1
|
Wan T, Zhuo L, Pan Z, Chen RY, Ma H, Cao Y, Wang J, Wang JJ, Hu WF, Lai YJ, Hayat M, Li YZ. Dosage constraint of the ribosome-associated molecular chaperone drives the evolution and fates of its duplicates in bacteria. mBio 2024:e0199424. [PMID: 39373534 DOI: 10.1128/mbio.01994-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024] Open
Abstract
Gene duplication events happen prevalently during evolution, and the mechanisms governing the loss or retention of duplicated genes are mostly elusive. Our genome scanning analysis revealed that trigger factor (TF), the one and only bacterial ribosome-associated molecular chaperone, is singly copied in virtually every bacterium except for a very few that possess two or more copies. However, even in these exceptions, only one complete TF copy exists, while other homologs lack the N-terminal domain that contains the conserved ribosome binding site (RBS) motif. Consistently, we demonstrated that the overproduction of the N-terminal complete TF proteins is detrimental to the cell, which can be rescued by removing the N-terminal domain. Our findings also indicated that TF overproduction leads to a decrease in protein productivity and profile changes in proteome due to its characteristic ribosome binding and holdase activities. Additionally, these N-terminal deficient TF homologs in bacteria with multiple TF homologs partition the function of TF via subfunctionalization. Our results revealed that TF is subjected to a dosage constraint that originates from its own intrinsic functions, which may drive the evolution and fates of duplicated TFs in bacteria. IMPORTANCE Gene duplication events presumably occur in tig, which encodes the ribosome-associated molecular chaperone trigger factor (TF). However, TF is singly copied in virtually every bacterium, and these exceptions with multiple TF homologs always retain only one complete copy while other homologs lack the N-terminal domain. Here, we reveal the manner and mechanism underlying the evolution and fates of TF duplicates in bacteria. We discovered that the mutation-to-loss or retention-to-sub/neofunctionalization of TF duplicates is associated with the dosage constraint of N-terminal complete TF. The dosage constraint of TF is attributed to its characteristic ribosome binding and substrate-holding activities, causing a decrease in protein productivity and profile changes in cellular proteome.
Collapse
Affiliation(s)
- Tianyu Wan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
- Shenzhen Research Institute, Shandong University, Shenzhen, China
- Suzhou Research Institute, Shandong University, Suzhou, China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Rui-Yun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Han Ma
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ying Cao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jianing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-Jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Wei-Feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Jun Lai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Muhammad Hayat
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Ghasemieshkaftaki M, Vasquez I, Eshraghi A, Gamperl AK, Santander J. Comparative Genomic Analysis of a Novel Vibrio sp. Isolated from an Ulcer Disease Event in Atlantic Salmon ( Salmo salar). Microorganisms 2023; 11:1736. [PMID: 37512908 PMCID: PMC10385127 DOI: 10.3390/microorganisms11071736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Ulcer diseases are a recalcitrant issue at Atlantic salmon (Salmo salar) aquaculture cage-sites across the North Atlantic region. Classical ulcerative outbreaks (also called winter ulcer disease) refer to a skin infection caused by Moritella viscosa. However, several bacterial species are frequently isolated from ulcer disease events, and it is unclear if other undescribed pathogens are implicated in ulcer disease in Atlantic salmon. Although different polyvalent vaccines are used against M. viscosa, ulcerative outbreaks are continuously reported in Atlantic salmon in Canada. This study analyzed the phenotypical and genomic characteristics of Vibrio sp. J383 isolated from internal organs of vaccinated farmed Atlantic salmon displaying clinical signs of ulcer disease. Infection assays conducted on vaccinated farmed Atlantic salmon and revealed that Vibrio sp. J383 causes a low level of mortalities when administered intracelomic at doses ranging from 107-108 CFU/dose. Vibrio sp. J383 persisted in the blood of infected fish for at least 8 weeks at 10 and 12 °C. Clinical signs of this disease were greatest 12 °C, but no mortality and bacteremia were observed at 16 °C. The Vibrio sp. J383 genome (5,902,734 bp) has two chromosomes of 3,633,265 bp and 2,068,312 bp, respectively, and one large plasmid of 201,166 bp. Phylogenetic and comparative analyses indicated that Vibrio sp. J383 is related to V. splendidus, with 93% identity. Furthermore, the phenotypic analysis showed that there were significant differences between Vibrio sp. J383 and other Vibrio spp, suggesting J383 is a novel Vibrio species adapted to cold temperatures.
Collapse
Affiliation(s)
- Maryam Ghasemieshkaftaki
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Aria Eshraghi
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL 32608, USA
| | - Anthony Kurt Gamperl
- Fish Physiology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
3
|
Nikolaidis M, Hesketh A, Frangou N, Mossialos D, Van de Peer Y, Oliver SG, Amoutzias GD. A panoramic view of the genomic landscape of the genus Streptomyces. Microb Genom 2023; 9:mgen001028. [PMID: 37266990 PMCID: PMC10327506 DOI: 10.1099/mgen.0.001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/05/2023] [Indexed: 06/03/2023] Open
Abstract
We delineate the evolutionary plasticity of the ecologically and biotechnologically important genus Streptomyces, by analysing the genomes of 213 species. Streptomycetes genomes demonstrate high levels of internal homology, whereas the genome of their last common ancestor was already complex. Importantly, we identify the species-specific fingerprint proteins that characterize each species. Even among closely related species, we observed high interspecies variability of chromosomal protein-coding genes, species-level core genes, accessory genes and fingerprints. Notably, secondary metabolite biosynthetic gene clusters (smBGCs), carbohydrate-active enzymes (CAZymes) and protein-coding genes bearing the rare TTA codon demonstrate high intraspecies and interspecies variability, which emphasizes the need for strain-specific genomic mining. Highly conserved genes, such as those specifying genus-level core proteins, tend to occur in the central region of the chromosome, whereas those encoding proteins with evolutionarily volatile species-level fingerprints, smBGCs, CAZymes and TTA-codon-bearing genes are often found towards the ends of the linear chromosome. Thus, the chromosomal arms emerge as the part of the genome that is mainly responsible for rapid adaptation at the species and strain level. Finally, we observed a moderate, but statistically significant, correlation between the total number of CAZymes and three categories of smBGCs (siderophores, e-Polylysin and type III lanthipeptides) that are related to competition among bacteria.
Collapse
Affiliation(s)
- Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Andrew Hesketh
- School of Applied Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Nikoletta Frangou
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9054 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9054 Ghent, Belgium
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
4
|
Titus-McQuillan JE, Nanni AV, McIntyre LM, Rogers RL. Estimating transcriptome complexities across eukaryotes. BMC Genomics 2023; 24:254. [PMID: 37170194 PMCID: PMC10173493 DOI: 10.1186/s12864-023-09326-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Genomic complexity is a growing field of evolution, with case studies for comparative evolutionary analyses in model and emerging non-model systems. Understanding complexity and the functional components of the genome is an untapped wealth of knowledge ripe for exploration. With the "remarkable lack of correspondence" between genome size and complexity, there needs to be a way to quantify complexity across organisms. In this study, we use a set of complexity metrics that allow for evaluating changes in complexity using TranD. RESULTS We ascertain if complexity is increasing or decreasing across transcriptomes and at what structural level, as complexity varies. In this study, we define three metrics - TpG, EpT, and EpG- to quantify the transcriptome's complexity that encapsulates the dynamics of alternative splicing. Here we compare complexity metrics across 1) whole genome annotations, 2) a filtered subset of orthologs, and 3) novel genes to elucidate the impacts of orthologs and novel genes in transcript model analysis. Effective Exon Number (EEN) issued to compare the distribution of exon sizes within transcripts against random expectations of uniform exon placement. EEN accounts for differences in exon size, which is important because novel gene differences in complexity for orthologs and whole-transcriptome analyses are biased towards low-complexity genes with few exons and few alternative transcripts. CONCLUSIONS With our metric analyses, we are able to quantify changes in complexity across diverse lineages with greater precision and accuracy than previous cross-species comparisons under ortholog conditioning. These analyses represent a step toward whole-transcriptome analysis in the emerging field of non-model evolutionary genomics, with key insights for evolutionary inference of complexity changes on deep timescales across the tree of life. We suggest a means to quantify biases generated in ortholog calling and correct complexity analysis for lineage-specific effects. With these metrics, we directly assay the quantitative properties of newly formed lineage-specific genes as they lower complexity.
Collapse
Affiliation(s)
- James E Titus-McQuillan
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Adalena V Nanni
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Rebekah L Rogers
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
5
|
Sazonova OI, Ivanova AA, Delegan YA, Streletskii RA, Vershinina DD, Sokolov SL, Vetrova AA. Characterization and Genomic Analysis of the Naphthalene-Degrading Delftia tsuruhatensis ULwDis3 Isolated from Seawater. Microorganisms 2023; 11:microorganisms11041092. [PMID: 37110515 PMCID: PMC10146988 DOI: 10.3390/microorganisms11041092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Strains of the genus Delftia are poorly studied microorganisms. In this work, the complete genome of the naphthalene-degrading Delftia tsuruhatensis strain ULwDis3 isolated from seawater of the Gulf of Finland of the Baltic Sea was assembled. For the first time, genes encoding naphthalene cleavage pathways via salicylate and gentisate were identified in a strain of the genus Delftia. The genes are part of one operon (nag genes). Three open reading frames (ORFs) were found in the genome of D. tsuruhatensis strain ULwDis3 that encode gentisate 1.2-dioxygenase. One of the ORFs is part of the nag operon. The physiological and biochemical characteristics of the strain ULwDis3 when cultured in mineral medium with naphthalene as the sole source of carbon and energy were also studied. It was found that after 22 h of growth, the strain stopped consuming naphthalene, and at the same time, naphthalene 1.2-dioxygenase and salicylate 5-hydroxylase activities were not detected. Later, a decrease in the number of living cells and the death of the culture were observed. Gentisate 1.2-dioxygenase activity was detected from the time of gentisate formation until culture death.
Collapse
Affiliation(s)
- Olesya I Sazonova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| | - Anastasia A Ivanova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| | - Yanina A Delegan
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Rostislav A Streletskii
- Laboratory of Ecological Soil Science, Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Diana D Vershinina
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
- Federal State Budgetary Educational Institution of Higher Education Pushchino State Natural Science Institute, 142290 Pushchino, Russia
| | - Sergei L Sokolov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| | - Anna A Vetrova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| |
Collapse
|
6
|
Exopolysaccharide Biosynthesis in Rhizobium leguminosarum bv. trifolii Requires a Complementary Function of Two Homologous Glycosyltransferases PssG and PssI. Int J Mol Sci 2023; 24:ijms24044248. [PMID: 36835659 PMCID: PMC9961541 DOI: 10.3390/ijms24044248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
The Pss-I region of Rhizobium leguminosarum bv. trifolii TA1 comprises more than 20 genes coding for glycosyltransferases, modifying enzymes, and polymerization/export proteins, altogether determining the biosynthesis of symbiotically relevant exopolysaccharides. In this study, the role of homologous PssG and PssI glycosyltransferases in exopolysaccharide subunit synthesis were analyzed. It was shown that the glycosyltransferase-encoding genes of the Pss-I region were part of a single large transcriptional unit with potential downstream promoters activated in specific conditions. The ΔpssG and ΔpssI mutants produced significantly lower amounts of the exopolysaccharide, while the double deletion mutant ΔpssIΔpssG produced no exopolysaccharide. Complementation of double mutation with individual genes restored exopolysaccharide synthesis, but only to the level similar to that observed for the single ΔpssI or ΔpssG mutants, indicating that PssG and PssI serve complementary functions in the process. PssG and PssI interacted with each other in vivo and in vitro. Moreover, PssI displayed an expanded in vivo interaction network comprising other GTs involved in subunit assembly and polymerization/export proteins. PssG and PssI proteins were shown to interact with the inner membrane through amphipathic helices at their C-termini, and PssG also required other proteins involved in exopolysaccharide synthesis to localize in the membrane protein fraction.
Collapse
|
7
|
Krüger A, Frunzke J. A pseudokinase version of the histidine kinase ChrS promotes high heme tolerance of Corynebacterium glutamicum. Front Microbiol 2022; 13:997448. [PMID: 36160252 PMCID: PMC9491836 DOI: 10.3389/fmicb.2022.997448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Heme is an essential cofactor for almost all living cells by acting as prosthetic group for various proteins or serving as alternative iron source. However, elevated levels are highly toxic for cells. Several corynebacterial species employ two paralogous, heme-responsive two-component systems (TCS), ChrSA and HrrSA, to cope with heme stress and to maintain intracellular heme homeostasis. Significant cross-talk at the level of phosphorylation between these systems was previously demonstrated. In this study, we have performed a laboratory evolution experiment to adapt Corynebacterium glutamicum to increasing heme levels. Isolated strains showed a highly increased tolerance to heme growing at concentrations of up to 100 μM. The strain featuring the highest heme tolerance harbored a frameshift mutation in the catalytical and ATPase-domain (CA-domain) of the chrS gene, converting it into a catalytically-inactive pseudokinase (ChrS_CA-fs). Reintroduction of the respective mutation in the parental C. glutamicum strain confirmed high heme tolerance and showed a drastic upregulation of hrtBA encoding a heme export system, conserved in Firmicutes and Actinobacteria. The strain encoding the ChrS pseudokinase variant showed significantly higher heme tolerance than a strain lacking chrS. Mutational analysis revealed that induction of hrtBA in the evolved strain is solely mediated via the cross-phosphorylation of the response regulator (RR) ChrA by the kinase HrrS and BACTH assays revealed the formation of heterodimers between HrrS and ChrS. Overall, our results emphasize an important role of the ChrS pseudokinase in high heme tolerance of the evolved C. glutamicum and demonstrate the promiscuity in heme-dependent signaling of the paralogous two-component systems facilitating fast adaptation to changing environmental conditions.
Collapse
|
8
|
Chen K, Xu X, Yang M, Liu T, Liu B, Zhu J, Wang B, Jiang J. Genetic redundancy of 4-hydroxybenzoate 3-hydroxylase genes ensures the catabolic safety of Pigmentiphaga sp. H8 in 3-bromo-4-hydroxybenzoate-contaminated habitats. Environ Microbiol 2022; 24:5123-5138. [PMID: 35876302 DOI: 10.1111/1462-2920.16141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
Abstract
Genetic redundancy is prevalent in organisms and plays important roles in the evolution of biodiversity and adaptation to environmental perturbation. However, selective advantages of genetic redundancy in overcoming metabolic disturbance due to structural analogues have received little attention. Here, functional divergence of the three 4-hydroxybenzoate 3-hydroxylase (PHBH) genes (phbh1~3) was found in Pigmentiphaga sp. strain H8. The genes phbh1/phbh2 were responsible for 3-bromo-4-hydroxybenzoate (3-Br-4-HB, an anthropogenic pollutant) catabolism, whereas phbh3 was primarily responsible for 4-hydroxybenzoate (4-HB, a natural intermediate of lignin) catabolism. 3-Br-4-HB inhibited 4-HB catabolism by competitively binding PHBH3, and was toxic to strain H8 cells especially at high concentrations. The existence of phbh1/phbh2 not only enabled strain H8 to utilize 3-Br-4-HB, but also ensured the catabolic safety of 4-HB. Molecular docking and site-directed mutagenesis analyses revealed that Val199 and Phe384 of PHBH1/PHBH2 were required for the hydroxylation activity towards 3-Br-4-HB. Phylogenetic analysis indicated that phbh1 and phbh2 originated from a common ancestor and evolved specifically in strain H8 to adapt to 3-Br-4-HB-contaminated habitats, whereas phbh3 evolved independently. This study deepens our understanding of selective advantages of genetic redundancy in prokaryote's metabolic robustness and reveals the factors driving the divergent evolution of redundant genes in adaptation to environmental perturbation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kai Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Xihui Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Muji Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Tairong Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Bin Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jianchun Zhu
- Laboratory Centre of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| |
Collapse
|
9
|
Onetto CA, Costello PJ, Kolouchova R, Jordans C, McCarthy J, Schmidt SA. Analysis of Transcriptomic Response to SO 2 by Oenococcus oeni Growing in Continuous Culture. Microbiol Spectr 2021; 9:e0115421. [PMID: 34612664 PMCID: PMC8510247 DOI: 10.1128/spectrum.01154-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
To successfully complete malolactic fermentation (MLF), Oenococcus oeni must overcome wine stress conditions of low pH, high ethanol, and the presence of SO2. Failure to complete MLF may result in detrimental effects to the quality and stability of the resulting wines. Research efforts to date have focused on elucidating the mechanisms and genetic features that confer the ability to withstand low pH and high ethanol concentrations on O. oeni; however, the responses to SO2 stress are less well defined. This study focused on characterizing the transcriptional response of O. oeni to SO2 challenge during cultivation in a continuous system at wine-like pH (3.5). This experimental design allowed the precise discrimination of transcriptional changes linked to SO2 stress from responses associated with growth stage and cultivation parameters. Differential gene expression analysis revealed major transcriptional changes following SO2 exposure and suggested that this compound primarily interacts with intracellular proteins, DNA, and the cell envelope of O. oeni. The molecular chaperone hsp20, which has a demonstrated function in the heat, ethanol, and acid stress response, was highly upregulated, confirming its additional role in the response of this species to SO2 stress. This work also reports the first nanopore-based complete genome assemblies for O. oeni. IMPORTANCE Malolactic fermentation is an indispensable step in the elaboration of most wines and is generally performed by Oenococcus oeni, a Gram-positive heterofermentative lactic acid bacterium species. While O. oeni is tolerant to many of the wine stresses, including low pH and high ethanol concentrations, it has high sensitivity to SO2, an antiseptic and antioxidant compound regularly used in winemaking. Understanding the physiological changes induced in O. oeni by SO2 stress is essential for the development of more robust starter cultures and methods for their use. This study describes the main transcriptional changes induced by SO2 stress in the wine bacterium O. oeni and provides foundational understanding on how this compound interacts with the cellular components and the induced protective mechanisms of this species.
Collapse
Affiliation(s)
- Cristobal A. Onetto
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Peter J. Costello
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Radka Kolouchova
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Charlotte Jordans
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Jane McCarthy
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Simon A. Schmidt
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| |
Collapse
|
10
|
Tria FDK, Martin WF. Gene Duplications Are At Least 50 Times Less Frequent than Gene Transfers in Prokaryotic Genomes. Genome Biol Evol 2021; 13:6380140. [PMID: 34599337 PMCID: PMC8536544 DOI: 10.1093/gbe/evab224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
The contribution of gene duplications to the evolution of eukaryotic genomes is well studied. By contrast, studies of gene duplications in prokaryotes are scarce and generally limited to a handful of genes or careful analysis of a few prokaryotic lineages. Systematic broad-scale studies of prokaryotic genomes that sample available data are lacking, leaving gaps in our understanding of the contribution of gene duplications as a source of genetic novelty in the prokaryotic world. Here, we report conservative and robust estimates for the frequency of recent gene duplications within prokaryotic genomes relative to recent lateral gene transfer (LGT), as mechanisms to generate multiple copies of related sequences in the same genome. We obtain our estimates by focusing on evolutionarily recent events among 5,655 prokaryotic genomes, thereby avoiding vagaries of deep phylogenetic inference and confounding effects of ancient events and differential loss. We find that recent, genome-specific gene duplications are at least 50 times less frequent and probably 100 times less frequent than recent, genome-specific, gene acquisitions via LGT. The frequency of gene duplications varies across lineages and functional categories. The findings improve our understanding of genome evolution in prokaryotes and have far-reaching implications for evolutionary models that entail LGT to gene duplications ratio as a parameter.
Collapse
Affiliation(s)
- Fernando D K Tria
- Department of Biology, Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - William F Martin
- Department of Biology, Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Pal S, Sharma G, Subramanian S. Complete genome sequence and identification of polyunsaturated fatty acid biosynthesis genes of the myxobacterium Minicystis rosea DSM 24000 T. BMC Genomics 2021; 22:655. [PMID: 34511070 PMCID: PMC8436480 DOI: 10.1186/s12864-021-07955-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Background Myxobacteria harbor numerous biosynthetic gene clusters that can produce a diverse range of secondary metabolites. Minicystis rosea DSM 24000T is a soil-dwelling myxobacterium belonging to the suborderSorangiineae and family Polyangiaceae and is known to produce various secondary metabolites as well as polyunsaturated fatty acids (PUFAs). Here, we use whole-genome sequencing to explore the diversity of biosynthetic gene clusters in M. rosea. Results Using PacBio sequencing technology, we assembled the 16.04 Mbp complete genome of M. rosea DSM 24000T, the largest bacterial genome sequenced to date. About 44% of its coding potential represents paralogous genes predominantly associated with signal transduction, transcriptional regulation, and protein folding. These genes are involved in various essential functions such as cellular organization, diverse niche adaptation, and bacterial cooperation, and enable social behavior like gliding motility, sporulation, and predation, typical of myxobacteria. A profusion of eukaryotic-like kinases (353) and an elevated ratio of phosphatases (8.2/1) in M. rosea as compared to other myxobacteria suggest gene duplication as one of the primary modes of genome expansion. About 7.7% of the genes are involved in the biosynthesis of a diverse array of secondary metabolites such as polyketides, terpenes, and bacteriocins. Phylogeny of the genes involved in PUFA biosynthesis (pfa) together with the conserved synteny of the complete pfa gene cluster suggests acquisition via horizontal gene transfer from Actinobacteria. Conclusion Overall, this study describes the complete genome sequence of M. rosea, comparative genomic analysis to explore the putative reasons for its large genome size, and explores the secondary metabolite potential, including the biosynthesis of polyunsaturated fatty acids. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07955-x.
Collapse
Affiliation(s)
- Shilpee Pal
- CSIR-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Gaurav Sharma
- CSIR-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | | |
Collapse
|
12
|
Garber AI, Kupper M, Laetsch DR, Weldon SR, Ladinsky MS, Bjorkman PJ, McCutcheon JP. The Evolution of Interdependence in a Four-Way Mealybug Symbiosis. Genome Biol Evol 2021; 13:evab123. [PMID: 34061185 PMCID: PMC8331144 DOI: 10.1093/gbe/evab123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/03/2023] Open
Abstract
Mealybugs are insects that maintain intracellular bacterial symbionts to supplement their nutrient-poor plant sap diets. Some mealybugs have a single betaproteobacterial endosymbiont, a Candidatus Tremblaya species (hereafter Tremblaya) that alone provides the insect with its required nutrients. Other mealybugs have two nutritional endosymbionts that together provision these same nutrients, where Tremblaya has gained a gammaproteobacterial partner that resides in its cytoplasm. Previous work had established that Pseudococcus longispinus mealybugs maintain not one but two species of gammaproteobacterial endosymbionts along with Tremblaya. Preliminary genomic analyses suggested that these two gammaproteobacterial endosymbionts have large genomes with features consistent with a relatively recent origin as insect endosymbionts, but the patterns of genomic complementarity between members of the symbiosis and their relative cellular locations were unknown. Here, using long-read sequencing and various types of microscopy, we show that the two gammaproteobacterial symbionts of P. longispinus are mixed together within Tremblaya cells, and that their genomes are somewhat reduced in size compared with their closest nonendosymbiotic relatives. Both gammaproteobacterial genomes contain thousands of pseudogenes, consistent with a relatively recent shift from a free-living to an endosymbiotic lifestyle. Biosynthetic pathways of key metabolites are partitioned in complex interdependent patterns among the two gammaproteobacterial genomes, the Tremblaya genome, and horizontally acquired bacterial genes that are encoded on the mealybug nuclear genome. Although these two gammaproteobacterial endosymbionts have been acquired recently in evolutionary time, they have already evolved codependencies with each other, Tremblaya, and their insect host.
Collapse
Affiliation(s)
- Arkadiy I Garber
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Maria Kupper
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephanie R Weldon
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Mark S Ladinsky
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Pamela J Bjorkman
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
13
|
Álvarez-Lugo A, Becerra A. The Role of Gene Duplication in the Divergence of Enzyme Function: A Comparative Approach. Front Genet 2021; 12:641817. [PMID: 34335678 PMCID: PMC8318041 DOI: 10.3389/fgene.2021.641817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Gene duplication is a crucial process involved in the appearance of new genes and functions. It is thought to have played a major role in the growth of enzyme families and the expansion of metabolism at the biosphere's dawn and in recent times. Here, we analyzed paralogous enzyme content within each of the seven enzymatic classes for a representative sample of prokaryotes by a comparative approach. We found a high ratio of paralogs for three enzymatic classes: oxidoreductases, isomerases, and translocases, and within each of them, most of the paralogs belong to only a few subclasses. Our results suggest an intricate scenario for the evolution of prokaryotic enzymes, involving different fates for duplicated enzymes fixed in the genome, where around 20-40% of prokaryotic enzymes have paralogs. Intracellular organisms have a lesser ratio of duplicated enzymes, whereas free-living enzymes show the highest ratios. We also found that phylogenetically close phyla and some unrelated but with the same lifestyle share similar genomic and biochemical traits, which ultimately support the idea that gene duplication is associated with environmental adaptation.
Collapse
Affiliation(s)
- Alejandro Álvarez-Lugo
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
14
|
Copley SD. Evolution of new enzymes by gene duplication and divergence. FEBS J 2021; 287:1262-1283. [PMID: 32250558 DOI: 10.1111/febs.15299] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022]
Abstract
Thousands of new metabolic and regulatory enzymes have evolved by gene duplication and divergence since the dawn of life. New enzyme activities often originate from promiscuous secondary activities that have become important for fitness due to a change in the environment or a mutation. Mutations that make a promiscuous activity physiologically relevant can occur in the gene encoding the promiscuous enzyme itself, but can also occur elsewhere, resulting in increased expression of the enzyme or decreased competition between the native and novel substrates for the active site. If a newly useful activity is inefficient, gene duplication/amplification will set the stage for divergence of a new enzyme. Even a few mutations can increase the efficiency of a new activity by orders of magnitude. As efficiency increases, amplified gene arrays will shrink to provide two alleles, one encoding the original enzyme and one encoding the new enzyme. Ultimately, genomic rearrangements eliminate co-amplified genes and move newly evolved paralogs to a distant region of the genome.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, CO, USA
| |
Collapse
|
15
|
Hayashi S, Tanaka S, Takao S, Kobayashi S, Suyama K, Itoh K. Multiple Gene Clusters and Their Role in the Degradation of Chlorophenoxyacetic Acids in Bradyrhizobium sp. RD5-C2 Isolated from Non-Contaminated Soil. Microbes Environ 2021; 36:ME21016. [PMID: 34511574 PMCID: PMC8446748 DOI: 10.1264/jsme2.me21016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/10/2021] [Indexed: 11/12/2022] Open
Abstract
Bradyrhizobium sp. RD5-C2, isolated from soil that is not contaminated with 2,4-dichlorophenoxyacetic acid (2,4-D), degrades the herbicides 2,4-D and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). It possesses tfdAα and cadA (designated as cadA1), which encode 2,4-D dioxygenase and the oxygenase large subunit, respectively. In the present study, the genome of Bradyrhizobium sp. RD5-C2 was sequenced and a second cadA gene (designated as cadA2) was identified. The two cadA genes belonged to distinct clusters comprising the cadR1A1B1K1C1 and cadR2A2B2C2K2S genes. The proteins encoded by the cad1 cluster exhibited high amino acid sequence similarities to those of other 2,4-D degraders, while Cad2 proteins were more similar to those of non-2,4-D degraders. Both cad clusters were capable of degrading 2,4-D and 2,4,5-T when expressed in non-2,4-D-degrading Bradyrhizobium elkanii USDA94. To examine the contribution of each degradation gene cluster to the degradation activity of Bradyrhizobium sp. RD5-C2, cadA1, cadA2, and tfdAα deletion mutants were constructed. The cadA1 deletion resulted in a more significant decrease in the ability to degrade chlorophenoxy compounds than the cadA2 and tfdAα deletions, indicating that degradation activity was primarily governed by the cad1 cluster. The results of a quantitative reverse transcription-PCR analysis suggested that exposure to 2,4-D and 2,4,5-T markedly up-regulated cadA1 expression. Collectively, these results indicate that the cad1 cluster plays an important role in the degradation of Bradyrhizobium sp. RD5-C2 due to its high expression.
Collapse
Affiliation(s)
- Shohei Hayashi
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| | - Sho Tanaka
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| | - Soichiro Takao
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| | - Shinnosuke Kobayashi
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| | - Kousuke Suyama
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| | - Kazuhito Itoh
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| |
Collapse
|
16
|
Cisneros-Martínez AM, Becerra A, Lazcano A. Ancient gene duplications in RNA viruses revealed by protein tertiary structure comparisons. Virus Evol 2021; 7:veab019. [PMID: 33758672 PMCID: PMC7967035 DOI: 10.1093/ve/veab019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To date only a handful of duplicated genes have been described in RNA viruses. This shortage can be attributed to different factors, including the RNA viruses with high mutation rate that would make a large genome more prone to acquire deleterious mutations. This may explain why sequence-based approaches have only found duplications in their most recent evolutionary history. To detect earlier duplications, we performed protein tertiary structure comparisons for every RNA virus family represented in the Protein Data Bank. We present a list of thirty pairs of possible paralogs with <30 per cent sequence identity. It is argued that these pairs are the outcome of six duplication events. These include the α and β subunits of the fungal toxin KP6 present in the dsRNA Ustilago maydis virus (family Totiviridae), the SARS-CoV (Coronaviridae) nsp3 domains SUD-N, SUD-M and X-domain, the Picornavirales (families Picornaviridae, Dicistroviridae, Iflaviridae and Secoviridae) capsid proteins VP1, VP2 and VP3, and the Enterovirus (family Picornaviridae) 3C and 2A cysteine-proteases. Protein tertiary structure comparisons may reveal more duplication events as more three-dimensional protein structures are determined and suggests that, although still rare, gene duplications may be more frequent in RNA viruses than previously thought. Keywords: gene duplications; RNA viruses.
Collapse
Affiliation(s)
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- El Colegio Nacional, Donceles 104, Centro Histórico, Mexico City, Mexico
| |
Collapse
|
17
|
Major role of lactate dehydrogenase D-LDH1 for the synthesis of lactic acid in Fructobacillus tropaeoli CRL 2034. Appl Microbiol Biotechnol 2020; 104:7409-7426. [DOI: 10.1007/s00253-020-10776-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/23/2020] [Accepted: 07/05/2020] [Indexed: 02/04/2023]
|
18
|
Morales JG, Gaviria AE, Gilchrist E. Allelic Variation and Selection in Effector Genes of Phytophthora infestans (Mont.) de Bary. Pathogens 2020; 9:pathogens9070551. [PMID: 32659973 PMCID: PMC7400436 DOI: 10.3390/pathogens9070551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Phytophthora infestans is a devastating plant pathogen in several crops such as potato (Solanum tuberosum), tomato (Solanum lycopersicum) and Andean fruits such as tree tomato (Solanum betaceum), lulo (Solanum quitoense), uchuva (Physalis peruviana) and wild species in the genus Solanum sp. Despite intense research performed around the world, P. infestans populations from Colombia, South America, are poorly understood. Of particular importance is knowledge about pathogen effector proteins, which are responsible for virulence. The present work was performed with the objective to analyze gene sequences coding for effector proteins of P. infestans from isolates collected from different hosts and geographical regions. Several genetic parameters, phylogenetic analyses and neutrality tests for non-synonymous and synonymous substitutions were calculated. Non-synonymous substitutions were identified for all genes that exhibited polymorphisms at the DNA level. Significant negative selection values were found for two genes (PITG_08994 and PITG_12737) suggesting active coevolution with the corresponding host resistance proteins. Implications for pathogen virulence mechanisms and disease management are discussed.
Collapse
Affiliation(s)
- Juan G. Morales
- Group and Laboratory of Fitotecnia Tropical, Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, 050034 Antioquia, Colombia; (A.E.G.); (E.G.)
- Correspondence: ; Tel.: +0057-4-4309088
| | - Astrid E. Gaviria
- Group and Laboratory of Fitotecnia Tropical, Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, 050034 Antioquia, Colombia; (A.E.G.); (E.G.)
| | - Elizabeth Gilchrist
- Group and Laboratory of Fitotecnia Tropical, Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, 050034 Antioquia, Colombia; (A.E.G.); (E.G.)
- Universidad EAFIT, 050034 Medellín, Colombia
| |
Collapse
|
19
|
Catalan-Moreno A, Caballero CJ, Irurzun N, Cuesta S, López-Sagaseta J, Toledo-Arana A. One evolutionarily selected amino acid variation is sufficient to provide functional specificity in the cold shock protein paralogs of Staphylococcus aureus. Mol Microbiol 2020; 113:826-840. [PMID: 31876031 PMCID: PMC7216892 DOI: 10.1111/mmi.14446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 01/12/2023]
Abstract
Bacterial genomes encode several families of protein paralogs. Discrimination between functional divergence and redundancy among paralogs is challenging due to their sequence conservation. Here, we investigated whether the amino acid differences present in the cold shock protein (CSP) paralogs of Staphylococcus aureus were responsible for functional specificity. Since deletion of cspA reduces the synthesis of staphyloxanthin (STX), we used it as an in vivo reporter of CSP functionality. Complementation of a ΔcspA strain with the different S. aureus CSP variants showed that only CspA could specifically restore STX production by controlling the activity of the stress‐associated sigma B factor (σB). To determine the amino acid residues responsible for CspA specificity, we created several chimeric CSPs that interchanged the amino acid differences between CspA and CspC, which shared the highest identity. We demonstrated that CspA Pro58 was responsible for the specific control of σB activity and its associated phenotypes. Interestingly, CspC gained the biological function of CspA when the E58P substitution was introduced. This study highlights how just one evolutionarily selected amino acid change may be sufficient to modify the specific functionality of CSP paralogs.
Collapse
Affiliation(s)
| | - Carlos J Caballero
- Instituto de Agrobiotecnología (IDAB), CSIC-UPNA-Gobierno de Navarra, Mutilva, Spain
| | - Naiara Irurzun
- Instituto de Agrobiotecnología (IDAB), CSIC-UPNA-Gobierno de Navarra, Mutilva, Spain
| | - Sergio Cuesta
- Instituto de Agrobiotecnología (IDAB), CSIC-UPNA-Gobierno de Navarra, Mutilva, Spain
| | - Jacinto López-Sagaseta
- Laboratory of Protein Crystallography, Navarrabiomed, Complejo Hospitalario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | | |
Collapse
|
20
|
Khomtchouk KM, Weglarz M, Bekale LA, Koliesnik I, Bollyky PL, Santa Maria PL. Quantitative assessment of bacterial growth phase utilizing flow cytometry. J Microbiol Methods 2019; 167:105760. [PMID: 31678132 PMCID: PMC6957528 DOI: 10.1016/j.mimet.2019.105760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/20/2019] [Accepted: 10/20/2019] [Indexed: 11/17/2022]
Abstract
Flow cytometry is currently underutilized for bacterial phenotyping and standard microbiological techniques do not provide phenotypic information about the state of the bacterial disease. Pseudomonas aeruginosa is a human pathogen of increased importance in public health due to both the ability to cause chronic diseases and the prevalence of functionally different subsets that can be difficult to treat and diagnose. In the present study, we used flow cytometry to analyze the growth phase of P. aeruginosa. A simple method for single cell quantitative detection of bacterial biofilm and planktonic cells was established with a combination of membrane permeable (SYTO 60) and impermeable (TOTO-1) dyes plus the addition of polystyrene counting beads. The specificity of the dye combination for biofilm detection was determined by comparison with impaired biofilm forming strains of P. aeruginosa LasI/RhlI-/- and ∆PfPhage. Results suggest that flow cytometric bacterial phenotyping serves as an expandable platform that may be useful for enumeration of population level variation in P. aeruginosa studies.
Collapse
Affiliation(s)
- K M Khomtchouk
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, USA
| | - M Weglarz
- Stanford Shared FACS Facility, Stanford University, USA
| | - L A Bekale
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, USA
| | - I Koliesnik
- Department of Medicine, Infectious Diseases, Stanford University, USA
| | - P L Bollyky
- Department of Medicine, Infectious Diseases, Stanford University, USA
| | - P L Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, USA.
| |
Collapse
|
21
|
Douglas GM, Langille MGI. Current and Promising Approaches to Identify Horizontal Gene Transfer Events in Metagenomes. Genome Biol Evol 2019; 11:2750-2766. [PMID: 31504488 PMCID: PMC6777429 DOI: 10.1093/gbe/evz184] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
High-throughput shotgun metagenomics sequencing has enabled the profiling of myriad natural communities. These data are commonly used to identify gene families and pathways that were potentially gained or lost in an environment and which may be involved in microbial adaptation. Despite the widespread interest in these events, there are no established best practices for identifying gene gain and loss in metagenomics data. Horizontal gene transfer (HGT) represents several mechanisms of gene gain that are especially of interest in clinical microbiology due to the rapid spread of antibiotic resistance genes in natural communities. Several additional mechanisms of gene gain and loss, including gene duplication, gene loss-of-function events, and de novo gene birth are also important to consider in the context of metagenomes but have been less studied. This review is largely focused on detecting HGT in prokaryotic metagenomes, but methods for detecting these other mechanisms are first discussed. For this article to be self-contained, we provide a general background on HGT and the different possible signatures of this process. Lastly, we discuss how improved assembly of genomes from metagenomes would be the most straight-forward approach for improving the inference of gene gain and loss events. Several recent technological advances could help improve metagenome assemblies: long-read sequencing, determining the physical proximity of contigs, optical mapping of short sequences along chromosomes, and single-cell metagenomics. The benefits and limitations of these advances are discussed and open questions in this area are highlighted.
Collapse
Affiliation(s)
- Gavin M Douglas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Morgan G I Langille
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
22
|
Duan JE, Shi W, Jue NK, Jiang Z, Kuo L, O'Neill R, Wolf E, Dong H, Zheng X, Chen J, Tian XC. Dosage Compensation of the X Chromosomes in Bovine Germline, Early Embryos, and Somatic Tissues. Genome Biol Evol 2019; 11:242-252. [PMID: 30566637 PMCID: PMC6354180 DOI: 10.1093/gbe/evy270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Dosage compensation of the mammalian X chromosome (X) was proposed by Susumu Ohno as a mechanism wherein the inactivation of one X in females would lead to doubling the expression of the other. This would resolve the dosage imbalance between eutherian females (XX) versus male (XY) and between a single active X versus autosome pairs (A). Expression ratio of X- and A-linked genes has been relatively well studied in humans and mice, despite controversial results over the existence of upregulation of X-linked genes. Here we report the first comprehensive test of Ohno’s hypothesis in bovine preattachment embryos, germline, and somatic tissues. Overall an incomplete dosage compensation (0.5 < X:A < 1) of expressed genes and an excess X dosage compensation (X:A > 1) of ubiquitously expressed “dosage-sensitive” genes were seen. No significant differences in X:A ratios were observed between bovine female and male somatic tissues, further supporting Ohno’s hypothesis. Interestingly, preimplantation embryos manifested a unique pattern of X dosage compensation dynamics. Specifically, X dosage decreased after fertilization, indicating that the sperm brings in an inactive X to the matured oocyte. Subsequently, the activation of the bovine embryonic genome enhanced expression of X-linked genes and increased the X dosage. As a result, an excess compensation was exhibited from the 8-cell stage to the compact morula stage. The X dosage peaked at the 16-cell stage and stabilized after the blastocyst stage. Together, our findings confirm Ohno’s hypothesis of X dosage compensation in the bovine and extend it by showing incomplete and over-compensation for expressed and “dosage-sensitive” genes, respectively.
Collapse
Affiliation(s)
| | - Wei Shi
- Department of Statistics, University of Connecticut, Storrs, CT
| | - Nathaniel K Jue
- School of Natural Sciences, California State University, Monterey Bay, CA
| | - Zongliang Jiang
- School of Animal Science, Louisiana State University, Agricultural Center, Baton Rouge, LA
| | - Lynn Kuo
- Department of Statistics, University of Connecticut, Storrs, CT
| | - Rachel O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT
| | - Eckhard Wolf
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität Muünchen, Germany
| | - Hong Dong
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, P.R. China
| | - Xinbao Zheng
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, P.R. China
| | - Jingbo Chen
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, P.R. China
| | | |
Collapse
|
23
|
Fleshman A, Mullins K, Sahl J, Hepp C, Nieto N, Wiggins K, Hornstra H, Kelly D, Chan TC, Phetsouvanh R, Dittrich S, Panyanivong P, Paris D, Newton P, Richards A, Pearson T. Comparative pan-genomic analyses of Orientia tsutsugamushi reveal an exceptional model of bacterial evolution driving genomic diversity. Microb Genom 2018; 4. [PMID: 30035711 PMCID: PMC6202447 DOI: 10.1099/mgen.0.000199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Orientia tsutsugamushi, formerly Rickettsia tsutsugamushi, is an obligate intracellular pathogen that causes scrub typhus, an underdiagnosed acute febrile disease with high morbidity. Scrub typhus is transmitted by the larval stage (chigger) of Leptotrombidium mites and is irregularly distributed across endemic regions of Asia, Australia and islands of the western Pacific Ocean. Previous work to understand population genetics in O. tsutsugamushi has been based on sub-genomic sampling methods and whole-genome characterization of two genomes. In this study, we compared 40 genomes from geographically dispersed areas and confirmed patterns of extensive homologous recombination likely driven by transposons, conjugative elements and repetitive sequences. High rates of lateral gene transfer (LGT) among O. tsutsugamushi genomes appear to have effectively eliminated a detectable clonal frame, but not our ability to infer evolutionary relationships and phylogeographical clustering. Pan-genomic comparisons using 31 082 high-quality bacterial genomes from 253 species suggests that genomic duplication in O. tsutsugamushi is almost unparalleled. Unlike other highly recombinant species where the uptake of exogenous DNA largely drives genomic diversity, the pan-genome of O. tsutsugamushi is driven by duplication and divergence. Extensive gene innovation by duplication is most commonly attributed to plants and animals and, in contrast with LGT, is thought to be only a minor evolutionary mechanism for bacteria. The near unprecedented evolutionary characteristics of O. tsutsugamushi, coupled with extensive intra-specific LGT, expand our present understanding of rapid bacterial evolutionary adaptive mechanisms.
Collapse
Affiliation(s)
- Amy Fleshman
- 1Northern Arizona University, Flagstaff, AZ, USA
| | | | - Jason Sahl
- 1Northern Arizona University, Flagstaff, AZ, USA
| | - Crystal Hepp
- 1Northern Arizona University, Flagstaff, AZ, USA
| | - Nathan Nieto
- 1Northern Arizona University, Flagstaff, AZ, USA
| | | | | | - Daryl Kelly
- 2Naval Medical Research Center, Silver Spring, MD, USA.,3The Ohio State University, Columbus, OH, USA
| | | | - Rattanaphone Phetsouvanh
- 4Lao-Oxford-Mahosot Hospital-Wellcome Trust, Research Unit, Mahosot Hospital, Vientiane, Vientiane, Lao People's Democratic Republic
| | - Sabine Dittrich
- 5University of Oxford, Centre for Tropical Medicine and Global Health, Oxford, UK.,6Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic.,7Foundation of Innovative New Diagnostics, Geneva, Switzerland
| | - Phonepasith Panyanivong
- 6Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Daniel Paris
- 8Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.,9Swiss Tropical and Public Health Institute, Basel, Switzerland.,10University of Basel, Basel, Switzerland
| | - Paul Newton
- 5University of Oxford, Centre for Tropical Medicine and Global Health, Oxford, UK.,6Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Allen Richards
- 2Naval Medical Research Center, Silver Spring, MD, USA.,11Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
24
|
Cloning and characterisation of four catA genes located on the chromosome and large plasmid of Pseudomonas putida ND6. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
AupA and AupB Are Outer and Inner Membrane Proteins Involved in Alkane Uptake in Marinobacter hydrocarbonoclasticus SP17. mBio 2018; 9:mBio.00520-18. [PMID: 29871914 PMCID: PMC5989066 DOI: 10.1128/mbio.00520-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study describes the functional characterization of two proteins, AupA and AupB, which are required for growth on alkanes in the marine hydrocarbonoclastic bacterium Marinobacter hydrocarbonoclasticus. The aupA and aupB genes form an operon whose expression was increased upon adhesion to and biofilm formation on n-hexadecane. AupA and AupB are outer and inner membrane proteins, respectively, which are able to interact physically. Mutations in aupA or/and aupB reduced growth on solid paraffin and liquid n-hexadecane, while growth on nonalkane substrates was not affected. In contrast, growth of aup mutants on n-hexadecane solubilized in Brij 58 micelles was completely abolished. Mutant cells had also lost the ability to bind to n-hexadecane solubilized in Brij 58 micelles. These results support the involvement of AupA and AupB in the uptake of micelle-solubilized alkanes and provide the first evidence for a cellular process involved in the micellar uptake pathway. The phylogenetic distribution of the aupAB operon revealed that it is widespread in marine hydrocarbonoclastic bacteria of the orders Oceanospirillales and Alteromonadales and that it is present in high copy number (up to six) in some Alcanivorax strains. These features suggest that Aup proteins probably confer a selective advantage in alkane-contaminated seawater. Bacteria are the main actors of the biological removal of hydrocarbons in seawater, and so, it is important to understand how they degrade hydrocarbons and thereby mitigate marine environmental damage. Despite a considerable amount of literature about the dynamic of microbial communities subjected to hydrocarbon exposure and the isolation of strains that degrade hydrocarbons, most of the genetic determinants and molecular mechanisms of bacterial hydrocarbon uptake remain unknown. This study identifies two genes, aupA and aupB, in the hydrocarbonoclastic bacterium Marinobacter hydrocarbonoclasticus that are present frequently in multiple copies in most of the marine hydrocarbon-degrading bacteria for which the genomic sequence is available. AupA and AupB are two novel membrane proteins interacting together that are involved in the uptake of alkanes dissolved in surfactant micelles. The function and the phylogenetic distribution of aupA and aupB suggest that they might be one attribute of the remarkable adaptation of marine hydrocarbonoclastic bacteria that allow them to take advantage of hydrocarbons.
Collapse
|
26
|
Abstract
The patchy distribution of genes across the prokaryotes may be caused by multiple gene losses or lateral transfer. Probabilistic models of gene gain and loss are needed to distinguish between these possibilities. Existing models allow only single genes to be gained and lost, despite the empirical evidence for multi-gene events. We compare birth-death models (currently the only widely-used models, in which only one gene can be gained or lost at a time) to blocks models (allowing gain and loss of multiple genes within a family). We analyze two pairs of genomes: two E. coli strains, and the distantly-related Archaeoglobus fulgidus (archaea) and Bacillus subtilis (gram positive bacteria). Blocks models describe the data much better than birth-death models. Our models suggest that lateral transfers of multiple genes from the same family are rare (although transfers of single genes are probably common). For both pairs, the estimated median time that a gene will remain in the genome is not much greater than the time separating the common ancestors of the archaea and bacteria. Deep phylogenetic reconstruction from sequence data will therefore depend on choosing genes likely to remain in the genome for a long time. Phylogenies based on the blocks model are more biologically plausible than phylogenies based on the birth-death model.
Collapse
Affiliation(s)
- Matthew Spencer
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
27
|
Inferring Functional Relationships from Conservation of Gene Order. Methods Mol Biol 2016. [PMID: 27896735 DOI: 10.1007/978-1-4939-6613-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Predicting functional associations using the Gene Neighbor Method depends on the simple idea that if genes are conserved next to each other in evolutionarily distant prokaryotes they might belong to a polycistronic transcription unit. The procedure presented in this chapter starts with the organization of the genes within genomes into pairs of adjacent genes. Then, the pairs of adjacent genes in a genome of interest are mapped to their corresponding orthologs in other, informative, genomes. The final step is to verify if the mapped orthologs are also pairs of adjacent genes in the informative genomes.
Collapse
|
28
|
Gene-Family Extension Measures and Correlations. Life (Basel) 2016; 6:life6030030. [PMID: 27527218 PMCID: PMC5041006 DOI: 10.3390/life6030030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 12/28/2022] Open
Abstract
The existence of multiple copies of genes is a well-known phenomenon. A gene family is a set of sufficiently similar genes, formed by gene duplication. In earlier works conducted on a limited number of completely sequenced and annotated genomes it was found that size of gene family and size of genome are positively correlated. Additionally, it was found that several atypical microbes deviated from the observed general trend. In this study, we reexamined these associations on a larger dataset consisting of 1484 prokaryotic genomes and using several ranking approaches. We applied ranking methods in such a way that genomes with lower numbers of gene copies would have lower rank. Until now only simple ranking methods were used; we applied the Kemeny optimal aggregation approach as well. Regression and correlation analysis were utilized in order to accurately quantify and characterize the relationships between measures of paralog indices and genome size. In addition, boxplot analysis was employed as a method for outlier detection. We found that, in general, all paralog indexes positively correlate with an increase of genome size. As expected, different groups of atypical prokaryotic genomes were found for different types of paralog quantities. Mycoplasmataceae and Halobacteria appeared to be among the most interesting candidates for further research of evolution through gene duplication.
Collapse
|
29
|
Qi W, Vaughan L, Katharios P, Schlapbach R, Seth-Smith HMB. Host-Associated Genomic Features of the Novel Uncultured Intracellular Pathogen Ca. Ichthyocystis Revealed by Direct Sequencing of Epitheliocysts. Genome Biol Evol 2016; 8:1672-89. [PMID: 27190004 PMCID: PMC4943182 DOI: 10.1093/gbe/evw111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2016] [Indexed: 12/24/2022] Open
Abstract
Advances in single-cell and mini-metagenome sequencing have enabled important investigations into uncultured bacteria. In this study, we applied the mini-metagenome sequencing method to assemble genome drafts of the uncultured causative agents of epitheliocystis, an emerging infectious disease in the Mediterranean aquaculture species gilthead seabream. We sequenced multiple cyst samples and constructed 11 genome drafts from a novel beta-proteobacterial lineage, Candidatus Ichthyocystis. The draft genomes demonstrate features typical of pathogenic bacteria with an obligate intracellular lifestyle: a reduced genome of up to 2.6 Mb, reduced G + C content, and reduced metabolic capacity. Reconstruction of metabolic pathways reveals that Ca Ichthyocystis genomes lack all amino acid synthesis pathways, compelling them to scavenge from the fish host. All genomes encode type II, III, and IV secretion systems, a large repertoire of predicted effectors, and a type IV pilus. These are all considered to be virulence factors, required for adherence, invasion, and host manipulation. However, no evidence of lipopolysaccharide synthesis could be found. Beyond the core functions shared within the genus, alignments showed distinction into different species, characterized by alternative large gene families. These comprise up to a third of each genome, appear to have arisen through duplication and diversification, encode many effector proteins, and are seemingly critical for virulence. Thus, Ca Ichthyocystis represents a novel obligatory intracellular pathogenic beta-proteobacterial lineage. The methods used: mini-metagenome analysis and manual annotation, have generated important insights into the lifestyle and evolution of the novel, uncultured pathogens, elucidating many putative virulence factors including an unprecedented array of novel gene families.
Collapse
Affiliation(s)
- Weihong Qi
- Functional Genomics Center Zurich, University of Zurich, Switzerland
| | - Lloyd Vaughan
- Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich, Switzerland
| | - Pantelis Katharios
- Hellenic Center for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, University of Zurich, Switzerland
| | - Helena M B Seth-Smith
- Functional Genomics Center Zurich, University of Zurich, Switzerland Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich, Switzerland
| |
Collapse
|
30
|
Alves LPS, Teixeira CS, Tirapelle EF, Donatti L, Tadra-Sfeir MZ, Steffens MBR, de Souza EM, de Oliveira Pedrosa F, Chubatsu LS, Müller-Santos M. Backup Expression of the PhaP2 Phasin Compensates for phaP1 Deletion in Herbaspirillum seropedicae, Maintaining Fitness and PHB Accumulation. Front Microbiol 2016; 7:739. [PMID: 27242754 PMCID: PMC4873508 DOI: 10.3389/fmicb.2016.00739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/03/2016] [Indexed: 11/30/2022] Open
Abstract
Phasins are important proteins controlling poly-3-hydroxybutyrate (PHB) granules formation, their number into the cell and stability. The genome sequencing of the endophytic and diazotrophic bacterium Herbaspirillum seropedicae SmR1 revealed two homologous phasin genes. To verify the role of the phasins on PHB accumulation in the parental strain H. seropedicae SmR1, isogenic strains defective in the expression of phaP1, phaP2 or both genes were obtained by gene deletion and characterized in this work. Despite of the high sequence similarity between PhaP1 and PhaP2, PhaP1 is the major phasin in H. seropedicae, since its deletion reduced PHB accumulation by ≈50% in comparison to the parental and ΔphaP2. Upon deletion of phaP1, the expression of phaP2 was sixfold enhanced in the ΔphaP1 strain. The responsive backup expression of phaP2 partially rescued the ΔphaP1 mutant, maintaining about 50% of the parental PHB level. The double mutant ΔphaP1.2 did not accumulate PHB in any growth stage and showed a severe reduction of growth when glucose was the carbon source, a clear demonstration of negative impact in the fitness. The co-occurrence of phaP1 and phaP2 homologous in bacteria relatives of H. seropedicae, including other endophytes, indicates that the mechanism of phasin compensation by phaP2 expression may be operating in other organisms, showing that PHB metabolism is a key factor to adaptation and efficiency of endophytic bacteria.
Collapse
Affiliation(s)
- Luis P S Alves
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Cícero S Teixeira
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Evandro F Tirapelle
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Lucélia Donatti
- Functional Morphology and Comparative Ecophysiology Laboratory, Cell Biology Department, Federal University of Paraná Curitiba, Brazil
| | - Michelle Z Tadra-Sfeir
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Maria B R Steffens
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Emanuel M de Souza
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Fabio de Oliveira Pedrosa
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Leda S Chubatsu
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná Curitiba, Brazil
| |
Collapse
|
31
|
Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor. J Bacteriol 2016; 198:1337-46. [PMID: 26883823 DOI: 10.1128/jb.00927-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms inS. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation inS. oneidensis. IMPORTANCE Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of Shewanella oneidensis Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of S. oneidensis are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation.
Collapse
|
32
|
Yu JF, Chen QL, Ren J, Yang YL, Wang JH, Sun X. Analysis of the multi-copied genes and the impact of the redundant protein coding sequences on gene annotation in prokaryotic genomes. J Theor Biol 2015; 376:8-14. [PMID: 25865522 DOI: 10.1016/j.jtbi.2015.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/09/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
The important roles of duplicated genes in evolutional process have been recognized in bacteria, archaebacteria and eukaryotes, while there is very little study on the multi-copied protein coding genes that share sequence identity of 100%. In this paper, the multi-copied protein coding genes in a number of prokaryotic genomes are comprehensively analyzed firstly. The results show that 0-15.93% of the protein coding genes in each genome are multi-copied genes and 0-16.49% of the protein coding genes in each genome are highly similar with the sequence identity ≥ 80%. Function and COG (Clusters of Orthologous Groups of proteins) analysis shows that 64.64% of multi-copied genes concentrate on the function of transposase and 86.28% of the COG assigned multi-copied genes concentrate on the COG code of 'L'. Furthermore, the impact of redundant protein coding sequences on the gene prediction results is studied. The results show that the problem of protein coding sequence redundancies cannot be ignored and the consistency of the gene annotation results before and after excluding the redundant sequences is negatively related with the sequences redundancy degree of the protein coding sequences in the training set.
Collapse
Affiliation(s)
- Jia-Feng Yu
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| | - Qing-Li Chen
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; College of life science, Shandong Normal University, Jinan 250358, China
| | - Jing Ren
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Yan-Ling Yang
- School of Physics and Electronic Information, Dezhou University, Dezhou 253023, China
| | - Ji-Hua Wang
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; School of Physics and Electronic Information, Dezhou University, Dezhou 253023, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
33
|
Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, Hoehler TM, Jørgensen BB. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev 2015; 39:688-728. [PMID: 25994609 DOI: 10.1093/femsre/fuv020] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 11/13/2022] Open
Abstract
The ability of microorganisms to withstand long periods with extremely low energy input has gained increasing scientific attention in recent years. Starvation experiments in the laboratory have shown that a phylogenetically wide range of microorganisms evolve fitness-enhancing genetic traits within weeks of incubation under low-energy stress. Studies on natural environments that are cut off from new energy supplies over geologic time scales, such as deeply buried sediments, suggest that similar adaptations might mediate survival under energy limitation in the environment. Yet, the extent to which laboratory-based evidence of starvation survival in pure or mixed cultures can be extrapolated to sustained microbial ecosystems in nature remains unclear. In this review, we discuss past investigations on microbial energy requirements and adaptations to energy limitation, identify gaps in our current knowledge, and outline possible future foci of research on life under extreme energy limitation.
Collapse
Affiliation(s)
- Mark A Lever
- Center for Geomicrobiology, Institute of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| | - Karyn L Rogers
- Rensselaer Polytechnic Institute, Earth and Environmental Sciences, Jonsson-Rowland Science Center, 1W19, 110 8th Street, Troy, NY 12180, USA
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee at Knoxville, M409 Walters Life Sciences, Knoxville, TN 37996-0845, USA
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, D-38124 Braunschweig, Germany
| | - Bernhard Schink
- Microbial Ecology, Department of Biology, University of Konstanz, P.O. Box 55 60, D-78457 Konstanz, Germany
| | - Rudolf K Thauer
- Max Planck Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße, D-35043 Marburg, Germany
| | - Tori M Hoehler
- NASA Ames Research Center, Mail Stop 239-4, Moffett Field, CA 94035-1000, USA
| | - Bo Barker Jørgensen
- Center for Geomicrobiology, Institute of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| |
Collapse
|
34
|
Stannek L, Thiele MJ, Ischebeck T, Gunka K, Hammer E, Völker U, Commichau FM. Evidence for synergistic control of glutamate biosynthesis by glutamate dehydrogenases and glutamate inBacillus subtilis. Environ Microbiol 2015; 17:3379-90. [DOI: 10.1111/1462-2920.12813] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/04/2015] [Accepted: 02/11/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Lorena Stannek
- Department of General Microbiology; Institute of Microbiology and Genetics; Georg-August-University Göttingen; Grisebachstr. 8 Göttingen D-37077 Germany
| | - Martin J. Thiele
- Department of General Microbiology; Institute of Microbiology and Genetics; Georg-August-University Göttingen; Grisebachstr. 8 Göttingen D-37077 Germany
| | - Till Ischebeck
- Department for Plant Biochemistry; Albrecht-von-Haller-Institute for Plant Sciences; Georg-August-University Göttingen; Grisebachstr. 8 Göttingen D-37077 Germany
| | - Katrin Gunka
- Department of General Microbiology; Institute of Microbiology and Genetics; Georg-August-University Göttingen; Grisebachstr. 8 Göttingen D-37077 Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Friedrich-Ludwig-Jahnstr. 15a Greifswald D-17475 Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Friedrich-Ludwig-Jahnstr. 15a Greifswald D-17475 Germany
| | - Fabian M. Commichau
- Department of General Microbiology; Institute of Microbiology and Genetics; Georg-August-University Göttingen; Grisebachstr. 8 Göttingen D-37077 Germany
| |
Collapse
|
35
|
Greenblum S, Carr R, Borenstein E. Extensive strain-level copy-number variation across human gut microbiome species. Cell 2015; 160:583-594. [PMID: 25640238 DOI: 10.1016/j.cell.2014.12.038] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/30/2014] [Accepted: 12/24/2014] [Indexed: 12/22/2022]
Abstract
Within each bacterial species, different strains may vary in the set of genes they encode or in the copy number of these genes. Yet, taxonomic characterization of the human microbiota is often limited to the species level or to previously sequenced strains, and accordingly, the prevalence of intra-species variation, its functional role, and its relation to host health remain unclear. Here, we present a comprehensive large-scale analysis of intra-species copy-number variation in the gut microbiome, introducing a rigorous computational pipeline for detecting such variation directly from shotgun metagenomic data. We uncover a large set of variable genes in numerous species and demonstrate that this variation has significant functional and clinically relevant implications. We additionally infer intra-species compositional profiles, identifying population structure shifts and the presence of yet uncharacterized variants. Our results highlight the complex relationship between microbiome composition and functional capacity, linking metagenome-level compositional shifts to strain-level variation.
Collapse
Affiliation(s)
- Sharon Greenblum
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Rogan Carr
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA; Santa Fe Institute, Santa Fe, NM 87501, USA.
| |
Collapse
|
36
|
Mouammine A, Lanois A, Pagès S, Lafay B, Molle V, Canova M, Girard PA, Duvic B, Givaudan A, Gaudriault S. Ail and PagC-related proteins in the entomopathogenic bacteria of Photorhabdus genus. PLoS One 2014; 9:e110060. [PMID: 25333642 PMCID: PMC4198210 DOI: 10.1371/journal.pone.0110060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/07/2014] [Indexed: 01/14/2023] Open
Abstract
Among pathogenic Enterobacteriaceae, the proteins of the Ail/OmpX/PagC family form a steadily growing family of outer membrane proteins with diverse biological properties, potentially involved in virulence such as human serum resistance, adhesion and entry into eukaryotic culture cells. We studied the proteins Ail/OmpX/PagC in the bacterial Photorhabdus genus. The Photorhabdus bacteria form symbiotic complexes with nematodes of Heterorhabditis species, associations which are pathogenic to insect larvae. Our phylogenetic analysis indicated that in Photorhabdus asymbiotica and Photorhabdus luminescens only Ail and PagC proteins are encoded. The genomic analysis revealed that the Photorhabdus ail and pagC genes were present in a unique copy, except two ail paralogs from P. luminescens. These genes, referred to as ail1Pl and ail2Pl, probably resulted from a recent tandem duplication. Surprisingly, only ail1Pl expression was directly controlled by PhoPQ and low external Mg2+ conditions. In P. luminescens, the magnesium-sensing two-component regulatory system PhoPQ regulates the outer membrane barrier and is required for pathogenicity against insects. In order to characterize Ail functions in Photorhabdus, we showed that only ail2Pl and pagCPl had the ability, when expressed into Escherichia coli, to confer resistance to complement in human serum. However no effect in resistance to antimicrobial peptides was found. Thus, the role of Ail and PagC proteins in Photorhabdus life cycle is discussed.
Collapse
Affiliation(s)
- Annabelle Mouammine
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- Université Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Anne Lanois
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- Université Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Sylvie Pagès
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- Université Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Bénédicte Lafay
- Université de Lyon, Écully, France
- CNRS, UMR5005 - Laboratoire Ampère, École Centrale de Lyon, Écully, France
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier 2 et 1, CNRS, UMR 5235, Montpellier, France
| | - Marc Canova
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier 2 et 1, CNRS, UMR 5235, Montpellier, France
| | - Pierre-Alain Girard
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- Université Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Bernard Duvic
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- Université Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Alain Givaudan
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- Université Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Sophie Gaudriault
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- Université Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- * E-mail:
| |
Collapse
|
37
|
Domman D, Collingro A, Lagkouvardos I, Gehre L, Weinmaier T, Rattei T, Subtil A, Horn M. Massive expansion of Ubiquitination-related gene families within the Chlamydiae. Mol Biol Evol 2014; 31:2890-904. [PMID: 25069652 PMCID: PMC4209131 DOI: 10.1093/molbev/msu227] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gene loss, gain, and transfer play an important role in shaping the genomes of all organisms; however, the interplay of these processes in isolated populations, such as in obligate intracellular bacteria, is less understood. Despite a general trend towards genome reduction in these microbes, our phylogenomic analysis of the phylum Chlamydiae revealed that within the family Parachlamydiaceae, gene family expansions have had pronounced effects on gene content. We discovered that the largest gene families within the phylum are the result of rapid gene birth-and-death evolution. These large gene families are comprised of members harboring eukaryotic-like ubiquitination-related domains, such as F-box and BTB-box domains, marking the largest reservoir of these proteins found among bacteria. A heterologous type III secretion system assay suggests that these proteins function as effectors manipulating the host cell. The large disparity in copy number of members in these families between closely related organisms suggests that nonadaptive processes might contribute to the evolution of these gene families. Gene birth-and-death evolution in concert with genomic drift might represent a previously undescribed mechanism by which isolated bacterial populations diversify.
Collapse
Affiliation(s)
- Daryl Domman
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Astrid Collingro
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Ilias Lagkouvardos
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Lena Gehre
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France
| | - Thomas Weinmaier
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Agathe Subtil
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Yu D, Pi B, Yu M, Wang Y, Ruan Z, Feng Y, Yu Y. Diversity and evolution of oligopeptide permease systems in staphylococcal species. Genomics 2014; 104:8-13. [DOI: 10.1016/j.ygeno.2014.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 11/17/2022]
|
39
|
Optimization of multilocus sequence analysis for identification of species in the genus Vibrio. Appl Environ Microbiol 2014; 80:5359-65. [PMID: 24951781 DOI: 10.1128/aem.01206-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Multilocus sequence analysis (MLSA) is an important method for identification of taxa that are not well differentiated by 16S rRNA gene sequences alone. In this procedure, concatenated sequences of selected genes are constructed and then analyzed. The effects that the number and the order of genes used in MLSA have on reconstruction of phylogenetic relationships were examined. The recA, rpoA, gapA, 16S rRNA gene, gyrB, and ftsZ sequences from 56 species of the genus Vibrio were used to construct molecular phylogenies, and these were evaluated individually and using various gene combinations. Phylogenies from two-gene sequences employing recA and rpoA in both possible gene orders were different. The addition of the gapA gene sequence, producing all six possible concatenated sequences, reduced the differences in phylogenies to degrees of statistical (bootstrap) support for some nodes. The overall statistical support for the phylogenetic tree, assayed on the basis of a reliability score (calculated from the number of nodes having bootstrap values of ≥ 80 divided by the total number of nodes) increased with increasing numbers of genes used, up to a maximum of four. No further improvement was observed from addition of the fifth gene sequence (ftsZ), and addition of the sixth gene (gyrB) resulted in lower proportions of strongly supported nodes. Reductions in the numbers of strongly supported nodes were also observed when maximum parsimony was employed for tree construction. Use of a small number of gene sequences in MLSA resulted in accurate identification of Vibrio species.
Collapse
|
40
|
Abstract
Multiple copies of a gene require enhanced investment on the part of the cell and, as such, call for an explanation. The observation that Escherichia coli has four copies of initiator tRNA (tRNAi) genes, encoding a special tRNA (tRNA(fMet)) required to start protein synthesis, is puzzling particularly because the cell appears to be unaffected by the removal of one copy. However, the fitness of an organism has both absolute and relative connotations. Thus, we carried out growth competition experiments between E. coli strains that differ in the number of tRNAi genes they contain. This has enabled us to uncover an unexpected link between the number of tRNAi genes and protein synthesis, nutritional status, and fitness. Wild-type strains with the canonical four tRNAi genes are favored in nutrient-rich environments, and those carrying fewer are favored in nutrient-poor environments. Auxotrophs behave as if they have a nutritionally poor internal environment. A heuristic model that links tRNAi gene copy number, genetic stress, and growth rate accounts for the findings. Our observations provide strong evidence that natural selection can work through seemingly minor quantitative variations in gene copy number and thereby impact organismal fitness.
Collapse
|
41
|
Guimaraes AMS, Santos AP, do Nascimento NC, Timenetsky J, Messick JB. Comparative genomics and phylogenomics of hemotrophic mycoplasmas. PLoS One 2014; 9:e91445. [PMID: 24642917 PMCID: PMC3958358 DOI: 10.1371/journal.pone.0091445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/10/2014] [Indexed: 11/18/2022] Open
Abstract
Hemotrophic mycoplasmas (hemoplasmas) are a group of animal pathogens of the Mollicutes class. Recently, the genomes of 8 hemoplasmas have been completely sequenced. The aim of this study was to gain a better understanding of their genomic features and relationship to other Mycoplasma species. The genome structure and dynamics of hemoplasmas were analyzed by evaluating gene synteny, adaptive evolution of paralogous gene families (PGF) and horizontal gene transfer (HGT). The Mollicutes class was then phylogenetically analyzed by constructing a distance matrix of the 16S rRNA genes and a phylogenetic tree with 32 conserved, concatenated proteins. Our results suggest that the hemoplasmas have dynamic genomes. The genome size variation (from 547 to 1,545 genes) indicates substantial gene gain/loss throughout evolution. Poorly conserved gene syntenies among hemoplasmas, positional shuffling of paralogous genes between strains, HGT, and codons under positive selection in PGFs were also observed. When compared to other Mollicutes species, the hemoplasmas experienced further metabolic reduction, and the 16S rRNA gene distance matrix of the available mollicutes suggests that these organisms presently constitute the most divergent clade within its class. Our phylogenetic tree of concatenated proteins showed some differences when compared to the 16S rRNA gene tree, but non-mycoplasma organisms, such as Ureaplasma spp. and Mesoplasma spp., continue to branch within Mycoplasma clades. In conclusion, while the hemoplasmas experienced further metabolic shrinkage through gene loss, PGFs with positively selected codons are likely beneficial to these species. Phylogeny of the mollicutes based on 16S rRNA genes or concatenated proteins do not obey the current taxonomy. The metabolism and genetic diversity of the mollicutes, the presence of HGT, and lack of standard for genus circumscription are likely to hinder attempts to classify these organisms based on phylogenetic analyses.
Collapse
Affiliation(s)
- Ana M. S. Guimaraes
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES)-Fulbright Program, Ministério da Educação, Brasília, Distrito Federal, Brazil
| | - Andrea P. Santos
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Naíla C. do Nascimento
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Jorge Timenetsky
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Joanne B. Messick
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
42
|
Mærk M, Johansen J, Ertesvåg H, Drabløs F, Valla S. Safety in numbers: multiple occurrences of highly similar homologs among Azotobacter vinelandii carbohydrate metabolism proteins probably confer adaptive benefits. BMC Genomics 2014; 15:192. [PMID: 24625193 PMCID: PMC4022178 DOI: 10.1186/1471-2164-15-192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene duplication and horizontal gene transfer are common processes in bacterial and archaeal genomes, and are generally assumed to result in either diversification or loss of the redundant gene copies. However, a recent analysis of the genome of the soil bacterium Azotobacter vinelandii DJ revealed an abundance of highly similar homologs among carbohydrate metabolism genes. In many cases these multiple genes did not appear to be the result of recent duplications, or to function only as a means of stimulating expression by increasing gene dosage, as the homologs were located in varying functional genetic contexts. Based on these initial findings we here report in-depth bioinformatic analyses focusing specifically on highly similar intra-genome homologs, or synologs, among carbohydrate metabolism genes, as well as an analysis of the general occurrence of very similar synologs in prokaryotes. RESULTS Approximately 900 bacterial and archaeal genomes were analysed for the occurrence of synologs, both in general and among carbohydrate metabolism genes specifically. This showed that large numbers of highly similar synologs among carbohydrate metabolism genes are very rare in bacterial and archaeal genomes, and that the A. vinelandii DJ genome contains an unusually large amount of such synologs. The majority of these synologs were found to be non-tandemly organized and localized in varying but metabolically relevant genomic contexts. The same observation was made for other genomes harbouring high levels of such synologs. It was also shown that highly similar synologs generally constitute a very small fraction of the protein-coding genes in prokaryotic genomes. The overall synolog fraction of the A. vinelandii DJ genome was well above the data set average, but not nearly as remarkable as the levels observed when only carbohydrate metabolism synologs were considered. CONCLUSIONS Large numbers of highly similar synologs are rare in bacterial and archaeal genomes, both in general and among carbohydrate metabolism genes. However, A. vinelandii and several other soil bacteria harbour large numbers of highly similar carbohydrate metabolism synologs which seem not to result from recent duplication or transfer events. These genes may confer adaptive benefits with respect to certain lifestyles and environmental factors, most likely due to increased regulatory flexibility and/or increased gene dosage.
Collapse
Affiliation(s)
| | | | | | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.
| | | |
Collapse
|
43
|
Whiteson KL, Hernandez D, Lazarevic V, Gaia N, Farinelli L, François P, Pilo P, Frey J, Schrenzel J. A genomic perspective on a new bacterial genus and species from the Alcaligenaceae family, Basilea psittacipulmonis. BMC Genomics 2014; 15:169. [PMID: 24581117 PMCID: PMC4028982 DOI: 10.1186/1471-2164-15-169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/06/2014] [Indexed: 11/28/2022] Open
Abstract
Background A novel Gram-negative, non-haemolytic, non-motile, rod-shaped bacterium was discovered in the lungs of a dead parakeet (Melopsittacus undulatus) that was kept in captivity in a petshop in Basel, Switzerland. The organism is described with a chemotaxonomic profile and the nearly complete genome sequence obtained through the assembly of short sequence reads. Results Genome sequence analysis and characterization of respiratory quinones, fatty acids, polar lipids, and biochemical phenotype is presented here. Comparison of gene sequences revealed that the most similar species is Pelistega europaea, with BLAST identities of only 93% to the 16S rDNA gene, 76% identity to the rpoB gene, and a similar GC content (~43%) as the organism isolated from the parakeet, DSM 24701 (40%). The closest full genome sequences are those of Bordetella spp. and Taylorella spp. High-throughput sequencing reads from the Illumina-Solexa platform were assembled with the Edena de novo assembler to form 195 contigs comprising the ~2 Mb genome. Genome annotation with RAST, construction of phylogenetic trees with the 16S rDNA (rrs) gene sequence and the rpoB gene, and phylogenetic placement using other highly conserved marker genes with ML Tree all suggest that the bacterial species belongs to the Alcaligenaceae family. Analysis of samples from cages with healthy parakeets suggested that the newly discovered bacterial species is not widespread in parakeet living quarters. Conclusions Classification of this organism in the current taxonomy system requires the formation of a new genus and species. We designate the new genus Basilea and the new species psittacipulmonis. The type strain of Basilea psittacipulmonis is DSM 24701 (= CIP 110308 T, 16S rDNA gene sequence Genbank accession number JX412111 and GI 406042063).
Collapse
Affiliation(s)
- Katrine L Whiteson
- Genomic Research Laboratory, Department of Internal Medicine, Service of Infectious Diseases, Geneva University Hospitals, Gabrielle-Perret-Gentil 4, CH-1211 Geneva 14, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Billerbeck S, Calles B, Müller CL, de Lorenzo V, Panke S. Towards functional orthogonalisation of protein complexes: individualisation of GroEL monomers leads to distinct quasihomogeneous single rings. Chembiochem 2013; 14:2310-21. [PMID: 24151180 DOI: 10.1002/cbic.201300332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Indexed: 11/10/2022]
Abstract
The essential molecular chaperonin GroEL is an example of a functionally highly versatile cellular machine with a wide variety of in vitro applications ranging from protein folding to drug release. Directed evolution of new functions for GroEL is considered difficult, due to its structure as a complex homomultimeric double ring and the absence of obvious molecular engineering strategies. In order to investigate the potential to establish an orthogonal GroEL system in Escherichia coli, which might serve as a basis for GroEL evolution, we first successfully individualised groEL genes by inserting different functional peptide tags into a robustly permissive site identified by transposon mutagenesis. These peptides allowed fundamental aspects of the intracellular GroEL complex stoichiometry to be studied and revealed that GroEL single-ring complexes, which assembled in the presence of several functionally equivalent but biochemically distinct monomers, each consist almost exclusively of only one type of monomer. At least in the case of GroEL, individualisation of monomers thus leads to individualisation of homomultimeric protein complexes, effectively providing the prerequisites for evolving an orthogonal intracellular GroEL folding machine.
Collapse
Affiliation(s)
- Sonja Billerbeck
- Department for Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel (Switzerland); Current address: Department of Chemistry, Columbia University, 550 West 120th Street, New York, NY 10027 (USA)
| | | | | | | | | |
Collapse
|
45
|
Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci Rep 2013; 3:2101. [PMID: 23812535 PMCID: PMC3696898 DOI: 10.1038/srep02101] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/13/2013] [Indexed: 01/03/2023] Open
Abstract
Complex environmental conditions can significantly affect bacterial genome size by unknown mechanisms. The So0157-2 strain of Sorangium cellulosum is an alkaline-adaptive epothilone producer that grows across a wide pH range. Here, we show that the genome of this strain is 14,782,125 base pairs, 1.75-megabases larger than the largest bacterial genome from S. cellulosum reported previously. The total 11,599 coding sequences (CDSs) include massive duplications and horizontally transferred genes, regulated by lots of protein kinases, sigma factors and related transcriptional regulation co-factors, providing the So0157-2 strain abundant resources and flexibility for ecological adaptation. The comparative transcriptomics approach, which detected 90.7% of the total CDSs, not only demonstrates complex expression patterns under varying environmental conditions but also suggests an alkaline-improved pathway of the insertion and duplication, which has been genetically testified, in this strain. These results provide insights into and a paradigm for how environmental conditions can affect bacterial genome expansion.
Collapse
|
46
|
Maharjan RP, Gaffé J, Plucain J, Schliep M, Wang L, Feng L, Tenaillon O, Ferenci T, Schneider D. A case of adaptation through a mutation in a tandem duplication during experimental evolution in Escherichia coli. BMC Genomics 2013; 14:441. [PMID: 23822838 PMCID: PMC3708739 DOI: 10.1186/1471-2164-14-441] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 03/08/2013] [Indexed: 11/21/2022] Open
Abstract
Background DNA duplications constitute important precursors for genome variation. Here we analyzed an unequal duplication harboring a beneficial mutation that may provide alternative evolutionary outcomes. Results We characterized this evolutionary event during experimental evolution for only 100 generations of an Escherichia coli strain under glucose limitation within chemostats. By combining Insertion Sequence based Restriction Length Polymorphism experiments, pulsed field gel electrophoresis and two independent genome re-sequencing experiments, we identified an evolved lineage carrying a 180 kb duplication of the 46’ region of the E. coli chromosome. This evolved duplication revealed a heterozygous state, with one copy harboring a 2668 bp deletion that included part of the ogrK gene and both the yegR and yegS genes. By genetically manipulating ancestral and evolved strains, we showed that the single yegS inactivation was sufficient to confer a frequency dependent fitness increase under the chemostat selective conditions in both the ancestor and evolved genetic contexts, implying that the duplication itself was not a direct fitness contributor. Nonetheless, the heterozygous duplicated state was relatively stable in the conditions prevailing during evolution in chemostats, in striking contrast to non selective conditions in which the duplication resolved at high frequency into either its ancestral or deleted copy. Conclusions Our results suggest that the duplication state may constitute a second order selection process providing higher evolutionary potential. Moreover, its heterozygous nature may provide differential evolutionary opportunities in alternating environments. Our results also highlighted how careful analyses of whole genome data are needed to identify such complex rearrangements.
Collapse
Affiliation(s)
- Ram P Maharjan
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sharma P, Rele MV, Kumar LS. Cloning and sequence analysis of three variants of the gene encoding alkaline xylanase C from the alkaliphilic Bacillus sp. (NCL 87-6-10). Biochem Genet 2013; 51:737-49. [PMID: 23749064 DOI: 10.1007/s10528-013-9603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/03/2012] [Indexed: 10/26/2022]
Abstract
Alkaline xylanase C from the alkaliphilic Bacillus sp. (NCL 87-6-10) has a low molecular weight and alkaline pI and is cellulase-free, properties compatible with its use in the prebleaching of pulp. We report here the cloning and sequence analysis of three variants of the gene encoding xylanase C; xyl C1, xyl C2, and xyl C3. In phylogenetic analysis, the three xylanase C variants clustered into a single group along with other reported alkaline xylanases. Residues contributing to the alkaline pH were present in all three variants. DNA and protein sequence comparison of these variants with other reported alkaline xylanases revealed silent mutations, some of which are due to codon preference in the respective organisms. The recombinant Xyl C1 that was successfully expressed in E. coli BL21 (DE3) had properties similar to the native enzyme.
Collapse
Affiliation(s)
- Poonam Sharma
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, 411008, India
| | | | | |
Collapse
|
48
|
Molecular characterization of copper and cadmium resistance determinants in the biomining thermoacidophilic archaeon Sulfolobus metallicus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:289236. [PMID: 23509422 PMCID: PMC3595675 DOI: 10.1155/2013/289236] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/04/2013] [Indexed: 12/21/2022]
Abstract
Sulfolobus metallicus is a thermoacidophilic crenarchaeon used in high-temperature bioleaching processes that is able to grow under stressing conditions such as high concentrations of heavy metals. Nevertheless, the genetic and biochemical mechanisms responsible for heavy metal resistance in S. metallicus remain uncharacterized. Proteomic analysis of S. metallicus cells exposed to 100 mM Cu revealed that 18 out of 30 upregulated proteins are related to the production and conversion of energy, amino acids biosynthesis, and stress responses. Ten of these last proteins were also up-regulated in S. metallicus treated in the presence of 1 mM Cd suggesting that at least in part, a common general response to these two heavy metals. The S. metallicus genome contained two complete cop gene clusters, each encoding a metallochaperone (CopM), a Cu-exporting ATPase (CopA), and a transcriptional regulator (CopT). Transcriptional expression analysis revealed that copM and copA from each cop gene cluster were cotranscribed and their transcript levels increased when S. metallicus was grown either in the presence of Cu or using chalcopyrite (CuFeS2) as oxidizable substrate. This study shows for the first time the presence of a duplicated version of the cop gene cluster in Archaea and characterizes some of the Cu and Cd resistance determinants in a thermophilic archaeon employed for industrial biomining.
Collapse
|
49
|
Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci U S A 2012; 109:19420-5. [PMID: 23129634 DOI: 10.1073/pnas.1213901109] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolutionary biologists have postulated that several fitness advantages may be conferred by the maintenance of duplicate genes, including environmental adaptation resulting from differential regulation. We examined the expression and physiological contributions of two redundant operons in the adaptable bacterium Pseudomonas aeruginosa PA14. These operons, phzA1-G1 (phz1) and phzA2-G2 (phz2), encode nearly identical sets of proteins that catalyze the synthesis of phenazine-1-carboxylic acid, the precursor for several phenazine derivatives. Phenazines perform diverse roles in P. aeruginosa physiology and act as virulence factors during opportunistic infections of plant and animal hosts. Although reports have indicated that phz1 is regulated by the Pseudomonas quinolone signal, factors controlling phz2 expression have not been identified, and the relative contributions of these redundant operons to phenazine biosynthesis have not been evaluated. We found that in liquid cultures, phz1 was expressed at higher levels than phz2, although phz2 showed a greater contribution to phenazine production. In colony biofilms, phz2 was expressed at high levels, whereas phz1 expression was not detectable, and phz2 was responsible for virtually all phenazine production. Analysis of mutants defective in quinolone signal synthesis revealed a critical role for 4-hydroxy-2-heptylquinoline in phz2 induction. Finally, deletion of phz2, but not of phz1, decreased lung colonization in a murine model of infection. These results suggest that differential regulation of the redundant phz operons allows P. aeruginosa to adapt to diverse environments.
Collapse
|
50
|
Abstract
SAR11 is an ancient and diverse clade of heterotrophic bacteria that are abundant throughout the world’s oceans, where they play a major role in the ocean carbon cycle. Correlations between the phylogenetic branching order and spatiotemporal patterns in cell distributions from planktonic ocean environments indicate that SAR11 has evolved into perhaps a dozen or more specialized ecotypes that span evolutionary distances equivalent to a bacterial order. We isolated and sequenced genomes from diverse SAR11 cultures that represent three major lineages and encompass the full breadth of the clade. The new data expand observations about genome evolution and gene content that previously had been restricted to the SAR11 Ia subclade, providing a much broader perspective on the clade’s origins, evolution, and ecology. We found small genomes throughout the clade and a very high proportion of core genome genes (48 to 56%), indicating that small genome size is probably an ancestral characteristic. In their level of core genome conservation, the members of SAR11 are outliers, the most conserved free-living bacteria known. Shared features of the clade include low GC content, high gene synteny, a large hypervariable region bounded by rRNA genes, and low numbers of paralogs. Variation among the genomes included genes for phosphorus metabolism, glycolysis, and C1 metabolism, suggesting that adaptive specialization in nutrient resource utilization is important to niche partitioning and ecotype divergence within the clade. These data provide support for the conclusion that streamlining selection for efficient cell replication in the planktonic habitat has occurred throughout the evolution and diversification of this clade. The SAR11 clade is the most abundant group of marine microorganisms worldwide, making them key players in the global carbon cycle. Growing knowledge about their biochemistry and metabolism is leading to a more mechanistic understanding of organic carbon oxidation and sequestration in the oceans. The discovery of small genomes in SAR11 provided crucial support for the theory that streamlining selection can drive genome reduction in low-nutrient environments. Study of isolates in culture revealed atypical organic nutrient requirements that can be attributed to genome reduction, such as conditional auxotrophy for glycine and its precursors, a requirement for reduced sulfur compounds, and evidence for widespread cycling of C1 compounds in marine environments. However, understanding the genetic variation and distribution of such pathways and characteristics like streamlining throughout the group has required the isolation and genome sequencing of diverse SAR11 representatives, an analysis of which we provide here.
Collapse
|