1
|
Sibomana O. Genetic Diversity Landscape in African Population: A Review of Implications for Personalized and Precision Medicine. Pharmgenomics Pers Med 2024; 17:487-496. [PMID: 39555236 PMCID: PMC11566596 DOI: 10.2147/pgpm.s485452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Africa, a continent considered to be the cradle of human beings has the largest genetic diversity among its population than other continents. This review discusses the implications of this high African genetic diversity to the development of personalized and precision medicine. Methodology A comprehensive search across PubMed, Google Scholar, Science Direct, DOAJ, AJOL, and the Cochrane Library electronic databases and manual Google searches was conducted using key terms "genetics", "genetic diversity", "Africa", "precision medicine", and "personalized medicine". Updated original and review studies focusing on the implications of African high genetic diversity on personalized and precision medicine were included. Included studies were thematically synthesized to elucidate their positive or negative implications for personalized healthcare, aiming to foster informed clinical practice and scientific inquiry. Results African populations' high genetic diversity presents opportunities for personalized and precision medicine including improving pharmacogenomics, understanding gene interactions, discovering new variants, mapping disease genes, creating updated genomic reference panels, and validating biomarkers. However, challenges include underrepresentation in studies, scarcity of reference genomes, inaccuracy of genetic testing and interpretation, and ancestry misclassification. Addressing these requires the establishment of genomic research centers, increasing funding, creating biobanks and repositories, education, infrastructure, and international cooperation to enhance healthcare equity and outcomes through personalized and precision medicine. Conclusion High African genetic diversity presents both positive and negative implications for personalized and precision medicine. Deep further research is recommended to harness the challenges and use the opportunities to develop customized treatments.
Collapse
Affiliation(s)
- Olivier Sibomana
- Department of General Medicine and Surgery, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
2
|
Díaz-Peña R, Adelowo O. Advancing equity in genomic medicine for rheumatology. Nat Rev Rheumatol 2024; 20:595-596. [PMID: 39174746 DOI: 10.1038/s41584-024-01156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Affiliation(s)
- Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenómica-USC, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile.
| | - Olufemi Adelowo
- Rheumatology Unit, Department of Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| |
Collapse
|
3
|
Pearce K, Less S, Liebenberg AW, Benjeddou M. Intervertebral disc degenerative disease in South Africa: a case-control analysis of selected gene variants. Mol Biol Rep 2024; 51:992. [PMID: 39287911 PMCID: PMC11408536 DOI: 10.1007/s11033-024-09930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Intervertebral disc (IVD) degenerative disease is a multifactorial disease for which genetics plays an integral role. Several genes, and their variants, associated with the development and progression of IVD degenerative disease have been identified. While several studies have investigated these genes in Asian and European populations, no available evidence exists for the South African population. Therefore, this study aimed to investigate these parameters. METHODS AND RESULTS Biological samples were collected in the form of buccal swabs from patients and DNA was extracted using a standard salt-lysis protocol. DNA purity and quantity was assessed by spectrophotometry, and subsequent genotyping was performed using the MassARRAY®System IPLEX extension reaction. For associations between variants and the presence of IVD degenerative disease, odds ratios (OR), confidence intervals (CI), chi-squared analysis and logistic regression was calculated. Age and sex were adjusted for, and Bonferroni's correction was applied. This study found statistically significant associations for five of the evaluated single nucleotide polymorphisms (SNPs) with IVD degenerative disease, whereby IL-1α rs1304037 and rs1800587, ADAMTs-5 rs162509, and MMP-3 rs632478 demonstrated increased odds of a positive diagnosis for IVD degenerative disease, while decreased odds of IVD degenerative disease were seen for GDF-5 rs143383. CONCLUSION To the best of our knowledge, this study represents the first of its kind to investigate the association of gene variants associated with IVD degenerative disease within the South African population. This study has shown that 5 of these gene variants were significantly associated with the presence of IVD degenerative disease, reflecting their integral roles in development and possible progression of the disease.
Collapse
Affiliation(s)
- Keenau Pearce
- Precision Medicine Unit, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa.
| | - Stephanie Less
- Precision Medicine Unit, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | | | - Mongi Benjeddou
- Precision Medicine Unit, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
4
|
Sawchuk EA, Sirak KA, Manthi FK, Ndiema EK, Ogola CA, Prendergast ME, Reich D, Aluvaala E, Ayodo G, Badji L, Bird N, Black W, Fregel R, Gachihi N, Gibbon VE, Gidna A, Goldstein ST, Hamad R, Hassan HY, Hayes VM, Hellenthal G, Kebede S, Kurewa A, Kusimba C, Kyazike E, Lane PJ, MacEachern S, Massilani D, Mbua E, Morris AG, Mutinda C, M'Mbogori FN, Reynolds AW, Tishkoff S, Vilar M, Yimer G. Charting a landmark-driven path forward for population genetics and ancient DNA research in Africa. Am J Hum Genet 2024; 111:1243-1251. [PMID: 38996465 PMCID: PMC11267517 DOI: 10.1016/j.ajhg.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/14/2024] Open
Abstract
Population history-focused DNA and ancient DNA (aDNA) research in Africa has dramatically increased in the past decade, enabling increasingly fine-scale investigations into the continent's past. However, while international interest in human genomics research in Africa grows, major structural barriers limit the ability of African scholars to lead and engage in such research and impede local communities from partnering with researchers and benefitting from research outcomes. Because conversations about research on African people and their past are often held outside Africa and exclude African voices, an important step for African DNA and aDNA research is moving these conversations to the continent. In May 2023 we held the DNAirobi workshop in Nairobi, Kenya and here we synthesize what emerged most prominently in our discussions. We propose an ideal vision for population history-focused DNA and aDNA research in Africa in ten years' time and acknowledge that to realize this future, we need to chart a path connecting a series of "landmarks" that represent points of consensus in our discussions. These include effective communication across multiple audiences, reframed relationships and capacity building, and action toward structural changes that support science and beyond. We concluded there is no single path to creating an equitable and self-sustaining research ecosystem, but rather many possible routes linking these landmarks. Here we share our diverse perspectives as geneticists, anthropologists, archaeologists, museum curators, and educators to articulate challenges and opportunities for African DNA and aDNA research and share an initial map toward a more inclusive and equitable future.
Collapse
Affiliation(s)
- Elizabeth A Sawchuk
- Cleveland Museum of Natural History, Cleveland, OH, USA; Department of Anthropology, University of Alberta, Edmonton, AB, Canada; Department of Anthropology, Stony Brook University, Stony Brook, NY, USA.
| | - Kendra A Sirak
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Eva Aluvaala
- Kenya Medical Research Institute, Nairobi, Kenya
| | - George Ayodo
- Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Lamine Badji
- Cultural Engineering Research Unit (URICA) of IFAN-University Cheikh Anta Diop, Dakar, Senegal
| | - Nancy Bird
- UCL Genetics Institute and Research Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Wendy Black
- Archaeology Unit, Department of Research & Exhibitions, Iziko Museums of South Africa, Cape Town, South Africa; Human Evolution Research Institute, University of Cape Town, Cape Town, South Africa
| | - Rosa Fregel
- Evolution, Paleogenomics and Population Genetics Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Victoria E Gibbon
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Agness Gidna
- Department of Cultural Heritage, Ngorongoro Conservation Area Authority, Arusha, Tanzania
| | - Steven T Goldstein
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Reem Hamad
- Diversity and Diseases Group, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Hisham Y Hassan
- Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Kingdom of Bahrain
| | - Vanessa M Hayes
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia; School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Garrett Hellenthal
- UCL Genetics Institute and Research Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Solomon Kebede
- Authority for Research and Conservation of Cultural Heritage Ethiopia, Addis Ababa, Ethiopia
| | - Abdikadir Kurewa
- National Museums of Kenya, Nairobi, Kenya; Department of Anthropology, University of Florida, Gainesville, FL, USA
| | | | - Elizabeth Kyazike
- Department of History, Archaeology and Heritage Studies, Faculty of Arts and Humanities, Kyambogo University, Kampala, Uganda
| | - Paul J Lane
- Department of Archaeology, University of Cambridge, Cambridge, UK; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| | - Scott MacEachern
- Department of Archaeology and Anthropology, Duke Kunshan University, Kunshan, China
| | - Diyendo Massilani
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Emma Mbua
- National Museums of Kenya, Nairobi, Kenya
| | - Alan G Morris
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | | | | | - Austin W Reynolds
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sarah Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA; Penn Center for Global Genomics & Health Equity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Miguel Vilar
- Department of Anthropology, University of Maryland, College Park, MD, USA
| | - Getnet Yimer
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA; Penn Center for Global Genomics & Health Equity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Nzitakera A, Surwumwe JB, Ndoricyimpaye EL, Uwamungu S, Uwamariya D, Manirakiza F, Ndayisaba MC, Ntakirutimana G, Seminega B, Dusabejambo V, Rutaganda E, Kamali P, Ngabonziza F, Ishikawa R, Rugwizangoga B, Iwashita Y, Yamada H, Yoshimura K, Sugimura H, Shinmura K. The spectrum of TP53 mutations in Rwandan patients with gastric cancer. Genes Environ 2024; 46:8. [PMID: 38459566 PMCID: PMC10921722 DOI: 10.1186/s41021-024-00302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/18/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Gastric cancer is the sixth most frequently diagnosed cancer and third in causing cancer-related death globally. The most frequently mutated gene in human cancers is TP53, which plays a pivotal role in cancer initiation and progression. In Africa, particularly in Rwanda, data on TP53 mutations are lacking. Therefore, this study intended to obtain TP53 mutation status in Rwandan patients with gastric cancer. RESULTS Formalin-fixed paraffin-embedded tissue blocks of 95 Rwandan patients with histopathologically proven gastric carcinoma were obtained from the University Teaching Hospital of Kigali. After DNA extraction, all coding regions of the TP53 gene and the exon-intron boundary region of TP53 were sequenced using the Sanger sequencing. Mutated TP53 were observed in 24 (25.3%) of the 95 cases, and a total of 29 mutations were identified. These TP53 mutations were distributed between exon 4 and 8 and most of them were missense mutations (19/29; 65.5%). Immunohistochemical analysis for TP53 revealed that most of the TP53 missense mutations were associated with TP53 protein accumulation. Among the 29 mutations, one was novel (c.459_477delCGGCACCCGCGTCCGCGCC). This 19-bp deletion mutation in exon 5 caused the production of truncated TP53 protein (p.G154Wfs*10). Regarding the spectrum of TP53 mutations, G:C > A:T at CpG sites was the most prevalent (10/29; 34.5%) and G:C > T:A was the second most prevalent (7/29; 24.1%). Interestingly, when the mutation spectrum of TP53 was compared to three previous TP53 mutational studies on non-Rwandan patients with gastric cancer, G:C > T:A mutations were significantly more frequent in this study than in our previous study (p = 0.013), the TCGA database (p = 0.017), and a previous study on patients from Hong Kong (p = 0.006). Even after correcting for false discovery, statistical significance was observed. CONCLUSIONS Our results suggested that TP53 G:C > T:A transversion mutation in Rwandan patients with gastric cancer is more frequent than in non-Rwandan patients with gastric cancer, indicating at an alternative etiological and carcinogenic progression of gastric cancer in Rwanda.
Collapse
Affiliation(s)
- Augustin Nzitakera
- Department of Tumor Pathology, Hamamatsu University School of Medicine (HUSM), 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Jean Bosco Surwumwe
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - Ella Larissa Ndoricyimpaye
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Université Catholique de Louvain, Médecine Expérimentale, Brussels, 1348, Belgium
| | - Schifra Uwamungu
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-40530, Sweden
| | - Delphine Uwamariya
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Felix Manirakiza
- Department of Tumor Pathology, Hamamatsu University School of Medicine (HUSM), 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Marie Claire Ndayisaba
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Gervais Ntakirutimana
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Benoit Seminega
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - Vincent Dusabejambo
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - Eric Rutaganda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - Placide Kamali
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - François Ngabonziza
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - Rei Ishikawa
- Department of Tumor Pathology, Hamamatsu University School of Medicine (HUSM), 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Belson Rugwizangoga
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine (HUSM), 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine (HUSM), 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kimio Yoshimura
- Department of Health Policy and Management, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine (HUSM), 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan.
- Sasaki Institute Sasaki Foundation, 2-2 Kanda Surugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan.
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine (HUSM), 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
6
|
Owolabi P, Adam Y, Adebiyi E. Personalizing medicine in Africa: current state, progress and challenges. Front Genet 2023; 14:1233338. [PMID: 37795248 PMCID: PMC10546210 DOI: 10.3389/fgene.2023.1233338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
Personalized medicine has been identified as a powerful tool for addressing the myriad of health issues facing different health systems globally. Although recent studies have expanded our understanding of how different factors such as genetics and the environment play significant roles in affecting the health of individuals, there are still several other issues affecting their translation into personalizing health interventions globally. Since African populations have demonstrated huge genetic diversity, there is a significant need to apply the concepts of personalized medicine to overcome various African-specific health challenges. Thus, we review the current state, progress, and challenges facing the adoption of personalized medicine in Africa with a view to providing insights to critical stakeholders on the right approach to deploy.
Collapse
Affiliation(s)
- Paul Owolabi
- Covenant Applied Informatics and Communication, Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Department of Computer and Information Science, Covenant University, Ota, Ogun State, Nigeria
| | - Yagoub Adam
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Ezekiel Adebiyi
- Covenant Applied Informatics and Communication, Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Department of Computer and Information Science, Covenant University, Ota, Ogun State, Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Applied Bioinformatics Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Scholtz D, Jooste T, Möller M, van Coller A, Kinnear C, Glanzmann B. Challenges of Diagnosing Mendelian Susceptibility to Mycobacterial Diseases in South Africa. Int J Mol Sci 2023; 24:12119. [PMID: 37569495 PMCID: PMC10418440 DOI: 10.3390/ijms241512119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Inborn errors of immunity (IEI) are genetic disorders with extensive clinical presentations. They can range from increased susceptibility to infections to significant immune dysregulation that results in immune impairment. While IEI cases are individually rare, they collectively represent a significant burden of disease, especially in developing countries such as South Africa, where infectious diseases like tuberculosis (TB) are endemic. This is particularly alarming considering that certain high penetrance mutations that cause IEI, such as Mendelian Susceptibility to Mycobacterial Disease (MSMD), put individuals at higher risk for developing TB and other mycobacterial diseases. MSMD patients in South Africa often present with different clinical phenotypes than those from the developed world, therefore complicating the identification of disease-associated variants in this setting with a high burden of infectious diseases. The lack of available data, limited resources, as well as variability in clinical phenotype are the reasons many MSMD cases remain undetected or misdiagnosed. This article highlights the challenges in diagnosing MSMD in South Africa and proposes the use of transcriptomic analysis as a means of potentially identifying dysregulated pathways in affected African populations.
Collapse
Affiliation(s)
- Denise Scholtz
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; (D.S.); (T.J.); (M.M.); (C.K.)
| | - Tracey Jooste
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; (D.S.); (T.J.); (M.M.); (C.K.)
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; (D.S.); (T.J.); (M.M.); (C.K.)
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Ansia van Coller
- South African Medical Research Council (SAMRC) Genomics Platform, Cape Town 7505, South Africa;
| | - Craig Kinnear
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; (D.S.); (T.J.); (M.M.); (C.K.)
- South African Medical Research Council (SAMRC) Genomics Platform, Cape Town 7505, South Africa;
| | - Brigitte Glanzmann
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; (D.S.); (T.J.); (M.M.); (C.K.)
- South African Medical Research Council (SAMRC) Genomics Platform, Cape Town 7505, South Africa;
| |
Collapse
|
8
|
WGS Data Collections: How Do Genomic Databases Transform Medicine? Int J Mol Sci 2023; 24:ijms24033031. [PMID: 36769353 PMCID: PMC9917848 DOI: 10.3390/ijms24033031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
As a scientific community we assumed that exome sequencing will elucidate the basis of most heritable diseases. However, it turned out it was not the case; therefore, attention has been increasingly focused on the non-coding sequences that encompass 98% of the genome and may play an important regulatory function. The first WGS-based datasets have already been released including underrepresented populations. Although many databases contain pooled data from several cohorts, recently the importance of local databases has been highlighted. Genomic databases are not only collecting data but may also contribute to better diagnostics and therapies. They may find applications in population studies, rare diseases, oncology, pharmacogenetics, and infectious and inflammatory diseases. Further data may be analysed with Al technologies and in the context of other omics data. To exemplify their utility, we put a highlight on the Polish genome database and its practical application.
Collapse
|
9
|
Zhang C, Verma A, Feng Y, Melo MCR, McQuillan M, Hansen M, Lucas A, Park J, Ranciaro A, Thompson S, Rubel MA, Campbell MC, Beggs W, Hirbo J, Wata Mpoloka S, George Mokone G, Nyambo T, Wolde Meskel D, Belay G, Fokunang C, Njamnshi AK, Omar SA, Williams SM, Rader DJ, Ritchie MD, de la Fuente-Nunez C, Sirugo G, Tishkoff SA. Impact of natural selection on global patterns of genetic variation and association with clinical phenotypes at genes involved in SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2022; 119:e2123000119. [PMID: 35580180 PMCID: PMC9173769 DOI: 10.1073/pnas.2123000119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/29/2022] [Indexed: 01/09/2023] Open
Abstract
Human genomic diversity has been shaped by both ancient and ongoing challenges from viruses. The current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating impact on population health. However, genetic diversity and evolutionary forces impacting host genes related to SARS-CoV-2 infection are not well understood. We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection (angiotensin converting enzyme 2 [ACE2], transmembrane protease serine 2 [TMPRSS2], dipeptidyl peptidase 4 [DPP4], and lymphocyte antigen 6 complex locus E [LY6E]). We analyzed data from 2,012 ethnically diverse Africans and 15,977 individuals of European and African ancestry with electronic health records and integrated with global data from the 1000 Genomes Project. At ACE2, we identified 41 nonsynonymous variants that were rare in most populations, several of which impact protein function. However, three nonsynonymous variants (rs138390800, rs147311723, and rs145437639) were common among central African hunter-gatherers from Cameroon (minor allele frequency 0.083 to 0.164) and are on haplotypes that exhibit signatures of positive selection. We identify signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2, we identified 13 amino acid changes that are adaptive and specific to the human lineage compared with the chimpanzee genome. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19. Our study provides insights into global variation at host genes related to SARS-CoV-2 infection, which have been shaped by natural selection in some populations, possibly due to prior viral infections.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Yuanqing Feng
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Marcelo C. R. Melo
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael McQuillan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Matthew Hansen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Anastasia Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alessia Ranciaro
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Simon Thompson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Meagan A. Rubel
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael C. Campbell
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - William Beggs
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jibril Hirbo
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | | | | | | | - Thomas Nyambo
- Department of Biochemistry, Kampala International University in Tanzania, Dar es Salaam, Tanzania
| | - Dawit Wolde Meskel
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gurja Belay
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Charles Fokunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Alfred K. Njamnshi
- Department of Neurology, Central Hospital Yaoundé, Yaoundé, Cameroon
- Brain Research Africa Initiative, Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Sabah A. Omar
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Scott M. Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Daniel J. Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Giorgio Sirugo
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Sarah A. Tishkoff
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
- Center for Global Genomics and Health Equity, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
10
|
Brand CM, Colbran LL, Capra JA. Predicting Archaic Hominin Phenotypes from Genomic Data. Annu Rev Genomics Hum Genet 2022; 23:591-612. [PMID: 35440148 DOI: 10.1146/annurev-genom-111521-121903] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient DNA provides a powerful window into the biology of extant and extinct species, including humans' closest relatives: Denisovans and Neanderthals. Here, we review what is known about archaic hominin phenotypes from genomic data and how those inferences have been made. We contend that understanding the influence of variants on lower-level molecular phenotypes-such as gene expression and protein function-is a promising approach to using ancient DNA to learn about archaic hominin traits. Molecular phenotypes have simpler genetic architectures than organism-level complex phenotypes, and this approach enables moving beyond association studies by proposing hypotheses about the effects of archaic variants that are testable in model systems. The major challenge to understanding archaic hominin phenotypes is broadening our ability to accurately map genotypes to phenotypes, but ongoing advances ensure that there will be much more to learn about archaic hominin phenotypes from their genomes. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Colin M Brand
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Capra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| |
Collapse
|