1
|
Pavlova SV, Shulgina AE, Zakian SM, Dementyeva EV. Studying Pathogenetic Contribution of a Variant of Unknown Significance, p.M659I (c.1977G > A) in MYH7, to the Development of Hypertrophic Cardiomyopathy Using CRISPR/Cas9-Engineered Isogenic Induced Pluripotent Stem Cells. Int J Mol Sci 2024; 25:8695. [PMID: 39201382 PMCID: PMC11354791 DOI: 10.3390/ijms25168695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a cardiovascular pathology that is caused by variants in genes encoding sarcomere-associated proteins. However, the clinical significance of numerous variants in HCM-associated genes is still unknown. CRISPR/Cas9 is a tool of nucleotide sequence editing that allows for the unraveling of different biological tasks. In this study, introducing a mutation with CRISPR/Cas9 into induced pluripotent stem cells (iPSCs) of a healthy donor and the directed differentiation of the isogenic iPSC lines into cardiomyocytes were used to assess the pathogenicity of a variant of unknown significance, p.M659I (c.1977G > A) in MYH7, which was found previously in an HCM patient. Using two single-stranded donor oligonucleotides with and without the p.M659I (c.1977G > A) mutation, together with CRISPR/Cas9, an iPSC line heterozygous at the p.M659I (c.1977G > A) variant in MYH7 was generated. No CRISPR/Cas9 off-target activity was observed. The iPSC line with the introduced p.M659I (c.1977G > A) mutation in MYH7 retained its pluripotent state and normal karyotype. Compared to the isogenic control, cardiomyocytes derived from the iPSCs with the introduced p.M659I (c.1977G > A) mutation in MYH7 recapitulated known HCM features: enlarged size, elevated diastolic calcium level, changes in the expression of HCM-related genes, and disrupted energy metabolism. These findings indicate the pathogenicity of the variant.
Collapse
Affiliation(s)
- Sophia V. Pavlova
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.E.S.); (S.M.Z.); (E.V.D.)
| | - Angelina E. Shulgina
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.E.S.); (S.M.Z.); (E.V.D.)
| | - Suren M. Zakian
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.E.S.); (S.M.Z.); (E.V.D.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena V. Dementyeva
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.E.S.); (S.M.Z.); (E.V.D.)
| |
Collapse
|
2
|
Guan Y, Peltz G. Hepatic organoids move from adolescence to maturity. Liver Int 2024; 44:1290-1297. [PMID: 38451053 DOI: 10.1111/liv.15893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/08/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Since organoids were developed 15 years ago, they are now in their adolescence as a research tool. The ability to generate 'tissue in a dish' has created enormous opportunities for biomedical research. We examine the contributions that hepatic organoids have made to three areas of liver research: as a source of cells and tissue for basic research, for drug discovery and drug safety testing, and for understanding disease pathobiology. We discuss the features that enable hepatic organoids to provide useful models for human liver diseases and identify four types of advances that will enable them to become a mature (i.e., adult) research tool over the next 5 years. During this period, advances in single-cell RNA sequencing and CRISPR technologies coupled with improved hepatic organoid methodology, which enables them to have a wider range of cell types that are present in liver and to be grown in microwells, will generate discoveries that will dramatically advance our understanding of liver development and the pathogenesis of liver diseases. It will generate also new approaches for treating liver fibrosis, which remains a major public health problem with few treatment options.
Collapse
Affiliation(s)
- Yuan Guan
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Zhang ZH, Barajas-Martinez H, Jiang H, Huang CX, Antzelevitch C, Xia H, Hu D. Gene and stem cell therapy for inherited cardiac arrhythmias. Pharmacol Ther 2024; 256:108596. [PMID: 38301770 DOI: 10.1016/j.pharmthera.2024.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024]
Abstract
Inherited cardiac arrhythmias are a group of genetic diseases predisposing to sudden cardiac arrest, mainly resulting from variants in genes encoding cardiac ion channels or proteins involved in their regulation. Currently available therapeutic options (pharmacotherapy, ablative therapy and device-based therapy) can not preclude the occurrence of arrhythmia events and/or provide complete protection. With growing understanding of the genetic background and molecular mechanisms of inherited cardiac arrhythmias, advancing insight of stem cell technology, and development of vectors and delivery strategies, gene therapy and stem cell therapy may be promising approaches for treatment of inherited cardiac arrhythmias. Recent years have witnessed impressive progress in the basic science aspects and there is a clear and urgent need to be translated into the clinical management of arrhythmic events. In this review, we present a succinct overview of gene and cell therapy strategies, and summarize the current status of gene and cell therapy. Finally, we discuss future directions for implementation of gene and cell therapy in the therapy of inherited cardiac arrhythmias.
Collapse
Affiliation(s)
- Zhong-He Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| |
Collapse
|
4
|
Chen P, Wang Y, Zhou B. Insights into targeting cellular senescence with senolytic therapy: The journey from preclinical trials to clinical practice. Mech Ageing Dev 2024; 218:111918. [PMID: 38401690 DOI: 10.1016/j.mad.2024.111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Interconnected, fundamental aging processes are central to many illnesses and diseases. Cellular senescence is a mechanism that halts the cell cycle in response to harmful stimuli. Senescent cells (SnCs) can emerge at any point in life, and their persistence, along with the numerous proteins they secrete, can negatively affect tissue function. Interventions aimed at combating persistent SnCs, which can destroy tissues, have been used in preclinical models to delay, halt, or even reverse various diseases. Consequently, the development of small-molecule senolytic medicines designed to specifically eliminate SnCs has opened potential avenues for the prevention or treatment of multiple diseases and age-related issues in humans. In this review, we explore the most promising approaches for translating small-molecule senolytics and other interventions targeting senescence in clinical practice. This discussion highlights the rationale for considering SnCs as therapeutic targets for diseases affecting individuals of all ages.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, P.R. China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| |
Collapse
|
5
|
Raniga K, Nasir A, Vo NTN, Vaidyanathan R, Dickerson S, Hilcove S, Mosqueira D, Mirams GR, Clements P, Hicks R, Pointon A, Stebbeds W, Francis J, Denning C. Strengthening cardiac therapy pipelines using human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2024; 31:292-311. [PMID: 38366587 DOI: 10.1016/j.stem.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Advances in hiPSC isolation and reprogramming and hPSC-CM differentiation have prompted their therapeutic application and utilization for evaluating potential cardiovascular safety liabilities. In this perspective, we showcase key efforts toward the large-scale production of hiPSC-CMs, implementation of hiPSC-CMs in industry settings, and recent clinical applications of this technology. The key observations are a need for traceable gender and ethnically diverse hiPSC lines, approaches to reduce cost of scale-up, accessible clinical trial datasets, and transparent guidelines surrounding the safety and efficacy of hiPSC-based therapies.
Collapse
Affiliation(s)
- Kavita Raniga
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; Pathology, Non-Clinical Safety, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK.
| | - Aishah Nasir
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nguyen T N Vo
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | - Diogo Mosqueira
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gary R Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Peter Clements
- Pathology, Non-Clinical Safety, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK
| | - Ryan Hicks
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London WC2R 2LS, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | | | - Jo Francis
- Mechanstic Biology and Profiling, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Chris Denning
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
6
|
Christowitz C, Olivier DW, Schneider JW, Kotze MJ, Engelbrecht AM. Incorporating functional genomics into the pathology-supported genetic testing framework implemented in South Africa: A future view of precision medicine for breast carcinomas. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108492. [PMID: 38631437 DOI: 10.1016/j.mrrev.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/25/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
A pathology-supported genetic testing (PSGT) framework was established in South Africa to improve access to precision medicine for patients with breast carcinomas. Nevertheless, the frequent identification of variants of uncertain significance (VUSs) with the use of genome-scale next-generation sequencing has created a bottleneck in the return of results to patients. This review highlights the importance of incorporating functional genomics into the PSGT framework as a proposed initiative. Here, we explore various model systems and experimental methods available for conducting functional studies in South Africa to enhance both variant classification and clinical interpretation. We emphasize the distinct advantages of using in vitro, in vivo, and translational ex vivo models to improve the effectiveness of precision oncology. Moreover, we highlight the relevance of methodologies such as protein modelling and structural bioinformatics, multi-omics, metabolic activity assays, flow cytometry, cell migration and invasion assays, tube-formation assays, multiplex assays of variant effect, and database mining and machine learning models. The selection of the appropriate experimental approach largely depends on the molecular mechanism of the gene under investigation and the predicted functional effect of the VUS. However, before making final decisions regarding the pathogenicity of VUSs, it is essential to assess the functional evidence and clinical outcomes under current variant interpretation guidelines. The inclusion of a functional genomics infrastructure within the PSGT framework will significantly advance the reclassification of VUSs and enhance the precision medicine pipeline for patients with breast carcinomas in South Africa.
Collapse
Affiliation(s)
- Claudia Christowitz
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Daniel W Olivier
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa; Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Johann W Schneider
- Division of Anatomical Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town 7505, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town 7505, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa; Department of Global Health, African Cancer Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| |
Collapse
|
7
|
Zhang H, Wu JC. Deciphering Congenital Heart Disease Using Human Induced Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:239-252. [PMID: 38884715 DOI: 10.1007/978-3-031-44087-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Congenital heart disease (CHD) is a leading cause of birth defect-related death. Despite significant advances, the mechanisms underlying the development of CHD are complex and remain elusive due to a lack of efficient, reproducible, and translational model systems. Investigations relied on animal models have inherent limitations due to interspecies differences. Human induced pluripotent stem cells (iPSCs) have emerged as an effective platform for disease modeling. iPSCs allow for the production of a limitless supply of patient-specific somatic cells that enable advancement in cardiovascular precision medicine. Over the past decade, researchers have developed protocols to differentiate iPSCs to multiple cardiovascular lineages, as well as to enhance the maturity and functionality of these cells. With the development of physiologic three-dimensional cardiac organoids, iPSCs represent a powerful platform to mechanistically dissect CHD and serve as a foundation for future translational research.
Collapse
Affiliation(s)
- Hao Zhang
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Doh CY, Kampourakis T, Campbell KS, Stelzer JE. Basic science methods for the characterization of variants of uncertain significance in hypertrophic cardiomyopathy. Front Cardiovasc Med 2023; 10:1238515. [PMID: 37600050 PMCID: PMC10432852 DOI: 10.3389/fcvm.2023.1238515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
With the advent of next-generation whole genome sequencing, many variants of uncertain significance (VUS) have been identified in individuals suffering from inheritable hypertrophic cardiomyopathy (HCM). Unfortunately, this classification of a genetic variant results in ambiguity in interpretation, risk stratification, and clinical practice. Here, we aim to review some basic science methods to gain a more accurate characterization of VUS in HCM. Currently, many genomic data-based computational methods have been developed and validated against each other to provide a robust set of resources for researchers. With the continual improvement in computing speed and accuracy, in silico molecular dynamic simulations can also be applied in mutational studies and provide valuable mechanistic insights. In addition, high throughput in vitro screening can provide more biologically meaningful insights into the structural and functional effects of VUS. Lastly, multi-level mathematical modeling can predict how the mutations could cause clinically significant organ-level dysfunction. We discuss emerging technologies that will aid in better VUS characterization and offer a possible basic science workflow for exploring the pathogenicity of VUS in HCM. Although the focus of this mini review was on HCM, these basic science methods can be applied to research in dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), arrhythmogenic cardiomyopathy (ACM), or other genetic cardiomyopathies.
Collapse
Affiliation(s)
- Chang Yoon Doh
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King’s College London, London, United Kingdom
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
9
|
Escribá R, Larrañaga-Moreira JM, Richaud-Patin Y, Pourchet L, Lazis I, Jiménez-Delgado S, Morillas-García A, Ortiz-Genga M, Ochoa JP, Carreras D, Pérez GJ, de la Pompa JL, Brugada R, Monserrat L, Barriales-Villa R, Raya A. iPSC-Based Modeling of Variable Clinical Presentation in Hypertrophic Cardiomyopathy. Circ Res 2023; 133:108-119. [PMID: 37317833 DOI: 10.1161/circresaha.122.321951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and a frequent cause of heart failure and sudden cardiac death. Our understanding of the genetic bases and pathogenic mechanisms underlying HCM has improved significantly in the recent past, but the combined effect of various pathogenic gene variants and the influence of genetic modifiers in disease manifestation are very poorly understood. Here, we set out to investigate genotype-phenotype relationships in 2 siblings with an extensive family history of HCM, both carrying a pathogenic truncating variant in the MYBPC3 gene (p.Lys600Asnfs*2), but who exhibited highly divergent clinical manifestations. METHODS We used a combination of induced pluripotent stem cell (iPSC)-based disease modeling and CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9)-mediated genome editing to generate patient-specific cardiomyocytes (iPSC-CMs) and isogenic controls lacking the pathogenic MYBPC3 variant. RESULTS Mutant iPSC-CMs developed impaired mitochondrial bioenergetics, which was dependent on the presence of the mutation. Moreover, we could detect altered excitation-contraction coupling in iPSC-CMs from the severely affected individual. The pathogenic MYBPC3 variant was found to be necessary, but not sufficient, to induce iPSC-CM hyperexcitability, suggesting the presence of additional genetic modifiers. Whole-exome sequencing of the mutant carriers identified a variant of unknown significance in the MYH7 gene (p.Ile1927Phe) uniquely present in the individual with severe HCM. We finally assessed the pathogenicity of this variant of unknown significance by functionally evaluating iPSC-CMs after editing the variant. CONCLUSIONS Our results indicate that the p.Ile1927Phe variant of unknown significance in MYH7 can be considered as a modifier of HCM expressivity when found in combination with truncating variants in MYBPC3. Overall, our studies show that iPSC-based modeling of clinically discordant subjects provides a unique platform to functionally assess the effect of genetic modifiers.
Collapse
Affiliation(s)
- Rubén Escribá
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
| | - José M Larrañaga-Moreira
- Unidad de Cardiopatías Familiares, Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS) (J.M.L.-M., R.B.-V.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
| | - Yvonne Richaud-Patin
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
| | - Léa Pourchet
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
| | - Ioannis Lazis
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
| | - Senda Jiménez-Delgado
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
| | - Alba Morillas-García
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
| | - Martín Ortiz-Genga
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
| | - Juan Pablo Ochoa
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
- Health in Code S.L., Scientific Department, A Coruña, Spain (J.P.O., L.M.)
| | - David Carreras
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, Spain (D.C., G.J.P., R.B.)
- Department of Medical Sciences, Universitat de Girona, Spain (D.C., G.J.P., R.B.)
| | - Guillermo Javier Pérez
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, Spain (D.C., G.J.P., R.B.)
- Department of Medical Sciences, Universitat de Girona, Spain (D.C., G.J.P., R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
| | - José Luis de la Pompa
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.d.l.P.)
| | - Ramón Brugada
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, Spain (D.C., G.J.P., R.B.)
- Department of Medical Sciences, Universitat de Girona, Spain (D.C., G.J.P., R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
- Hospital Josep Trueta, Girona, Spain (R.B.)
| | - Lorenzo Monserrat
- Health in Code S.L., Scientific Department, A Coruña, Spain (J.P.O., L.M.)
| | - Roberto Barriales-Villa
- Unidad de Cardiopatías Familiares, Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS) (J.M.L.-M., R.B.-V.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
| | - Angel Raya
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (A.R.)
| |
Collapse
|
10
|
Friedman CE, Fayer S, Pendyala S, Chien WM, Loiben A, Tran L, Chao LS, Mckinstry A, Ahmed D, Karbassi E, Fenix AM, Murry CE, Starita LM, Fowler DM, Yang KC. CRaTER enrichment for on-target gene editing enables generation of variant libraries in hiPSCs. J Mol Cell Cardiol 2023; 179:60-71. [PMID: 37019277 PMCID: PMC10208587 DOI: 10.1016/j.yjmcc.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Standard transgenic cell line generation requires screening 100-1000s of colonies to isolate correctly edited cells. We describe CRISPRa On-Target Editing Retrieval (CRaTER) which enriches for cells with on-target knock-in of a cDNA-fluorescent reporter transgene by transient activation of the targeted locus followed by flow sorting to recover edited cells. We show CRaTER recovers rare cells with heterozygous, biallelic-editing of the transcriptionally-inactive MYH7 locus in human induced pluripotent stem cells (hiPSCs), enriching on average 25-fold compared to standard antibiotic selection. We leveraged CRaTER to enrich for heterozygous knock-in of a library of variants in MYH7, a gene in which missense mutations cause cardiomyopathies, and recovered hiPSCs with 113 different variants. We differentiated these hiPSCs to cardiomyocytes and show MHC-β fusion proteins can localize as expected. Additionally, single-cell contractility analyses revealed cardiomyocytes with a pathogenic, hypertrophic cardiomyopathy-associated MYH7 variant exhibit salient HCM physiology relative to isogenic controls. Thus, CRaTER substantially reduces screening required for isolation of gene-edited cells, enabling generation of functional transgenic cell lines at unprecedented scale.
Collapse
Affiliation(s)
- Clayton E Friedman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Shawn Fayer
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sriram Pendyala
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Wei-Ming Chien
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA; Cardiology/Hospital Specialty Medicine, VA Puget Sound HCS, Seattle, WA 98108, USA
| | - Alexander Loiben
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Linda Tran
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Leslie S Chao
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Ashley Mckinstry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Dania Ahmed
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Elaheh Karbassi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA
| | - Aidan M Fenix
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Lea M Starita
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Kai-Chun Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA; Cardiology/Hospital Specialty Medicine, VA Puget Sound HCS, Seattle, WA 98108, USA.
| |
Collapse
|
11
|
Han JL, Entcheva E. Gene Modulation with CRISPR-based Tools in Human iPSC-Cardiomyocytes. Stem Cell Rev Rep 2023; 19:886-905. [PMID: 36656467 PMCID: PMC9851124 DOI: 10.1007/s12015-023-10506-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
Precise control of gene expression (knock-out, knock-in, knockdown or overexpression) is at the heart of functional genomics - an approach to dissect the contribution of a gene/protein to the system's function. The development of a human in vitro system that can be patient-specific, induced pluripotent stem cells, iPSC, and the ability to obtain various cell types of interest, have empowered human disease modeling and therapeutic development. Scalable tools have been deployed for gene modulation in these cells and derivatives, including pharmacological means, DNA-based RNA interference and standard RNA interference (shRNA/siRNA). The CRISPR/Cas9 gene editing system, borrowed from bacteria and adopted for use in mammalian cells a decade ago, offers cell-specific genetic targeting and versatility. Outside genome editing, more subtle, time-resolved gene modulation is possible by using a catalytically "dead" Cas9 enzyme linked to an effector of gene transcription in combination with a guide RNA. The CRISPRi / CRISPRa (interference/activation) system evolved over the last decade as a scalable technology for performing functional genomics with libraries of gRNAs. Here, we review key developments of these approaches and their deployment in cardiovascular research. We discuss specific use with iPSC-cardiomyocytes and the challenges in further translation of these techniques.
Collapse
Affiliation(s)
- Julie Leann Han
- Department of Biomedical Engineering, The George Washington University, 800 22nd St NW, Suite 5000, Washington, DC, 20052, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, 800 22nd St NW, Suite 5000, Washington, DC, 20052, USA.
| |
Collapse
|
12
|
Friedman CE, Fayer S, Pendyala S, Chien WM, Tran L, Chao L, Mckinstry A, Karbassi E, Fenix AM, Loiben A, Murry CE, Starita LM, Fowler DM, Yang KC. CRaTER enrichment for on-target gene-editing enables generation of variant libraries in hiPSCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525582. [PMID: 36747685 PMCID: PMC9900876 DOI: 10.1101/2023.01.25.525582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Standard transgenic cell line generation requires screening 100-1000s of colonies to isolate correctly edited cells. We describe CR ISPR a On- T arget E diting R etrieval (CRaTER) which enriches for cells with on-target knock-in of a cDNA-fluorescent reporter transgene by transient activation of the targeted locus followed by flow sorting to recover edited cells. We show CRaTER recovers rare cells with heterozygous, biallelic-editing of the transcriptionally-inactive MYH7 locus in human induced pluripotent stem cells (hiPSCs), enriching on average 25-fold compared to standard antibiotic selection. We leveraged CRaTER to enrich for heterozygous knock-in of a library of single nucleotide variants (SNVs) in MYH7 , a gene in which missense mutations cause cardiomyopathies, and recovered hiPSCs with 113 different MYH7 SNVs. We differentiated these hiPSCs to cardiomyocytes and show MYH7 fusion proteins can localize as expected. Thus, CRaTER substantially reduces screening required for isolation of gene-edited cells, enabling generation of transgenic cell lines at unprecedented scale.
Collapse
|
13
|
Dellefave-Castillo LM, Cirino AL, Callis TE, Esplin ED, Garcia J, Hatchell KE, Johnson B, Morales A, Regalado E, Rojahn S, Vatta M, Nussbaum RL, McNally EM. Assessment of the Diagnostic Yield of Combined Cardiomyopathy and Arrhythmia Genetic Testing. JAMA Cardiol 2022; 7:966-974. [PMID: 35947370 PMCID: PMC9366660 DOI: 10.1001/jamacardio.2022.2455] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Importance Genetic testing can guide management of both cardiomyopathies and arrhythmias, but cost, yield, and uncertain results can be barriers to its use. It is unknown whether combined disease testing can improve diagnostic yield and clinical utility for patients with a suspected genetic cardiomyopathy or arrhythmia. Objective To evaluate the diagnostic yield and clinical management implications of combined cardiomyopathy and arrhythmia genetic testing through a no-charge, sponsored program for patients with a suspected genetic cardiomyopathy or arrhythmia. Design, Setting, and Participants This cohort study involved a retrospective review of DNA sequencing results for cardiomyopathy- and arrhythmia-associated genes. The study included 4782 patients with a suspected genetic cardiomyopathy or arrhythmia who were referred for genetic testing by 1203 clinicians; all patients participated in a no-charge, sponsored genetic testing program for cases of suspected genetic cardiomyopathy and arrhythmia at a single testing site from July 12, 2019, through July 9, 2020. Main Outcomes and Measures Positive gene findings from combined cardiomyopathy and arrhythmia testing were compared with findings from smaller subtype-specific gene panels and clinician-provided diagnoses. Results Among 4782 patients (mean [SD] age, 40.5 [21.3] years; 2551 male [53.3%]) who received genetic testing, 39 patients (0.8%) were Ashkenazi Jewish, 113 (2.4%) were Asian, 571 (11.9%) were Black or African American, 375 (7.8%) were Hispanic, 2866 (59.9%) were White, 240 (5.0%) were of multiple races and/or ethnicities, 138 (2.9%) were of other races and/or ethnicities, and 440 (9.2%) were of unknown race and/or ethnicity. A positive result (molecular diagnosis) was confirmed in 954 of 4782 patients (19.9%). Of those, 630 patients with positive results (66.0%) had the potential to inform clinical management associated with adverse clinical outcomes, increased arrhythmia risk, or targeted therapies. Combined cardiomyopathy and arrhythmia gene panel testing identified clinically relevant variants for 1 in 5 patients suspected of having a genetic cardiomyopathy or arrhythmia. If only patients with a high suspicion of genetic cardiomyopathy or arrhythmia had been tested, at least 137 positive results (14.4%) would have been missed. If testing had been restricted to panels associated with the clinician-provided diagnostic indications, 75 of 689 positive results (10.9%) would have been missed; 27 of 75 findings (36.0%) gained through combined testing involved a cardiomyopathy indication with an arrhythmia genetic finding or vice versa. Cascade testing of family members yielded 402 of 958 positive results (42.0%). Overall, 2446 of 4782 patients (51.2%) had only variants of uncertain significance. Patients referred for arrhythmogenic cardiomyopathy had the lowest rate of variants of uncertain significance (81 of 176 patients [46.0%]), and patients referred for catecholaminergic polymorphic ventricular tachycardia had the highest rate (48 of 76 patients [63.2%]). Conclusions and Relevance In this study, comprehensive genetic testing for cardiomyopathies and arrhythmias revealed diagnoses that would have been missed by disease-specific testing. In addition, comprehensive testing provided diagnostic and prognostic information that could have potentially changed management and monitoring strategies for patients and their family members. These results suggest that this improved diagnostic yield may outweigh the burden of uncertain results.
Collapse
Affiliation(s)
- Lisa M Dellefave-Castillo
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Allison L Cirino
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts.,Institute of Health Professions, Massachusetts General Hospital, Boston
| | | | | | - John Garcia
- Invitae Corporation, San Francisco, California
| | | | | | - Ana Morales
- Invitae Corporation, San Francisco, California
| | | | | | | | | | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
14
|
Song Y, Zheng Z, Lian J. Deciphering Common Long QT Syndrome Using CRISPR/Cas9 in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Cardiovasc Med 2022; 9:889519. [PMID: 35647048 PMCID: PMC9136094 DOI: 10.3389/fcvm.2022.889519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
From carrying potentially pathogenic genes to severe clinical phenotypes, the basic research in the inherited cardiac ion channel disease such as long QT syndrome (LQTS) has been a significant challenge in explaining gene-phenotype heterogeneity. These have opened up new pathways following the parallel development and successful application of stem cell and genome editing technologies. Stem cell-derived cardiomyocytes and subsequent genome editing have allowed researchers to introduce desired genes into cells in a dish to replicate the disease features of LQTS or replace causative genes to normalize the cellular phenotype. Importantly, this has made it possible to elucidate potential genetic modifiers contributing to clinical heterogeneity and hierarchically manage newly identified variants of uncertain significance (VUS) and more therapeutic options to be tested in vitro. In this paper, we focus on and summarize the recent advanced application of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) combined with clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9 (CRISPR/Cas9) in the interpretation for the gene-phenotype relationship of the common LQTS and presence challenges, increasing our understanding of the effects of mutations and the physiopathological mechanisms in the field of cardiac arrhythmias.
Collapse
Affiliation(s)
- Yongfei Song
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
- Yongfei Song
| | - Zequn Zheng
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Jiangfang Lian
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
- *Correspondence: Jiangfang Lian
| |
Collapse
|
15
|
Zhu J, Chen Y, Cao X, Li Q, Shao L, Teng X, Yu Y, Shen Z. Generation of a Human iPSC (ICSSUi002-A) with MTHFR SNP (rs1801133, TT) from Thoracic Aortic Dissection Patient. Stem Cell Res 2022; 61:102753. [PMID: 35305471 DOI: 10.1016/j.scr.2022.102753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Thoracic aortic dissection is a devastating cardiovascular disease with an increasing annual incidence. The homozygous mutation in rs1801133 site has been accepted for decreased enzyme activity of mutant MTHFR protein, contributing to an accumulated homocysteine in blood. Recently, elevated homocysteine level is causally associated with an increased risk of cardiovascular disease. Conversely, the relationship between rs1801133 and thoracic aortic dissection is poorly understood. Here, the generated human induced pluripotent stem cell (iPSC) line provided a novel strategy for investigating the underlying mechanism of MTHFR mutation (rs1801133, TT) and its implication in the pathogenesis of thoracic aortic dissection.
Collapse
Affiliation(s)
- Jingze Zhu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215123, Jiangsu, China; Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215123, Jiangsu, China; Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiangyu Cao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215123, Jiangsu, China; Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qian Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215123, Jiangsu, China; Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaomei Teng
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - You Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215123, Jiangsu, China; Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215123, Jiangsu, China; Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|