1
|
Ding S, Liu C, Zhu Y, Li J, Shi G, Zhu A. Rare Earth-Carbon Dots Nanocomposite-Modified Glass Nanopipettes: Electro-Optical Detection of Bacterial ppGpp. Anal Chem 2024; 96:4521-4527. [PMID: 38442333 DOI: 10.1021/acs.analchem.3c05211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
As an important alarmone nucleotide, guanosine 3'-diphosphate-5'-diphosphate (ppGpp) can regulate the survival of bacteria under strict environmental conditions. Direct detection of ppGpp in bacteria with high sensitivity and selectivity is crucial for elucidating the role of ppGpp in bacterial stringent response. Herein, the terbium-carbon dots nanocomposite (CDs-Tb) modified glass nanopipet was developed for the recognition of ppGpp. The CDs-Tb in glass nanopipette preserved their fluorescence properties as well as the coordination capacity of Tb3+ toward ppGpp. The addition of ppGpp not only led to the fluorescence response of CDs-Tb but also triggered variations of surface charge inside the glass nanopipet, resulting in the ionic current response. Compared with nucleotides with similar structures, this method displayed good selectivity toward ppGpp. Moreover, the dual signals (fluorescence and ionic current) offered a built-in correction for potential interference. Apart from the high selectivity, the proposed method can determine the concentration of ppGpp from 10-13 to 10-7 M. Taking advantage of the significant analytical performance, we monitored ppGpp in Escherichia coli under different nutritional conditions and studied the relationship between ppGpp and DNA repair, which is helpful for overcoming antibiotic resistance and promoting the development of potential drugs for antibacterial treatment.
Collapse
Affiliation(s)
- Shushu Ding
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, People's Republic of China
| | - Chunyan Liu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Yue Zhu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, People's Republic of China
| | - Jinlong Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, People's Republic of China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Anwei Zhu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| |
Collapse
|
2
|
Zhang LM, Yang M, Zhou SW, Zhang H, Feng Y, Shi L, Li DS, Lu QM, Zhang ZH, Zhao M. Blapstin, a Diapause-Specific Peptide-Like Peptide from the Chinese Medicinal Beetle Blaps rhynchopetera, Has Antifungal Function. Microbiol Spectr 2023; 11:e0308922. [PMID: 37140456 PMCID: PMC10269622 DOI: 10.1128/spectrum.03089-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
Drug resistance against bacteria and fungi has become common in recent years, and it is urgent to discover novel antimicrobial peptides to manage this problem. Many antimicrobial peptides from insects have been reported to have antifungal activity and are candidate molecules in the treatment of human diseases. In the present study, we characterized an antifungal peptide named blapstin that was isolated from the Chinese medicinal beetle Blaps rhynchopetera used in folk medicine. The complete coding sequence was cloned from the cDNA library prepared from the midgut of B. rhynchopetera. It is a 41-amino-acid diapause-specific peptide (DSP)-like peptide stabilized by three disulfide bridges and shows antifungal activity against Candida albicans and Trichophyton rubrum with MICs of 7 μM and 5.3 μM, respectively. The C. albicans and T. rubrum treated with blapstin showed irregular and shrunken cell membranes. In addition, blapstin inhibited the activity of C. albicans biofilm and showed little hemolytic or toxic activity on human cells and it is highly expressed in the fat body, followed by the hemolymph, midgut, muscle, and defensive glands. These results indicate that blapstin may help insects fight against fungi and showed a potential application in the development of antifungal reagents. IMPORTANCE Candida albicans is one of the conditional pathogenic fungi causing severe nosocomial infections. Trichophyton rubrum and other skin fungi are the main pathogens of superficial cutaneous fungal diseases, especially in children and the elderly. At present, antibiotics such as amphotericin B, ketoconazole, and fluconazole are the main drugs for the clinical treatment of C. albicans and T. rubrum infections. However, these drugs have certain acute toxicity. Long-term use can increase kidney damage and other side effects. Therefore, obtaining broad-spectrum antifungal drugs with high efficiency and low toxicity for the treatment of C. albicans and T. rubrum infections is a top priority. Blapstin is an antifungal peptide which shows activity against C. albicans and T. rubrum. The discovery of blapstin provides a novel clue for our understanding of the innate immunity of Blaps rhynchopetera and provides a template for designing antifungal drugs.
Collapse
Affiliation(s)
- La-Mei Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Min Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Sheng-Wen Zhou
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Zhang
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Feng
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Lei Shi
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Dong-Sheng Li
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan, Hubei, China
| | - Qiu-Min Lu
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan, Hubei, China
| | - Zhong-He Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Min Zhao
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| |
Collapse
|
3
|
Naaz T, Lahiri D, Pandit S, Nag M, Gupta PK, Al-Dayan N, Rai N, Chaubey KK, Gupta AK. Antimicrobial Peptides Against Microbial Biofilms: Efficacy, Challenges, and Future Prospect. Int J Pept Res Ther 2023; 29:48. [DOI: 10.1007/s10989-023-10519-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 01/03/2025]
|
4
|
Wang F, Lin YN, Xu Y, Ba YB, Zhang ZH, Zhao L, Lam W, Guan FL, Zhao Y, Xu CH. Mechanisms of acidic electrolyzed water killing bacteria. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Veetilvalappil VV, Aranjani JM, Mahammad FS, Joseph A. Awakening sleeper cells: a narrative review on bacterial magic spot synthetases as potential drug targets to overcome persistence. Curr Genet 2022; 68:49-60. [PMID: 34787710 PMCID: PMC8801413 DOI: 10.1007/s00294-021-01221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 10/29/2022]
Abstract
Magic spot synthetases are emerging targets to overcome persistence caused by stringent response. The 'stringent response' is a bacterial stress survival mechanism, which results in the accumulation of alarmones (also called Magic spots) leading to the formation of dormant persister cells. These 'sleeper cells' evade antibiotic treatment and could result in relapse of infection. This review broadly investigates the phenomenon of stringent response and persistence, and specifically discusses the distribution, classification, and nomenclature of proteins such as Rel/SpoT homologs (RSH), responsible for alarmone synthesis. The authors further explain the relevance of RSH as potential drug targets to break the dormancy of persister cells commonly seen in biofilms. One of the significant factors that initiate alarmone synthesis is nutrient deficiency. In a starved condition, ribosome-associated RSH detects deacylated tRNA and initiates alarmone synthesis. Accumulation of alarmones has a considerable effect on bacterial physiology, virulence, biofilm formation, and persister cell formation. Preventing alarmone synthesis by inhibiting RSH responsible for alarmone synthesis will prevent or reduce persister cells' formation. Magic spot synthetases are thus potential targets that could be explored to overcome persistence seen in biofilms.
Collapse
Affiliation(s)
- Vimal Venu Veetilvalappil
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India.
| | - Fayaz Shaik Mahammad
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| |
Collapse
|
6
|
Rogiers T, Merroun ML, Williamson A, Leys N, Houdt RV, Boon N, Mijnendonckx K. Cupriavidus metallidurans NA4 actively forms polyhydroxybutyrate-associated uranium-phosphate precipitates. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126737. [PMID: 34388922 DOI: 10.1016/j.jhazmat.2021.126737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Cupriavidus metallidurans is a model bacterium to study molecular metal resistance mechanisms and its use for the bioremediation of several metals has been shown. However, its mechanisms for radionuclide resistance are unexplored. We investigated the interaction with uranium and associated cellular response to uranium for Cupriavidus metallidurans NA4. Strain NA4 actively captured 98 ± 1% of the uranium in its biomass after growing 24 h in the presence of 100 µM uranyl nitrate. TEM HAADF-EDX microscopy confirmed intracellular uranium-phosphate precipitates that were mainly associated with polyhydroxybutyrate. Furthermore, whole transcriptome sequencing indicated a complex transcriptional response with upregulation of genes encoding general stress-related proteins and several genes involved in metal resistance. More in particular, gene clusters known to be involved in copper and silver resistance were differentially expressed. This study provides further insights into bacterial interactions with and their response to uranium. Our results could be promising for uranium bioremediation purposes with the multi-metal resistant bacterium C. metallidurans NA4.
Collapse
Affiliation(s)
- Tom Rogiers
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium; Center for Microbial Ecology and Technology (CMET), UGent, Ghent, Belgium.
| | | | - Adam Williamson
- Center for Microbial Ecology and Technology (CMET), UGent, Ghent, Belgium.
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), UGent, Ghent, Belgium.
| | - Kristel Mijnendonckx
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
| |
Collapse
|
7
|
Zong G, Fu J, Zhang P, Zhang W, Xu Y, Cao G, Zhang R. Use of elicitors to enhance or activate the antibiotic production in streptomyces. Crit Rev Biotechnol 2021; 42:1260-1283. [PMID: 34706600 DOI: 10.1080/07388551.2021.1987856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Streptomyces is the largest and most significant genus of Actinobacteria, comprising 961 species. These Gram-positive bacteria produce many versatile and important bioactive compounds; of these, antibiotics, specifically the enhancement or activation of their production, have received extensive research attention. Recently, various biotic and abiotic elicitors have been reported to modify the antibiotic metabolism of Streptomyces, which promotes the production of new antibiotics and bioactive metabolites for improvement in the yields of endogenous products. However, some elicitors that obviously contribute to secondary metabolite production have not yet received sufficient attention. In this study, we have reviewed the functions and mechanisms of chemicals, novel microbial metabolic elicitors, microbial interactions, enzymes, enzyme inhibitors, environmental factors, and novel combination methods regarding antibiotic production in Streptomyces. This review has aimed to identify potentially valuable elicitors for stimulating the production of latent antibiotics or enhancing the synthesis of subsistent antibiotics in Streptomyces. Future applications and challenges in the discovery of new antibiotics and enhancement of existing antibiotic production using elicitors are discussed.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Afonso AC, Oliveira D, Saavedra MJ, Borges A, Simões M. Biofilms in Diabetic Foot Ulcers: Impact, Risk Factors and Control Strategies. Int J Mol Sci 2021; 22:8278. [PMID: 34361044 PMCID: PMC8347492 DOI: 10.3390/ijms22158278] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are a serious complication from diabetes mellitus, with a huge economic, social and psychological impact on the patients' life. One of the main reasons why DFUs are so difficult to heal is related to the presence of biofilms. Biofilms promote wound inflammation and a remarkable lack of response to host defences/treatment options, which can lead to disease progression and chronicity. In fact, appropriate treatment for the elimination of these microbial communities can prevent the disease evolution and, in some cases, even avoid more serious outcomes, such as amputation or death. However, the detection of biofilm-associated DFUs is difficult due to the lack of methods for diagnostics in clinical settings. In this review, the current knowledge on the involvement of biofilms in DFUs is discussed, as well as how the surrounding environment influences biofilm formation and regulation, along with its clinical implications. A special focus is also given to biofilm-associated DFU diagnosis and therapeutic strategies. An overview on promising alternative therapeutics is provided and an algorithm considering biofilm detection and treatment is proposed.
Collapse
Affiliation(s)
- Ana C. Afonso
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; (A.C.A.); (D.O.); (A.B.)
- CITAB—Centre for the Research and Technology for Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Diana Oliveira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; (A.C.A.); (D.O.); (A.B.)
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria José Saavedra
- CITAB—Centre for the Research and Technology for Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Anabela Borges
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; (A.C.A.); (D.O.); (A.B.)
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; (A.C.A.); (D.O.); (A.B.)
| |
Collapse
|
9
|
Aggarwal SD, Lloyd AJ, Yerneni SS, Narciso AR, Shepherd J, Roper DI, Dowson CG, Filipe SR, Hiller NL. A molecular link between cell wall biosynthesis, translation fidelity, and stringent response in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2021; 118:e2018089118. [PMID: 33785594 PMCID: PMC8040666 DOI: 10.1073/pnas.2018089118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Survival in the human host requires bacteria to respond to unfavorable conditions. In the important Gram-positive pathogen Streptococcus pneumoniae, cell wall biosynthesis proteins MurM and MurN are tRNA-dependent amino acyl transferases which lead to the production of branched muropeptides. We demonstrate that wild-type cells experience optimal growth under mildly acidic stressed conditions, but ΔmurMN strain displays growth arrest and extensive lysis. Furthermore, these stress conditions compromise the efficiency with which alanyl-tRNAAla synthetase can avoid noncognate mischarging of tRNAAla with serine, which is toxic to cells. The observed growth defects are rescued by inhibition of the stringent response pathway or by overexpression of the editing domain of alanyl-tRNAAla synthetase that enables detoxification of tRNA misacylation. Furthermore, MurM can incorporate seryl groups from mischarged Seryl-tRNAAlaUGC into cell wall precursors with exquisite specificity. We conclude that MurM contributes to the fidelity of translation control and modulates the stress response by decreasing the pool of mischarged tRNAs. Finally, we show that enhanced lysis of ΔmurMN pneumococci is caused by LytA, and the murMN operon influences macrophage phagocytosis in a LytA-dependent manner. Thus, MurMN attenuates stress responses with consequences for host-pathogen interactions. Our data suggest a causal link between misaminoacylated tRNA accumulation and activation of the stringent response. In order to prevent potential corruption of translation, consumption of seryl-tRNAAla by MurM may represent a first line of defense. When this mechanism is overwhelmed or absent (ΔmurMN), the stringent response shuts down translation to avoid toxic generation of mistranslated/misfolded proteins.
Collapse
Affiliation(s)
- Surya D Aggarwal
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Adrian J Lloyd
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom;
| | | | - Ana Rita Narciso
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 1099-085 Oeiras, Portugal
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2825-149 Caparica, Portugal
| | - Jennifer Shepherd
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David I Roper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christopher G Dowson
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sergio R Filipe
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 1099-085 Oeiras, Portugal;
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2825-149 Caparica, Portugal
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213;
| |
Collapse
|
10
|
Sanyal R, Harinarayanan R. Activation of RelA by pppGpp as the basis for its differential toxicity over ppGpp in Escherichia coli. J Biosci 2020. [DOI: 10.1007/s12038-020-9991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Jin H, Lao YM, Ying KZ, Zhou J, Cai ZH. Stringent Response Regulates Stress Resistance in Cyanobacterium Microcystis aeruginosa. Front Microbiol 2020; 11:511801. [PMID: 33281752 PMCID: PMC7688982 DOI: 10.3389/fmicb.2020.511801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 10/16/2020] [Indexed: 11/20/2022] Open
Abstract
Cyanobacterial blooms are serious environmental issues in global freshwater ecosystems. Nitrogen limitation is one of the most important strategies to control cyanobacterial blooms. However, recent researches showed that N limitation does not effectively control the bloom; oppositely, N limitation induces N-fixing cyanobacterial blooms. The mechanism underlying this ecological event is elusive. In this study, we found that N limitation enhances stress tolerance of Microcystis aeruginosa by triggering stringent response (SR), one of the most important bacterial adaptive responses to environmental stresses. Initiation of SR exerted protective effects on the cells against salt and oxidative stresses by promoting colony formation, maintaining membrane integrity, increasing photosynthetic performance, reducing ROS production, upregulating stress-related genes, etc. These protections possibly help M. aeruginosa maintain their population number during seasonal N limitation. As SR has been proven to be involved in nitrogen fixing under N limitation conditions, the potential role of SR in driving the shift and succession of cyanobacterial blooms was discussed. Our findings provide cellular evidence and possible mechanisms that reducing N input is ineffective for bloom control.
Collapse
Affiliation(s)
- Hui Jin
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yong Min Lao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Ke Zhen Ying
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jin Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zhong Hua Cai
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
12
|
Liu Y, Yang K, Zhang H, Jia Y, Wang Z. Combating Antibiotic Tolerance Through Activating Bacterial Metabolism. Front Microbiol 2020; 11:577564. [PMID: 33193198 PMCID: PMC7642520 DOI: 10.3389/fmicb.2020.577564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of antibiotic tolerance enables genetically susceptible bacteria to withstand the killing by clinically relevant antibiotics. As is reported, an increasing body of evidence sheds light on the critical and underappreciated role of antibiotic tolerance in the disease burden of bacterial infections. Considering this tense situation, new therapeutic strategies are urgently required for combating antibiotic tolerance. Herein, we provide an insightful illustration to distinguish between antibiotic resistance and tolerance, and highlight its clinical significance and complexities of drug-tolerant bacteria. Then, we discuss the close relationship between antibiotic tolerance and bacterial metabolism. As such, a bacterial metabolism-based approach was proposed to counter antibiotic tolerance. These exogenous metabolites including amino acids, tricarboxylic acid cycle (TCA cycle) metabolites, and nucleotides effectively activate bacterial metabolism and convert the tolerant cells to sensitive cells, and eventually restore antibiotic efficacy. A better understanding of molecular mechanisms of antibiotic tolerance particularly in vivo would substantially drive the development of novel strategies targeting bacterial metabolism.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kangni Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Haijie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Sanyal R, Vimala A, Harinarayanan R. Studies on the Regulation of (p)ppGpp Metabolism and Its Perturbation Through the Over-Expression of Nudix Hydrolases in Escherichia coli. Front Microbiol 2020; 11:562804. [PMID: 33178149 PMCID: PMC7593582 DOI: 10.3389/fmicb.2020.562804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022] Open
Abstract
Stringent response mediated by modified guanosine nucleotides is conserved across bacteria and is regulated through the Rel/Spo functions. In Escherichia coli, RelA and SpoT proteins synthesize the modified nucleotides ppGpp and pppGpp, together referred to as (p)ppGpp. SpoT is also the primary (p)ppGpp hydrolase. In this study, using hypomorphic relA alleles, we provide experimental evidence for SpoT-mediated negative regulation of the amplification of RelA-dependent stringent response. We investigated the kinetics of ppGpp degradation in cells recovering from stringent response in the complete absence of SpoT function. We found that, although greatly diminished, there was slow ppGpp degradation and growth resumption after a lag period, concomitant with decrease in ppGpp pool. We present evidence for reduction in the ppGpp degradation rate following an increase in pppGpp pool, during recovery from stringent response. From a genetic screen, the nudix hydrolases MutT and NudG were identified as over-expression suppressors of the growth defect of ΔspoT and ΔspoT ΔgppA strains. The effect of over-expression of these hydrolases on the stringent response to amino acid starvation and basal (p)ppGpp pool was studied. Over-expression of each hydrolase reduced the strength of the stringent response to amino acid starvation, and additionally, perturbed the ratio of ppGpp to pppGpp in strains with reduced SpoT hydrolase activity. In these strains that do not accumulate pppGpp during amino acid starvation, the expression of NudG or MutT supported pppGpp accumulation. This lends support to the idea that a reduction in the SpoT hydrolase activity is sufficient to cause the loss of pppGpp accumulation and therefore the phenomenon is independent of hydrolases that target pppGpp, such as GppA.
Collapse
Affiliation(s)
- Rajeshree Sanyal
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Allada Vimala
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rajendran Harinarayanan
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
14
|
Basal-Level Effects of (p)ppGpp in the Absence of Branched-Chain Amino Acids in Actinobacillus pleuropneumoniae. J Bacteriol 2020; 202:JB.00640-19. [PMID: 32015147 DOI: 10.1128/jb.00640-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/24/2020] [Indexed: 12/23/2022] Open
Abstract
The (p)ppGpp-mediated stringent response (SR) is a highly conserved regulatory mechanism in bacterial pathogens, enabling adaptation to adverse environments, and is linked to pathogenesis. Actinobacillus pleuropneumoniae can cause damage to the lungs of pigs, its only known natural host. Pig lungs are known to have a low concentration of free branched-chain amino acids (BCAAs) compared to the level in plasma. We had investigated the role for (p)ppGpp in viability and biofilm formation of A. pleuropneumoniae Now, we sought to determine whether (p)ppGpp was a trigger signal for the SR in A. pleuropneumoniae in the absence of BCAAs. Combining transcriptome and phenotypic analyses of the wild type (WT) and an relA spoT double mutant [which does not produce (p)ppGpp], we found that (p)ppGpp could repress de novo purine biosynthesis and activate antioxidant pathways. There was a positive correlation between GTP and endogenous hydrogen peroxide content. Furthermore, the growth, viability, morphology, and virulence were altered by the inability to produce (p)ppGpp. Genes involved in the biosynthesis of BCAAs were constitutively upregulated, regardless of the existence of BCAAs, without accumulation of (p)ppGpp beyond a basal level. Collectively, our study shows that the absence of BCAAs was not a sufficient signal to trigger the SR in A. pleuropneumoniae (p)ppGpp-mediated regulation in A. pleuropneumoniae is different from that described for the model organism Escherichia coli Further work will establish whether the (p)ppGpp-dependent SR mechanism in A. pleuropneumoniae is conserved among other veterinary pathogens, especially those in the Pasteurellaceae family.IMPORTANCE (p)ppGpp is a key player in reprogramming transcriptomes to respond to nutritional challenges. Here, we present transcriptional and phenotypic differences of A. pleuropneumoniae grown in different chemically defined media in the absence of (p)ppGpp. We show that the deprivation of branched-chain amino acids (BCAAs) does not elicit a change in the basal-level (p)ppGpp, but this level is sufficient to regulate the expression of BCAA biosynthesis. The mechanism found in A. pleuropneumoniae is different from that of the model organism Escherichia coli but similar to that found in some Gram-positive bacteria. This study not only broadens the research scope of (p)ppGpp but also further validates the complexity and multiplicity of (p)ppGpp regulation in microorganisms that occupy different biological niches.
Collapse
|
15
|
The Absence of (p)ppGpp Renders Initiation of Escherichia coli Chromosomal DNA Synthesis Independent of Growth Rates. mBio 2020; 11:mBio.03223-19. [PMID: 32156825 PMCID: PMC7064777 DOI: 10.1128/mbio.03223-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The initiation of Escherichia coli chromosomal DNA replication starts with the oligomerization of the DnaA protein at repeat sequences within the origin (ori) region. The amount of ori DNA per cell directly correlates with the growth rate. During fast growth, the cell generation time is shorter than the time required for complete DNA replication; therefore, overlapping rounds of chromosome replication are required. Under these circumstances, the ori region DNA abundance exceeds the DNA abundance in the termination (ter) region. Here, high ori/ter ratios are found to persist in (p)ppGpp-deficient [(p)ppGpp0] cells over a wide range of balanced exponential growth rates determined by medium composition. Evidently, (p)ppGpp is necessary to maintain the usual correlation of slow DNA replication initiation with a low growth rate. Conversely, ori/ter ratios are lowered when cell growth is slowed by incrementally increasing even low constitutive basal levels of (p)ppGpp without stress, as if (p)ppGpp alone is sufficient for this response. There are several previous reports of (p)ppGpp inhibition of chromosomal DNA synthesis initiation that occurs with very high levels of (p)ppGpp that stop growth, as during the stringent starvation response or during serine hydroxamate treatment. This work suggests that low physiological levels of (p)ppGpp have significant functions in growing cells without stress through a mechanism involving negative supercoiling, which is likely mediated by (p)ppGpp regulation of DNA gyrase.IMPORTANCE Bacterial cells regulate their own chromosomal DNA synthesis and cell division depending on the growth conditions, producing more DNA when growing in nutritionally rich media than in poor media (i.e., human gut versus water reservoir). The accumulation of the nucleotide analog (p)ppGpp is usually viewed as serving to warn cells of impending peril due to otherwise lethal sources of stress, which stops growth and inhibits DNA, RNA, and protein synthesis. This work importantly finds that small physiological changes in (p)ppGpp basal levels associated with slow balanced exponential growth incrementally inhibit the intricate process of initiation of chromosomal DNA synthesis. Without (p)ppGpp, initiations mimic the high rates present during fast growth. Here, we report that the effect of (p)ppGpp may be due to the regulation of the expression of gyrase, an important enzyme for the replication of DNA that is a current target of several antibiotics.
Collapse
|
16
|
Lam BR, Barge LM, Noell AC, Nealson KH. Detecting Endogenous Microbial Metabolism and Differentiating Between Abiotic and Biotic Signals Observed by Bioelectrochemical Systems in Soils. ASTROBIOLOGY 2020; 20:39-52. [PMID: 31560219 DOI: 10.1089/ast.2018.1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Unambiguous detection of chemical and physical signatures of microbial life on Mars or other solar system bodies requires differentiation between signals produced by biotic and abiotic processes; instruments aimed at generalized in situ extant life detection would therefore increase the science return of a life-detection mission. Here, we investigate Bioelectrochemical Systems (BES) as a technique to measure microbial metabolism (which produces electrical current and redox changes) and distinguish between potential abiotic and biotic responses in environmental samples. Samples from inhabited niches should contain everything necessary to produce current, that is, catalysts (microorganisms) and fuel (nutrients). BES can also probe for inactive organisms in less energetically rich areas by adding a fuel to drive metabolism. A commercial potting soil and a Mars simulant soil were inoculated in the anodic chamber of microbial fuel cells, and current was monitored over time. Addition of a fuel (electron donor) source was tested for metabolic stimulation of endogenous microbes. Redox reactions between Mars simulant soil and the introduced electron donor (lactate) produced false-positive results, emphasizing the importance of careful interpretation of signals obtained. The addition of lactate to both soils resulted in enhanced biologically produced current, allowing stimulation and detection of dormant microbes. Our results demonstrate that BES provide an approach to detect metabolism in samples without prior knowledge of the organisms present, and that thorough electrochemical analyses and experimental design are necessary to determine if signals are biotic.
Collapse
Affiliation(s)
- Bonita R Lam
- Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - Laura M Barge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Aaron C Noell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Kenneth H Nealson
- Department of Biological Sciences, University of Southern California, Los Angeles, California
- Department of Earth Sciences, University of Southern California, Los Angeles, California
| |
Collapse
|
17
|
Milewska K, Krause K, Szalewska-Pałasz A. The stringent response of marine bacteria - assessment of (p)ppGpp accumulation upon stress conditions. J Appl Genet 2019; 61:123-130. [PMID: 31773499 DOI: 10.1007/s13353-019-00531-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 11/29/2022]
Abstract
Microorganisms are particularly adapted to alterations in their environment. One of the global regulatory mechanisms involved in these adaptations is the stringent response. The unusual nucleotides, guanosine penta and tetraphosphates, (p)ppGpp act as alarmones of this response, heralding nutrient limitation and stressors. Marine bacteria encounter numerous stresses of sparse nutrient supplies and changes in physicochemical conditions. The aim of this work was to assess whether the stress conditions common in marine environment can induce the stringent response and what is a kinetic of this process. The representative bacterial species, Shewanella baltica, Acinetobacter johnsonii, Vibrio harveyi, and Escherichia coli were subjected to a variety of stressors. We analyzed the kinetics of (p)ppGpp synthesis by labeling in vivo nucleotides and analysis by thin layer chromatography. The (p)ppGpp accumulation followed the elevated temperature and amino acid starvation for all bacteria tested. The carbon and nitrogen limitation resulted in the response limited to V. harveyi and S. baltica. The DNA damaging agents induced the (p)ppGpp production in all strains, while osmotic stress did not result in significant alarmone synthesis. The representative marine bacteria species were shown to induce with varying extent the stringent response upon the onset of stress and limitation conditions. Importantly, the in vivo labeling and subsequent separation of the nucleotides by thin layer chromatography serves as a valid method for the analysis of the stringent response and (p)ppGpp accumulation in environmental bacteria.
Collapse
Affiliation(s)
- Klaudia Milewska
- Department of Bacterial Molecular Genetics, University of Gdańsk, Wita Stwosza 59, Gdańsk, Poland
| | - Klaudyna Krause
- Department of Bacterial Molecular Genetics, University of Gdańsk, Wita Stwosza 59, Gdańsk, Poland
| | | |
Collapse
|
18
|
The Ps and Qs of alarmone synthesis in Staphylococcus aureus. PLoS One 2019; 14:e0213630. [PMID: 31613897 PMCID: PMC6793942 DOI: 10.1371/journal.pone.0213630] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
During the stringent response, bacteria synthesize guanosine-3’,5’-bis(diphosphate) (ppGpp) and guanosine-5’-triphosphate 3’-diphosphate (pppGpp), which act as secondary messengers to promote cellular survival and adaptation. (p)ppGpp ‘alarmones’ are synthesized and/or hydrolyzed by proteins belonging to the RelA/SpoT Homologue (RSH) family. Many bacteria also encode ‘small alarmone synthetase’ (SAS) proteins (e.g. RelP, RelQ) which may also be capable of synthesizing a third alarmone: guanosine-5’-phosphate 3’-diphosphate (pGpp). Here, we report the biochemical properties of the Rel (RSH), RelP and RelQ proteins from Staphylococcus aureus (Sa-Rel, Sa-RelP, Sa-RelQ, respectively). Sa-Rel synthesized pppGpp more efficiently than ppGpp, but lacked the ability to produce pGpp. Sa-Rel efficiently hydrolyzed all three alarmones in a Mn(II) ion-dependent manner. The removal of the C-terminal regulatory domain of Sa-Rel increased its rate of (p)ppGpp synthesis ca. 10-fold, but had negligible effects on its rate of (pp)pGpp hydrolysis. Sa-RelP and Sa-RelQ efficiently synthesized pGpp in addition to pppGpp and ppGpp. The alarmone-synthesizing abilities of Sa-RelQ, but not Sa-RelP, were allosterically-stimulated by the addition of pppGpp, ppGpp or pGpp. The respective (pp)pGpp-synthesizing activities of Sa-RelP/Sa-RelQ were compared and contrasted with SAS homologues from Enterococcus faecalis (Ef-RelQ) and Streptococcus mutans (Sm-RelQ, Sm-RelP). Results indicated that EF-RelQ, Sm-RelQ and Sa-RelQ were functionally equivalent; but exhibited considerable variations in their respective biochemical properties, and the degrees to which alarmones and single-stranded RNA molecules allosterically modulated their respective alarmone-synthesizing activities. The respective (pp)pGpp-synthesizing capabilities of Sa-RelP and Sm-RelP proteins were inhibited by pGpp, ppGpp and pppGpp. Our results support the premise that RelP and RelQ proteins may synthesize pGpp in addition to (p)ppGpp within S. aureus and other Gram-positive bacterial species.
Collapse
|
19
|
Verstraeten N, Gkekas S, Kint CI, Deckers B, Van den Bergh B, Herpels P, Louwagie E, Knapen W, Wilmaerts D, Dewachter L, Fauvart M, Singh RK, Michiels J, Versées W. Biochemical determinants of ObgE-mediated persistence. Mol Microbiol 2019; 112:1593-1608. [PMID: 31498933 DOI: 10.1111/mmi.14382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2019] [Indexed: 11/30/2022]
Abstract
Obg is a versatile GTPase that plays a pivotal role in bacterial persistence. We previously showed that the Escherichia coli homolog ObgE exerts this activity through transcriptional activation of a toxin-antitoxin module and subsequent membrane depolarization. Here, we assessed the role of G-domain functionality in ObgE-mediated persistence. Through screening of a mutant library, we identified five obgE alleles (with substitutions G166V, D246G, S270I, N283I and I313N) that have lost their persistence function and no longer activate hokB expression. These alleles support viability of a strain otherwise deprived of ObgE, indicating that ObgE's persistence function can be uncoupled from its essential role. Based on the ObgE crystal structure, we designed two additional mutant proteins (T193A and D286Y), one of which (D286Y) no longer affects persistence. Using isothermal titration calorimetry, stopped-flow experiments and kinetics, we subsequently assessed nucleotide binding and GTPase activity in all mutants. With the exception of the S270I mutant that is possibly affected in protein-protein interactions, all mutants that have lost their persistence function display severely reduced binding to GDP or the alarmone ppGpp. However, we find no clear relation between persistence and GTP or pppGpp binding nor with GTP hydrolysis. Combined, our results signify an important step toward understanding biochemical determinants underlying persistence.
Collapse
Affiliation(s)
- Natalie Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Sotirios Gkekas
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
| | - Cyrielle Ines Kint
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Babette Deckers
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
| | - Bram Van den Bergh
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Pauline Herpels
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Elen Louwagie
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Wouter Knapen
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Dorien Wilmaerts
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,Department of Life Science Technologies, Smart Systems and Emerging Technologies Unit, IMEC, Kapeldreef 75, 3001, Leuven, Belgium
| | - Ranjan Kumar Singh
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20 Box 2460, 3001, Leuven, Belgium
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
20
|
Prusińska JM, Boniecka J, Dąbrowska GB, Goc A. Identification and characterization of the Ipomoea nil RelA/SpoT Homologs (InRSHs) and potential directions of their transcriptional regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:161-176. [PMID: 31084869 DOI: 10.1016/j.plantsci.2019.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/13/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Although the stringent response has been known for more than half a century and has been well studied in bacteria, only the research of the past 19 years revealed that the homologous mechanism is conserved in plants. The plant RelA/SpoT Homolog (RSH) genes have been identified and characterized in a limited number of plant species, whereas products of their catalytic activities, (p)ppGpp (alarmones), have been shown to accumulate mainly in chloroplasts. Here, we identified full-length sequences of the Ipomoea nil RSH genes (InRSH1, InRSH2 and InCRSH), determined their copy number in the I. nil genome as well as the structural conservancy between InRSHs and their Arabidopsis and rice orthologs. We showed that InRSHs are differentially expressed in I. nil organ tissues and that only InRSH2 is upregulated in response to salt, osmotic and drought stress. Our results of the E. coli relA/spoT mutant complementation test suggest that InRSH1 is likely a (p)ppGpp hydrolase, InCRSH - synthetase and InRSH2 shows both activities. Finally, we referred our results to the recently published I. nil genomic and proteomic data and uncovered the complexity of the I. nil RSH family as well as potential ways of the InRSH transcriptional regulation.
Collapse
Affiliation(s)
- Justyna M Prusińska
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland.
| | - Justyna Boniecka
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland
| | - Grażyna B Dąbrowska
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland
| | - Anna Goc
- Nicolaus Copernicus University in Toruń, Department of Genetics, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
21
|
Grossman A, Sanz-Luque E, Yi H, Yang W. Building the GreenCut2 suite of proteins to unmask photosynthetic function and regulation. Microbiology (Reading) 2019; 165:697-718. [DOI: 10.1099/mic.0.000788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Arthur Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Emanuel Sanz-Luque
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Heng Yi
- Key Laboratory of Photobiology, Institute of Botany (CAS), Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Wenqiang Yang
- Key Laboratory of Photobiology, Institute of Botany (CAS), Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
22
|
Mustafi M, Weisshaar JC. Near Saturation of Ribosomal L7/L12 Binding Sites with Ternary Complexes in Slowly Growing E. coli. J Mol Biol 2019; 431:2343-2353. [PMID: 31051175 DOI: 10.1016/j.jmb.2019.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/26/2019] [Accepted: 04/21/2019] [Indexed: 11/26/2022]
Abstract
For Escherichia coli growing rapidly in rich medium at 37 °C, the doubling time can be as short as ~20 min and the average rate of translation (ktrl) can be as fast as ~20 amino acids/s. For slower growth arising from poor nutrient quality or from higher growth osmolality, ktrl decreases significantly. In earlier work from the Hwa lab, a simplified Michaelis-Menten model suggested that the decrease in ktrl arises from a shortage of ternary complexes (TCs) under nutrient limitation and from slower diffusion of TCs under high growth osmolality. Here we present a single-molecule tracking study of the diffusion of EF-Tu in E. coli growing with doubling times in the range 62-190 min at 37 °C due to nutrient limitation, high growth osmolality, or both. The diffusive properties of EF-Tu remain quantitatively indistinguishable across all growth conditions studied. Dissection of the total population into ribosome-bound and free sub-populations, combined with copy number estimates for EF-Tu and ribosomes, indicates that in all cases ~3.7 EF-Tu copies are bound on average to each translating 70S ribosome. Thus, the four L7/L12 binding sites adjacent to the ribosomal A-site in E. coli are essentially saturated with TCs in all conditions, facilitating rapid testing of aminoacyl-tRNAs for a codon match. Evidently, the average translation rate is not limited by either the supply of cognate TCs under nutrient limitation or by the diffusion of free TCs at high osmolality. Some other step or steps must be rate limiting for translation in slow growth.
Collapse
Affiliation(s)
- Mainak Mustafi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James C Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
23
|
Sobala M, Bruhn-Olszewska B, Cashel M, Potrykus K. Methylobacterium extorquens RSH Enzyme Synthesizes (p)ppGpp and pppApp in vitro and in vivo, and Leads to Discovery of pppApp Synthesis in Escherichia coli. Front Microbiol 2019; 10:859. [PMID: 31068922 PMCID: PMC6491832 DOI: 10.3389/fmicb.2019.00859] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/03/2019] [Indexed: 01/12/2023] Open
Abstract
In bacteria, the so-called stringent response is responsible for adaptation to changing environmental conditions. This response is mediated by guanosine derivatives [(p)ppGpp], synthesized by either large mono-functional RelA or bi-functional SpoT (synthesis and hydrolysis) enzymes in β- and γ-proteobacteria, such as Escherichia coli. In Firmicutes and α-, δ-, and 𝜀-proteobacteria, large bifunctional Rel-SpoT-homologs (RSH), often accompanied by small (p)ppGpp synthetases and/or hydrolases devoid of regulatory domains, are responsible for (p)ppGpp turnover. Here, we report on surprising in vitro and in vivo properties of an RSH enzyme from Methylobacterium extorquens (RSHMex). We find that this enzyme possesses some unique features, e.g., it requires cobalt cations for the most efficient (p)ppGpp synthesis, in contrast to all other known specific (p)ppGpp synthetases that require Mg2+. In addition, it can synthesize pppApp, which has not been demonstrated in vitro for any Rel/SpoT/RSH enzyme so far. In vivo, our studies also show that RSHMex is active in Escherichia coli cells, as it can complement E. coli ppGpp0 growth defects and affects rrnB P1-lacZ fusion activity in a way expected for an RSH enzyme. These studies also led us to discover pppApp synthesis in wild type E. coli cells (not carrying the RSHMex enzyme), which to our knowledge has not been demonstrated ever before. In the light of our recent discovery that pppApp directly regulates E. coli RNAP transcription in vitro in a manner opposite to (p)ppGpp, this leads to a possibility that pppApp is a new member of the nucleotide second-messenger family that is widely present in bacterial species.
Collapse
Affiliation(s)
- Michał Sobala
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Bożena Bruhn-Olszewska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Michael Cashel
- Intramural Program, Eunice Kennedy Shriver Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
24
|
Cho H, Song ES, Heu S, Baek J, Lee YK, Lee S, Lee SW, Park DS, Lee TH, Kim JG, Hwang I. Prediction of Host-Specific Genes by Pan-Genome Analyses of the Korean Ralstonia solanacearum Species Complex. Front Microbiol 2019; 10:506. [PMID: 30930881 PMCID: PMC6428702 DOI: 10.3389/fmicb.2019.00506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
The soil-borne pathogenic Ralstonia solanacearum species complex (RSSC) is a group of plant pathogens that is economically destructive worldwide and has a broad host range, including various solanaceae plants, banana, ginger, sesame, and clove. Previously, Korean RSSC strains isolated from samples of potato bacterial wilt were grouped into four pathotypes based on virulence tests against potato, tomato, eggplant, and pepper. In this study, we sequenced the genomes of 25 Korean RSSC strains selected based on these pathotypes. The newly sequenced genomes were analyzed to determine the phylogenetic relationships between the strains with average nucleotide identity values, and structurally compared via multiple genome alignment using Mauve software. To identify candidate genes responsible for the host specificity of the pathotypes, functional genome comparisons were conducted by analyzing pan-genome orthologous group (POG) and type III secretion system effectors (T3es). POG analyses revealed that a total of 128 genes were shared only in tomato-non-pathogenic strains, 8 genes in tomato-pathogenic strains, 5 genes in eggplant-non-pathogenic strains, 7 genes in eggplant-pathogenic strains, 1 gene in pepper-non-pathogenic strains, and 34 genes in pepper-pathogenic strains. When we analyzed T3es, three host-specific effectors were predicted: RipS3 (SKWP3) and RipH3 (HLK3) were found only in tomato-pathogenic strains, and RipAC (PopC) were found only in eggplant-pathogenic strains. Overall, we identified host-specific genes and effectors that may be responsible for virulence functions in RSSC in silico. The expected characters of those genes suggest that the host range of RSSC is determined by the comprehensive actions of various virulence factors, including effectors, secretion systems, and metabolic enzymes.
Collapse
Affiliation(s)
- Heejung Cho
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Eun-Sung Song
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Sunggi Heu
- National Institute of Crop Science, Rural Development Administration, Jeonju, South Korea
| | - JeongHo Baek
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Young Kee Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Seungdon Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Seon-Woo Lee
- Department of Applied Biology, Dong-A University, Busan, South Korea
| | - Dong Suk Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Tae-Ho Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Jeong-Gu Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| |
Collapse
|
25
|
Yasir M, Willcox MDP, Dutta D. Action of Antimicrobial Peptides against Bacterial Biofilms. MATERIALS 2018; 11:ma11122468. [PMID: 30563067 PMCID: PMC6317029 DOI: 10.3390/ma11122468] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
Microbes are known to colonize surfaces and form biofilms. These biofilms are communities of microbes encased in a self-produced matrix that often contains polysaccharides, DNA and proteins. Antimicrobial peptides (AMPs) have been used to control the formation and to eradicate mature biofilms. Naturally occurring or synthetic antimicrobial peptides have been shown to prevent microbial colonization of surfaces, to kill bacteria in biofilms and to disrupt the biofilm structure. This review systemically analyzed published data since 1970 to summarize the possible anti-biofilm mechanisms of AMPs. One hundred and sixty-two published reports were initially selected for this review following searches using the criteria ‘antimicrobial peptide’ OR ‘peptide’ AND ‘mechanism of action’ AND ‘biofilm’ OR ‘antibiofilm’ in the databases PubMed; Scopus; Web of Science; MEDLINE; and Cochrane Library. Studies that investigated anti-biofilm activities without describing the possible mechanisms were removed from the analysis. A total of 17 original reports were included which have articulated the mechanism of antimicrobial action of AMPs against biofilms. The major anti-biofilm mechanisms of antimicrobial peptides are: (1) disruption or degradation of the membrane potential of biofilm embedded cells; (2) interruption of bacterial cell signaling systems; (3) degradation of the polysaccharide and biofilm matrix; (4) inhibition of the alarmone system to avoid the bacterial stringent response; (5) downregulation of genes responsible for biofilm formation and transportation of binding proteins.
Collapse
Affiliation(s)
- Muhammad Yasir
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
26
|
Superoxide dismutase activity confers (p)ppGpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2018; 115:9797-9802. [PMID: 30201715 PMCID: PMC6166797 DOI: 10.1073/pnas.1804525115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metabolically quiescent bacteria represent a large proportion of those in natural and host environments, and they are often refractory to antibiotic treatment. Such drug tolerance is also observed in the laboratory during stationary phase, when bacteria face stress and starvation-induced growth arrest. Tolerance requires (p)ppGpp signaling, which mediates the stress and starvation stringent response (SR), but the downstream effectors that confer tolerance are unclear. We previously demonstrated that the SR is linked to increased antioxidant defenses in Pseudomonas aeruginosa We now demonstrate that superoxide dismutase (SOD) activity is a key factor in SR-mediated multidrug tolerance in stationary-phase P. aeruginosa Inactivation of the SR leads to loss of SOD activity and decreased multidrug tolerance during stationary phase. Genetic or chemical complementation of SOD activity of the ΔrelA spoT mutant (ΔSR) is sufficient to restore antibiotic tolerance to WT levels. Remarkably, we observe high membrane permeability and increased drug internalization upon ablation of SOD activity. Combined, our results highlight an unprecedented mode of SR-mediated multidrug tolerance in stationary-phase P. aeruginosa and suggest that inhibition of SOD activity may potentiate current antibiotics.
Collapse
|
27
|
Jin H, Lao YM, Zhou J, Zhang HJ, Cai ZH. A rapid UHPLC-HILIC method for algal guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and the potential separation mechanism. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1096:143-153. [PMID: 30170292 DOI: 10.1016/j.jchromb.2018.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/20/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
A fast and facile hydrophilic interaction liquid chromatography (HILIC) method was developed and applied to quantify physiologically important ppGpp and its analogues in a tough sample, the astaxanthin-accumulating alga Hameatococcus pluvialis. The method is able to analyze simultaneously seven nucleotides, including ppGpp at the order of pmol g-1 cells within 12 min. Mechanism on the elution order was investigated. It was found that 1) phosphate salt competed for the amide groups on the HILIC column with the phosphate groups of the nucleotides; 2) intramolecular hydrogen bonds might contribute to the elution order by offsetting and reducing the number of free hydrogen acceptor/donor of the nucleotide molecules interacting with the amide groups. This is the first HILIC method for ppGpp, which is feasible and applicable to a wide range of samples, especially tough samples, e.g., algae and plants.
Collapse
Affiliation(s)
- Hui Jin
- Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Yong Min Lao
- Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Jin Zhou
- Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Huai Jin Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Zhong Hua Cai
- Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
28
|
Schofield WB, Zimmermann-Kogadeeva M, Zimmermann M, Barry NA, Goodman AL. The Stringent Response Determines the Ability of a Commensal Bacterium to Survive Starvation and to Persist in the Gut. Cell Host Microbe 2018; 24:120-132.e6. [PMID: 30008292 PMCID: PMC6086485 DOI: 10.1016/j.chom.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/21/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023]
Abstract
In the mammalian gut, bacteria compete for resources to maintain their populations, but the factors determining their success are poorly understood. We report that the human gut bacterium Bacteroides thetaiotaomicron relies on the stringent response, an intracellular signaling pathway that allocates resources away from growth, to survive carbon starvation and persist in the gut. Genome-scale transcriptomics, 13C-labeling, and metabolomics analyses reveal that B. thetaiotaomicron uses the alarmone (p)ppGpp to repress multiple biosynthetic pathways and upregulate tricarboxylic acid (TCA) cycle genes in these conditions. During carbon starvation, (p)ppGpp triggers accumulation of the metabolite alpha-ketoglutarate, which itself acts as a metabolic regulator; alpha-ketoglutarate supplementation restores viability to a (p)ppGpp-deficient strain. These studies uncover how commensal bacteria adapt to the gut by modulating central metabolism and reveal that halting rather than accelerating growth can be a determining factor for membership in the gut microbiome.
Collapse
Affiliation(s)
- Whitman B Schofield
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Maria Zimmermann-Kogadeeva
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Michael Zimmermann
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Natasha A Barry
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
29
|
Gratani FL, Horvatek P, Geiger T, Borisova M, Mayer C, Grin I, Wagner S, Steinchen W, Bange G, Velic A, Maček B, Wolz C. Regulation of the opposing (p)ppGpp synthetase and hydrolase activities in a bifunctional RelA/SpoT homologue from Staphylococcus aureus. PLoS Genet 2018; 14:e1007514. [PMID: 29985927 PMCID: PMC6053245 DOI: 10.1371/journal.pgen.1007514] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/19/2018] [Accepted: 06/25/2018] [Indexed: 01/15/2023] Open
Abstract
The stringent response is characterized by (p)ppGpp synthesis resulting in repression of translation and reprogramming of the transcriptome. In Staphylococcus aureus, (p)ppGpp is synthesized by the long RSH (RelA/SpoT homolog) enzyme, RelSau or by one of the two short synthetases (RelP, RelQ). RSH enzymes are characterized by an N-terminal enzymatic domain bearing distinct motifs for (p)ppGpp synthetase or hydrolase activity and a C-terminal regulatory domain (CTD) containing conserved motifs (TGS, DC and ACT). The intramolecular switch between synthetase and hydrolase activity of RelSau is crucial for the adaption of S. aureus to stress (stringent) or non-stress (relaxed) conditions. We elucidated the role of the CTD in the enzymatic activities of RelSau. Growth pattern, transcriptional analyses and in vitro assays yielded the following results: i) in vivo, under relaxed conditions, as well as in vitro, the CTD inhibits synthetase activity but is not required for hydrolase activity; ii) under stringent conditions, the CTD is essential for (p)ppGpp synthesis; iii) RelSau lacking the CTD exhibits net hydrolase activity when expressed in S. aureus but net (p)ppGpp synthetase activity when expressed in E. coli; iv) the TGS and DC motifs within the CTD are required for correct stringent response, whereas the ACT motif is dispensable, v) Co-immunoprecipitation indicated that the CTD interacts with the ribosome, which is largely dependent on the TGS motif. In conclusion, RelSau primarily exists in a synthetase-OFF/hydrolase-ON state, the TGS motif within the CTD is required to activate (p)ppGpp synthesis under stringent conditions.
Collapse
Affiliation(s)
- Fabio Lino Gratani
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Petra Horvatek
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Tobias Geiger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Marina Borisova
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Iwan Grin
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research, Partner Site Tuebingen, Tuebingen, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research, Partner Site Tuebingen, Tuebingen, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) & Dept. of Chemistry, Philipps-University, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) & Dept. of Chemistry, Philipps-University, Marburg, Germany
| | - Ana Velic
- Quantitative Proteomics and Proteome Center Tuebingen, Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Boris Maček
- Quantitative Proteomics and Proteome Center Tuebingen, Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
30
|
Chen J, Huang Y, Yang X, Zhang H, Li Z, Qin B, Chen X, Qiu H. Highly sensitive and visual detection of guanosine 3'-diphosphate-5'-di(tri)phosphate (ppGpp) in bacteria based on copper ions-mediated 4-mercaptobenzoic acid modified gold nanoparticles. Anal Chim Acta 2018; 1023:89-95. [PMID: 29754611 DOI: 10.1016/j.aca.2018.02.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 01/21/2023]
Abstract
Guanosine 3'-diphosphate-5'-di(tri)phosphate (ppGpp) plays a crucial role in the gene expression, metabolism, growth, and other significant processes of microorganisms. In this work, a facile sensitive and visual strategy for the detection of ppGpp has been established by developing a colorimetric probe of copper ions (Cu2+)-mediated 4-mercaptobenzoic acid (4-MBA) modified gold nanoparticles (AuNPs). The sensing process was characterized by transmission electron microscopy (TEM), zeta potential, dynamic light scattering (DLS) and UV-vis spectroscopy. The strategy not only achieves desirable performance over a wide concentration range (0.05-10 μM), but also exhibits excellent selectivity over other nucleotides and biomolecules. In addition, the results could be visualized by the naked eye. We have demonstrated the determination of ppGpp in Bacillus subtilis lysate samples.
Collapse
Affiliation(s)
- Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanni Huang
- Laboratory on Pollution Monitoring and Control, College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Xiaoyan Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Haijuan Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhan Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Bo Qin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xingguo Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
31
|
Chen BB, Liu ML, Zhan L, Li CM, Huang CZ. Terbium(III) Modified Fluorescent Carbon Dots for Highly Selective and Sensitive Ratiometry of Stringent. Anal Chem 2018; 90:4003-4009. [PMID: 29493236 DOI: 10.1021/acs.analchem.7b05149] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Highly selective and sensitive detection of guanosine 3'-diphosphate-5'-diphosphate (ppGpp), namely, the stringent in plants or microorganisms responding to strict or extreme environmental conditions such as stress and starvation, which plays an important role in gene expression, rRNA and antibiotics production, regulations of virulence of bacteria, and growth of plants, faces a great challenge owing to its extreme similarity to normal nucleotides. By modifying the surface groups of a facile two-step hydrothermal route prepared carbon dots (CDs) with terbium ions (Tb3+) in this contribution, a novel fluorescent probe with excellent properties such as highly physical and chemical stability, narrow emission and excitation wavelength-independent emission was prepared. The Tb3+ ions on the surface of CDs cannot only preserve the intrinsic fluorescence (FL) of CDs but also keep its own coordination capacity with rare earth complex, and thus the clamp structure (four phosphate groups) of ppGpp can specific binding with Tb3+ ions on the surface of CDs to produce antenna effect. Therefore, a highly selective and sensitive fluorescent ratiometry of ppGpp was developed by terbium-modified carbon dots (CDs-Tb) with the limit of detection as low as 50 nM based on the synergistic effect of antenna effect of Tb3+ ions and specific recognition capacity of CDs. The applicability of this assay was demonstrated by CDs-Tb-based paper sensor for high distinguishing ppGpp from other nucleotides with similar structure.
Collapse
Affiliation(s)
- Bin Bin Chen
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry, Ministry of Education College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400716 , China
| | - Meng Li Liu
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry, Ministry of Education College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400716 , China
| | - Lei Zhan
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Pharmaceutical Science , Southwest University , Chongqing 400716 , China
| | - Chun Mei Li
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Pharmaceutical Science , Southwest University , Chongqing 400716 , China
| | - Cheng Zhi Huang
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry, Ministry of Education College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400716 , China.,Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Pharmaceutical Science , Southwest University , Chongqing 400716 , China
| |
Collapse
|
32
|
Singal B, Balakrishna AM, Nartey W, Manimekalai MSS, Jeyakanthan J, Grüber G. Crystallographic and solution structure of the N-terminal domain of the Rel protein fromMycobacterium tuberculosis. FEBS Lett 2017; 591:2323-2337. [DOI: 10.1002/1873-3468.12739] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Bharti Singal
- School of Biological Sciences; Nanyang Technological University; Singapore Singapore
| | | | - Wilson Nartey
- School of Biological Sciences; Nanyang Technological University; Singapore Singapore
| | | | | | - Gerhard Grüber
- School of Biological Sciences; Nanyang Technological University; Singapore Singapore
| |
Collapse
|
33
|
Single-point Mutation of an Histidine-aspartic Domain-containing Gene involving in Chloroplast Ribosome Biogenesis Leads to White Fine Stripe Leaf in Rice. Sci Rep 2017; 7:3298. [PMID: 28607371 PMCID: PMC5468306 DOI: 10.1038/s41598-017-03327-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/26/2017] [Indexed: 11/08/2022] Open
Abstract
Plant leaves are a crucial organ associated closely with chloroplast development, photosynthesis rate and crop productivity. In this study, a white fine stripe leaf 1 (wfsl1) mutant was isolated and characterized from the japonica rice Zhonghua11 (ZH11) after ethyl methanesulfonate mutagenesis. The wfsl1 displayed white fine stripe leaves since tillering stage and abnormal chloroplast structure. Map-based cloning and Bioinformatic analysis indicated that WFSL1 on chromosome 1 contains an “A” to “T” substitution in protein coding region, and encodes a putative metal-dependent phosphohydrolase with HD domain at the N-terminus. WFSL1 was targeted to the chloroplasts and had higher expression in mature leaves and sheaths. RNA-seq analysis revealed that chloroplast development and photosynthesis genes were significantly affected in wfsl1 plants. Levels of WFSL1 and chloroplast encoded proteins were decreased in wfsl1 mutants via western blot analysis. Compared with WT, wfsl1 exhibits lower Chl content and defective in biogenesis of chloroplast ribosomes, which resulted in reduced grain yield. Taken together, our results show that WFSL1 is critical for chloroplast development, ribosome biogenesis, and light energy utilization, finally affects grain yield.
Collapse
|
34
|
Van den Bergh B, Fauvart M, Michiels J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev 2017; 41:219-251. [DOI: 10.1093/femsre/fux001] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
|
35
|
Identification of YbeY-Protein Interactions Involved in 16S rRNA Maturation and Stress Regulation in Escherichia coli. mBio 2016; 7:mBio.01785-16. [PMID: 27834201 PMCID: PMC5101352 DOI: 10.1128/mbio.01785-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
YbeY is part of a core set of RNases in Escherichia coli and other bacteria. This highly conserved endoribonuclease has been implicated in several important processes such as 16S rRNA 3' end maturation, 70S ribosome quality control, and regulation of mRNAs and small noncoding RNAs, thereby affecting cellular viability, stress tolerance, and pathogenic and symbiotic behavior of bacteria. Thus, YbeY likely interacts with numerous protein or RNA partners that are involved in various aspects of cellular physiology. Using a bacterial two-hybrid system, we identified several proteins that interact with YbeY, including ribosomal protein S11, the ribosome-associated GTPases Era and Der, YbeZ, and SpoT. In particular, the interaction of YbeY with S11 and Era provides insight into YbeY's involvement in the 16S rRNA maturation process. The three-way association between YbeY, S11, and Era suggests that YbeY is recruited to the ribosome where it could cleave the 17S rRNA precursor endonucleolytically at or near the 3' end maturation site. Analysis of YbeY missense mutants shows that a highly conserved beta-sheet in YbeY-and not amino acids known to be important for YbeY's RNase activity-functions as the interface between YbeY and S11. This protein-interacting interface of YbeY is needed for correct rRNA maturation and stress regulation, as missense mutants show significant phenotypic defects. Additionally, structure-based in silico prediction of putative interactions between YbeY and the Era-30S complex through protein docking agrees well with the in vivo results. IMPORTANCE Ribosomes are ribonucleoprotein complexes responsible for a key cellular function, protein synthesis. Their assembly is a highly coordinated process of RNA cleavage, RNA posttranscriptional modification, RNA conformational changes, and protein-binding events. Many open questions remain after almost 5 decades of study, including which RNase is responsible for final processing of the 16S rRNA 3' end. The highly conserved RNase YbeY, belonging to a core set of RNases essential in many bacteria, was previously shown to participate in 16S rRNA processing and ribosome quality control. However, detailed mechanistic insight into YbeY's ribosome-associated function has remained elusive. This work provides the first evidence that YbeY is recruited to the ribosome through interaction with proteins involved in ribosome biogenesis (i.e., ribosomal protein S11, Era). In addition, we identified key residues of YbeY involved in the interaction with S11 and propose a possible binding mode of YbeY to the ribosome using in silico docking.
Collapse
|
36
|
Wu ML, Chan CL, Dick T. Rel Is Required for Morphogenesis of Resting Cells in Mycobacterium smegmatis. Front Microbiol 2016; 7:1390. [PMID: 27630635 PMCID: PMC5005932 DOI: 10.3389/fmicb.2016.01390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/23/2016] [Indexed: 01/15/2023] Open
Abstract
Recently we showed that upon transfer of growing Mycobacterium smegmatis into saline, the bacilli exited the canonical cell division cycle and formed septated multi-nucleoided cells. Under shock starvation (i.e., in saline without any carbon source), differentiation terminated at this stage with internally remodeled Large Resting Cells (LARCs). Whereas under gentle starvation (i.e., in saline with trace amounts of a carbon source), the septated multi-nucleoided bacilli completed cell division and separated into mono-nucleoided Small Resting Cells (SMRCs). This demonstrated that the non-sporulating mycobacteria are in fact capable of forming morphologically differentiated resting cells when exposed to starvation. Depending on the specific starvation conditions they can form two different resting cell types, LARCs or SMRCs, which share a common cellular differentiation pathway. The mRNA encoding the (p)ppGpp synthetase Rel was found to be transiently upregulated immediately upon starvation under both conditions, suggesting a role for the stringent response factor in both LARC and SMRC development. Here, we disrupted Rel function by generating two types of mutant M. smegmatis strains: a rel nonsense mutant (relE4TAG) in which translation is prematurely terminated at codon 4, and a rel deletion mutant (Δrel) in which the entire coding sequence was deleted. Both mutants showed identical phenotypes: sparse septum formation, less DNA compaction, and failure in formation of both the septated multi-nucleoided LARCs and the small-cell morphotype SMRC under starvation conditions. All phenotypes were rescued through the introduction of a wild-type copy of rel. Therefore, we conclude that loss-of-function mutations in rel block the development of both LARCs and SMRCs by preventing the first morphogenetic step in mycobacterial resting cell development, the formation of septated multi-nucleoided cells. Interestingly, in contrast to Rel’s role in most other bacteria, starvation survival was not affected by loss of rel function. Our results suggest that Rel may play a starvation-induced morphogenetic role in mycobacteria.
Collapse
Affiliation(s)
- Mu-Lu Wu
- Antibacterial Drug Discovery Laboratory, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Chuu Ling Chan
- Antibacterial Drug Discovery Laboratory, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Thomas Dick
- Antibacterial Drug Discovery Laboratory, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
37
|
Zhou X, Fornara D, Ikenaga M, Akagi I, Zhang R, Jia Z. The Resilience of Microbial Community under Drying and Rewetting Cycles of Three Forest Soils. Front Microbiol 2016; 7:1101. [PMID: 27486444 PMCID: PMC4949271 DOI: 10.3389/fmicb.2016.01101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/01/2016] [Indexed: 02/04/2023] Open
Abstract
Forest soil ecosystems are associated with large pools and fluxes of carbon (C) and nitrogen (N), which could be strongly affected by variation in rainfall events under current climate change. Understanding how dry and wet cycle events might influence the metabolic state of indigenous soil microbes is crucial for predicting forest soil responses to environmental change. We used 454 pyrosequencing and quantitative PCR to address how present (DNA-based) and potentially active (RNA-based) soil bacterial communities might response to the changes in water availability across three different forest types located in two continents (Africa and Asia) under controlled drying and rewetting cycles. Sequencing of rRNA gene and transcript indicated that Proteobacteria, Actinobacteria, and Acidobacteria were the most responsive phyla to changes in water availability. We defined the ratio of rRNA transcript to rRNA gene abundance as a key indicator of potential microbial activity and we found that this ratio was increased following soil dry-down process whereas it decreased after soil rewetting. Following rewetting Crenarchaeota-like 16S rRNA gene transcript increased in some forest soils and this was linked to increases in soil nitrate levels suggesting greater nitrification rates under higher soil water availability. Changes in the relative abundance of (1) different microbial phyla and classes, and (2) 16S and amoA genes were found to be site- and taxa-specific and might have been driven by different life-strategies. Overall, we found that, after rewetting, the structure of the present and potentially active bacterial community structure as well as the abundance of bacterial (16S), archaeal (16S) and ammonia oxidizers (amoA), all returned to pre-dry-down levels. This suggests that microbial taxa have the ability to recover from desiccation, a critical response, which will contribute to maintaining microbial biodiversity in harsh ecosystems under environmental perturbations, such as significant changes in water availability.
Collapse
Affiliation(s)
- Xue Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China; University of Chinese Academy of SciencesBeijing, China
| | - Dario Fornara
- Agri-Food and Biosciences Institute Belfast, Ireland
| | - Makoto Ikenaga
- Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University Kagoshima, Japan
| | - Isao Akagi
- Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University Kagoshima, Japan
| | - Ruifu Zhang
- National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agriculture University Nanjing, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, China
| |
Collapse
|
38
|
Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot (Tokyo) 2016; 70:25-40. [PMID: 27381522 DOI: 10.1038/ja.2016.82] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/22/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022]
Abstract
As bacteria and fungi have been found to contain genes encoding enzymes that synthesize a plethora of potential secondary metabolites, interest has grown in the activation of these cryptic pathways. Homologous and heterologous expression of these cryptic secondary metabolite-biosynthetic genes, often silent under ordinary laboratory fermentation conditions, may lead to the discovery of novel secondary metabolites. This review addresses current progress in the activation of these pathways, describing methods for activating silent genes. It especially focuses on genetic manipulation of transcription and translation (ribosome engineering), the utilization of elicitors, metabolism remodeling and co-cultivation. In particular, the principles and technical points of ribosome engineering and the significance of S-adenosylmethionine in bacterial physiology, especially secondary metabolism, are described in detail.
Collapse
|
39
|
Mwita L, Chan WY, Pretorius T, Lyantagaye SL, Lapa SV, Avdeeva LV, Reva ON. Gene expression regulation in the plant growth promoting Bacillus atrophaeus UCMB-5137 stimulated by maize root exudates. Gene 2016; 590:18-28. [PMID: 27259668 DOI: 10.1016/j.gene.2016.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/04/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
Abstract
Despite successful use of Plant Growth Promoting Rhizobacteria (PGPR) in agriculture, little is known about specific mechanisms of gene regulation facilitating the effective communication between bacteria and plants during plant colonization. Active PGPR strain Bacillus atrophaeus UCMB-5137 was studied in this research. RNA sequencing profiles were generated in experiments where root exudate stimulations were used to mimic interactions between bacteria and plants. It was found that the gene regulation in B. atrophaeus UCMB-5137 in response to the root exudate stimuli differed from the reported gene regulation at similar conditions in B. amyloliquefaciens FZB42, which was considered as a paradigm PGPR. This difference was explained by hypersensitivity of UCMB-5137 to the root exudate stimuli impelling it to a sessile root colonization behavior through the CcpA-CodY-AbrB regulation. It was found that the transcriptional factor DegU also could play an important role in gene regulations during plant colonization. A significant stress caused by the root exudates on in vitro cultivated B. atrophaeus UCMB-5137 was noticed and discussed. Multiple cases of conflicted gene regulations showed scantiness of our knowledge on the regulatory network in Bacillus. Some of these conflicted regulations could be explained by interference of non-coding RNA (ncRNA). Search through differential expressed intergenic regions revealed 49 putative loci of ncRNA regulated by the root exudate stimuli. Possible target mRNA were predicted and a general regulatory network of B. atrophaeus UCMB-5137 genome was designed.
Collapse
Affiliation(s)
- Liberata Mwita
- Centre for Bioinformatics and Computational Biology, Dep. Biochemistry, University of Pretoria, Lynnwood Rd, Hillcrest, Pretoria 0002, South Africa
| | - Wai Yin Chan
- Department of Microbiology and Plant Pathology, University of Pretoria, Lynnwood Rd, Hillcrest, Pretoria 0002, South Africa
| | - Theresa Pretorius
- Department of Microbiology and Plant Pathology, University of Pretoria, Lynnwood Rd, Hillcrest, Pretoria 0002, South Africa
| | - Sylvester L Lyantagaye
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35179, Dar es Salaam, Tanzania
| | - Svitlana V Lapa
- Dep. Antibiotics, D. K. Zabolotnogo Institute of Microbiology and Virology, 154 Zabolotnogo Str., Kiev, Ukraine
| | - Lilia V Avdeeva
- Dep. Antibiotics, D. K. Zabolotnogo Institute of Microbiology and Virology, 154 Zabolotnogo Str., Kiev, Ukraine
| | - Oleg N Reva
- Centre for Bioinformatics and Computational Biology, Dep. Biochemistry, University of Pretoria, Lynnwood Rd, Hillcrest, Pretoria 0002, South Africa.
| |
Collapse
|
40
|
Klymyshin DO, Stephanyshyn OM, Fedorenko VO. Participation of (p)ppGpp molecules in the formation of “stringent response” in bacteria, as well as in the biosynthesis of antibiotics and morphological differentiation in actinomycetes. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716020067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol 2016; 221:37-53. [PMID: 26803272 DOI: 10.1016/j.ijfoodmicro.2015.12.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/24/2022]
Abstract
In combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products.
Collapse
|
42
|
Inactivation of Cell Division Protein FtsZ by SulA Makes Lon Indispensable for the Viability of a ppGpp0 Strain of Escherichia coli. J Bacteriol 2015; 198:688-700. [PMID: 26644431 DOI: 10.1128/jb.00693-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The modified nucleotides (p)ppGpp play an important role in bacterial physiology. While the accumulation of the nucleotides is vital for adaptation to various kinds of stress, changes in the basal level modulates growth rate and vice versa. Studying the phenotypes unique to the strain lacking (p)ppGpp (ppGpp(0)) under overtly unstressed growth conditions may be useful to understand functions regulated by basal levels of (p)ppGpp and its physiological significance. In this study, we show that the ppGpp(0) strain, unlike the wild type, requires the Lon protease for cell division and viability in LB. Our results indicate the decrease in FtsZ concentration in the ppGpp(0) strain makes cell division vulnerable to SulA inhibition. We did not find evidence for SOS induction contributing to the cell division defect in the ppGpp(0) Δlon strain. Based on the results, we propose that basal levels of (p)ppGpp are required to sustain normal cell division in Escherichia coli during growth in rich medium and that the basal SulA level set by Lon protease is important for insulating cell division against a decrease in FtsZ concentration and conditions that can increase the susceptibility of FtsZ to SulA. IMPORTANCE The physiology of the stringent response has been the subject of investigation for more than 4 decades, with the majority of the work carried out using the bacterial model organism Escherichia coli. These studies have revealed that the accumulation of (p)ppGpp, the effector of the stringent response, is associated with growth retardation and changes in gene expression that vary with the intracellular concentration of (p)ppGpp. By studying a synthetic lethal phenotype, we have uncovered a function modulated by the basal levels of (p)ppGpp and studied its physiological significance. Our results show that (p)ppGpp and Lon protease contribute to the robustness of the cell division machinery in E. coli during growth in rich medium.
Collapse
|
43
|
DksA regulates RNA polymerase in Escherichia coli through a network of interactions in the secondary channel that includes Sequence Insertion 1. Proc Natl Acad Sci U S A 2015; 112:E6862-71. [PMID: 26604313 DOI: 10.1073/pnas.1521365112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sensing and responding to nutritional status is a major challenge for microbial life. In Escherichia coli, the global response to amino acid starvation is orchestrated by guanosine-3',5'-bisdiphosphate and the transcription factor DksA. DksA alters transcription by binding to RNA polymerase and allosterically modulating its activity. Using genetic analysis, photo-cross-linking, and structural modeling, we show that DksA binds and acts upon RNA polymerase through prominent features of both the nucleotide-access secondary channel and the active-site region. This work is, to our knowledge, the first demonstration of a molecular function for Sequence Insertion 1 in the β subunit of RNA polymerase and significantly advances our understanding of how DksA binds to RNA polymerase and alters transcription.
Collapse
|
44
|
Zheng LL, Huang CZ. Selective and sensitive colorimetric detection of stringent alarmone ppGpp with Fenton-like reagent. Analyst 2015; 139:6284-9. [PMID: 25315398 DOI: 10.1039/c4an01632g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stringent alarmone, namely, guanosine 3'-diphosphate-5'-diphosphate (ppGpp), is a global regulator that plays a critical role in the survival, growth, metabolism, and many other vital processes of microorganisms. Because of its structural similarity to normal nucleotides, it is also a challenge for the selective and sensitive detection of ppGpp nowadays. Herein, we developed a colorimetric method for the selective detection of ppGpp by inhibiting the redox reaction between Fenton-like reagent (composed of Fe(3+) and H2O2) with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS). Owing to the strong coordination affinity between ppGpp and Fe(3+), the chromogenic reaction between ABTS and Fenton-like reagent, occurred in aqueous medium at 37 °C and resulted in a bluish-green solution, which was inhibited with the addition of ppGpp. This phenomenon forms the basis for the colorimetric detection of ppGpp, with a detection limit of 0.19 μM and good selectivity for ppGpp over other nucleotides and anions. Furthermore, the results could be visualized by the naked eye, and the sensitivity of the naked-eye observation could even be further improved with the aid of the introduction of a background color.
Collapse
Affiliation(s)
- Lin Ling Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | | |
Collapse
|
45
|
Drecktrah D, Lybecker M, Popitsch N, Rescheneder P, Hall LS, Samuels DS. The Borrelia burgdorferi RelA/SpoT Homolog and Stringent Response Regulate Survival in the Tick Vector and Global Gene Expression during Starvation. PLoS Pathog 2015; 11:e1005160. [PMID: 26371761 PMCID: PMC4570706 DOI: 10.1371/journal.ppat.1005160] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/21/2015] [Indexed: 01/09/2023] Open
Abstract
As the Lyme disease bacterium Borrelia burgdorferi traverses its enzootic cycle, alternating between a tick vector and a vertebrate host, the spirochete must adapt and persist in the tick midgut under prolonged nutrient stress between blood meals. In this study, we examined the role of the stringent response in tick persistence and in regulation of gene expression during nutrient limitation. Nutritionally starving B. burgdorferi in vitro increased the levels of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), collectively referred to as (p)ppGpp, products of the bifunctional synthetase/hydrolase RelBbu (RelA/SpoT homolog). Conversely, returning B. burgdorferi to a nutrient-rich medium decreased (p)ppGpp levels. B. burgdorferi survival in ticks between the larval and nymph blood meals, and during starvation in vitro, was dependent on RelBbu. Furthermore, normal morphological conversion from a flat-wave shape to a condensed round body (RB) form during starvation was dependent on RelBbu; relBbu mutants more frequently formed RBs, but their membranes were compromised. By differential RNA sequencing analyses, we found that RelBbu regulates an extensive transcriptome, both dependent and independent of nutrient stress. The RelBbu regulon includes the glp operon, which is important for glycerol utilization and persistence in the tick, virulence factors and the late phage operon of the 32-kb circular plasmid (cp32) family. In summary, our data suggest that RelBbu globally modulates transcription in response to nutrient stress by increasing (p)ppGpp levels to facilitate B. burgdorferi persistence in the tick.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Meghan Lybecker
- Department of Biology, University of Colorado, Colorado Springs, Colorado, United States of America
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Niko Popitsch
- Oxford NIHR Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna & Medical University of Vienna, Vienna, Austria
| | - Philipp Rescheneder
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna & Medical University of Vienna, Vienna, Austria
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - D. Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
46
|
Transposon Mutagenesis Paired with Deep Sequencing of Caulobacter crescentus under Uranium Stress Reveals Genes Essential for Detoxification and Stress Tolerance. J Bacteriol 2015. [PMID: 26195598 DOI: 10.1128/jb.00382-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED The ubiquitous aquatic bacterium Caulobacter crescentus is highly resistant to uranium (U) and facilitates U biomineralization and thus holds promise as an agent of U bioremediation. To gain an understanding of how C. crescentus tolerates U, we employed transposon (Tn) mutagenesis paired with deep sequencing (Tn-seq) in a global screen for genomic elements required for U resistance. Of the 3,879 annotated genes in the C. crescentus genome, 37 were found to be specifically associated with fitness under U stress, 15 of which were subsequently tested through mutational analysis. Systematic deletion analysis revealed that mutants lacking outer membrane transporters (rsaFa and rsaFb), a stress-responsive transcription factor (cztR), or a ppGpp synthetase/hydrolase (spoT) exhibited a significantly lower survival rate under U stress. RsaFa and RsaFb, which are homologues of TolC in Escherichia coli, have previously been shown to mediate S-layer export. Transcriptional analysis revealed upregulation of rsaFa and rsaFb by 4- and 10-fold, respectively, in the presence of U. We additionally show that rsaFa mutants accumulated higher levels of U than the wild type, with no significant increase in oxidative stress levels. Our results suggest a function for RsaFa and RsaFb in U efflux and/or maintenance of membrane integrity during U stress. In addition, we present data implicating CztR and SpoT in resistance to U stress. Together, our findings reveal novel gene targets that are key to understanding the molecular mechanisms of U resistance in C. crescentus. IMPORTANCE Caulobacter crescentus is an aerobic bacterium that is highly resistant to uranium (U) and has great potential to be used in U bioremediation, but its mechanisms of U resistance are poorly understood. We conducted a Tn-seq screen to identify genes specifically required for U resistance in C. crescentus. The genes that we identified have previously remained elusive using other omics approaches and thus provide significant insight into the mechanisms of U resistance by C. crescentus. In particular, we show that outer membrane transporters RsaFa and RsaFb, previously known as part of the S-layer export machinery, may confer U resistance by U efflux and/or by maintaining membrane integrity during U stress.
Collapse
|
47
|
Lawson CE, Strachan BJ, Hanson NW, Hahn AS, Hall ER, Rabinowitz B, Mavinic DS, Ramey WD, Hallam SJ. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ Microbiol 2015; 17:4979-93. [PMID: 25857222 DOI: 10.1111/1462-2920.12875] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 12/01/2022]
Abstract
Enhanced biological phosphorus removal (EBPR) relies on diverse but specialized microbial communities to mediate the cycling and ultimate removal of phosphorus from municipal wastewaters. However, little is known about microbial activity and dynamics in relation to process fluctuations in EBPR ecosystems. Here, we monitored temporal changes in microbial community structure and potential activity across each bioreactor zone in a pilot-scale EBPR treatment plant by examining the ratio of small subunit ribosomal RNA (SSU rRNA) to SSU rRNA gene (rDNA) over a 120 day study period. Although the majority of operational taxonomic units (OTUs) in the EBPR ecosystem were rare, many maintained high potential activities based on SSU rRNA : rDNA ratios, suggesting that rare OTUs contribute substantially to protein synthesis potential in EBPR ecosystems. Few significant differences in OTU abundance and activity were observed between bioreactor redox zones, although differences in temporal activity were observed among phylogenetically cohesive OTUs. Moreover, observed temporal activity patterns could not be explained by measured process parameters, suggesting that other ecological drivers, such as grazing or viral lysis, modulated community interactions. Taken together, these results point towards complex interactions selected for within the EBPR ecosystem and highlight a previously unrecognized functional potential among low abundance microorganisms in engineered ecosystems.
Collapse
Affiliation(s)
- Christopher E Lawson
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Blake J Strachan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Niels W Hanson
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - Aria S Hahn
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Eric R Hall
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Barry Rabinowitz
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada.,CH2M Hill Canada, 4720 Kingsway Suite 2100, Burnaby, BC, Canada
| | - Donald S Mavinic
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada
| | - William D Ramey
- Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
48
|
Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev 2015; 78:343-71. [PMID: 25184558 DOI: 10.1128/mmbr.00010-14] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to present the current state of knowledge on human latent tuberculosis infection (LTBI) based on clinical studies and observations, as well as experimental in vitro and animal models. Several key terms are defined, including "latency," "persistence," "dormancy," and "antibiotic tolerance." Dogmas prevalent in the field are critically examined based on available clinical and experimental data, including the long-held beliefs that infection is either latent or active, that LTBI represents a small population of nonreplicating, "dormant" bacilli, and that caseous granulomas are the haven for LTBI. The role of host factors, such as CD4(+) and CD8(+) T cells, T regulatory cells, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ), in controlling TB infection is discussed. We also highlight microbial regulatory and metabolic pathways implicated in bacillary growth restriction and antibiotic tolerance under various physiologically relevant conditions. Finally, we pose several clinically important questions, which remain unanswered and will serve to stimulate future research on LTBI.
Collapse
|
49
|
Chatnaparat T, Li Z, Korban SS, Zhao Y. The bacterial alarmone (p)ppGpp is required for virulence and controls cell size and survival of Pseudomonas syringae on plants. Environ Microbiol 2015; 17:4253-70. [PMID: 25626964 DOI: 10.1111/1462-2920.12744] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/29/2014] [Accepted: 12/06/2014] [Indexed: 11/29/2022]
Abstract
The stringent response, mediated by second messenger (p)ppGpp, results in swift and massive transcriptional reprogramming under nutrient limited conditions. In this study, the role of (p)ppGpp on virulence of Pseudomonas syringae pv. syringae B728a (PssB728a) was investigated. The virulence of the relA/spoT (ppGpp(0) ) double mutant was completely impaired on bean, and bacterial growth was significantly reduced, suggesting that (p)ppGpp is required for full virulence of P. syringae. Expression of T3SS and other virulence genes was reduced in ppGpp(0) mutants. In addition, ppGpp deficiency resulted in loss of swarming motility, reduction of pyoverdine production, increased sensitivity to oxidative stress and antibiotic tolerance, as well as reduced ability to utilize γ-amino butyric acid. Increased levels of ppGpp resulted in reduced cell size of PssB728a when grown in a minimal medium and on plant surfaces, while most ppGpp(0) mutant cells were not viable on plant surfaces 24 h after spray inoculation, suggesting that ppGpp-mediated stringent response temporarily limits cell growth, and might control cell survival on plants by limiting their growth. These results demonstrated that ppGpp-mediated stringent response plays a central role in P. syringae virulence and survival and indicated that ppGpp serves as a global signal for regulating various virulence traits in PssB728a.
Collapse
Affiliation(s)
- Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhong Li
- Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Schuyler S Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
50
|
Shimizu K. Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:1-54. [PMID: 25712586 DOI: 10.1007/10_2015_320] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Living organisms have sophisticated but well-organized regulation system. It is important to understand the metabolic regulation mechanisms in relation to growth environment for the efficient design of cell factories for biofuels and biochemicals production. Here, an overview is given for carbon catabolite regulation, nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation, and biofilm formation, and quorum sensing focusing on Escherichia coli metabolism and others. The coordinated regulation mechanisms are of particular interest in getting insight into the principle which governs the cell metabolism. The metabolism is controlled by both enzyme-level regulation and transcriptional regulation via transcription factors such as cAMP-Crp, Cra, Csr, Fis, P(II)(GlnB), NtrBC, CysB, PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for stringent response, where the timescales for enzyme-level and gene-level regulations are different. Moreover, multiple regulations are coordinated by the intracellular metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP), and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyruvate (PYR), and oxaloacetate (OAA) play important roles for the coordinated regulation between carbon source uptake rate and other nutrient uptake rate such as nitrogen or sulfur uptake rate by modulation of cAMP via Cya.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan. .,Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
| |
Collapse
|