Laramie Duncan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xiang Zhu
- Department of Statistics, Stanford University, Stanford, CA 94305, USA; Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Giltae Song
- School of Computer Science and Engineering, Pusan National University, Busan 46241, South Korea; Center for Artificial Intelligence Research, Pusan National University, Busan 46241, South Korea
| | - Stephen B Montgomery
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Dean Palejev
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Heinrich Zu Dohna
- Department of Biology, American University of Beirut, Beirut 11-0236, Lebanon
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA; Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Joachim F Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Wing H Wong
- Department of Statistics, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA.
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Khamse S, Alizadeh S, Khorshid HRK, Delbari A, Tajeddin N, Ohadi M. A Hypermutable Region in the DISP2 Gene Links to Natural Selection and Late-Onset Neurocognitive Disorders in Humans. Mol Neurobiol 2024; 61:8777-8786. [PMID: 38565786 DOI: 10.1007/s12035-024-04155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
(CCG) short tandem repeats (STRs) are predominantly enriched in genic regions, mutation hotspots for C to T truncating substitutions, and involved in various neurological and neurodevelopmental disorders. However, intact blocks of this class of STRs are widely overlooked with respect to their link with natural selection. The human neuron-specific gene, DISP2 (dispatched RND transporter family member 2), contains a (CCG) repeat in its 5' untranslated region. Here, we sequenced this STR in a sample of 448 Iranian individuals, consisting of late-onset neurocognitive disorder (NCD) (N = 203) and controls (N = 245). We found that the region spanning the (CCG) repeat was highly mutated, resulting in several flanking (CCG) residues. However, an 8-repeat of the (CCG) repeat was predominantly abundant (frequency = 0.92) across the two groups. While the overall distribution of genotypes was not different between the two groups (p > 0.05), we detected four genotypes in the NCD group only (2% of the NCD genotypes, Mid-p = 0.02), consisting of extreme short alleles, 5- and 6-repeats, that were not detected in the control group. The patients harboring those genotypes received the diagnoses of probable Alzheimer's disease and vascular dementia. We also found six genotypes in the control group only (2.5% of the control genotypes, Mid-p = 0.01) that consisted of the 8-repeat and extreme long alleles, 9- and 10-repeats, of which the 10-repeat was not detected in the NCD group. The (CCG) repeat specifically expanded in primates. In conclusion, we report an indication of natural selection at a novel hypermutable region in the human genome and divergent alleles and genotypes in late-onset NhCDs and controls. These findings reinforce the hypothesis that a collection of rare alleles and genotypes in a number of genes may unambiguously contribute to the cognition impairment component of late-onset NCDs.
Collapse
Affiliation(s)
- S Khamse
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - S Alizadeh
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - H R Khorram Khorshid
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran
| | - A Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - N Tajeddin
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - M Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Alizadeh S, Khamse S, Vafadar S, Bernhart SH, Afshar H, Vahedi M, Rezaei O, Delbari A, Ohadi M. The human SMAD9 (GCC) repeat links to natural selection and late-onset neurocognitive disorders. Neurol Sci 2024; 45:5241-5251. [PMID: 38877206 DOI: 10.1007/s10072-024-07637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Whereas (GCC)-repeats are overrepresented in genic regions, and mutation hotspots, they are largely unexplored with regard to their link with natural selection. Across numerous primate species and tissues, SMAD9 (SMAD Family Member 9) reaches highest level of expression in the human brain. This gene contains a (GCC)-repeat in the interval between + 1 and + 60 of the transcription start site, which is in the high-ranking (GCC)-repeats with respect to length. METHODS Here we sequenced this (GCC)-repeat in 396 Iranian individuals, consisting of late-onset neurocognitive disorder (NCD) (N = 181) and controls (N = 215). RESULTS We detected two predominantly abundant alleles of 7 and 9 repeats, forming 96.2% of the allele pool. The (GCC)7/(GCC)9 ratio was in the reverse order in the NCD group versus controls (p = 0.005), resulting from excess of (GCC)7 in the NCD group (p = 0.003) and (GCC)9 in the controls (p = 0.01). Five genotypes, predominantly consisting of (GCC)7 and lacking (GCC)9 were detected in the NCD group only (p = 0.008). The patients harboring those genotypes received the diagnoses of Alzheimer's disease (AD) and vascular dementia (VD). Five genotypes consisting of (GCC)9 and lacking (GCC)7 were detected in the control group only (p = 0.002). The group-specific genotypes formed approximately 4% of the genotype pool in the human samples studied. CONCLUSION We propose natural selection and a novel locus for late-onset AD and VD at the SMAD9 (GCC)-repeat in humans.
Collapse
Affiliation(s)
- Samira Alizadeh
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Daneshjoo Blvd. Koodakyar St, Tehran, 1985713871, Iran
| | - Safoura Khamse
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Daneshjoo Blvd. Koodakyar St, Tehran, 1985713871, Iran
| | - Sara Vafadar
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Daneshjoo Blvd. Koodakyar St, Tehran, 1985713871, Iran
| | - Stephan H Bernhart
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Hossein Afshar
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Daneshjoo Blvd. Koodakyar St, Tehran, 1985713871, Iran
| | - Mohsen Vahedi
- Department of Biostatistics and Epidemiology, Paediatric Neurorehabilitation Research Centre, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Omid Rezaei
- Department of Psychiatry, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ahmad Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Daneshjoo Blvd. Koodakyar St, Tehran, 1985713871, Iran.
| | - Mina Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Daneshjoo Blvd. Koodakyar St, Tehran, 1985713871, Iran.
| |
Collapse
|
7
|
Koppetsch T, Malinsky M, Matschiner M. Towards Reliable Detection of Introgression in the Presence of Among-Species Rate Variation. Syst Biol 2024; 73:769-788. [PMID: 38912803 PMCID: PMC11639170 DOI: 10.1093/sysbio/syae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024] Open
Abstract
The role of interspecific hybridization has recently seen increasing attention, especially in the context of diversification dynamics. Genomic research has now made it abundantly clear that both hybridization and introgression-the exchange of genetic material through hybridization and backcrossing-are far more common than previously thought. Besides cases of ongoing or recent genetic exchange between taxa, an increasing number of studies report "ancient introgression"- referring to results of hybridization that took place in the distant past. However, it is not clear whether commonly used methods for the detection of introgression are applicable to such old systems, given that most of these methods were originally developed for analyses at the level of populations and recently diverged species, affected by recent or ongoing genetic exchange. In particular, the assumption of constant evolutionary rates, which is implicit in many commonly used approaches, is more likely to be violated as evolutionary divergence increases. To test the limitations of introgression detection methods when being applied to old systems, we simulated thousands of genomic datasets under a wide range of settings, with varying degrees of among-species rate variation and introgression. Using these simulated datasets, we showed that some commonly applied statistical methods, including the D-statistic and certain tests based on sets of local phylogenetic trees, can produce false-positive signals of introgression between divergent taxa that have different rates of evolution. These misleading signals are caused by the presence of homoplasies occurring at different rates in different lineages. To distinguish between the patterns caused by rate variation and genuine introgression, we developed a new test that is based on the expected clustering of introgressed sites along the genome and implemented this test in the program Dsuite.
Collapse
Affiliation(s)
- Thore Koppetsch
- Natural History Museum, University of Oslo, 0318 Oslo, Norway
| | - Milan Malinsky
- Institute of Ecology and Evolution, Department of Biology, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | | |
Collapse
|
8
|
Xu S, Egli D. Genome organization and stability in mammalian pre-implantation development. DNA Repair (Amst) 2024; 144:103780. [PMID: 39504608 DOI: 10.1016/j.dnarep.2024.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
A largely stable genome is required for normal development, even as genetic change is an integral aspect of reproduction, genetic adaptation and evolution. Recent studies highlight a critical window of mammalian development with intrinsic DNA replication stress and genome instability in the first cell divisions after fertilization. Patterns of DNA replication and genome stability are established very early in mammals, alongside patterns of nuclear organization, and before the emergence of gene expression patterns, and prior to cell specification and germline formation. The study of DNA replication and genome stability in the mammalian embryo provides a unique cellular system due to the resetting of the epigenome to a totipotent state, and the de novo establishment of the patterns of nuclear organization, gene expression, DNA methylation, histone modifications and DNA replication. Studies on DNA replication and genome stability in the early mammalian embryo is relevant for understanding both normal and disease-causing genetic variation, and to uncover basic principles of genome regulation.
Collapse
Affiliation(s)
- Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
9
|
Zapater LJ, Lewis SA, Gutierrez RL, Yamada M, Rodriguez-Fos E, Planas-Felix M, Cameron D, Demarest P, Nabila A, Mueller H, Zhao J, Bergin P, Reed C, Chwat-Edelstein T, Pagnozzi A, Nava C, Bourel-Ponchel E, Cornejo P, Dursun A, Özgül RK, Akar HT, Maroofian R, Houlden H, Cheema HA, Anjum MN, Zifarelli G, Essid M, Ben Hafsa M, Benrhouma H, Montoya CIG, Proekt A, Zhao X, Socci ND, Hayes M, Bigot Y, Rabadan R, Torrents D, Kleinmann CL, Kruer MC, Toth M, Kentsis A. A transposase-derived gene required for human brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.28.538770. [PMID: 37163102 PMCID: PMC10168387 DOI: 10.1101/2023.04.28.538770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA transposable elements and transposase-derived genes are present in most living organisms, including vertebrates, but their function is largely unknown. PiggyBac Transposable Element Derived 5 (PGBD5) is an evolutionarily conserved vertebrate DNA transposase-derived gene with retained nuclease activity in human cells. Vertebrate brain development is known to be associated with prominent neuronal cell death and DNA breaks, but their causes and functions are not well understood. Here, we show that PGBD5 contributes to normal brain development in mice and humans, where its deficiency causes disorder of intellectual disability, movement, and seizures. In mice, Pgbd5 is required for the developmental induction of post-mitotic DNA breaks and recurrent somatic genome rearrangements. In the brain cortex, loss of Pgbd5 leads to aberrant differentiation and gene expression of distinct neuronal populations, including specific types of glutamatergic neurons, which explains the features of PGBD5 deficiency in humans. Thus, PGBD5 might be a transposase-derived enzyme required for brain development in mammals.
Collapse
Affiliation(s)
- Luz Jubierre Zapater
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | - Sara A Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital and Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, Phoenix, AZ
| | | | - Makiko Yamada
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | | | | | - Daniel Cameron
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | - Phillip Demarest
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Anika Nabila
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10021
| | - Helen Mueller
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | - Junfei Zhao
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY
| | - Paul Bergin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10021
| | - Casie Reed
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Tzippora Chwat-Edelstein
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Programs in Biochemistry, Cell, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Alex Pagnozzi
- The Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | - Caroline Nava
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Emilie Bourel-Ponchel
- Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, France
- Pediatric Neurophysiology Unit, Amiens Picardie University Hospital, France
| | | | - Ali Dursun
- Hacettepe University, Faculty of Medicine & Institute of Child Health, Department of Pediatric Metabolism, Ankara, Turkey
| | - R Köksal Özgül
- Hacettepe University, Faculty of Medicine & Institute of Child Health, Department of Pediatric Metabolism, Ankara, Turkey
| | - Halil Tuna Akar
- Hacettepe University, Faculty of Medicine & Institute of Child Health, Department of Pediatric Metabolism, Ankara, Turkey
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Huma Arshad Cheema
- Department of Pediatric Medicine, The Children's Hospital, University of Child Health Sciences, Lahore, Pakistan
| | - Muhammad Nadeem Anjum
- Department of Pediatric Medicine, The Children's Hospital, University of Child Health Sciences, Lahore, Pakistan
| | | | - Miriam Essid
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | - Meriem Ben Hafsa
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | - Hanene Benrhouma
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | | | - Alex Proekt
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania
| | - Xiaolan Zhao
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Nicholas D Socci
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Matthew Hayes
- Department of Physics and Computer Science, Xavier University of Louisiana, New Orleans, LA
| | - Yves Bigot
- Physiologie de la reproduction et des comportements, UMR INRAe 0085 CNRS7247, Centre INRAE Val de Loire, France
| | - Raul Rabadan
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY
| | - David Torrents
- Barcelona Supercomputing Center (BSC), Barcelona, Spain, 08034
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Claudia L Kleinmann
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital and Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, Phoenix, AZ
| | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10021
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
- Barcelona Supercomputing Center (BSC), Barcelona, Spain, 08034
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University; New York, United States
| |
Collapse
|
10
|
He D, Zhang M, Li Y, Liu F, Ban B. Insights into the ANKRD11 variants and short-stature phenotype through literature review and ClinVar database search. Orphanet J Rare Dis 2024; 19:292. [PMID: 39135054 PMCID: PMC11318275 DOI: 10.1186/s13023-024-03301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Ankyrin repeat domain containing-protein 11 (ANKRD11), a transcriptional factor predominantly localized in the cell nucleus, plays a crucial role in the expression regulation of key genes by recruiting chromatin remodelers and interacting with specific transcriptional repressors or activators during numerous biological processes. Its pathogenic variants are strongly linked to the pathogenesis and progression of multisystem disorder known as KBG syndrome. With the widespread application of high-throughput DNA sequencing technologies in clinical medicine, numerous pathogenic variants in the ANKRD11 gene have been reported. Patients with KBG syndrome usually exhibit a broad phenotypic spectrum with a variable degree of severity, even if having identical variants. In addition to distinctive dental, craniofacial and neurodevelopmental abnormalities, patients often present with skeletal anomalies, particularly postnatal short stature. The relationship between ANKRD11 variants and short stature is not well-understood, with limited knowledge regarding its occurrence rate or underlying biological mechanism involved. This review aims to provide an updated analysis of the molecular spectrum associated with ANKRD11 variants, investigate the prevalence of the short stature among patients harboring these variants, evaluate the efficacy of recombinant human growth hormone in treating children with short stature and ANKRD11 variants, and explore the biological mechanisms underlying short stature from both scientific and clinical perspectives. Our investigation indicated that frameshift and nonsense were the most frequent types in 583 pathogenic or likely pathogenic variants identified in the ANKRD11 gene. Among the 245 KBGS patients with height data, approximately 50% displayed short stature. Most patients showed a positive response to rhGH therapy, although the number of patients receiving treatment was limited. ANKRD11 deficiency potentially disrupts longitudinal bone growth by affecting the orderly differentiation of growth plate chondrocytes. Our review offers crucial insights into the association between ANKRD11 variants and short stature and provides valuable guidance for precise clinical diagnosis and treatment of patients with KBG syndrome.
Collapse
Affiliation(s)
- Dongye He
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China.
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Yanying Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Fupeng Liu
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China.
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China.
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China.
| |
Collapse
|
11
|
Chen W, Zeng Y, Achinger-Kawecka J, Campbell E, Jones A, Stewart A, Khoury A, Clark S. Machine learning enables pan-cancer identification of mutational hotspots at persistent CTCF binding sites. Nucleic Acids Res 2024; 52:8086-8099. [PMID: 38950902 PMCID: PMC11317138 DOI: 10.1093/nar/gkae530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/15/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
CCCTC-binding factor (CTCF) is an insulator protein that binds to a highly conserved DNA motif and facilitates regulation of three-dimensional (3D) nuclear architecture and transcription. CTCF binding sites (CTCF-BSs) reside in non-coding DNA and are frequently mutated in cancer. Our previous study identified a small subclass of CTCF-BSs that are resistant to CTCF knock down, termed persistent CTCF binding sites (P-CTCF-BSs). P-CTCF-BSs show high binding conservation and potentially regulate cell-type constitutive 3D chromatin architecture. Here, using ICGC sequencing data we made the striking observation that P-CTCF-BSs display a highly elevated mutation rate in breast and prostate cancer when compared to all CTCF-BSs. To address whether P-CTCF-BS mutations are also enriched in other cell-types, we developed CTCF-INSITE-a tool utilising machine learning to predict persistence based on genetic and epigenetic features of experimentally-determined P-CTCF-BSs. Notably, predicted P-CTCF-BSs also show a significantly elevated mutational burden in all 12 cancer-types tested. Enrichment was even stronger for P-CTCF-BS mutations with predicted functional impact to CTCF binding and chromatin looping. Using in vitro binding assays we validated that P-CTCF-BS cancer mutations, predicted to be disruptive, indeed reduced CTCF binding. Together this study reveals a new subclass of cancer specific CTCF-BS DNA mutations and provides insights into their importance in genome organization in a pan-cancer setting.
Collapse
Affiliation(s)
- Wenhan Chen
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
| | - Yi C Zeng
- Structural Biology Laboratory, Victor Chang Cardiac Research Institute, Sydney 2010 New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney 2010 New South Wales, Australia
| | - Joanna Achinger-Kawecka
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney 2010 New South Wales, Australia
| | - Elyssa Campbell
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
| | - Alicia K Jones
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
| | - Alastair G Stewart
- Structural Biology Laboratory, Victor Chang Cardiac Research Institute, Sydney 2010 New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney 2010 New South Wales, Australia
| | - Amanda Khoury
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney 2010 New South Wales, Australia
| | - Susan J Clark
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney 2010 New South Wales, Australia
| |
Collapse
|
12
|
Arbel-Groissman M, Liefshitz B, Kupiec M. Effects of PCNA Stability on the Formation of Mutations. Int J Mol Sci 2024; 25:8646. [PMID: 39201337 PMCID: PMC11354803 DOI: 10.3390/ijms25168646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
The fidelity of replication, especially in the presence of DNA damage, is essential for the proper function of cells. Mutations that inactivate genes involved in DNA damage repair or bypass are enriched in several types of cancer cells. Thus, it is important to further our understanding of the mechanisms governing replication fidelity. PCNA is a ring-shaped complex that encircles DNA at the front of the replication fork, at the double-stranded/single-stranded DNA junction. It serves as a processivity factor for the different DNA replication polymerases, allowing them to replicate longer stretches of DNA by physically tethering them to the DNA and preventing their detachment. In addition, PCNA also regulates and coordinates different DNA damage bypass pathways meant to allow DNA replication in the presence of DNA damage. Due to its essentiality and the numerous functions it has in the cell, much is still unclear about PCNA. Here, we utilize PCNA mutants that lower the stability of the PCNA complex on the chromatin, and thus tend to disassociate and fall from the DNA. Using these mutants, we show that PCNA's physical presence on the DNA can prevent DNA misalignment at repetitive sequences, leading to increased mutation formation. We also show that PCNA-interacting proteins play an important role in strengthening the ring's stability on the chromatin. Such repetitive sequence-induced mutations are common in several human diseases and it is important to study their formation and the mechanisms guarding against them.
Collapse
Affiliation(s)
| | | | - Martin Kupiec
- The Shmunis School of Biomedicine & Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
13
|
Kong W, Cao X, Lu C. Clinical characteristics of BRAT1-related disease: a systematic literature review. Acta Neurol Belg 2024; 124:1281-1288. [PMID: 38607605 DOI: 10.1007/s13760-024-02507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND BRAT1 (BRCA1-associated ataxia telangiectasia mutated activator 1) is involved in many important biological processes, including DNA damage response and maintenance of mitochondrial homeostasis. Dysfunctional BRAT1 causes variable clinical phenotypes, which hinders BRAT1-related disease from recognition and diagnosis. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement was the guideline for this systematic review. MEDLINE was searched by terms ("BAAT1" and "BRAT1") from inception until June 21, 2022. RESULTS Twenty-eight studies, screened out of 49 records, were included for data extraction. The data from fifty patients with mutated BRAT1 were collected. There are 3 high relevant phenotypes, 4 medium relevant phenotypes and 3 low relevant phenotypes. Eye-related abnormal features were most frequently reported: 27 abnormal features were observed. Thirty-nine kinds of pathogenic nucleotide change in BRAT1 were reported. Top three common mutations of BRAT1 were c.638_639insA (16 cases), c.1395G > A (5 cases) and c.294dupA (4 cases). Homozygous mutations in BRAT1 presented a more severe phenotype than those who are compound heterozygotes. CONCLUSIONS This is the first comprehensive systematic review to present quantitative data about clinical characteristics of BRAT1-related disease, which helps doctors to recognize and diagnose it easier.
Collapse
Affiliation(s)
- Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Xianying Cao
- Rehabilitation Department, Ju County Maternal and Child Health Hospital, Shandong, 276500, China
| | - Cheng Lu
- Beijing Hong Jian Medical Device Company, Beijing, 100176, China
| |
Collapse
|
14
|
Awah CU, Mun JS, Paragodaarachchi A, Boylu B, Ochu C, Matsui H, Ogunwobi OO. The Engineered Drug 3'UTRMYC1-18 Degrades the c-MYC-STAT5A/B-PD-L1 Complex In Vivo to Inhibit Metastatic Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:2663. [PMID: 39123391 PMCID: PMC11311709 DOI: 10.3390/cancers16152663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
c-MYC is overexpressed in 70% of human cancers, including triple-negative breast cancer (TNBC), yet there is no clinically approved drug that directly targets it. Here, we engineered the mRNA-stabilizing poly U sequences within the 3'UTR of c-MYC to specifically destabilize and promote the degradation of c-MYC transcripts. Interestingly, the engineered derivative outcompetes the endogenous overexpressed c-MYC mRNA, leading to reduced c-MYC mRNA and protein levels. The iron oxide nanocages (IO-nanocages) complexed with MYC-destabilizing constructs inhibited primary and metastatic tumors in mice bearing TNBC and significantly prolonged survival by degrading the c-MYC-STAT5A/B-PD-L1 complexes that drive c-MYC-positive TNBC. Taken together, we have described a novel therapy for c-MYC-driven TNBC and uncovered c-MYC-STAT5A/B-PD-L1 interaction as the target.
Collapse
Affiliation(s)
- Chidiebere U. Awah
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 14850, USA
| | - Joo Sun Mun
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Aloka Paragodaarachchi
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Baris Boylu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Chika Ochu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Hiroshi Matsui
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
- Ph.D. Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
- Department of Biochemistry, Weill Cornell Medicine, Cornell University, New York, NY 14850, USA
| | - Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 14850, USA
- Hunter College for Cancer Health Disparities Research, Hunter College, City University of New York, New York, NY 10065, USA
| |
Collapse
|
15
|
Li Y, Zhu R, Jin J, Guo H, Zhang J, He Z, Liang T, Guo L. Exploring the Role of Clustered Mutations in Carcinogenesis and Their Potential Clinical Implications in Cancer. Int J Mol Sci 2024; 25:6744. [PMID: 38928450 PMCID: PMC11203652 DOI: 10.3390/ijms25126744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Abnormal cell proliferation and growth leading to cancer primarily result from cumulative genome mutations. Single gene mutations alone do not fully explain cancer onset and progression; instead, clustered mutations-simultaneous occurrences of multiple mutations-are considered to be pivotal in cancer development and advancement. These mutations can affect different genes and pathways, resulting in cells undergoing malignant transformation with multiple functional abnormalities. Clustered mutations influence cancer growth rates, metastatic potential, and drug treatment sensitivity. This summary highlights the various types and characteristics of clustered mutations to understand their associations with carcinogenesis and discusses their potential clinical significance in cancer. As a unique mutation type, clustered mutations may involve genomic instability, DNA repair mechanism defects, and environmental exposures, potentially correlating with responsiveness to immunotherapy. Understanding the characteristics and underlying processes of clustered mutations enhances our comprehension of carcinogenesis and cancer progression, providing new diagnostic and therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Yi Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.L.); (R.Z.); (H.G.); (J.Z.)
| | - Rui Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.L.); (R.Z.); (H.G.); (J.Z.)
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.J.); (Z.H.)
| | - Haochuan Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.L.); (R.Z.); (H.G.); (J.Z.)
| | - Jiaxi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.L.); (R.Z.); (H.G.); (J.Z.)
| | - Zhiheng He
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.J.); (Z.H.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.L.); (R.Z.); (H.G.); (J.Z.)
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.J.); (Z.H.)
| |
Collapse
|
16
|
Lindhout FW, Krienen FM, Pollard KS, Lancaster MA. A molecular and cellular perspective on human brain evolution and tempo. Nature 2024; 630:596-608. [PMID: 38898293 DOI: 10.1038/s41586-024-07521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The evolution of the modern human brain was accompanied by distinct molecular and cellular specializations, which underpin our diverse cognitive abilities but also increase our susceptibility to neurological diseases. These features, some specific to humans and others shared with related species, manifest during different stages of brain development. In this multi-stage process, neural stem cells proliferate to produce a large and diverse progenitor pool, giving rise to excitatory or inhibitory neurons that integrate into circuits during further maturation. This process unfolds over varying time scales across species and has progressively become slower in the human lineage, with differences in tempo correlating with differences in brain size, cell number and diversity, and connectivity. Here we introduce the terms 'bradychrony' and 'tachycrony' to describe slowed and accelerated developmental tempos, respectively. We review how recent technical advances across disciplines, including advanced engineering of in vitro models, functional comparative genetics and high-throughput single-cell profiling, are leading to a deeper understanding of how specializations of the human brain arise during bradychronic neurodevelopment. Emerging insights point to a central role for genetics, gene-regulatory networks, cellular innovations and developmental tempo, which together contribute to the establishment of human specializations during various stages of neurodevelopment and at different points in evolution.
Collapse
Affiliation(s)
- Feline W Lindhout
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
17
|
Graham JH, Schlachetzki JCM, Yang X, Breuss MW. Genomic Mosaicism of the Brain: Origin, Impact, and Utility. Neurosci Bull 2024; 40:759-776. [PMID: 37898991 PMCID: PMC11178748 DOI: 10.1007/s12264-023-01124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/16/2023] [Indexed: 10/31/2023] Open
Abstract
Genomic mosaicism describes the phenomenon where some but not all cells within a tissue harbor unique genetic mutations. Traditionally, research focused on the impact of genomic mosaicism on clinical phenotype-motivated by its involvement in cancers and overgrowth syndromes. More recently, we increasingly shifted towards the plethora of neutral mosaic variants that can act as recorders of cellular lineage and environmental exposures. Here, we summarize the current state of the field of genomic mosaicism research with a special emphasis on our current understanding of this phenomenon in brain development and homeostasis. Although the field of genomic mosaicism has a rich history, technological advances in the last decade have changed our approaches and greatly improved our knowledge. We will provide current definitions and an overview of contemporary detection approaches for genomic mosaicism. Finally, we will discuss the impact and utility of genomic mosaicism.
Collapse
Affiliation(s)
- Jared H Graham
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, 80045-2581, CO, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, 92093-0021, San Diego, CA, USA
| | - Xiaoxu Yang
- Department of Neurosciences, University of California San Diego, La Jolla, 92093-0021, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, 92123, CA, USA
| | - Martin W Breuss
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, 80045-2581, CO, USA.
| |
Collapse
|
18
|
Marafi D. Founder mutations and rare disease in the Arab world. Dis Model Mech 2024; 17:dmm050715. [PMID: 38922202 PMCID: PMC11225585 DOI: 10.1242/dmm.050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Founder mutations are disease-causing variants that occur frequently in geographically or culturally isolated groups whose shared ancestor(s) carried the pathogenic variant. While some disease alleles may vanish from the genetic pool due to natural selection, variants with weaker effects may survive for a long time, thereby enhancing the prevalence of some rare diseases. These are predominantly autosomal recessive diseases but can also be autosomal dominant traits with late-onset or mild phenotypes. Cultural practices, such as endogamy and consanguinity, in these isolated groups lead to higher prevalence of such rare diseases compared to the rest of the population and worldwide. In this Perspective, we define population isolates and the underlying genetic mechanisms for accumulating founder mutations. We also discuss the current and potential scientific, clinical and public-health implications of studying founder mutations in population isolates around the world, with a particular focus on the Arab population.
Collapse
Affiliation(s)
- Dana Marafi
- Department of Pediatrics, College of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
- Section of Child Neurology, Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya 52700, Kuwait
- Kuwait Medical Genetics Centre, Ministry of Health, Sulaibikhat 80901, Kuwait
| |
Collapse
|
19
|
Myers MA, Arnold BJ, Bansal V, Balaban M, Mullen KM, Zaccaria S, Raphael BJ. HATCHet2: clone- and haplotype-specific copy number inference from bulk tumor sequencing data. Genome Biol 2024; 25:130. [PMID: 38773520 PMCID: PMC11110434 DOI: 10.1186/s13059-024-03267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Bulk DNA sequencing of multiple samples from the same tumor is becoming common, yet most methods to infer copy-number aberrations (CNAs) from this data analyze individual samples independently. We introduce HATCHet2, an algorithm to identify haplotype- and clone-specific CNAs simultaneously from multiple bulk samples. HATCHet2 extends the earlier HATCHet method by improving identification of focal CNAs and introducing a novel statistic, the minor haplotype B-allele frequency (mhBAF), that enables identification of mirrored-subclonal CNAs. We demonstrate HATCHet2's improved accuracy using simulations and a single-cell sequencing dataset. HATCHet2 analysis of 10 prostate cancer patients reveals previously unreported mirrored-subclonal CNAs affecting cancer genes.
Collapse
Affiliation(s)
- Matthew A Myers
- Department of Computer Science, Princeton University, Princeton, USA
| | - Brian J Arnold
- Center for Statistics and Machine Learning, Princeton University, Princeton, USA
| | - Vineet Bansal
- Princeton Research Computing, Princeton University, Princeton, NJ, USA
| | - Metin Balaban
- Department of Computer Science, Princeton University, Princeton, USA
| | - Katelyn M Mullen
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simone Zaccaria
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK.
| | | |
Collapse
|
20
|
Krishna Murthy SB, Yang S, Bheda S, Tomar N, Li H, Yaghoobi A, Khan A, Kiryluk K, Motelow JE, Ren N, Gharavi AG, Milo Rasouly H. Assisting the analysis of insertions and deletions using regional allele frequencies. Funct Integr Genomics 2024; 24:104. [PMID: 38764005 PMCID: PMC11414712 DOI: 10.1007/s10142-024-01358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024]
Abstract
Accurate estimation of population allele frequency (AF) is crucial for gene discovery and genetic diagnostics. However, determining AF for frameshift-inducing small insertions and deletions (indels) faces challenges due to discrepancies in mapping and variant calling methods. Here, we propose an innovative approach to assess indel AF. We developed CRAFTS-indels (Calculating Regional Allele Frequency Targeting Small indels), an algorithm that combines AF of distinct indels within a given region and provides "regional AF" (rAF). We tested and validated CRAFTS-indels using three independent datasets: gnomAD v2 (n=125,748 samples), an internal dataset (IGM; n=39,367), and the UK BioBank (UKBB; n=469,835). By comparing rAF against standard AF, we identified rare indels with rAF exceeding standard AF (sAF≤10-4 and rAF>10-4) as "rAF-hi" indels. Notably, a high percentage of rare indels were "rAF-hi", with a higher proportion in gnomAD v2 (11-20%) and IGM (11-22%) compared to the UKBB (5-9% depending on the CRAFTS-indels' parameters). Analysis of the overlap of regions based on their rAF with low complexity regions and with ClinVar classification supported the pertinence of rAF. Using the internal dataset, we illustrated the utility of CRAFTS-indel in the analysis of de novo variants and the potential negative impact of rAF-hi indels in gene discovery. In summary, annotation of indels with cohort specific rAF can be used to handle some of the limitations of current annotation pipelines and facilitate detection of novel gene disease associations. CRAFTS-indels offers a user-friendly approach to providing rAF annotation. It can be integrated into public databases such as gnomAD, UKBB and used by ClinVar to revise indel classifications.
Collapse
Affiliation(s)
- Sarath Babu Krishna Murthy
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Sandy Yang
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Shiraz Bheda
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Nikita Tomar
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Haiyue Li
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Amir Yaghoobi
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Joshua E Motelow
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| | - Nick Ren
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Ali G Gharavi
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Hila Milo Rasouly
- Center for Precision Genetics and Genomics, Department of Medicine, Columbia University, New York, NY, USA.
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
21
|
García S. A, Costa M, García-Zarzoso A, Pastor O. CardioHotspots: a database of mutational hotspots for cardiac disorders. Database (Oxford) 2024; 2024:0. [PMID: 38752292 PMCID: PMC11096770 DOI: 10.1093/database/baae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/21/2024] [Accepted: 04/20/2024] [Indexed: 05/19/2024]
Abstract
Mutational hotspots are DNA regions with an abnormally high frequency of genetic variants. Identifying whether a variant is located in a mutational hotspot is critical for determining the variant's role in disorder predisposition, development, and treatment response. Despite their significance, current databases on mutational hotspots are limited to the oncology domain. However, identifying mutational hotspots is critical for any disorder in which genetics plays a role. This is true for the world's leading cause of death: cardiac disorders. In this work, we present CardioHotspots, a literature-based database of manually curated hotspots for cardiac diseases. This is the only database we know of that provides high-quality and easily accessible information about hotspots associated with cardiac disorders. CardioHotspots is publicly accessible via a web-based platform (https://genomics-hub.pros.dsic.upv.es:3099/). Database URL: https://genomics-hub.pros.dsic.upv.es:3099/.
Collapse
Affiliation(s)
- Alberto García S.
- *Corresponding author: Tel: +34 96 387 70 00; Fax: +34 96 387 90 09;
| | - Mireia Costa
- PROS Research Center, VRAIN, Polytechnic University of Valencia, Camino de Vera S/N, Valencia 46022, Spain
| | - Alba García-Zarzoso
- PROS Research Center, VRAIN, Polytechnic University of Valencia, Camino de Vera S/N, Valencia 46022, Spain
| | - Oscar Pastor
- PROS Research Center, VRAIN, Polytechnic University of Valencia, Camino de Vera S/N, Valencia 46022, Spain
| |
Collapse
|
22
|
Tlili A, Mutery AA, Chouchen J. The Segregation of p.Arg68Ter- CLDN14 Mutation in a Syrian Deaf Family, Phenotypic Variations, and Comparative Analysis with the GJB2 Gene. Genes (Basel) 2024; 15:588. [PMID: 38790217 PMCID: PMC11121454 DOI: 10.3390/genes15050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Hearing impairment, a rare inherited condition, is notably prevalent in populations with high rates of consanguinity. The most common form observed globally is autosomal recessive non-syndromic hearing loss. Despite its prevalence, this genetic disorder is characterized by a substantial genetic diversity, making diagnosis and screening challenging. The emergence of advanced next-generation sequencing (NGS) technologies has significantly advanced the discovery of genes and variants linked to various conditions, such as hearing loss. In this study, our objective was to identify the specific variant causing hearing loss in a family from Syria using clinical exome sequencing. The proband in the family exhibited profound deafness as shown by pure-tone audiometry results. The analysis of the different variants obtained by NGS revealed the presence of a nonsense mutation within the CLDN14 gene. Through Sanger sequencing, we verified that this variant segregates with the disease and was not present in the control population. Moreover, we conducted a comprehensive review of all reported deafness-related CLDN14 mutations and their associated phenotypes. Furthermore, we endeavored to carry out a comparative analysis between the CLDN14 and GJB2 genes, with the objective of identifying potential factors that could explain the notable discrepancy in mutation frequency between these two genes.
Collapse
Affiliation(s)
- Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Abdullah Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Jihen Chouchen
- Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates;
| |
Collapse
|
23
|
Si Y, Wang X, Su X, Weng Z, Hu Q, Li Q, Fan C, Zhang DY, Wang Y, Luo S, Song P. Extended Enrichment for Ultrasensitive Detection of Low-Frequency Mutations by Long Blocker Displacement Amplification. Angew Chem Int Ed Engl 2024; 63:e202400551. [PMID: 38416545 DOI: 10.1002/anie.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
Detecting low-frequency DNA mutations hotspots cluster is critical for cancer diagnosis but remains challenging. Quantitative PCR (qPCR) is constrained by sensitivity, and allele-specific PCR is restricted by throughput. Here we develop a long blocker displacement amplification (LBDA) coupled with qPCR for ultrasensitive and multiplexed variants detection. By designing long blocker oligos to perfectly match wildtype sequences while mispairing with mutants, long blockers enable 14-44 nt enrichment regions which is 2-fold longer than normal BDA in the experiments. For wild template with a specific nucleotide, LBDA can detect different mutation types down to 0.5 % variant allele frequency (VAF) in one reaction, with median enrichment fold of 1,000 on 21 mutant DNA templates compared to the wild type. We applied LBDA-qPCR to detect KRAS and NRAS mutation hotspots, utilizing a single plex assay capable of covering 81 mutations and tested in synthetic templates and colorectal cancer tissue samples. Moreover, the mutation types were verified through Sanger sequencing, demonstrating concordance with results obtained from next generation sequencing. Overall, LBDA-qPCR provides a simple yet ultrasensitive approach for multiplexed detection of low VAF mutations hotspots, presenting a powerful tool for cancer diagnosis and monitoring.
Collapse
Affiliation(s)
- Yunpei Si
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiawen Wang
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinglei Su
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Institute of Molecular Medicine (IMM) Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhi Weng
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ping Song
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
24
|
Bergez-Hernández F, Luque-Ortega F, García-Magallanes N, Alvarez-Arrazola M, Arámbula-Meraz E. Deletion in a regulatory region is associated with underexpression of miR-148b‑3p in patients with prostate cancer. Biomed Rep 2024; 20:52. [PMID: 38357236 PMCID: PMC10865175 DOI: 10.3892/br.2024.1740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Prostate cancer (PCa) is the leading cause of cancer-related death in men. This pathology is complex and heterogeneous; therefore, elucidating the molecular mechanisms that lead to its origin and progression is imperative. MicroRNAs (miRNAs or miRs) are part of the epigenetic machinery that regulates the expression of human genes, therefore, mutations in the genes that encode them can lead to a dysregulation in their expression, which directly impacts their target genes, which could be oncogenes or tumor suppressor genes. In PCa several dysregulated expression levels of miRNAs are associated with perturbed cellular processes. A differential expression of miRNAs such as miR-145-5p and miR-148-3p has been observed in PCa, possibly due to mutations in regions near the miRNAs. However, the molecular mechanisms that lead to the dysregulation of these miRNAs still need to be clarified. Therefore, the present study aimed to analyze the expression of miRNAs and their relationship with mutations in patients with and without PCa. In total, 71 patients were analyzed: 41 of whom had PCa (CAP group) and 30 with benign pathology (BPD group). Underexpression was observed in miR-145-5p and miR-148b-3p in PCa patients (P=0.03 and P=0.001, respectively). In miR-145-5p, no mutations related to its expression were identified. For miR-148b-3p, a set of mutations were identified in the chr12:54337042/54337043 region, which were grouped into the mutation named DelsAAG. Although this mutation's abnormal allele is related to PCa (P=0.017), a statistically significant difference was observed in the expression of miR-148b-3p between carriers and non-carriers of the mutated allele, identifying a mechanism likely to be involved in the miR-148b-3p dysregulation.
Collapse
Affiliation(s)
- Fernando Bergez-Hernández
- Postgraduate in Biomedical Sciences, Faculty of Chemical-Biological Sciences, Autonomous University of Sinaloa, Culiacán, 80010 Sinaloa, México
| | - Fred Luque-Ortega
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of Sinaloa, Culiacán, 80100 Sinaloa, México
| | - Noemí García-Magallanes
- Laboratory of Biomedicine and Molecular Biology, Biotechnology Engineering, Polytechnic University of Sinaloa, Mazatlán, 82199 Sinaloa, México
| | | | - Eliakym Arámbula-Meraz
- Postgraduate in Biomedical Sciences, Faculty of Chemical-Biological Sciences, Autonomous University of Sinaloa, Culiacán, 80010 Sinaloa, México
- Laboratory of Genetics and Molecular Biology, Faculty of Chemical-Biological Sciences, Autonomous University of Sinaloa, Culiacán, 80010 Sinaloa, México
| |
Collapse
|
25
|
Shaw DE, Naftaly AS, White MA. Positive Selection Drives cis-regulatory Evolution Across the Threespine Stickleback Y Chromosome. Mol Biol Evol 2024; 41:msae020. [PMID: 38306314 PMCID: PMC10899008 DOI: 10.1093/molbev/msae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
Allele-specific gene expression evolves rapidly on heteromorphic sex chromosomes. Over time, the accumulation of mutations on the Y chromosome leads to widespread loss of gametolog expression, relative to the X chromosome. It remains unclear if expression evolution on degrading Y chromosomes is primarily driven by mutations that accumulate through processes of selective interference, or if positive selection can also favor the down-regulation of coding regions on the Y chromosome that contain deleterious mutations. Identifying the relative rates of cis-regulatory sequence evolution across Y chromosomes has been challenging due to the limited number of reference assemblies. The threespine stickleback (Gasterosteus aculeatus) Y chromosome is an excellent model to identify how regulatory mutations accumulate on Y chromosomes due to its intermediate state of divergence from the X chromosome. A large number of Y-linked gametologs still exist across 3 differently aged evolutionary strata to test these hypotheses. We found that putative enhancer regions on the Y chromosome exhibited elevated substitution rates and decreased polymorphism when compared to nonfunctional sites, like intergenic regions and synonymous sites. This suggests that many cis-regulatory regions are under positive selection on the Y chromosome. This divergence was correlated with X-biased gametolog expression, indicating the loss of expression from the Y chromosome may be favored by selection. Our findings provide evidence that Y-linked cis-regulatory regions exhibit signs of positive selection quickly after the suppression of recombination and allow comparisons with recent theoretical models that suggest the rapid divergence of regulatory regions may be favored to mask deleterious mutations on the Y chromosome.
Collapse
Affiliation(s)
- Daniel E Shaw
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | - Michael A White
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
26
|
D’Esposito F, Randazzo V, Vega MI, Esposito G, Maltese PE, Torregrossa S, Scibetta P, Listì F, Gagliano C, Scalia L, Pioppo A, Marino A, Piergentili M, Malvone E, Fioretti T, Vitrano A, Piccione M, Avitabile T, Salvatore F, Bertelli M, Costagliola C, Cordeiro MF, Maggio A, D’Alcamo E. RP1 Dominant p.Ser740* Pathogenic Variant in 20 Knowingly Unrelated Families Affected by Rod-Cone Dystrophy: Potential Founder Effect in Western Sicily. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:254. [PMID: 38399542 PMCID: PMC10890639 DOI: 10.3390/medicina60020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives. Retinitis pigmentosa (RP) is the most common inherited rod-cone dystrophy (RCD), resulting in nyctalopia, progressive visual field, and visual acuity decay in the late stages. The autosomal dominant form (ADRP) accounts for about 20% of RPs. Among the over 30 genes found to date related to ADRP, RP1 pathogenic variants have been identified in 5-10% of cases. In a cohort of RCD patients from the Palermo province on the island of Sicily, we identified a prevalent nonsense variant in RP1, which was associated with ADRP. The objective of our study was to analyse the clinical and molecular data of this patient cohort and to evaluate the potential presence of a founder effect. Materials and Methods. From 2005 to January 2023, 84 probands originating from Western Sicily (Italy) with a diagnosis of RCD or RP and their relatives underwent deep phenotyping, which was performed in various Italian clinical institutions. Molecular characterisation of patients and familial segregation of pathogenic variants were carried out in different laboratories using Sanger and/or next-generation sequencing (NGS). Results. Among 84 probands with RCD/RP, we found 28 heterozygotes for the RP1 variant c.2219C>G, p.Ser740* ((NM_006269.2)*, which was therefore significantly prevalent in this patient cohort. After a careful interview process, we ascertained that some of these patients shared the same pedigree. Therefore, we were ultimately able to define 20 independent family groups with no traceable consanguinity. Lastly, analysis of clinical data showed, in our patients, that the p.Ser740* nonsense variant was often associated with a late-onset and relatively mild phenotype. Conclusions. The high prevalence of the p.Ser740* variant in ADRP patients from Western Sicily suggests the presence of a founder effect, which has useful implications for the molecular diagnosis of RCD in patients coming from this Italian region. This variant can be primarily searched for in RP-affected subjects displaying compatible modes of transmission and phenotypes, with an advantage in terms of the required costs and time for analysis. Moreover, given its high prevalence, the RP1 p.Ser740* variant could represent a potential candidate for the development of therapeutic strategies based on gene editing or translational read-through therapy for suppression of nonsense variants.
Collapse
Affiliation(s)
- Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London SW7 2AZ, UK;
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80100 Naples, Italy; (E.M.); (C.C.)
- Genofta s.r.l., Sant’Agnello, 80065 Naples, Italy
| | - Viviana Randazzo
- Eye Clinic, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (V.R.); (S.T.); (P.S.)
| | - Maria Igea Vega
- Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (M.I.V.); (F.L.); (A.V.); (M.P.); (A.M.); (E.D.)
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80100 Naples, Italy; (G.E.); (F.S.)
- CEINGE-Advanced Biotechnologies Franco Salvatore, 80100 Naples, Italy;
| | | | | | - Paola Scibetta
- Eye Clinic, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (V.R.); (S.T.); (P.S.)
| | - Florinda Listì
- Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (M.I.V.); (F.L.); (A.V.); (M.P.); (A.M.); (E.D.)
| | - Caterina Gagliano
- Department of Medicine and Surgery, School of Medicine, Kore University of Enna, 94100 Enna, Italy;
| | - Lucia Scalia
- Eye Clinic, Catania University, Policlinico “Rodolico”-San Marco, 95100 Catania, Italy; (L.S.); (T.A.)
| | | | - Antonio Marino
- Department of Ophthalmology, Garibaldi Hospital, 95100 Catania, Italy;
| | - Marco Piergentili
- Department of Ophthalmology, Careggi Teaching Hospital, 50100 Florence, Italy;
| | - Emanuele Malvone
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80100 Naples, Italy; (E.M.); (C.C.)
| | - Tiziana Fioretti
- CEINGE-Advanced Biotechnologies Franco Salvatore, 80100 Naples, Italy;
| | - Angela Vitrano
- Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (M.I.V.); (F.L.); (A.V.); (M.P.); (A.M.); (E.D.)
| | - Maria Piccione
- Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (M.I.V.); (F.L.); (A.V.); (M.P.); (A.M.); (E.D.)
| | - Teresio Avitabile
- Eye Clinic, Catania University, Policlinico “Rodolico”-San Marco, 95100 Catania, Italy; (L.S.); (T.A.)
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80100 Naples, Italy; (G.E.); (F.S.)
- CEINGE-Advanced Biotechnologies Franco Salvatore, 80100 Naples, Italy;
| | | | - Ciro Costagliola
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80100 Naples, Italy; (E.M.); (C.C.)
| | | | - Aurelio Maggio
- Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (M.I.V.); (F.L.); (A.V.); (M.P.); (A.M.); (E.D.)
| | - Elena D’Alcamo
- Department of Genetics, Oncohaematology and Rare Diseases, AOOR Villa Sofia-Cervello, 90100 Palermo, Italy; (M.I.V.); (F.L.); (A.V.); (M.P.); (A.M.); (E.D.)
| |
Collapse
|
27
|
Ostroverkhova D, Tyryshkin K, Beach AK, Moore EA, Masoudi-Sobhanzadeh Y, Barbari SR, Rogozin IB, Shaitan KV, Panchenko AR, Shcherbakova PV. DNA polymerase ε and δ variants drive mutagenesis in polypurine tracts in human tumors. Cell Rep 2024; 43:113655. [PMID: 38219146 PMCID: PMC10830898 DOI: 10.1016/j.celrep.2023.113655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024] Open
Abstract
Alterations in the exonuclease domain of DNA polymerase ε cause ultramutated cancers. These cancers accumulate AGA>ATA transversions; however, their genomic features beyond the trinucleotide motifs are obscure. We analyze the extended DNA context of ultramutation using whole-exome sequencing data from 524 endometrial and 395 colorectal tumors. We find that G>T transversions in POLE-mutant tumors predominantly affect sequences containing at least six consecutive purines, with a striking preference for certain positions within polypurine tracts. Using this signature, we develop a machine-learning classifier to identify tumors with hitherto unknown POLE drivers and validate two drivers, POLE-E978G and POLE-S461L, by functional assays in yeast. Unlike other pathogenic variants, the E978G substitution affects the polymerase domain of Pol ε. We further show that tumors with POLD1 drivers share the extended signature of POLE ultramutation. These findings expand the understanding of ultramutation mechanisms and highlight peculiar mutagenic properties of polypurine tracts in the human genome.
Collapse
Affiliation(s)
- Daria Ostroverkhova
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Kathrin Tyryshkin
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Annette K Beach
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Elizabeth A Moore
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yosef Masoudi-Sobhanzadeh
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Stephanie R Barbari
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada.
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
28
|
Poot M. Methods of Detection and Mechanisms of Origin of Complex Structural Genome Variations. Methods Mol Biol 2024; 2825:39-65. [PMID: 38913302 DOI: 10.1007/978-1-0716-3946-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Based on classical karyotyping, structural genome variations (SVs) have generally been considered to be either "simple" (with one or two breakpoints) or "complex" (with more than two breakpoints). Studying the breakpoints of SVs at nucleotide resolution revealed additional, subtle structural variations, such that even "simple" SVs turned out to be "complex." Genome-wide sequencing methods, such as fosmid and paired-end mapping, short-read and long-read whole genome sequencing, and single-molecule optical mapping, also indicated that the number of SVs per individual was considerably larger than expected from karyotyping and high-resolution chromosomal array-based studies. Interestingly, SVs were detected in studies of cohorts of individuals without clinical phenotypes. The common denominator of all SVs appears to be a failure to accurately repair DNA double-strand breaks (DSBs) or to halt cell cycle progression if DSBs persist. This review discusses the various DSB response mechanisms during the mitotic cell cycle and during meiosis and their regulation. Emphasis is given to the molecular mechanisms involved in the formation of translocations, deletions, duplications, and inversions during or shortly after meiosis I. Recently, CRISPR-Cas9 studies have provided unexpected insights into the formation of translocations and chromothripsis by both breakage-fusion-bridge and micronucleus-dependent mechanisms.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
29
|
de Groen PC. A new, all-encompassing aetiology of type 1 diabetes. Immunology 2024; 171:77-91. [PMID: 37772700 DOI: 10.1111/imm.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023] Open
Abstract
The aetiology of type 1 diabetes (T1D) is considered multifactorial with the contribution of the MHC on chromosome 6 being most important. Multiple factors also contribute to the aetiology of colorectal neoplasia, but the final event causing the change from normal mucosa to polyp and from polyp to cancer is due to a single somatic mutation event. Repeated formation of colorectal neoplasia within an at-risk population results in a predictable, tapering, exponential neoplasia distribution. Critical mutations driving colorectal neoplasia formation occur in mutation-prone DNA. These observations led to three hypotheses related to T1D. First, a single somatic mutation within the MHC of antigen presenting cells results in a change in phenotype from normal to T1D. Second, the distribution of additional autoimmune diseases (AAIDs) among persons with T1D adheres to a predictable, tapering, exponential distribution. And third, critical mutations driving development of T1D occur in mutation-prone DNA. To address the hypotheses in an orderly fashion, a new analytical method called genome-wide aetiology analysis (GWEA) consisting of nine steps is presented. All data required for GWEA of T1D are obtained from peer-reviewed publications or publicly available genome and proteome databases. Critical GWEA steps include AAID distribution among persons with T1D, analysis of at-risk HLA loci for mutation-prone DNA, determination of the role of non-MHC genes on GWAS, and verification of human data by cell culture or animal experiments. GWEA results show that distribution of AAID among persons with T1D adheres to a predictable, tapering, exponential distribution. A single, critical, somatic mutation within the epitope-binding groove of at-risk HLA loci alters HLA-insulin-peptide-T-cell-receptor (TCR) complex binding affinity and creates a new pathway that leads to loss of self-tolerance. The at-risk HLA loci, in particular binding pockets P1, P4 and P9, are encoded by mutation-prone DNA: GC-rich DNA sequence and somatic hypermutation hotspots. All other genes on GWAS can but do not have to amplify the new autoimmune pathway by facilitating DNA mutations, changing peptide binding affinity, reducing signal inhibition or augmenting signal intensity. Animal experiments agree with human studies. In conclusion, T1D is caused by a somatic mutation within the epitope-binding groove of an at-risk HLA gene that affects HLA-insulin-peptide-TCR complex binding affinity and initiates an autoimmune pathway. The nature of the peptide that binds to a mutated epitope-binding groove of an at-risk HLA gene determines the type of autoimmune disease that develops, that is, one at-risk HLA locus, multiple autoimmune diseases. Thus, T1D and AAIDs, and therefore common autoimmune diseases, share a similar somatic mutation-based aetiology.
Collapse
Affiliation(s)
- Piet C de Groen
- Division of Gastroenterology, Hepatology & Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
30
|
Torices L, Nunes-Xavier CE, Mingo J, Luna S, Erramuzpe A, Cortés JM, Pulido R. Induction of Translational Readthrough on Protein Tyrosine Phosphatases Targeted by Premature Termination Codon Mutations in Human Disease. Methods Mol Biol 2024; 2743:1-19. [PMID: 38147205 DOI: 10.1007/978-1-0716-3569-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Nonsense mutations generating premature termination codons (PTCs) in various genes are frequently associated with somatic cancer and hereditary human diseases since PTCs commonly generate truncated proteins with defective or altered function. Induced translational readthrough during protein biosynthesis facilitates the incorporation of an amino acid at the position of a PTC, allowing the synthesis of a complete protein. This may evade the pathological effect of the PTC mutation and provide new therapeutic opportunities. Several protein tyrosine phosphatases (PTPs) genes are targeted by PTC in human disease, the tumor suppressor PTEN being the more prominent paradigm. Here, using PTEN and laforin as examples, two PTPs from the dual-specificity phosphatase subfamily, we describe methodologies to analyze in silico the distribution and frequency of pathogenic PTC in PTP genes. We also summarize laboratory protocols and technical notes to study the induced translational readthrough reconstitution of the synthesis of PTP targeted by PTC in association with disease in cellular models.
Collapse
Affiliation(s)
- Leire Torices
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Caroline E Nunes-Xavier
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Janire Mingo
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Sandra Luna
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Asier Erramuzpe
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Jesús M Cortés
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Rafael Pulido
- Biobizkaia Health Research Institute, Barakaldo, Spain.
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
31
|
Ramos RM, Petroli RJ, D'Alessandre NDR, Guardia GDA, Afonso ACDF, Nishi MY, Domenice S, Galante PAF, Mendonca BB, Batista RL. Small Indels in the Androgen Receptor Gene: Phenotype Implications and Mechanisms of Mutagenesis. J Clin Endocrinol Metab 2023; 109:68-79. [PMID: 37572362 DOI: 10.1210/clinem/dgad470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
CONTEXT Despite high abundance of small indels in human genomes, their precise roles and underlying mechanisms of mutagenesis in Mendelian disorders require further investigation. OBJECTIVE To profile the distribution, functional implications, and mechanisms of small indels in the androgen receptor (AR) gene in individuals with androgen insensitivity syndrome (AIS). METHODS We conducted a systematic review of previously reported indels within the coding region of the AR gene, including 3 novel indels. Distribution throughout the AR coding region was examined and compared with genomic population data. Additionally, we assessed their impact on the AIS phenotype and investigated potential mechanisms driving their occurrence. RESULTS A total of 82 indels in AIS were included. Notably, all frameshift indels exhibited complete AIS. The distribution of indels across the AR gene showed a predominance in the N-terminal domain, most leading to frameshift mutations. Small deletions accounted for 59.7%. Most indels occurred in nonrepetitive sequences, with 15.8% situated within triplet regions. Gene burden analysis demonstrated significant enrichment of frameshift indels in AIS compared with controls (P < .00001), and deletions were overrepresented in AIS (P < .00001). CONCLUSION Our findings underscore a robust genotype-phenotype relationship regarding small indels in the AR gene in AIS, with a vast majority presenting complete AIS. Triplet regions and homopolymeric runs emerged as prone loci for small indels within the AR. Most were frameshift indels, with polymerase slippage potentially explaining half of AR indel occurrences. Complex frameshift indels exhibited association with palindromic runs. These discoveries advance understanding of the genetic basis of AIS and shed light on potential mechanisms underlying pathogenic small indel events.
Collapse
Affiliation(s)
- Raquel Martinez Ramos
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Reginaldo José Petroli
- Faculdade de Medicina da Universidade Federal de Alagoas (UFAL), Programa de Pós-Graduação em Ciências Médicas-UFAL, Maceió, AL, 57072-900, Brazil
| | | | | | - Ana Caroline de Freitas Afonso
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Mirian Yumie Nishi
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Sorahia Domenice
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | | | - Berenice Bilharinho Mendonca
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Rafael Loch Batista
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
- Instituto do Câncer do Estado de São Paulo da Faculdade, de Medicina da Universidade de São Paulo (ICESP), São Paulo, SP, 01246-000, Brazil
| |
Collapse
|
32
|
Pang Z, Lu MM, Zhang Y, Gao Y, Bai JJ, Gu JY, Xie L, Wu WZ. Neoantigen-targeted TCR-engineered T cell immunotherapy: current advances and challenges. Biomark Res 2023; 11:104. [PMID: 38037114 PMCID: PMC10690996 DOI: 10.1186/s40364-023-00534-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
Adoptive cell therapy using T cell receptor-engineered T cells (TCR-T) is a promising approach for cancer therapy with an expectation of no significant side effects. In the human body, mature T cells are armed with an incredible diversity of T cell receptors (TCRs) that theoretically react to the variety of random mutations generated by tumor cells. The outcomes, however, of current clinical trials using TCR-T cell therapies are not very successful especially involving solid tumors. The therapy still faces numerous challenges in the efficient screening of tumor-specific antigens and their cognate TCRs. In this review, we first introduce TCR structure-based antigen recognition and signaling, then describe recent advances in neoantigens and their specific TCR screening technologies, and finally summarize ongoing clinical trials of TCR-T therapies against neoantigens. More importantly, we also present the current challenges of TCR-T cell-based immunotherapies, e.g., the safety of viral vectors, the mismatch of T cell receptor, the impediment of suppressive tumor microenvironment. Finally, we highlight new insights and directions for personalized TCR-T therapy.
Collapse
Affiliation(s)
- Zhi Pang
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Man-Man Lu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yu Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yuan Gao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jin-Jin Bai
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian-Ying Gu
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| | - Wei-Zhong Wu
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
33
|
Flanagan LM, Horton JS, Taylor TB. Mutational hotspots lead to robust but suboptimal adaptive outcomes in certain environments. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001395. [PMID: 37815519 PMCID: PMC10634368 DOI: 10.1099/mic.0.001395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
The observed mutational spectrum of adaptive outcomes can be constrained by many factors. For example, mutational biases can narrow the observed spectrum by increasing the rate of mutation at isolated sites in the genome. In contrast, complex environments can shift the observed spectrum by defining fitness consequences of mutational routes. We investigate the impact of different nutrient environments on the evolution of motility in Pseudomonas fluorescens Pf0-2x (an engineered non-motile derivative of Pf0-1) in the presence and absence of a strong mutational hotspot. Previous work has shown that this mutational hotspot can be built and broken via six silent mutations, which provide rapid access to a mutation that rescues swimming motility and confers the strongest swimming phenotype in specific environments. Here, we evolved a hotspot and non-hotspot variant strain of Pf0-2x for motility under nutrient-rich (LB) and nutrient-limiting (M9) environmental conditions. We observed the hotspot strain consistently evolved faster across all environmental conditions and its mutational spectrum was robust to environmental differences. However, the non-hotspot strain had a distinct mutational spectrum that changed depending on the nutrient environment. Interestingly, while alternative adaptive mutations in nutrient-rich environments were equal to, or less effective than, the hotspot mutation, the majority of these mutations in nutrient-limited conditions produced superior swimmers. Our competition experiments mirrored these findings, underscoring the role of environment in defining both the mutational spectrum and the associated phenotype strength. This indicates that while mutational hotspots working in concert with natural selection can speed up access to robust adaptive mutations (which can provide a competitive advantage in evolving populations), they can limit exploration of the mutational landscape, restricting access to potentially stronger phenotypes in specific environments.
Collapse
Affiliation(s)
| | - James S. Horton
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | |
Collapse
|
34
|
Chrisman B, He C, Jung JY, Stockham N, Paskov K, Washington P, Petereit J, Wall DP. Localizing unmapped sequences with families to validate the Telomere-to-Telomere assembly and identify new hotspots for genetic diversity. Genome Res 2023; 33:1734-1746. [PMID: 37879860 PMCID: PMC10691534 DOI: 10.1101/gr.277175.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/25/2023] [Indexed: 10/27/2023]
Abstract
Although it is ubiquitous in genomics, the current human reference genome (GRCh38) is incomplete: It is missing large sections of heterochromatic sequence, and as a singular, linear reference genome, it does not represent the full spectrum of human genetic diversity. To characterize gaps in GRCh38 and human genetic diversity, we developed an algorithm for sequence location approximation using nuclear families (ASLAN) to identify the region of origin of reads that do not align to GRCh38. Using unmapped reads and variant calls from whole-genome sequences (WGSs), ASLAN uses a maximum likelihood model to identify the most likely region of the genome that a subsequence belongs to given the distribution of the subsequence in the unmapped reads and phasings of families. Validating ASLAN on synthetic data and on reads from the alternative haplotypes in the decoy genome, ASLAN localizes >90% of 100-bp sequences with >92% accuracy and ∼1 Mb of resolution. We then ran ASLAN on 100-mers from unmapped reads from WGS from more than 700 families, and compared ASLAN localizations to alignment of the 100-mers to the recently released T2T-CHM13 assembly. We found that many unmapped reads in GRCh38 originate from telomeres and centromeres that are gaps in GRCh38. ASLAN localizations are in high concordance with T2T-CHM13 alignments, except in the centromeres of the acrocentric chromosomes. Comparing ASLAN localizations and T2T-CHM13 alignments, we identified sequences missing from T2T-CHM13 or sequences with high divergence from their aligned region in T2T-CHM13, highlighting new hotspots for genetic diversity.
Collapse
Affiliation(s)
- Brianna Chrisman
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA;
- Nevada Bioinformatics Center, University of Nevada, Reno, Nevada 89557, USA
| | - Chloe He
- Department of Biomedical Data Science, Stanford University, Stanford, California 94305, USA
| | - Jae-Yoon Jung
- Department of Pediatrics (Systems Medicine), Stanford University, Stanford, California 94305, USA
| | - Nate Stockham
- Department of Neuroscience, Stanford University, Stanford, California 94305, USA
| | - Kelley Paskov
- Department of Biomedical Data Science, Stanford University, Stanford, California 94305, USA
| | - Peter Washington
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, Nevada 89557, USA
| | - Dennis P Wall
- Department of Biomedical Data Science, Stanford University, Stanford, California 94305, USA
- Department of Pediatrics (Systems Medicine), Stanford University, Stanford, California 94305, USA
| |
Collapse
|
35
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
36
|
Poulsgaard GA, Sørensen SG, Juul RI, Nielsen MM, Pedersen JS. Sequence dependencies and mutation rates of localized mutational processes in cancer. Genome Med 2023; 15:63. [PMID: 37592287 PMCID: PMC10436389 DOI: 10.1186/s13073-023-01217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Cancer mutations accumulate through replication errors and DNA damage coupled with incomplete repair. Individual mutational processes often show nucleotide sequence and functional region preferences. As a result, some sequence contexts mutate at much higher rates than others, with additional variation found between functional regions. Mutational hotspots, with recurrent mutations across cancer samples, represent genomic positions with elevated mutation rates, often caused by highly localized mutational processes. METHODS We count the 11-mer genomic sequences across the genome, and using the PCAWG set of 2583 pan-cancer whole genomes, we associate 11-mers with mutational signatures, hotspots of single nucleotide variants, and specific genomic regions. We evaluate the mutation rates of individual and combined sets of 11-mers and derive mutational sequence motifs. RESULTS We show that hotspots generally identify highly mutable sequence contexts. Using these, we show that some mutational signatures are enriched in hotspot sequence contexts, corresponding to well-defined sequence preferences for the underlying localized mutational processes. This includes signature 17b (of unknown etiology) and signatures 62 (POLE deficiency), 7a (UV), and 72 (linked to lymphomas). In some cases, the mutation rate and sequence preference increase further when focusing on certain genomic regions, such as signature 62 in transcribed regions, where the mutation rate is increased up to 9-folds over cancer type and mutational signature average. CONCLUSIONS We summarize our findings in a catalog of localized mutational processes, their sequence preferences, and their estimated mutation rates.
Collapse
Affiliation(s)
- Gustav Alexander Poulsgaard
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Simon Grund Sørensen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Randi Istrup Juul
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Morten Muhlig Nielsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Jakob Skou Pedersen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
- Bioinformatics Research Centre (BiRC), Aarhus University, University City 81, Building 1872, 3Rd Floor, 8000, Aarhus C, Denmark.
| |
Collapse
|
37
|
Liu Z, Samee M. Structural underpinnings of mutation rate variations in the human genome. Nucleic Acids Res 2023; 51:7184-7197. [PMID: 37395403 PMCID: PMC10415140 DOI: 10.1093/nar/gkad551] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023] Open
Abstract
Single nucleotide mutation rates have critical implications for human evolution and genetic diseases. Importantly, the rates vary substantially across the genome and the principles underlying such variations remain poorly understood. A recent model explained much of this variation by considering higher-order nucleotide interactions in the 7-mer sequence context around mutated nucleotides. This model's success implicates a connection between DNA shape and mutation rates. DNA shape, i.e. structural properties like helical twist and tilt, is known to capture interactions between nucleotides within a local context. Thus, we hypothesized that changes in DNA shape features at and around mutated positions can explain mutation rate variations in the human genome. Indeed, DNA shape-based models of mutation rates showed similar or improved performance over current nucleotide sequence-based models. These models accurately characterized mutation hotspots in the human genome and revealed the shape features whose interactions underlie mutation rate variations. DNA shape also impacts mutation rates within putative functional regions like transcription factor binding sites where we find a strong association between DNA shape and position-specific mutation rates. This work demonstrates the structural underpinnings of nucleotide mutations in the human genome and lays the groundwork for future models of genetic variations to incorporate DNA shape.
Collapse
Affiliation(s)
- Zian Liu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
38
|
Myers MA, Arnold BJ, Bansal V, Mullen KM, Zaccaria S, Raphael BJ. HATCHet2: clone- and haplotype-specific copy number inference from bulk tumor sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548855. [PMID: 37502835 PMCID: PMC10370020 DOI: 10.1101/2023.07.13.548855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Multi-region DNA sequencing of primary tumors and metastases from individual patients helps identify somatic aberrations driving cancer development. However, most methods to infer copy-number aberrations (CNAs) analyze individual samples. We introduce HATCHet2 to identify haplotype- and clone-specific CNAs simultaneously from multiple bulk samples. HATCHet2 introduces a novel statistic, the mirrored haplotype B-allele frequency (mhBAF), to identify mirrored-subclonal CNAs having different numbers of copies of parental haplotypes in different tumor clones. HATCHet2 also has high accuracy in identifying focal CNAs and extends the earlier HATCHet method in several directions. We demonstrate HATCHet2's improved accuracy using simulations and a single-cell sequencing dataset. HATCHet2 analysis of 50 prostate cancer samples from 10 patients reveals previously-unreported mirrored-subclonal CNAs affecting cancer genes.
Collapse
Affiliation(s)
- Matthew A. Myers
- Department of Computer Science, Princeton University, Princeton, USA
| | - Brian J. Arnold
- Center for Statistics and Machine Learning, Princeton University, Princeton, USA
| | - Vineet Bansal
- Princeton Research Computing, Princeton University, Princeton, NJ, USA
| | - Katelyn M. Mullen
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simone Zaccaria
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | | |
Collapse
|
39
|
Trieschmann G, Wilhelm C, Berweck S, Zech M. De novo retinoic acid receptor beta (RARB) variant associated with microphthalmia and dystonia. Eur J Med Genet 2023; 66:104802. [PMID: 37321544 DOI: 10.1016/j.ejmg.2023.104802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Definition of the individual genotypes that cause a Mendelian phenotype is of great importance both to clinical diagnostics and disease characterization. Heterozygous de novo gain-of-function missense variants in RARB are associated with syndromic microphthalmia 12 (MCOPS12), a developmental disorder characterized by eye malformations and variable involvement of other organs. A subset of patients were described with poorly delineated movement disorders. Additionally, RARB bi-allelic loss-of-function variants, inherited from asymptomatic heterozygous carrier parents, have been found in a recessive family with four MCOPS12-affected members. PATIENT/METHODS We used trio whole-exome sequencing to explore the molecular basis of disease in an individual with congenital eye abnormality and movement disorder. All patients with reported RARB variants were reviewed. RESULTS We report on identification of a heterozygous de novo RARB nonsense variant in a girl with microphthalmia and progressive generalized dystonia. Public database entries indicate that the de novo variant is recurrently present in clinically affected subjects but a literature report has not yet been available. CONCLUSIONS We provide the first detailed evidence for a role of dominant RARB truncating alterations in congenital eye-brain disease, expanding the spectrum of MCOPS12-associated mutations. Considered together with the published family with bi-allelic variants, the data suggest manifestation and non-manifestation of disease in relation to almost identical RARB loss-of-function variations, an apparent paradox that is seen in a growing number of human genetic conditions associated with both recessive and dominant inheritance patterns.
Collapse
Affiliation(s)
- Gesa Trieschmann
- Specialist Centre for Paediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, Vogtareuth, Germany
| | | | - Steffen Berweck
- Specialist Centre for Paediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, Vogtareuth, Germany; LMU Hospital, Department of Pediatrics-Dr. von Hauner Childrens's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
40
|
Kosik P, Skorvaga M, Belyaev I. Preleukemic Fusion Genes Induced via Ionizing Radiation. Int J Mol Sci 2023; 24:ijms24076580. [PMID: 37047553 PMCID: PMC10095576 DOI: 10.3390/ijms24076580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Although the prevalence of leukemia is increasing, the agents responsible for this increase are not definitely known. While ionizing radiation (IR) was classified as a group one carcinogen by the IARC, the IR-induced cancers, including leukemia, are indistinguishable from those that are caused by other factors, so the risk estimation relies on epidemiological data. Several epidemiological studies on atomic bomb survivors and persons undergoing IR exposure during medical investigations or radiotherapy showed an association between radiation and leukemia. IR is also known to induce chromosomal translocations. Specific chromosomal translocations resulting in preleukemic fusion genes (PFGs) are generally accepted to be the first hit in the onset of many leukemias. Several studies indicated that incidence of PFGs in healthy newborns is up to 100-times higher than childhood leukemia with the same chromosomal aberrations. Because of this fact, it has been suggested that PFGs are not able to induce leukemia alone, but secondary mutations are necessary. PFGs also have to occur in specific cell populations of hematopoetic stem cells with higher leukemogenic potential. In this review, we describe the connection between IR, PFGs, and cancer, focusing on recurrent PFGs where an association with IR has been established.
Collapse
Affiliation(s)
- Pavol Kosik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Milan Skorvaga
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
41
|
Hao Q, Zhan C, Lian C, Luo S, Cao W, Wang B, Xie X, Ye X, Gui T, Voena C, Pighi C, Wang Y, Tian Y, Wang X, Dai P, Cai Y, Liu X, Ouyang S, Sun S, Hu Q, Liu J, Ye Y, Zhao J, Lu A, Wang JY, Huang C, Su B, Meng FL, Chiarle R, Pan-Hammarström Q, Yeap LS. DNA repair mechanisms that promote insertion-deletion events during immunoglobulin gene diversification. Sci Immunol 2023; 8:eade1167. [PMID: 36961908 PMCID: PMC10351598 DOI: 10.1126/sciimmunol.ade1167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Insertions and deletions (indels) are low-frequency deleterious genomic DNA alterations. Despite their rarity, indels are common, and insertions leading to long complementarity-determining region 3 (CDR3) are vital for antigen-binding functions in broadly neutralizing and polyreactive antibodies targeting viruses. Because of challenges in detecting indels, the mechanism that generates indels during immunoglobulin diversification processes remains poorly understood. We carried out ultra-deep profiling of indels and systematically dissected the underlying mechanisms using passenger-immunoglobulin mouse models. We found that activation-induced cytidine deaminase-dependent ±1-base pair (bp) indels are the most prevalent indel events, biasing deleterious outcomes, whereas longer in-frame indels, especially insertions that can extend the CDR3 length, are rare outcomes. The ±1-bp indels are channeled by base excision repair, but longer indels require additional DNA-processing factors. Ectopic expression of a DNA exonuclease or perturbation of the balance of DNA polymerases can increase the frequency of longer indels, thus paving the way for models that can generate antibodies with long CDR3. Our study reveals the mechanisms that generate beneficial and deleterious indels during the process of antibody somatic hypermutation and has implications in understanding the detrimental genomic alterations in various conditions, including tumorigenesis.
Collapse
Affiliation(s)
- Qian Hao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Chuanzong Zhan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Chaoyang Lian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Simin Luo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Wenyi Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Binbin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Xia Xie
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet; SE141-83, Huddinge, Stockholm, Sweden
- Present address: Kindstar Global Precision Medicine Institute, Wuhan, China and Kindstar Biotech, Wuhan, China
| | - Tuantuan Gui
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
| | - Chiara Pighi
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
- Department of Pathology, Boston Children’s Hospital, and Harvard Medical School; Boston, MA 02115, USA
| | - Yanyan Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Ying Tian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Xin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Pengfei Dai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Yanni Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Xiaojing Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Shengqun Ouyang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Shiqi Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Qianwen Hu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Departments of Endocrinology and Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
- Department of Pathology, Boston Children’s Hospital, and Harvard Medical School; Boston, MA 02115, USA
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet; SE141-83, Huddinge, Stockholm, Sweden
| | - Leng-Siew Yeap
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
42
|
Jiang YF, Wang S, Wang CL, Xu RH, Wang WW, Jiang Y, Wang MS, Jiang L, Dai LH, Wang JR, Chu XH, Zeng YQ, Fang LZ, Wu DD, Zhang Q, Ding XD. Pangenome obtained by long-read sequencing of 11 genomes reveal hidden functional structural variants in pigs. iScience 2023; 26:106119. [PMID: 36852268 PMCID: PMC9958381 DOI: 10.1016/j.isci.2023.106119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Long-read sequencing (LRS) facilitates both the genome assembly and the discovery of structural variants (SVs). Here, we built a graph-based pig pangenome by incorporating 11 LRS genomes with an average of 94.01% BUSCO completeness score, revealing 206-Mb novel sequences. We discovered 183,352 nonredundant SVs (63% novel), representing 12.12% of the reference genome. By genotyping SVs in an additional 196 short-read sequencing samples, we identified thousands of population stratified SVs. Particularly, we detected 7,568 Tibetan specific SVs, some of which demonstrate significant population differentiation between Tibetan and low-altitude pigs, which might be associated with the high-altitude hypoxia adaptation in Tibetan pigs. Further integrating functional genomic data, the most promising candidate genes within the SVs that might contribute to the high-altitude hypoxia adaptation were discovered. Overall, our study generates a benchmark pangenome resource for illustrating the important roles of SVs in adaptive evolution, domestication, and genetic improvement of agronomic traits in pigs.
Collapse
Affiliation(s)
- Yi-Fan Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Chong-Long Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Ru-Hai Xu
- Key Laboratory of Animal Genetics and Breeding of Zhejiang Province, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen-Wen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian 271001, China
| | - Yao Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Li Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Li-He Dai
- Key Laboratory of Animal Genetics and Breeding of Zhejiang Province, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jie-Ru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiao-Hong Chu
- Key Laboratory of Animal Genetics and Breeding of Zhejiang Province, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yong-Qing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian 271001, China
| | - Ling-Zhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian 271001, China
| | - Xiang-Dong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
43
|
Grant SR, Rosario SR, Patentreger AD, Shary N, Fitzgerald ME, Singh PK, Foster BA, Huss WJ, Wei L, Paragh G. HotSPOT: A Computational Tool to Design Targeted Sequencing Panels to Assess Early Photocarcinogenesis. Cancers (Basel) 2023; 15:cancers15051612. [PMID: 36900402 PMCID: PMC10001346 DOI: 10.3390/cancers15051612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Mutations found in skin are acquired in specific patterns, clustering around mutation-prone genomic locations. The most mutation-prone genomic areas, mutation hotspots, first induce the growth of small cell clones in healthy skin. Mutations accumulate over time, and clones with driver mutations may give rise to skin cancer. Early mutation accumulation is a crucial first step in photocarcinogenesis. Therefore, a sufficient understanding of the process may help predict disease onset and identify avenues for skin cancer prevention. Early epidermal mutation profiles are typically established using high-depth targeted next-generation sequencing. However, there is currently a lack of tools for designing custom panels to capture mutation-enriched genomic regions efficiently. To address this issue, we created a computational algorithm that implements a pseudo-exhaustive approach to identify the best genomic areas to target. We benchmarked the current algorithm in three independent mutation datasets of human epidermal samples. Compared to the sequencing panel designs originally used in these publications, the mutation capture efficacy (number of mutations/base pairs sequenced) of our designed panel improved 9.6-12.1-fold. Mutation burden in the chronically sun-exposed and intermittently sun-exposed normal epidermis was measured within genomic regions identified by hotSPOT based on cutaneous squamous cell carcinoma (cSCC) mutation patterns. We found a significant increase in mutation capture efficacy and mutation burden in cSCC hotspots in chronically sun-exposed vs. intermittently sun-exposed epidermis (p < 0.0001). Our results show that our hotSPOT web application provides a publicly available resource for researchers to design custom panels, enabling efficient detection of somatic mutations in clinically normal tissues and other similar targeted sequencing studies. Moreover, hotSPOT also enables the comparison of mutation burden between normal tissues and cancer.
Collapse
Affiliation(s)
- Sydney R. Grant
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Spencer R. Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Andrew D. Patentreger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Nico Shary
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Megan E. Fitzgerald
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Prashant K. Singh
- Department of Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Barbara A. Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Wendy J. Huss
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Gyorgy Paragh
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
- Correspondence:
| |
Collapse
|
44
|
Decourtye-Espiard L, Guilford P. Hereditary Diffuse Gastric Cancer. Gastroenterology 2023; 164:719-735. [PMID: 36740198 DOI: 10.1053/j.gastro.2023.01.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023]
Abstract
Hereditary diffuse gastric cancer (HDGC) is a dominantly inherited cancer syndrome characterized by a high incidence of diffuse gastric cancer (DGC) and lobular breast cancer (LBC). HDGC is caused by germline mutations in 2 genes involved in the epithelial adherens junction complex, CDH1 and CTNNA1. We discuss the genetics of HDGC and the variability of its clinical phenotype, in particular the variable penetrance of advanced DGC and LBC, both within and between families. We review the pathology of the disease, the mechanism of tumor initiation, and its natural history. Finally, we describe current best practice for the clinical management of HDGC, including emerging genetic testing criteria for the identification of new families, methods for endoscopic surveillance, the complications associated with prophylactic surgery, postoperative quality of life, and the emerging field of HDGC chemoprevention.
Collapse
Affiliation(s)
- Lyvianne Decourtye-Espiard
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Parry Guilford
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
45
|
Labani M, Beheshti A, Argha A, Alinejad-Rokny H. A Comprehensive Investigation of Genomic Variants in Prostate Cancer Reveals 30 Putative Regulatory Variants. Int J Mol Sci 2023; 24:2472. [PMID: 36768794 PMCID: PMC9916892 DOI: 10.3390/ijms24032472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Prostate cancer (PC) is the most frequently diagnosed non-skin cancer in the world. Previous studies have shown that genomic alterations represent the most common mechanism for molecular alterations responsible for the development and progression of PC. This highlights the importance of identifying functional genomic variants for early detection in high-risk PC individuals. Great efforts have been made to identify common protein-coding genetic variations; however, the impact of non-coding variations, including regulatory genetic variants, is not well understood. Identification of these variants and the underlying target genes will be a key step in improving the detection and treatment of PC. To gain an understanding of the functional impact of genetic variants, and in particular, regulatory variants in PC, we developed an integrative pipeline (AGV) that uses whole genome/exome sequences, GWAS SNPs, chromosome conformation capture data, and ChIP-Seq signals to investigate the potential impact of genomic variants on the underlying target genes in PC. We identified 646 putative regulatory variants, of which 30 significantly altered the expression of at least one protein-coding gene. Our analysis of chromatin interactions data (Hi-C) revealed that the 30 putative regulatory variants could affect 131 coding and non-coding genes. Interestingly, our study identified the 131 protein-coding genes that are involved in disease-related pathways, including Reactome and MSigDB, for most of which targeted treatment options are currently available. Notably, our analysis revealed several non-coding RNAs, including RP11-136K7.2 and RAMP2-AS1, as potential enhancer elements of the protein-coding genes CDH12 and EZH1, respectively. Our results provide a comprehensive map of genomic variants in PC and reveal their potential contribution to prostate cancer progression and development.
Collapse
Affiliation(s)
- Mahdieh Labani
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Data Analytic Lab, Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
| | - Amin Beheshti
- Data Analytic Lab, Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
| | - Ahmadreza Argha
- The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- UNSW Data Science Hub, The University of New South Wales, Sydney, NSW 2052, Australia
- Health Data Analytics Program, Centre for Applied AI, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
46
|
El Younsi M, Trabelsi M, Ben Youssef S, Ouertani I, Hammi Y, Achour A, Maazoul F, Kharrat M, Gargah T, M'rad R. Clinical and genetic characteristics of Tunisian children with infantile nephropathic cystinosis. Pediatr Nephrol 2023; 38:119-129. [PMID: 35445972 DOI: 10.1007/s00467-022-05525-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nephropathic cystinosis is an autosomal recessive disease caused by a mutation in the CTNS gene which encodes cystinosin, a lysosomal cystine transporter. The spectrum of mutations in the CTNS gene is not well defined in the North African population. Here, we investigated twelve patients with nephropathic cystinosis belonging to eight Tunisian families in order to analyze the clinical and genetic characteristics of Tunisian children with infantile nephropathic cystinosis. METHODS Clinical data were collected retrospectively. Molecular analysis of the CTNS gene was performed by Sanger sequencing. RESULTS We describe a new splicing mutation c.971-1G > C in the homozygous state in 6/12 patients which seems to be a founder mutation. The reported deletion of 23nt c.771_793 Del (p.Gly258Serfs*30) was detected in a homozygous state in one patient and in a heterozygous compound state with the c.971-1G > C mutation in 3/12 patients. Two of 12 patients have a deletion of exons 4 and 5 of the CTNS gene. None of our patients had the most common 57-kb deletion. CONCLUSIONS The mutational spectrum in the Tunisian population is different from previously described populations. Thus, a molecular diagnostic strategy must be implemented in Tunisia, by targeting as a priority the common mutations described in this country. Such a strategy will allow a cost-effective diagnosis confirmation as well as early administration of treatment with oral cysteamine. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Mariem El Younsi
- Laboratoire de Génétique Humaine, LR99ES10, Faculté de Médecine de Tunis, Université de Tunis El Manar, 1007, Tunis, Tunisia
| | - Médiha Trabelsi
- Service des Maladies Congénitales et Héréditaires, Hôpital Charles Nicolle, Bab Souika, 1006, Tunis, Tunisia
| | - Sandra Ben Youssef
- Service de Pédiatrie Néphrologique Hôpital Charles Nicolle, Bab Souika, 1006, Tunis, Tunisia
| | - Inès Ouertani
- Service des Maladies Congénitales et Héréditaires, Hôpital Charles Nicolle, Bab Souika, 1006, Tunis, Tunisia
| | - Yousra Hammi
- Service de Pédiatrie Néphrologique Hôpital Charles Nicolle, Bab Souika, 1006, Tunis, Tunisia
| | - Ahlem Achour
- Service des Maladies Congénitales et Héréditaires, Hôpital Charles Nicolle, Bab Souika, 1006, Tunis, Tunisia
| | - Faouzi Maazoul
- Service des Maladies Congénitales et Héréditaires, Hôpital Charles Nicolle, Bab Souika, 1006, Tunis, Tunisia
| | - Maher Kharrat
- Laboratoire de Génétique Humaine, LR99ES10, Faculté de Médecine de Tunis, Université de Tunis El Manar, 1007, Tunis, Tunisia
| | - Tahar Gargah
- Service de Pédiatrie Néphrologique Hôpital Charles Nicolle, Bab Souika, 1006, Tunis, Tunisia
| | - Ridha M'rad
- Laboratoire de Génétique Humaine, LR99ES10, Faculté de Médecine de Tunis, Université de Tunis El Manar, 1007, Tunis, Tunisia. .,Service des Maladies Congénitales et Héréditaires, Hôpital Charles Nicolle, Bab Souika, 1006, Tunis, Tunisia.
| |
Collapse
|
47
|
Mansisidor AR, Risca VI. Chromatin accessibility: methods, mechanisms, and biological insights. Nucleus 2022; 13:236-276. [PMID: 36404679 PMCID: PMC9683059 DOI: 10.1080/19491034.2022.2143106] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/22/2022] Open
Abstract
Access to DNA is a prerequisite to the execution of essential cellular processes that include transcription, replication, chromosomal segregation, and DNA repair. How the proteins that regulate these processes function in the context of chromatin and its dynamic architectures is an intensive field of study. Over the past decade, genome-wide assays and new imaging approaches have enabled a greater understanding of how access to the genome is regulated by nucleosomes and associated proteins. Additional mechanisms that may control DNA accessibility in vivo include chromatin compaction and phase separation - processes that are beginning to be understood. Here, we review the ongoing development of accessibility measurements, we summarize the different molecular and structural mechanisms that shape the accessibility landscape, and we detail the many important biological functions that are linked to chromatin accessibility.
Collapse
Affiliation(s)
- Andrés R. Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| |
Collapse
|
48
|
A (GCC) repeat in SBF1 reveals a novel biological phenomenon in human and links to late onset neurocognitive disorder. Sci Rep 2022; 12:15480. [PMID: 36104480 PMCID: PMC9474449 DOI: 10.1038/s41598-022-19878-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/06/2022] [Indexed: 12/22/2022] Open
Abstract
The human SBF1 (SET binding factor 1) gene, alternatively known as MTMR5, is predominantly expressed in the brain, and its epigenetic dysregulation is linked to late-onset neurocognitive disorders (NCDs), such as Alzheimer’s disease. This gene contains a (GCC)-repeat at the interval between + 1 and + 60 of the transcription start site (SBF1-202 ENST00000380817.8). We sequenced the SBF1 (GCC)-repeat in a sample of 542 Iranian individuals, consisting of late-onset NCDs (N = 260) and controls (N = 282). While multiple alleles were detected at this locus, the 8 and 9 repeats were predominantly abundant, forming > 95% of the allele pool across the two groups. Among a number of anomalies, the allele distribution was significantly different in the NCD group versus controls (Fisher’s exact p = 0.006), primarily as a result of enrichment of the 8-repeat in the former. The genotype distribution departed from the Hardy–Weinberg principle in both groups (p < 0.001), and was significantly different between the two groups (Fisher’s exact p = 0.001). We detected significantly low frequency of the 8/9 genotype in both groups, higher frequency of this genotype in the NCD group, and reverse order of 8/8 versus 9/9 genotypes in the NCD group versus controls. Biased heterozygous/heterozygous ratios were also detected for the 6/8 versus 6/9 genotypes (in favor of 6/8) across the human samples studied (Fisher’s exact p = 0.0001). Bioinformatics studies revealed that the number of (GCC)-repeats may change the RNA secondary structure and interaction sites at least across human exon 1. This STR was specifically expanded beyond 2-repeats in primates. In conclusion, we report indication of a novel biological phenomenon, in which there is selection against certain heterozygous genotypes at a STR locus in human. We also report different allele and genotype distribution at this STR locus in late-onset NCD versus controls. In view of the location of this STR in the 5′ untranslated region, RNA/RNA or RNA/DNA heterodimer formation of the involved genotypes and alternative RNA processing and/or translation should be considered.
Collapse
|
49
|
Vihinen M. Individual Genetic Heterogeneity. Genes (Basel) 2022; 13:1626. [PMID: 36140794 PMCID: PMC9498725 DOI: 10.3390/genes13091626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic variation has been widely covered in literature, however, not from the perspective of an individual in any species. Here, a synthesis of genetic concepts and variations relevant for individual genetic constitution is provided. All the different levels of genetic information and variation are covered, ranging from whether an organism is unmixed or hybrid, has variations in genome, chromosomes, and more locally in DNA regions, to epigenetic variants or alterations in selfish genetic elements. Genetic constitution and heterogeneity of microbiota are highly relevant for health and wellbeing of an individual. Mutation rates vary widely for variation types, e.g., due to the sequence context. Genetic information guides numerous aspects in organisms. Types of inheritance, whether Mendelian or non-Mendelian, zygosity, sexual reproduction, and sex determination are covered. Functions of DNA and functional effects of variations are introduced, along with mechanism that reduce and modulate functional effects, including TARAR countermeasures and intraindividual genetic conflict. TARAR countermeasures for tolerance, avoidance, repair, attenuation, and resistance are essential for life, integrity of genetic information, and gene expression. The genetic composition, effects of variations, and their expression are considered also in diseases and personalized medicine. The text synthesizes knowledge and insight on individual genetic heterogeneity and organizes and systematizes the central concepts.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
50
|
Hine E, Runcie DE, Allen SL, Wang Y, Chenoweth SF, Blows MW, McGuigan K. Maintenance of quantitative genetic variance in complex, multi-trait phenotypes: The contribution of rare, large effect variants in two Drosophila species. Genetics 2022; 222:6663993. [PMID: 35961029 PMCID: PMC9526065 DOI: 10.1093/genetics/iyac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
The interaction of evolutionary processes to determine quantitative genetic variation has implications for contemporary and future phenotypic evolution, as well as for our ability to detect causal genetic variants. While theoretical studies have provided robust predictions to discriminate among competing models, empirical assessment of these has been limited. In particular, theory highlights the importance of pleiotropy in resolving observations of selection and mutation, but empirical investigations have typically been limited to few traits. Here, we applied high-dimensional Bayesian Sparse Factor Genetic modeling to gene expression datasets in 2 species, Drosophila melanogaster and Drosophila serrata, to explore the distributions of genetic variance across high-dimensional phenotypic space. Surprisingly, most of the heritable trait covariation was due to few lines (genotypes) with extreme [>3 interquartile ranges (IQR) from the median] values. Intriguingly, while genotypes extreme for a multivariate factor also tended to have a higher proportion of individual traits that were extreme, we also observed genotypes that were extreme for multivariate factors but not for any individual trait. We observed other consistent differences between heritable multivariate factors with outlier lines vs those factors without extreme values, including differences in gene functions. We use these observations to identify further data required to advance our understanding of the evolutionary dynamics and nature of standing genetic variation for quantitative traits.
Collapse
Affiliation(s)
- Emma Hine
- School of Biological Sciences, The University of Queensland, Brisbane 4072 Australia
| | - Daniel E Runcie
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Scott L Allen
- School of Biological Sciences, The University of Queensland, Brisbane 4072 Australia
| | - Yiguan Wang
- School of Biological Sciences, The University of Queensland, Brisbane 4072 Australia.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Stephen F Chenoweth
- School of Biological Sciences, The University of Queensland, Brisbane 4072 Australia
| | - Mark W Blows
- School of Biological Sciences, The University of Queensland, Brisbane 4072 Australia
| | - Katrina McGuigan
- School of Biological Sciences, The University of Queensland, Brisbane 4072 Australia
| |
Collapse
|