1
|
Wu Z, Li J, Chen W. Biological characterization of lipoic acid- and heme-dependent Escherichia coli small colony variants isolated from sheep in Xinjiang, China. Vet Res Commun 2024; 48:3859-3872. [PMID: 39325108 DOI: 10.1007/s11259-024-10554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Escherichia coli (E. coli) small colony variants (SCVs) have garnered attention due to their heightened antibiotic resistance and enhanced cell retention, posing significant risks to public health and food safety. However, understanding of SCVs derived from sheep remains limited. This study aimed to detect the biological characterization of sheep-derived E. coli SCVs and investigate the factors contributing to SCV development with preliminary genomic data. In this study, a lipoic acid-dependent SCV (LA-SCV) and a wild-type (WT) strain were isolated from sheep bile. Then, a heme-dependent SCV (HD-SCV) was induced from WT using amikacin. Initially, we examined factors contributing to SCV formation via comparative genomics. Subsequent comparisons between WT and two SCV strains encompassed antibiotic resistance, hemolytic activity, biofilm formation, motility, and metabolism. Genomic analyses identified a frameshift deletion mutation in the lipA gene in LA-SCV and a stopgain mutation in the hemG gene in HD-SCV, hypothesized as potential triggers for lipoic acid- and heme-dependent SCV development, respectively. Physiological, biochemical, and cultural traits exhibited notable differences between WT and SCVs, including increased antibiotic resistance, hemolytic activity, and biofilm formation, but alongside non-fermentative acetate utilization, slow growth, reduced intracellular ATP, and decreased motility (P < 0.01). The energy and amino acid metabolism were suppressed during the logarithmic phase in LA-SCV, while both logarithmic and stable phases in HD-SCV. These alterations in biological characteristics present significant challenges in managing E. coli pathogenicity and antibiotic resistance.
Collapse
Affiliation(s)
- Zihao Wu
- College of Life Sciences and Technology, State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-funded by Xinjiang Production & Construction Corps, Tarim University, The Ministry of Science & Technology, Alar, 86-843300, China
| | - Jing Li
- College of Animal Sciences and Technology, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Tarim University, Xinjiang Production & Construction Corps, Alar, 86-843300, China.
| | - Wei Chen
- College of Life Sciences and Technology, State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-funded by Xinjiang Production & Construction Corps, Tarim University, The Ministry of Science & Technology, Alar, 86-843300, China.
- College of Animal Sciences and Technology, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Tarim University, Xinjiang Production & Construction Corps, Alar, 86-843300, China.
| |
Collapse
|
2
|
Zhao Y, Mao W, Liu B, Wang YF, Zhang SY, Guo LL, Qian YH, Gong ZG, Zhao JM, Yang XL, Qu GG, Hasi SR, Bai YT, Cao JS. Preparation of ceftiofur-encapsulated hen-egg low-density lipoproteins and their antibacterial effects on intracellular Staphylococcus aureus. Int J Biol Macromol 2024; 278:134840. [PMID: 39217040 DOI: 10.1016/j.ijbiomac.2024.134840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Hen egg low-density lipoprotein (heLDL), as alternative of serum-derived LDL, was used as drug delivery system of ceftiofur (CEF). The CEF-loaded hen egg low-density lipoprotein (CEF-heLDL) with complete apolipoprotein structure and high drug loading rate was synthesized, possesses suitable particle size. CEF-heLDL undergoes cellular uptake and colocalizes with lysosomes in vitro. An intracellular infection model of the bovine endometrial epithelial cells and a coeliac-induced inflammation model of mice by Staphylococcus aureus (S. aureus) were established, and significantly lower intracellular S. aureus levels of CEF-heLDL group than CEF-free group (P < 0.001) was observed. The antibacterial efficacy was sustained for 24 h. Up to 400 mg/kg of CEF-heLDL, 20 times the clinical practice, were intraperitoneally administrated, and no significant toxicity signs on mice were observed. HeLDLs is an effective, safe, and cheap drug carrier, and could also be used for transmembrane delivering other antibiotics.
Collapse
Affiliation(s)
- Yi Zhao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Wei Mao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Bo Liu
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Yong-Fei Wang
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Inner Mongolia Medical University, Hohhot 010030, China
| | - Shuang-Yi Zhang
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Li-Li Guo
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Ying-Hong Qian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Science, Hohhot 010010, China
| | - Zhi-Guo Gong
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Jia-Min Zhao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Xiao-Lin Yang
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Gang-Gang Qu
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China
| | - Su-Rong Hasi
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China.
| | - Yu-Ting Bai
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China.
| | - Jin-Shan Cao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot City, China.
| |
Collapse
|
3
|
Chang J, Kerr D, Zheng M, Seyler T. Chondrocyte Invasion May Be a Mechanism for Persistent Staphylococcus Aureus Infection In Vitro. Clin Orthop Relat Res 2024; 482:1839-1847. [PMID: 38662927 PMCID: PMC11419450 DOI: 10.1097/corr.0000000000003074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/11/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Recurrent bone and joint infection with Staphylococcus aureus is common. S. aureus can invade and persist in osteoblasts and fibroblasts, but little is known about this mechanism in chondrocytes. If S. aureus were able to invade and persist within chondrocytes, this could be a difficult compartment to treat. QUESTION/PURPOSE Can S. aureus infiltrate and persist intracellularly within chondrocytes in vitro? METHODS Cell lines were cultured in vitro and infected with S. aureus. Human chondrocytes (C20A4) were compared with positive controls of human osteoblasts (MG63) and mouse fibroblasts (NIH3T3), which have previously demonstrated S. aureus invasion and persistence (human fibroblasts were not available to us). Six replicates per cell type were followed for 6 days after infection. Cells were treated daily with antibiotic media for extracellular killing. To determine whether S. aureus can infiltrate chondrocytes, fluorescence microscopy was performed to qualitatively assess the presence of intracellular bacteria, and intracellular colony-forming units (CFU) were enumerated 2 hours after infection. To determine whether S. aureus can persist within chondrocytes, intracellular CFUs were enumerated from infected host cells each day postinfection. RESULTS S. aureus invaded human chondrocytes (C20A4) at a level (2.8 x 10 5 ± 5.5 x 10 4 CFUs/mL) greater than positive controls of human osteoblasts (MG63) (9.5 x 10 2 ± 2.5 x 10 2 CFUs/mL; p = 0.01) and mouse fibroblasts (NIH3T3) (9.1 x 10 4 ± 2.5 x 10 4 CFUs/mL; p = 0.02). S. aureus also persisted within human chondrocytes (C20A4) for 6 days at a level (1.4 x 10 3 ± 5.3 x 10 2 CFUs/mL) greater than that of human osteoblasts (MG63) (4.3 x 10 2 ± 3.5 x 10 1 CFUs/mL; p = 0.02) and mouse fibroblasts (NIH3T3) (0 CFUs/mL; p < 0.01). S. aureus was undetectable within mouse fibroblasts (NIH3T3) after 4 days. There were 0 CFUs yielded from cell media, confirming extracellular antibiotic treatment was effective. CONCLUSION S. aureus readily invaded human chondrocytes (C20A4) in vitro and persisted viably for 6 days after infection, evading extracellular antibiotics. Chondrocytes demonstrated a greater level of intracellular invasion and persistence by S. aureus than positive control human osteoblast (MG63) and mouse fibroblast (NIH3T3) cell lines. CLINICAL RELEVANCE Chondrocyte invasion and persistence may contribute to recurrent bone and joint infections. Additional research should assess longer periods of persistence and whether this mechanism is present in vivo.
Collapse
Affiliation(s)
- Jerry Chang
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - David Kerr
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Megan Zheng
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Thorsten Seyler
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Du C, Fikhman DA, Obeng EE, Can SN, Dong KS, Leavitt ET, Saldanha LV, Hall M, Satalin J, Kollisch-Singule M, Monroe MBB. Vanillic acid-based pro-coagulant hemostatic shape memory polymer foams with antimicrobial properties against drug-resistant bacteria. Acta Biomater 2024:S1742-7061(24)00552-X. [PMID: 39343289 DOI: 10.1016/j.actbio.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Uncontrolled bleeding is the primary cause of trauma-related death. For patients that are brought to the hospital in time to receive treatment, there is a great risk of contracting drug-resistant bacterial wound infections. Therefore, low-cost hemostatic agents with procoagulant and antibacterial properties are essential to reduce morbidity and mortality in patients with traumatic wounds. To that end, we introduced vanillic acid (VA) into shape memory polymer (SMP) foams through a dual incorporation mechanism to make dual vanillic acid (DVA) foams. The dual mechanism increases VA loading while allowing burst and sustained delivery of VA from foams. DVA foams exhibit antimicrobial and antibiofilm properties against native and drug-resistant Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis. Also, DVA foams inhibit the growth rate of both methicillin-sensitive and -resistant S. aureus colonies to limit their size and promote small colony variants. DVA SMP foams induced primary and secondary hemostasis in in vitro blood interaction studies. As a proof of concept, we demonstrated easy delivery and rapid clotting in a porcine liver injury model, indicating DVA foam feasibility for use as a hemostatic dressing. Thus, the inexpensive production of DVA SMP foams could enable a cost-effective procoagulant hemostatic dressing that is resistant to bacterial colonization to improve short- and long-term outcomes for hemorrhage control in traumatically injured patients. STATEMENT OF SIGNIFICANCE: Uncontrolled bleeding is the primary cause of preventable death on the battlefield. Of patients that survive, ∼40 % develop polymicrobial infections within 5 days of injury. Drug-resistant infections are anticipated to cause more deaths than all cancers combined by 2050. Therefore, novel non-drug-based biomaterials strategies for infection control in wound care are increasingly important. To that end, we developed hemostatic polyurethane foams that include antimicrobial and pro-coagulant vanillic acid, a plant-based antimicrobial species. These foams provide excellent protection against native and drug-resistant bacteria and enhanced coagulation while remaining cytocompatible. In a pilot porcine liver injury model, vanillic acid-containing foams stabilized a bleed within <5 min. These biomaterials provide a promising solution for both hemorrhage and infection control in wound care.
Collapse
Affiliation(s)
- Changling Du
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States
| | - David Anthony Fikhman
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States
| | - Ernest Emmanuel Obeng
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States
| | - Sevde Nur Can
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States
| | - Katheryn Shi Dong
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States
| | - Eden Tess Leavitt
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States
| | - Leo Vikram Saldanha
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States
| | - Michaela Hall
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | | | - Mary Beth B Monroe
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
5
|
Xu H, Wang X, Zhang Z, Hu J, Yu Y, Wang J, Liu Y, Liu J. Staphylococcus aureus promotes its intracellular survival by inhibiting Rab11-Rab11FIP4-mediated vesicle trafficking. Vet Microbiol 2024; 293:110091. [PMID: 38626624 DOI: 10.1016/j.vetmic.2024.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
Mastitis in dairy cows is mainly caused by bacteria, in which Staphylococcus aureus appears frequently. Epithelial cells, as a major physical barrier of mammary gland, play an important role in preventing mastitis in dairy cows. Our previous study reported that Rab11fip4 (an effector of Rab11) was significantly changed in response to stimulation by S. aureus. So, in this study, the role of Rab11A in phagocytosis of bovine mammary epithelial cells (MAC-T) against S. aureus was evaluated. First, changes of Rab11A and Rab11fip4 were analyzed in response to S. aureus by immunofluorescence and western blotting. Subsequently, the effects of Rab11A and Rab11fip4 on proliferation of S. aureus, as well as formation and function of late endosomes (LEs) and lysosomes (LYSs) were investigated. The results showed that, after infection, Rab11A and Rab11fip4 were recruited to phagosomes containing S. aureus. Rab11A promoted bacterial clearance and rescues the destruction of LEs and LYSs by S. aureus, whereas Rab11fip4 did the opposite. These findings provide new insights into phagocytosis and control of S. aureus in host cells, thus lay the foundation to elucidate the pathogenesis of S. aureus in bovine mastitis.
Collapse
Affiliation(s)
- Huiling Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Zhizhong Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Jiaqing Hu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Yongtao Yu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750000, China
| | - Jiandong Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China; Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China.
| |
Collapse
|
6
|
Wongdontree P, Millan-Oropeza A, Upfold J, Lavergne JP, Halpern D, Lambert C, Page A, Kénanian G, Grangeasse C, Henry C, Fouet A, Gloux K, Anba-Mondoloni J, Gruss A. Oxidative stress is intrinsic to staphylococcal adaptation to fatty acid synthesis antibiotics. iScience 2024; 27:109505. [PMID: 38577105 PMCID: PMC10993138 DOI: 10.1016/j.isci.2024.109505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/08/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Antibiotics inhibiting the fatty acid synthesis pathway (FASII) of the major pathogen Staphylococcus aureus reach their enzyme targets, but bacteria continue growth by using environmental fatty acids (eFAs) to produce phospholipids. We assessed the consequences and effectors of FASII-antibiotic (anti-FASII) adaptation. Anti-FASII induced lasting expression changes without genomic rearrangements. Several identified regulators affected the timing of adaptation outgrowth. Adaptation resulted in decreased expression of major virulence factors. Conversely, stress responses were globally increased and adapted bacteria were more resistant to peroxide killing. Importantly, pre-exposure to peroxide led to faster anti-FASII-adaptation by stimulating eFA incorporation. This adaptation differs from reports of peroxide-stimulated antibiotic efflux, which leads to tolerance. In vivo, anti-FASII-adapted S. aureus killed the insect host more slowly but continued multiplying. We conclude that staphylococcal adaptation to FASII antibiotics involves reprogramming, which decreases virulence and increases stress resistance. Peroxide, produced by the host to combat infection, favors anti-FASII adaptation.
Collapse
Affiliation(s)
- Paprapach Wongdontree
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Aaron Millan-Oropeza
- PAPPSO Platform, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jennifer Upfold
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Jean-Pierre Lavergne
- Bacterial Pathogens and Protein Phosphorylation, Molecular Microbiology and Structural Biology, UMR 5086 - CNRS / Université de Lyon, Building IBCP, 7 Passage du Vercors, Lyon, France
| | - David Halpern
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Clara Lambert
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Adeline Page
- Protein Science Facility, SFR BioSciences, CNRS, UMS3444, INSERM US8, Université de Lyon, Lyon, France
| | - Gérald Kénanian
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Christophe Grangeasse
- Bacterial Pathogens and Protein Phosphorylation, Molecular Microbiology and Structural Biology, UMR 5086 - CNRS / Université de Lyon, Building IBCP, 7 Passage du Vercors, Lyon, France
| | - Céline Henry
- PAPPSO Platform, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Agnès Fouet
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Karine Gloux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Jamila Anba-Mondoloni
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Alexandra Gruss
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| |
Collapse
|
7
|
Li L, Wang M, Chen Q, Zhang M, Chen Z, Han M, Zhao C, Xie Z, Dong Q, Zhang H. Intracellular Staphylococcus aureus infection in human osteoblasts: circRNA expression analysis. Heliyon 2024; 10:e28461. [PMID: 38560264 PMCID: PMC10979106 DOI: 10.1016/j.heliyon.2024.e28461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Staphylococcus aureus (S. aureus) has the ability to invade human cortical bones and cause intracellular infections in osteoblasts, which may lead to a long-term infection that is difficult to eliminate. It is critical to identify the underlying mechanisms of the osteoblast response to the intracellular S. aureus. More recently, multiple circular RNA (circRNA) functions have been identified, including serving as protein scaffolds or miRNA sponges and being translated into polypeptides. The role that circRNAs play in intracellular S. aureus infection of osteoblasts has not, to our knowledge, been investigated. Here, we established an intracellular infection model of S. aureus in osteoblasts and compared the circRNA expression of osteoblasts between the infected and control groups using RNA sequencing technology, by which a significant difference was found. In total, 117 upregulated and 125 down-regulated differentially expressed circRNAs (DEcircRNAs) were identified, and reverse transcription-quantitative PCR was employed to validate the results of RNA sequencing. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that DEcircRNAs were enriched in processes associated with macromolecule modification, cellular component organization or biogenesis, and intracellular non-membrane-bound organelles. Finally, a potentially important network of circRNA-miRNA-mRNA based on the DEcircRNAs was constructed. Overall, this study revealed the circRNA expression profile of human osteoblasts infected by intracellular S. aureus for the first time, and identified the circRNAs that may contribute to the pathogenesis of infectious diseases caused by intracellular S. aureus infection in human osteoblasts.
Collapse
Affiliation(s)
- Liubing Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingxing Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Orthopedics, Shuofang Hospital of Xinwu District, Wuxi, China
| | - Zhihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingxiao Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenhao Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zonggang Xie
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qirong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Chen L, Shao Z, Zhang Z, Teng W, Mou H, Jin X, Wei S, Wang Z, Eloy Y, Zhang W, Zhou H, Yao M, Zhao S, Chai X, Wang F, Xu K, Xu J, Ye Z. An On-Demand Collaborative Innate-Adaptive Immune Response to Infection Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304774. [PMID: 37523329 DOI: 10.1002/adma.202304774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Deep tissue infection is a common clinical issue and therapeutic difficulty caused by the disruption of the host antibacterial immune function, resulting in treatment failure and infection relapse. Intracellular pathogens are refractory to elimination and can manipulate host cell biology even after appropriate treatment, resulting in a locoregional immunosuppressive state that leads to an inadequate response to conventional anti-infective therapies. Here, a novel antibacterial strategy involving autogenous immunity using a biomimetic nanoparticle (NP)-based regulating system is reported to induce in situ collaborative innate-adaptive immune responses. It is observed that a macrophage membrane coating facilitates NP enrichment at the infection site, followed by active NP accumulation in macrophages in a mannose-dependent manner. These NP-armed macrophages exhibit considerably improved innate capabilities, including more efficient intracellular ROS generation and pro-inflammatory factor secretion, M1 phenotype promotion, and effective eradication of invasive bacteria. Furthermore, the reprogrammed macrophages direct T cell activation at infectious sites, resulting in a robust adaptive antimicrobial immune response to ultimately achieve bacterial clearance and prevent infection relapse. Overall, these results provide a conceptual framework for a novel macrophage-based strategy for infection treatment via the regulation of autogenous immunity.
Collapse
Affiliation(s)
- Liang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zhenxuan Shao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Wangsiyuan Teng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Xiaoqiang Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Shenyu Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Yinwang Eloy
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Hao Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| |
Collapse
|
9
|
Li XY, Zeng ZX, Cheng ZX, Wang YL, Yuan LJ, Zhai ZY, Gong W. Common pathogenic bacteria-induced reprogramming of the host proteinogenic amino acids metabolism. Amino Acids 2023; 55:1487-1499. [PMID: 37814028 PMCID: PMC10689525 DOI: 10.1007/s00726-023-03334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Apart from cancer, metabolic reprogramming is also prevalent in other diseases, such as bacterial infections. Bacterial infections can affect a variety of cells, tissues, organs, and bodies, leading to a series of clinical diseases. Common Pathogenic bacteria include Helicobacter pylori, Salmonella enterica, Mycobacterium tuberculosis, Staphylococcus aureus, and so on. Amino acids are important and essential nutrients in bacterial physiology and support not only their proliferation but also their evasion of host immune defenses. Many pathogenic bacteria or opportunistic pathogens infect the host and lead to significant changes in metabolites, especially the proteinogenic amino acids, to inhibit the host's immune mechanism to achieve its immune evasion and pathogenicity. Here, we review the regulation of host metabolism, while host cells are infected by some common pathogenic bacteria, and discuss how amino acids of metabolic reprogramming affect bacterial infections, revealing the potential adjunctive application of amino acids alongside antibiotics.
Collapse
Affiliation(s)
- Xiao-Yue Li
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Zi-Xin Zeng
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Zhi-Xing Cheng
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Yi-Lin Wang
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Liang-Jun Yuan
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Zhi-Yong Zhai
- Shenzhen Hospital, Southern Medical University, Shenzhen Clinical Medical College, Southern Medical University, Guangdong, 518101, China.
| | - Wei Gong
- Shenzhen Hospital, Southern Medical University, Shenzhen Clinical Medical College, Southern Medical University, Guangdong, 518101, China.
| |
Collapse
|
10
|
Noaman KA, Alharbi NS, Khaled JM, Kadaikunnan S, Alobaidi AS, Almazyed AO, Aldosary MS, Al Rashedi S. The transmutation of Escherichia coli ATCC 25922 to small colony variants (SCVs) E. coli strain as a result of exposure to gentamicin. J Infect Public Health 2023; 16:1821-1829. [PMID: 37742446 DOI: 10.1016/j.jiph.2023.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Small colony variants (SCVs) are biotypes of bacteria that have a size of approximately one-tenth or less of the wild types and has distinct characteristics comparing to the wild type strains. Clinical SCVs are usually associated with persistent infection and require a long-term treatment program with antibiotics. In Saudi Arabia, there are few studies about SCVs Escherichia coli for this reason, this study is aimed to investigate the ability of gentamicin to mutate E. coli ATCC 25922 to produce small SCVs and investigate the genotypes and phenotypes changes and stress tolerance comparing to clinical SCVs E. coli and normal clinical E. coli Isolated from blood samples. METHODS In this investigation, four clinical blood samples were collected ted from patients and the cultivation and isolation were carried out in KFMC between December 2019 and February 2021. The identification of positive blood culture samples was done using phoenix MD. Non-SCV E. coli ATCC25922 were mutated to SCV using exposure to increasing gradual concentrations of gentamicin at 100-generation intervals. Biochemical features and susceptibility to standard antibiotics using automated Phoenix MD 50 and. The survival assays were done using several stresses including heat shock, low pH, high osmotic pressure, and oxidative pressure. Virulence genes screening included the detection of genes that encoded to α-haemolysin, CS12 fimbriae, F17-like fimbrial adhesion, P-related fimbriae, yersiniabactin siderophore system, P-fimbriae, aerobactin, iron-regulated genes using PCR and gel electrophoresis. RESULTS The data from the mutating E. coli ATCC 25922 small colony test with gentamicin revealed that the first emergence of the multidrug resistance (MDR) SCV E. coli strain occurred at generation number 250, corresponding to a gentamicin concentration of 57 g/ml. Pathogenicity islands detection revealed that all tested E. coli strains have PAI IV 536 genes on their chromosomes furthermore, mutated SCV E. coli ATCC 25922 acquired PAII CFT073 and PAI IV 536. Survival tests showed no significant differences changes in tolerance of mutated SCVs comparing to parental strain. CONCLUSION The present work concluded that gentamicin sub-MIC concentration gradual exposure can induce mutation responsible for SCV formation and evolving of MDR E. coli strains. The mutated SCVs evolved high-level aminoglycoside resistance for gentamicin and resistance to amikacin, it also developed resistance to 2 cephalosporin antibiotics cefuroxime, and cephalothin and a resistance to aztreonam.
Collapse
Affiliation(s)
- Khaled A Noaman
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed S Alobaidi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abeer O Almazyed
- Microbiology Department, King Fahd Medical City, Riyadh, Saudi Arabia
| | | | - Saeed Al Rashedi
- Microbiology Department, King Fahd Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Bai S, Song J, Pu H, Yu Y, Song W, Chen Z, Wang M, Campbell-Valois FX, Wong WL, Cai Q, Wan M, Zhang C, Bai Y, Feng X. Chemical Biology Approach to Reveal the Importance of Precise Subcellular Targeting for Intracellular Staphylococcus aureus Eradication. J Am Chem Soc 2023; 145:23372-23384. [PMID: 37838963 DOI: 10.1021/jacs.3c09587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.
Collapse
Affiliation(s)
- Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yue Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wenwen Song
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | | | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
12
|
Tsikopoulos K, Meroni G. Periprosthetic Joint Infection Diagnosis: A Narrative Review. Antibiotics (Basel) 2023; 12:1485. [PMID: 37887186 PMCID: PMC10604393 DOI: 10.3390/antibiotics12101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Replacement of native joints aims to restore patients' quality of life by relieving pain and improving joint function. While periprosthetic joint infection (PJI) affects a small percentage of patients, with an estimated incidence of 1-9% following primary total joint replacement, this postoperative complication necessitates a lengthy hospitalisation, extended antibiotic treatment and further surgery. It is highlighted that establishing the correct diagnosis of periprosthetic infections is critical in order for clinicians to avoid unnecessary treatments in patients with aseptic failure. Of note, the PJI diagnosis could not purely rely upon clinical manifestations given the fact that heterogeneity in host factors (e.g., age and comorbidities), variability in infection period, difference in anatomical location of the involved joint and discrepancies in pathogenicity/virulence of the causative organisms may confound the clinical picture. Furthermore, intra-operative contamination is considered to be the main culprit that can result in early or delayed infection, with the hematogenous spread being the most prevalent mode. To elaborate, early and hematogenous infections often start suddenly, whereas chronic late infections are induced by less virulent bacteria and tend to manifest in a more quiescent manner. Last but not least, viruses and fungal microorganisms exert a role in PJI pathogenesis.
Collapse
Affiliation(s)
- Konstantinos Tsikopoulos
- 1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Gabriele Meroni
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, 20133 Milan, Italy;
| |
Collapse
|
13
|
Miranda Calderon L, Alejo T, Santos S, Mendoza G, Irusta S, Arruebo M. Antibody-Functionalized Polymer Nanoparticles for Targeted Antibiotic Delivery in Models of Pathogenic Bacteria Infecting Human Macrophages. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40213-40227. [PMID: 37596966 PMCID: PMC10877563 DOI: 10.1021/acsami.3c07367] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
The efficacy of antibody-functionalized poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs), prepared by nanoprecipitation, carrying rifampicin (RIF) against planktonic, sessile, and intracellular Staphylococcus aureus and Escherichia coli is reported here. A biotinylated anti-S. aureus polyclonal antibody, which binds to structural antigens of the whole bacterium, was functionalized on the surface of RIF-loaded PLGA-based NPs by using the high-affinity avidin-biotin complex. This general strategy allows the binding of commercially available biotinylated antibodies. Coculture models of S. aureus ATCC 25923 and Escherichia coli S17 were used to demonstrate the preferential selectivity of the antibody-functionalized NPs against the Gram-positive bacterium only. At 0.2 μg/mL, complete S. aureus eradication was observed for the antibody-functionalized RIF-loaded NPs, whereas only a 5-log reduction was observed for the nontargeted RIF-loaded NPs. S. aureus is a commensal facultative pathogen having part of its live cycle intracellularly in both phagocytic and nonphagocytic cells. Those intracellular bacterial persisters, named small colony variants, have been postulated as reservoirs of relapsed episodes of infection and consequent treatment failure. At 0.5 μg/mL, the RIF-loaded NPs reduced in 2-log intracellular S. aureus-infecting human macrophages. The ability of those antibody-functionalized nanoparticles to prevent biofilm formation or to reduce the bacterial burden in already-formed mature biofilms is also reported here using S. aureus and E. coli single and cocultured biofilms. In the prevention of S. aureus biofilm formation, the antibody-functionalized NPs exerted a superior inhibition of bacterial growth (up to 2 logs) compared to the nonfunctionalized ones. This study demonstrates the selectivity of the synthesized immunonanoparticles and their antimicrobial efficacy in different scenarios, including planktonic cultures, sessile conditions, and even against intracellular infective pathogens.
Collapse
Affiliation(s)
- Laura
Gabriela Miranda Calderon
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad
de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio
I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain
| | - Teresa Alejo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad
de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio
I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain
| | - Sabas Santos
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad
de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio
I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain
| | - Gracia Mendoza
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine, CIBER-BBN, Madrid 28029, Spain
- Aragon
Health Research Institute (IIS Aragon), Zaragoza 50009, Spain
| | - Silvia Irusta
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad
de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio
I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine, CIBER-BBN, Madrid 28029, Spain
| | - Manuel Arruebo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad
de Zaragoza, Zaragoza 50009, Spain
- Department
of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio
I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza 50018, Spain
- Networking
Research Center on Bioengineering, Biomaterials
and Nanomedicine, CIBER-BBN, Madrid 28029, Spain
- Aragon
Health Research Institute (IIS Aragon), Zaragoza 50009, Spain
| |
Collapse
|
14
|
Conte AL, Brunetti F, Marazzato M, Longhi C, Maurizi L, Raponi G, Palamara AT, Grassi S, Conte MP. Atopic dermatitis-derived Staphylococcus aureus strains: what makes them special in the interplay with the host. Front Cell Infect Microbiol 2023; 13:1194254. [PMID: 37389215 PMCID: PMC10303148 DOI: 10.3389/fcimb.2023.1194254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
Background Atopic dermatitis (AD) is a chronic inflammatory skin condition whose pathogenesis involves genetic predisposition, epidermal barrier dysfunction, alterations in the immune responses and microbial dysbiosis. Clinical studies have shown a link between Staphylococcus aureus and the pathogenesis of AD, although the origins and genetic diversity of S. aureus colonizing patients with AD is poorly understood. The aim of the study was to investigate if specific clones might be associated with the disease. Methods WGS analyses were performed on 38 S. aureus strains, deriving from AD patients and healthy carriers. Genotypes (i.e. MLST, spa-, agr- and SCCmec-typing), genomic content (e.g. virulome and resistome), and the pan-genome structure of strains have been investigated. Phenotypic analyses were performed to determine the antibiotic susceptibility, the biofilm production and the invasiveness within the investigated S. aureus population. Results Strains isolated from AD patients revealed a high degree of genetic heterogeneity and a shared set of virulence factors and antimicrobial resistance genes, suggesting that no genotype and genomic content are uniquely associated with AD. The same strains were characterized by a lower variability in terms of gene content, indicating that the inflammatory conditions could exert a selective pressure leading to the optimization of the gene repertoire. Furthermore, genes related to specific mechanisms, like post-translational modification, protein turnover and chaperones as well as intracellular trafficking, secretion and vesicular transport, were significantly more enriched in AD strains. Phenotypic analysis revealed that all of our AD strains were strong or moderate biofilm producers, while less than half showed invasive capabilities. Conclusions We conclude that in AD skin, the functional role played by S. aureus may depend on differential gene expression patterns and/or on post-translational modification mechanisms rather than being associated with peculiar genetic features.
Collapse
Affiliation(s)
- Antonietta Lucia Conte
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Francesca Brunetti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Catia Longhi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Linda Maurizi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation, Rome, Italy
| | - Sara Grassi
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Advances in the Microbiological Diagnosis of Prosthetic Joint Infections. Diagnostics (Basel) 2023; 13:diagnostics13040809. [PMID: 36832297 PMCID: PMC9954824 DOI: 10.3390/diagnostics13040809] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
A significant number of prosthetic joint infections (PJI) are culture-negative and/or misinterpreted as aseptic failures in spite of the correct implementation of diagnostic culture techniques, such as tissue sample processing in a bead mill, prolonged incubation time, or sonication of removed implants. Misinterpretation may lead to unnecessary surgery and needless antimicrobial treatment. The diagnostic value of non-culture techniques has been investigated in synovial fluid, periprosthetic tissues, and sonication fluid. Different feasible improvements, such as real-time technology, automated systems and commercial kits are now available to support microbiologists. In this review, we describe non-culture techniques based on nucleic acid amplification and sequencing methods. Polymerase chain reaction (PCR) is a frequently used technique in most microbiology laboratories which allows the detection of a nucleic acid fragment by sequence amplification. Different PCR types can be used to diagnose PJI, each one requiring the selection of appropriate primers. Henceforward, thanks to the reduced cost of sequencing and the availability of next-generation sequencing (NGS), it will be possible to identify the whole pathogen genome sequence and, additionally, to detect all the pathogen sequences present in the joint. Although these new techniques have proved helpful, strict conditions need to be observed in order to detect fastidious microorganisms and rule out contaminants. Specialized microbiologists should assist clinicians in interpreting the result of the analyses at interdisciplinary meetings. New technologies will gradually be made available to improve the etiologic diagnoses of PJI, which will remain an important cornerstone of treatment. Strong collaboration among all specialists involved is essential for the correct diagnosis of PJI.
Collapse
|
16
|
Fleeman R. Repurposing Inhibitors of Phosphoinositide 3-kinase as Adjuvant Therapeutics for Bacterial Infections. FRONTIERS IN ANTIBIOTICS 2023; 2:1135485. [PMID: 38983593 PMCID: PMC11233138 DOI: 10.3389/frabi.2023.1135485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The rise in antimicrobial resistance and the decline in new antibiotics has created a great need for novel approaches to treat drug resistant bacterial infections. Increasing the burden of antimicrobial resistance, bacterial virulence factors allow for survival within the host, where they can evade host killing and antimicrobial therapy within their intracellular niches. Repurposing host directed therapeutics has great potential for adjuvants to allow for more effective bacterial killing by the host and antimicrobials. To this end, phosphoinositide 3-kinase inhibitors are FDA approved for cancer therapy, but also have potential to eliminate intracellular survival of pathogens. This review describes the PI3K pathway and its potential as an adjuvant target to treat bacterial infections more effectively.
Collapse
Affiliation(s)
- Renee Fleeman
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida. Orlando, FL 32837
| |
Collapse
|
17
|
Sun L, Zhang H, Zhang H, Lou X, Wang Z, Wu Y, Yang X, Chen D, Guo B, Zhang A, Qian F. Staphylococcal virulence factor HlgB targets the endoplasmic-reticulum-resident E3 ubiquitin ligase AMFR to promote pneumonia. Nat Microbiol 2023; 8:107-120. [PMID: 36593296 DOI: 10.1038/s41564-022-01278-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/21/2022] [Indexed: 01/03/2023]
Abstract
Staphylococcus aureus invades cells and persists intracellularly, causing persistent inflammation that is notoriously difficult to treat. Here we investigated host-pathogen interactions underlying intracellular S. aureus infection in macrophages and discovered that the endoplasmic reticulum (ER) is an important cellular compartment for intracellular S. aureus infection. Using CRISPR-Cas9 guide RNA library screening, we determined that the autocrine motility factor receptor (AMFR), an ER-resident E3 ubiquitin ligase, played an essential role in mediating intracellular S. aureus-induced inflammation. AMFR directly interacted with TAK1-binding protein 3 (TAB3) in the ER, inducing K27-linked polyubiquitination of TAB3 on lysine 649 and promoting TAK1 activation. Moreover, the virulence factor γ-haemolysin B (HIgB) of S. aureus bound to the AMFR and regulated TAB3. Our findings highlight an unknown role of AMFR in intracellular S. aureus infection-induced pneumonia and suggest that pharmacological interruption of AMFR-mediated TAB3 signalling cascades and HIgB targeting may prevent invasive staphylococci-mediated pneumonia.
Collapse
Affiliation(s)
- Lei Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Haibo Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Huihui Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi Lou
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiming Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Wu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xinyi Yang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Daijie Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Beining Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Ao Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, Research Center for Small Molecule Immunological Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
18
|
Suthi S, Gopi D, Chaudhary A, Sarma PVGK. The Therapeutic Potential of 4-Methoxy-1-methyl-2-oxopyridine-3-carbamide (MMOXC) Derived from Ricinine on Macrophage Cell Lines Infected with Methicillin-Resistant Strains of Staphylococcus aureus. Appl Biochem Biotechnol 2022; 195:2843-2862. [PMID: 36418711 DOI: 10.1007/s12010-022-04269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/25/2022]
Abstract
The incidences of methicillin-resistant strains of Staphylococcus aureus (MRSA) and their survival inside the macrophages are the major attributes of the relapsed infections after antimicrobial therapy, and it is a global problem. In this context, we have previously demonstrated 4-methoxy-1-methyl-2-oxopyridine-3-carbamide (MMOXC), a Ricinine derivative exhibiting anti-S. aureus and anti-biofilm characteristics by competitively inhibiting uridine monophosphate kinase (UMPK), UDP-N-acetyl muramyl pentapeptide ligase (Mur-F), and peptidyl deformylase, (PDF). In the present study, the stability of this competitive inhibitor MMOXC was evaluated by showing its ability to remain bound to the active sites of UMPK, Mur-F, and PDF even after increasing the incubation time, temperature, pH, and substrate concentration. On growing MRSA in fewer concentrations of MMOXC, these strains could not attain resistance to MMOXC and at the same time distinct reductions in the expression of UMPK, Mur-F, and PDF genes were noted. In vitro, infective models were generated by infecting MRSA to RAW 264.7 and human monocyte-derived macrophage (hMDM) cell lines. In these infected cell lines, in spite of increased nitric oxide synthase (NOS), NADPH-P450 reductase, superoxide dismutase, catalase, and peroxidase activities, the MRSA survived. At 640 µM/ml, the concentration of MMOXC penetrated into these infected cells and obliterated MRSA. While treating uninfected macrophage cell lines with MMOXC, no appreciable effect was observed indicating that MMOXC is the most suitable drug for the treatment of infections caused by MRSA.
Collapse
Affiliation(s)
- Subbarayudu Suthi
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences and University, Alipiri Road, Andhra Pradesh, 517501, Tirupati, India
| | - Deepika Gopi
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences and University, Alipiri Road, Andhra Pradesh, 517501, Tirupati, India
| | - Abhijit Chaudhary
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, 517501, Andhra Pradesh, India
| | - Potukuchi Venkata Gurunadha Krishna Sarma
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences and University, Alipiri Road, Andhra Pradesh, 517501, Tirupati, India.
| |
Collapse
|
19
|
Keim KC, George IK, Reynolds L, Smith AC. The Clinical Significance of Staphylococcus aureus Small Colony Variants. Lab Med 2022; 54:227-234. [PMID: 36226897 DOI: 10.1093/labmed/lmac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
A burdensome, atypical phenotype of Staphylococcus aureus (SA) called S aureus small colony variant (SA-SCV) has been identified, which is induced as a result of a combination of environmental stressors, including polymicrobial interactions. The SA-SCVs exhibit altered phenotypes as a result of metabolic dormancy caused by electron transport deficiency, leading to increased biofilm production and alterations to antimicrobial susceptibility. The SA-SCVs typically exhibit altered colony morphology and biochemical reactions compared with wild-type SA, making them difficult to detect via routine diagnostics. The SA-SCVs have been found to contribute to chronic or recurrent infections, including skin and soft-tissue infections, foreign-body associated infection, cystic fibrosis, and sepsis. There is evidence that SA-SCVs contribute to patient morbidity and mortality as a result of diagnostic difficulties and limited treatment options. New detection methods may need to be developed that can be incorporated into routine diagnostics, which would allow for better assessment of specimens and introduce new considerations for treatment.
Collapse
Affiliation(s)
- Klara C Keim
- Department of Immunology and Microbiology, School of Medicine, Anschutz Medical Campus, University of Colorado , Aurora, CO , USA
| | - Isaiah K George
- Department of Honors Studies, Texas Tech University , Lubbock, TX , USA
| | - Landrye Reynolds
- Department of Honors Studies, Texas Tech University , Lubbock, TX , USA
| | - Allie C Smith
- Department of Honors Studies, Texas Tech University , Lubbock, TX , USA
| |
Collapse
|
20
|
Matsumoto T, Hiramoto S, Niwa T, Machida H, Suto C, Takahashi M. First description of a clinical glutamine-dependent Escherichia coli with a missense mutation in the glnA. J Infect Chemother 2022; 28:1513-1518. [DOI: 10.1016/j.jiac.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 10/31/2022]
|
21
|
Hommes JW, Surewaard BGJ. Intracellular Habitation of Staphylococcus aureus: Molecular Mechanisms and Prospects for Antimicrobial Therapy. Biomedicines 2022; 10:1804. [PMID: 36009351 PMCID: PMC9405036 DOI: 10.3390/biomedicines10081804] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/23/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections pose a global health threat, especially with the continuous development of antibiotic resistance. As an opportunistic pathogen, MRSA infections have a high mortality rate worldwide. Although classically described as an extracellular pathogen, many studies have shown over the past decades that MRSA also has an intracellular aspect to its infectious cycle, which has been observed in vitro in both non-professional as well as professional phagocytes. In vivo, MRSA has been shown to establish an intracellular niche in liver Kupffer cells upon bloodstream infection. The staphylococci have evolved various evasion strategies to survive the antimicrobial environment of phagolysosomes and use these compartments to hide from immune cells and antibiotics. Ultimately, the host cells get overwhelmed by replicating bacteria, leading to cell lysis and bacterial dissemination. In this review, we describe the different intracellular aspects of MRSA infection and briefly mention S. aureus evasion strategies. We discuss how this intracellular niche of bacteria may assist in antibiotic tolerance development, and lastly, we describe various new antibacterial strategies that target the intracellular bacterial niche.
Collapse
Affiliation(s)
| | - Bas G. J. Surewaard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
22
|
Meroni G, Tsikopoulos A, Tsikopoulos K, Allemanno F, Martino PA, Soares Filipe JF. A Journey into Animal Models of Human Osteomyelitis: A Review. Microorganisms 2022; 10:1135. [PMID: 35744653 PMCID: PMC9228829 DOI: 10.3390/microorganisms10061135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Osteomyelitis is an infection of the bone characterized by progressive inflammatory destruction and apposition of new bone that can spread via the hematogenous route (hematogenous osteomyelitis (HO)), contiguous spread (contiguous osteomyelitis (CO)), and direct inoculation (osteomyelitis associated with peripheral vascular insufficiency (PVI)). Given the significant financial burden posed by osteomyelitis patient management, the development of new preventive and treatment methods is warranted. To achieve this objective, implementing animal models (AMs) of infection such as rats, mice, rabbits, avians, dogs, sheep, goats, and pigs might be of the essence. This review provides a literature analysis of the AMs developed and used to study osteomyelitis. Historical relevance and clinical applicability were taken into account to choose the best AMs, and some study methods are briefly described. Furthermore, the most significant strengths and limitations of each species as AM are discussed, as no single model incorporates all features of osteomyelitis. HO's clinical manifestation results in extreme variability between patients due to multiple variables (e.g., age, sex, route of infection, anatomical location, and concomitant diseases) that could alter clinical studies. However, these variables can be controlled and tested through different animal models.
Collapse
Affiliation(s)
- Gabriele Meroni
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Alexios Tsikopoulos
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Francesca Allemanno
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Piera Anna Martino
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Joel Fernando Soares Filipe
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy;
| |
Collapse
|
23
|
Qu X, Wang M, Wang M, Tang H, Zhang S, Yang H, Yuan W, Wang Y, Yang J, Yue B. Multi-Mode Antibacterial Strategies Enabled by Gene-Transfection and Immunomodulatory Nanoparticles in 3D-Printed Scaffolds for Synergistic Exogenous and Endogenous Treatment of Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200096. [PMID: 35267223 DOI: 10.1002/adma.202200096] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
As research on refractory Staphylococcus aureus-related implant infection intensifies, certain challenges remain, including low antibiotic concentrations within infected areas, immune escape achieved by intracellular bacteria, myeloid-derived suppressor cells (MDSCs) inducing regional immunosuppression, and recurrence of residual pathogenic bacteria after drug suspension. Herein, a novel antimicrobial system to simultaneously address these issues is proposed. Specifically, an oxygen-species-responsive 3D-printed scaffold with shell-core nanoparticles is designed, which are loaded with an antimicrobial peptide plasmid (LL37 plasmid) and have LL37 grafted on their surface (LL37@ZIF8-LL37). The surface-grafted LL37 directly kills S. aureus and, following entry into cells, the nanoparticles kill intracellular bacteria. Moreover, in vitro and in vivo, following translation of the LL37 plasmid, cells function as factories of the antimicrobial peptide, thereby generating a continuous, prolonged antibacterial effect at the site of infection. This system significantly reduces the abnormal increase in MDSCs within the infected microenvironment, thus relieving the immunosuppressive state and restoring a protective antimicrobial immune response. Hence, this proposed antimicrobial system provides an antimicrobial immune response and a novel strategy for S. aureus-related infections by offering a combined active antimicrobial and immunotherapeutic strategy, thereby significantly reducing the recurrence rate following recovery from implant-associated infections.
Collapse
Affiliation(s)
- Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Miaochen Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Hongtao Yang
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Weien Yuan
- Pharm-X Center, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - You Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, P. R. China
| |
Collapse
|
24
|
Ngo QV, Faass L, Sähr A, Hildebrand D, Eigenbrod T, Heeg K, Nurjadi D. Inflammatory Response Against Staphylococcus aureus via Intracellular Sensing of Nucleic Acids in Keratinocytes. Front Immunol 2022; 13:828626. [PMID: 35281009 PMCID: PMC8907419 DOI: 10.3389/fimmu.2022.828626] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Staphylococcus aureus is one of the clinically most relevant pathogens causing infections. Humans are often exposed to S. aureus. In approximately one-third of the healthy population it can be found on the skin either for long or short periods as colonizing "commensals", without inducing infections or an inflammatory immune response. While tolerating S. aureus seems to be limited to certain individuals and time periods in most cases, Staphylococcus epidermidis is tolerated permanently on the skin of almost all individuals without activating overwhelming skin inflammation. To investigate this, we co-cultured a keratinocyte cell line (HaCaT) with viable S. aureus or S. epidermidis to study the differences in the immune activation. S. aureus activated keratinocytes depicted by a profound IL-6 and IL-8 response, whereas S. epidermidis did not. Our data indicate that internalization of S. aureus and the subsequent intracellular sensing of bacterial nucleic acid may be essential for initiating inflammatory response in keratinocytes. Internalized dsRNA activates IL-6 and IL-8 release, but not TNF-α or IFNs by human keratinocytes. This is a non-specific effect of dsRNA, which can be induced using Poly(I:C), as well as RNA from S. aureus and S. epidermidis. However, only viable S. aureus were able to induce this response as these bacteria and not S. epidermidis were actively internalized by HaCaT. The stimulatory effect of S. aureus seems to be independent of the TLR3, -7 and -8 pathways.
Collapse
Affiliation(s)
- Quang Vinh Ngo
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Larissa Faass
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Max von Pettenkofer Institute, Chair for Medical Microbiology and Hygiene, Ludwig Maximilians University Munich, Munich, Germany
| | - Aline Sähr
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Dagmar Hildebrand
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
25
|
Hou H, Li Y, Jin Y, Chen S, Long J, Duan G, Yang H. The crafty opponent: the defense systems of Staphylococcus aureus and response measures. Folia Microbiol (Praha) 2022; 67:233-243. [PMID: 35149955 DOI: 10.1007/s12223-022-00954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/29/2022] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus is a serious threat to public health. S. aureus infection can cause acute or long-term persistent infections that are often resistant to antibiotics and are associated with high morbidity and death. Understanding the defensive systems of S. aureus can help clinicians make the best use of antimicrobial drugs and can also help with antimicrobial stewardship. The mechanisms and clinical implications of S. aureus defense systems, as well as potential response systems, were discussed in this study. Because resistance to all currently available antibiotics is unavoidable, new medicines are always being developed. Alternative techniques, such as anti-virulence and bacteriophage therapies, are being researched and may become major tools in the fight against staphylococcal infections in the future, in addition to the development of new small compounds that affect cell viability.
Collapse
Affiliation(s)
- Hongjie Hou
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Yang Li
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
26
|
Guo H, Tong Y, Cheng J, Abbas Z, Li Z, Wang J, Zhou Y, Si D, Zhang R. Biofilm and Small Colony Variants-An Update on Staphylococcus aureus Strategies toward Drug Resistance. Int J Mol Sci 2022; 23:ijms23031241. [PMID: 35163165 PMCID: PMC8835882 DOI: 10.3390/ijms23031241] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, the drawbacks arising from the overuse of antibiotics have drawn growing public attention. Among them, drug-resistance (DR) and even multidrug-resistance (MDR) pose significant challenges in clinical practice. As a representative of a DR or MDR pathogen, Staphylococcus aureus can cause diversity of infections related to different organs, and can survive or adapt to the diverse hostile environments by switching into other phenotypes, including biofilm and small colony variants (SCVs), with altered physiologic or metabolic characteristics. In this review, we briefly describe the development of the DR/MDR as well as the classical mechanisms (accumulation of the resistant genes). Moreover, we use multidimensional scaling analysis to evaluate the MDR relevant hotspots in the recent published reports. Furthermore, we mainly focus on the possible non-classical resistance mechanisms triggered by the two important alternative phenotypes of the S. aureus, biofilm and SCVs, which are fundamentally caused by the different global regulation of the S. aureus population, such as the main quorum-sensing (QS) and agr system and its coordinated regulated factors, such as the SarA family proteins and the alternative sigma factor σB (SigB). Both the biofilm and the SCVs are able to escape from the host immune response, and resist the therapeutic effects of antibiotics through the physical or the biological barriers, and become less sensitive to some antibiotics by the dormant state with the limited metabolisms.
Collapse
|
27
|
Magryś A, Bogut A. MicroRNA hsa-let-7a facilitates staphylococcal small colony variants survival in the THP-1 macrophages by reshaping inflammatory responses. Int J Med Microbiol 2021; 311:151542. [PMID: 34864353 DOI: 10.1016/j.ijmm.2021.151542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/16/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Recent studies have provided emerging evidence of the critical involvement of microRNAs in host immune defence against bacterial infection and that likewise the expression of the miRNAs is profoundly impacted by a variety of pathogens to subvert the immune response. Here, we report the role of hsa-let-7a miRNA in response to Staphylococcus epidermidis Small Colony Variants infection. We also assessed whether the expression levels of inflammatory cytokines associated with the hsa-let-7a are manipulated by the pathogen and the effect of the IFN-γ priming on the expression of hsa-let-7a and the fate of SCVs/WTs in infected macrophages. A striking observation was the downregulation of the let-7a miRNA upon challenge of the THP-1 activated cells with the SCV isolates while no significant changes in expression were noticed after the infection of macrophages with their WT counterparts. Staphylococcus epidermidis WT and SCV strains were found to invade and survive in macrophages. A significant reduction in bacterial load for both phenotypes was observed in macrophages treated with let-7a mimic compared to untreated ones. Survival of WTs was augmented in cells treated with the inhibitor in 4 out of 5 strains as compared to the number of bacteria recovered from non-transfected cells. At the same time, let-7a inhibitor did not influence on the survival of SCVs in macrophages as their number was comparable to number recovered from non-transfected cells. When the ratio of both let-7a cytokine targets was compared, anti-inflammatory IL-10 cytokine was induced by SCVs predominantly, while the macrophage challenge with WTs was characterized by the inflammatory cytokine profile with high IL-6 and low IL-10 production. Moreover, the balance between pro-inflammatory and anti-inflammatory cytokines has been expectedly retrieved when macrophages were transfected with let-7a mimic before infection with WT or SCV strains. The results also show that IFN-γ likely regulates the macrophage environment contributing to the inflammatory response and elimination of bacteria from intracellular milieu by augmenting the synthesis of pro-inflammatory cytokines and supressing the anti-inflammatory IL-10. Our work has shown that SCVs have the potential to regulate the let-7a miRNA to balance the pro-inflammatory IL-6 with anti-inflammatory IL-10 and this mechanism is one of the ways in a complex regulatory network adopted by SCVs to promote their survival.
Collapse
Affiliation(s)
- Agnieszka Magryś
- Chair and Department of Medical Microbiology, Medical University of Lublin, Poland.
| | - Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, Poland
| |
Collapse
|
28
|
Evaluating the potential efficacy and limitations of a phage for joint antibiotic and phage therapy of Staphylococcus aureus infections. Proc Natl Acad Sci U S A 2021; 118:2008007118. [PMID: 33649203 PMCID: PMC7958385 DOI: 10.1073/pnas.2008007118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This study explores the potential of a phage, PYOSa, for treating Staphylococcus aureus infections in combination with antibiotics. Population dynamic and genomic analysis identified a limitation and potential liability of using PYOSa for therapy. Due to the production of potentially pathogenic atypical small colony variants, PYOSa alone cannot eliminate S. aureus populations. However, we demonstrate that by following the administration of PYOSa with bactericidal antibiotics, this limitation and potential liability can be addressed. The methods used in this investigation to explore the efficacy of combinations of PYOSa and antibiotics for treating S. aureus infections can be employed to evaluate the clinical potential and facilitate the design of treatment protocols for any bacteria and phage that can be cultured in vitro. In response to increasing frequencies of antibiotic-resistant pathogens, there has been a resurrection of interest in the use of bacteriophage to treat bacterial infections: phage therapy. Here we explore the potential of a seemingly ideal phage, PYOSa, for combination phage and antibiotic treatment of Staphylococcus aureus infections. This K-like phage has a broad host range; all 83 tested clinical isolates of S.aureus tested were susceptible to PYOSa. Because of the mode of action of PYOSa, S. aureus is unlikely to generate classical receptor-site mutants resistant to PYOSa; none were observed in the 13 clinical isolates tested. PYOSa kills S. aureus at high rates. On the downside, the results of our experiments and tests of the joint action of PYOSa and antibiotics raise issues that must be addressed before PYOSa is employed clinically. Despite the maintenance of the phage, PYOSa does not clear populations of S. aureus. Due to the ascent of a phenotyically diverse array of small-colony variants following an initial demise, the bacterial populations return to densities similar to that of phage-free controls. Using a combination of mathematical modeling and in vitro experiments, we postulate and present evidence for a mechanism to account for the demise–resurrection dynamics of PYOSa and S. aureus. Critically for phage therapy, our experimental results suggest that treatment with PYOSa followed by bactericidal antibiotics can clear populations of S. aureus more effectively than the antibiotics alone.
Collapse
|
29
|
Liu Y, Bai S, Wu T, Chen CC, Liu Y, Chao X, Bai Y. Dendronized Arm Snowflake Polymer as a Highly Branched Scaffold for Cellular Imaging and Delivery. Biomacromolecules 2021; 22:3791-3799. [PMID: 34339173 DOI: 10.1021/acs.biomac.1c00631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incorporation of branched structures is a major pathway to build macromolecules with desired three-dimensional (3D) structures, which are of high importance in the rational design of functional polymeric scaffolds. Dendrimers and hyperbranched polymers have been extensively studied for this purpose, but proper gain-of-function for these structures usually requires large enough molecular weights and a highly branched interior so that a spherical 3D core-shell architecture can be obtained, yet it is generally challenging to achieve precise control over the structure, high molecular weight, and high degree of branching (DoB) simultaneously. In this article, we present a set of snowflake-shaped star polymers with functional cores and dendronized arms, which ensure a high DoB and an overall globular conformation, thus facilitating the introduction of functional moieties onto the easily achieved scaffold without the need for high-generation dendrons. Using a polyglycerol dendron (PGD) as a proof of concept, we propose that this dendronized arm snowflake polymer (DASP) structure can serve as a better performing alternative to high-generation PGDs. DASPs with molecular weights of 750, 1220, 2120, and 3740 kDa were prepared with >85% yields in all cases, and we show that these DASPs have high encapsulating efficiency of Nile Red due to their high DoB and high biocompatibility due to their hydroxyl-rich nature after ketal removal, as well as high cell permeability that is molecular-weight-dependent. Introduced fluorophores such as fluorescein and difluoroboron 1,3-diphenylaminophenyl β-diketonate with suitable excitation wavelengths may turn the DASPs into stable, endosome-staining fluorophores with ultra-large Stokes shifts, narrowed emission bands, and suitability for long-term cellular tracing. Moreover, the scaffold can encapsulate antibiotic molecules and deliver them into phagolysosomes for efficient elimination of intracellular Staphylococcus aureus, which is insensitive toward many antibiotics but is a key target for the clinical success of methicillin-resistant Staphylococcus aureus infection treatment. Elimination of Staphylococcus aureus could be improved to >99.9% for chloramphenicol at 32 μg/mL with 450 μg/mL DASP.
Collapse
Affiliation(s)
- Yanhong Liu
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Silei Bai
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Tong Wu
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Ying Liu
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiangyu Chao
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
30
|
Bogut A, Magryś A. The road to success of coagulase-negative staphylococci: clinical significance of small colony variants and their pathogenic role in persistent infections. Eur J Clin Microbiol Infect Dis 2021; 40:2249-2270. [PMID: 34296355 PMCID: PMC8520507 DOI: 10.1007/s10096-021-04315-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/09/2021] [Indexed: 01/14/2023]
Abstract
Bacterial small colony variants represent an important aspect of bacterial variability. They are naturally occurring microbial subpopulations with distinctive phenotypic and pathogenic traits, reported for many clinically important bacteria. In clinical terms, SCVs tend to be associated with persistence in host cells and tissues and are less susceptible to antibiotics than their wild-type (WT) counterparts. The increased tendency of SCVs to reside intracellularly where they are protected against the host immune responses and antimicrobial drugs is one of the crucial aspects linking SCVs to recurrent or chronic infections, which are difficult to treat. An important aspect of the SCV ability to persist in the host is the quiescent metabolic state, reduced immune response and expression a changed pattern of virulence factors, including a reduced expression of exotoxins and an increased expression of adhesins facilitating host cell uptake. The purpose of this review is to describe in greater detail the currently available data regarding CoNS SCV and, in particular, their clinical significance and possible mechanisms by which SCVs contribute to the pathogenesis of the chronic infections. It should be emphasized that in spite of an increasing clinical significance of this group of staphylococci, the number of studies unraveling the mechanisms of CoNS SCVs formation and their impact on the course of the infectious process is still scarce, lagging behind the studies on S. aureus SCVs.
Collapse
Affiliation(s)
- Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, ul. Chodźki 1, 20-093, Lublin, Poland
| | - Agnieszka Magryś
- Chair and Department of Medical Microbiology, Medical University of Lublin, ul. Chodźki 1, 20-093, Lublin, Poland.
| |
Collapse
|
31
|
Nader D, Yousef F, Kavanagh N, Ryan BK, Kerrigan SW. Targeting Internalized Staphylococcus aureus Using Vancomycin-Loaded Nanoparticles to Treat Recurrent Bloodstream Infections. Antibiotics (Basel) 2021; 10:antibiotics10050581. [PMID: 34068975 PMCID: PMC8156000 DOI: 10.3390/antibiotics10050581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 12/29/2022] Open
Abstract
The bacterial pathogen Staphylococcus aureus is a leading cause of bloodstream infections, where patients often suffer from relapse despite antibiotic therapy. Traditional anti-staphylococcal drugs display reduced effectivity against internalised bacteria, but nanoparticles conjugated with antibiotics can overcome these challenges. In the present study, we aimed to characterise the internalisation and re-emergence of S. aureus from human endothelial cells and construct a new formulation of nanoparticles that target intracellular bacteria. Using an in vitro infection model, we demonstrated that S. aureus invades and persists within endothelial cells, mediated through bacterial extracellular surface adhesion, Fibronectin-binding protein A/B. After internalising, S. aureus localises to vacuoles as determined by transmission electron microscopy. Viable S. aureus emerges from endothelial cells after 48 h, supporting the notion that intracellular persistence contributes to infection relapses during bloodstream infections. Poly lactic-co-glycolic acid nanoparticles were formulated using a water-in-oil double emulsion method, which loaded 10% vancomycin HCl with 82.85% ± 12 encapsulation efficiency. These non-toxic nanoparticles were successfully taken up by cells and demonstrated a biphasic controlled release of 91 ± 4% vancomycin. They significantly reduced S. aureus intracellular growth within infected endothelial cells, which suggests future potential applications for targeting internalised bacteria and reducing mortality associated with bacteraemia.
Collapse
Affiliation(s)
- Danielle Nader
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
- Correspondence: (D.N.); (S.W.K.); Tel.: +353-1-402-2104 (S.W.K.)
| | - Fajer Yousef
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
| | - Nicola Kavanagh
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
| | - Benedict K. Ryan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland;
| | - Steven W. Kerrigan
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
- Correspondence: (D.N.); (S.W.K.); Tel.: +353-1-402-2104 (S.W.K.)
| |
Collapse
|
32
|
|
33
|
Zhou Y, Zhao S, Gao X, Jiang S, Ma J, Wang R, Li Q, Qin L, Tong Z, Wu J, Zhao J. Staphylococcus aureus Induces IFN-β Production via a CARMA3-Independent Mechanism. Pathogens 2021; 10:pathogens10030300. [PMID: 33806598 PMCID: PMC8000617 DOI: 10.3390/pathogens10030300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Type I interferon (IFN) induction is a critical component of innate immune response to viral and bacterial infection, including S. aureus, but whether it activates the signaling in macrophages and the regulation mechanisms is less well understood. Here we show that S. aureus infection promoted the IFN-β mRNA expression and stimulator of IFN genes (STING)/TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3)-dependent production of IFN-β. Infection with S. aureus induced caspase recruitment domain and membrane-associated guanylate kinase-like domain protein 3 (CARMA3) expression at both the mRNA and protein levels. The heat-killed bacteria failed to trigger IRF3 phosphorylation and upregulation of CARMA3 expression. However, overexpression of CARMA3 did not affect phosphorylation of TBK1 or IRF3 in RAW264.7 cells, J774A.1 macrophages, and mouse embryonic fibroblast (MEF) cells. In conclusion, S. aureus infection induces STING/TBK1/IRF3-mediated IFN-β production in a CARMA3-independent manner.
Collapse
Affiliation(s)
- Yang Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence: (Y.Z.); (J.Z.)
| | - Shasha Zhao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Xiao Gao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Songhong Jiang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Jialu Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Rui Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Qing Li
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China;
| | - Leiying Qin
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Zhizi Tong
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Junwei Wu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (S.Z.); (X.G.); (S.J.); (J.M.); (R.W.); (L.Q.); (Z.T.); (J.W.)
| | - Jianjun Zhao
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China;
- Correspondence: (Y.Z.); (J.Z.)
| |
Collapse
|
34
|
Zondervan NA, Martins Dos Santos VAP, Suarez-Diez M, Saccenti E. Phenotype and multi-omics comparison of Staphylococcus and Streptococcus uncovers pathogenic traits and predicts zoonotic potential. BMC Genomics 2021; 22:102. [PMID: 33541265 PMCID: PMC7860044 DOI: 10.1186/s12864-021-07388-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/13/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Staphylococcus and Streptococcus species can cause many different diseases, ranging from mild skin infections to life-threatening necrotizing fasciitis. Both genera consist of commensal species that colonize the skin and nose of humans and animals, and of which some can display a pathogenic phenotype. RESULTS We compared 235 Staphylococcus and 315 Streptococcus genomes based on their protein domain content. We show the relationships between protein persistence and essentiality by integrating essentiality predictions from two metabolic models and essentiality measurements from six large-scale transposon mutagenesis experiments. We identified clusters of strains within species based on proteins associated to similar biological processes. We built Random Forest classifiers that predicted the zoonotic potential. Furthermore, we identified shared attributes between of Staphylococcus aureus and Streptococcus pyogenes that allow them to cause necrotizing fasciitis. CONCLUSIONS Differences observed in clustering of strains based on functional groups of proteins correlate with phenotypes such as host tropism, capability to infect multiple hosts and drug resistance. Our method provides a solid basis towards large-scale prediction of phenotypes based on genomic information.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
- LifeGlimmer GmBH, Markelstraße 38, 12163, Berlin, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands.
| |
Collapse
|
35
|
Yang X, Xie B, Peng H, Shi G, Sreenivas B, Guo J, Wang C, He Y. Eradicating intracellular MRSA via targeted delivery of lysostaphin and vancomycin with mannose-modified exosomes. J Control Release 2020; 329:454-467. [PMID: 33253805 DOI: 10.1016/j.jconrel.2020.11.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/17/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
Intracellular methicillin-resistant Staphylococcus aureus (MRSA) is extremely difficult to remove by common antibiotics, leading to infection recurrence and resistance. Herein we report a novel exosome-based antibiotic delivery platform for eradicating intracellular MRSA, where mannosylated exosome (MExos) is employed as the drug carrier and preferentially taken up by macrophages, delivering lysostaphin (MExoL) and vancomycin (MExoV) to intracellular pathogens. Combination of MExoL and MExoV eradicated intracellular quiescent MRSA. Moreover, MExos rapidly accumulated in mouse liver and spleen, the target organs of intracellular MRSA, after intravenous (IV) administration. Thus, the MExos antibiotic delivery platform is a promising strategy for combating intracellular infection.
Collapse
Affiliation(s)
- Xiaohong Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Ave, Shuitu Technology Development Zone, Beibei, 400714 Chongqing, China; Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Beibei Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Haibo Peng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Gongming Shi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Banne Sreenivas
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Jian Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, 401331 Chongqing, China.
| |
Collapse
|
36
|
Mulcahy ME, O'Brien EC, O'Keeffe KM, Vozza EG, Leddy N, McLoughlin RM. Manipulation of Autophagy and Apoptosis Facilitates Intracellular Survival of Staphylococcus aureus in Human Neutrophils. Front Immunol 2020; 11:565545. [PMID: 33262756 PMCID: PMC7686353 DOI: 10.3389/fimmu.2020.565545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 01/13/2023] Open
Abstract
Polymorphonuclear neutrophils (PMN) are critical for first line innate immune defence against Staphylococcus aureus. Mature circulating PMN maintain a short half-life ending in constitutive apoptotic cell death. This makes them unlikely candidates as a bacterial intracellular niche. However, there is significant evidence to suggest that S. aureus can survive intracellularly within PMN and this contributes to persistence and dissemination during infection. The precise mechanism by which S. aureus parasitizes these cells remains to be established. Herein we propose a novel mechanism by which S. aureus subverts both autophagy and apoptosis in PMN in order to maintain an intracellular survival niche during infection. Intracellular survival of S. aureus within primary human PMN was associated with an accumulation of the autophagic flux markers LC3-II and p62, while inhibition of the autophagy pathway led to a significant reduction in intracellular survival of bacteria. This intracellular survival of S. aureus was coupled with a delay in neutrophil apoptosis as well as increased expression of several anti-apoptotic factors. Importantly, blocking autophagy in infected PMN partially restored levels of apoptosis to that of uninfected PMN, suggesting a connection between the autophagic and apoptotic pathways during intracellular survival. These results provide a novel mechanism for S. aureus intracellular survival and suggest that S. aureus may be subverting crosstalk between the autophagic and apoptosis pathways in order to maintain an intracellular niche within human PMN.
Collapse
Affiliation(s)
- Michelle E Mulcahy
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Eóin C O'Brien
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kate M O'Keeffe
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Emilio G Vozza
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Neal Leddy
- bioTEM, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
37
|
Irving SE, Choudhury NR, Corrigan RM. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat Rev Microbiol 2020; 19:256-271. [PMID: 33149273 DOI: 10.1038/s41579-020-00470-y] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/10/2023]
Abstract
The stringent response is a stress signalling system mediated by the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) in response to nutrient deprivation. Recent research highlights the complexity and broad range of functions that these alarmones control. This Review provides an update on our current understanding of the enzymes involved in ppGpp, pppGpp and guanosine 5'-monophosphate 3'-diphosphate (pGpp) (collectively (pp)pGpp) turnover, including those shown to produce pGpp and its analogue (pp)pApp. We describe the well-known interactions with RNA polymerase as well as a broader range of cellular target pathways controlled by (pp)pGpp, including DNA replication, transcription, nucleotide synthesis, ribosome biogenesis and function, as well as lipid metabolism. Finally, we review the role of ppGpp and pppGpp in bacterial pathogenesis, providing examples of how these nucleotides are involved in regulating many aspects of virulence and chronic infection.
Collapse
Affiliation(s)
- Sophie E Irving
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Naznin R Choudhury
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Rebecca M Corrigan
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| |
Collapse
|
38
|
Nakamura Y, Kanemaru K, Shoji M, Totoki K, Nakamura K, Nakaminami H, Nakase K, Noguchi N, Fukami K. Phosphatidylinositol-specific phospholipase C enhances epidermal penetration by Staphylococcus aureus. Sci Rep 2020; 10:17845. [PMID: 33082376 PMCID: PMC7575579 DOI: 10.1038/s41598-020-74692-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus (S. aureus) commonly colonizes the human skin and nostrils. However, it is also associated with a wide variety of diseases. S. aureus is frequently isolated from the skin of patients with atopic dermatitis (AD), and is linked to increased disease severity. S. aureus impairs the skin barrier and triggers inflammation through the secretion of various virulence factors. S. aureus secretes phosphatidylinositol-specific phospholipase C (PI-PLC), which hydrolyses phosphatidylinositol and cleaves glycosylphosphatidylinositol-anchored proteins. However, the role of S. aureus PI-PLC in the pathogenesis of skin diseases, including AD, remains unclear. In this study, we sought to determine the role of S. aureus PI-PLC in the pathogenesis of skin diseases. PI-PLC was observed to enhance the invasion and persistence of S. aureus in keratinocytes. Besides, PI-PLC promoted the penetration of S. aureus through the epidermal barrier in a mouse model of AD and the human organotypic epidermal equivalent. Furthermore, the loss of PI-PLC attenuated epidermal hyperplasia and the infiltration of Gr-1+ cells and CD4+ cells induced by S. aureus infection in the mouse model of AD. Collectively, these results indicate that PI-PLC eases the entry of S. aureus into the dermis and aggravates acanthosis and immune cell infiltration in infected skin.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan. .,PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan. .,Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| | - Kaori Kanemaru
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan.,Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Madoka Shoji
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kengo Totoki
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Karen Nakamura
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hidemasa Nakaminami
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Keisuke Nakase
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Norihisa Noguchi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| |
Collapse
|
39
|
Xu LY, Mu M, Wang ML, Liu JC, Zhou YJ, Wu J, Jiang BY, Chen MG, Hu D, Tao XR. Effects of the linoleic acid/docosahexaenoic acid ratio and concentration inducing autophagy in Raw264.7 cells against Staphylococcus aureus. J Clin Biochem Nutr 2020; 67:146-152. [PMID: 33041511 PMCID: PMC7533852 DOI: 10.3164/jcbn.19-95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/25/2020] [Indexed: 11/22/2022] Open
Abstract
Our study was to understand the autophagy induce by different ratios and concentrations of LA/DHA on Raw264.7 cell, and then to investigate the effect of Raw264.7 autophagy on the clearance of Staphylococcus aureus. Raw264.7 cells was treated by LA/DHA in different concentrations (50/100 µmol/L) and ratios (4:1, 6:1, 8:1, 1:4, 1:6 and 1:8) for 6/12/24 h, cell viability assay was assessed by Cell Counting Kit-8, LC3B, p62, P-mTOR, P-Akt, P-PI3K and BECN 1 were detected by the Western blot. LA/DHA could induce autophagy of Raw264.7 cells through the PI3K-Akt-mTOR signaling pathway, the strong effect on autophagy by the concentration is 100 µmol/L, the ratio is 6:1 of LA/DHA, and the treatment time is 24 h. Compared with the images in the control group obtained by merging red and green fluorescence channels, the treatment of LA, DHA in a ratio of 6:1 at a concentration of 100 µmol/L for 24 h significantly lead to a substantial number of autophagosomes (yellow) as well as autolysosomes (red), enhancing autophagy flux. Autophagy induce by LA/DHA can devour and damage intracellular and extracellular Staphylococcus aureus. These results indicate that LA/DHA cloud induce autophagy and enhance the phagocytosis and killing ability of macrophages to intracellular parasitic bacteria.
Collapse
Affiliation(s)
- Li-Ying Xu
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, 168 Taifeng Road, Huainan City, Anhui Province 232001, China
| | - Min Mu
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, 168 Taifeng Road, Huainan City, Anhui Province 232001, China.,Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education of Anhui Higher Education Institutes, 168 Taifeng Road, Huainan City, Anhui Province 232001, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, 168 Taifeng Road, Huainan City, Anhui Province 232001, China
| | - Man-Li Wang
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, 168 Taifeng Road, Huainan City, Anhui Province 232001, China
| | - Jin-Cheng Liu
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, 168 Taifeng Road, Huainan City, Anhui Province 232001, China
| | - Yuan-Jie Zhou
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, 168 Taifeng Road, Huainan City, Anhui Province 232001, China
| | - Jing Wu
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, 168 Taifeng Road, Huainan City, Anhui Province 232001, China.,Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education of Anhui Higher Education Institutes, 168 Taifeng Road, Huainan City, Anhui Province 232001, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, 168 Taifeng Road, Huainan City, Anhui Province 232001, China
| | - Bing-You Jiang
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education of Anhui Higher Education Institutes, 168 Taifeng Road, Huainan City, Anhui Province 232001, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, 168 Taifeng Road, Huainan City, Anhui Province 232001, China
| | - Ming-Gong Chen
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, 168 Taifeng Road, Huainan City, Anhui Province 232001, China.,Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education of Anhui Higher Education Institutes, 168 Taifeng Road, Huainan City, Anhui Province 232001, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, 168 Taifeng Road, Huainan City, Anhui Province 232001, China
| | - Dong Hu
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, 168 Taifeng Road, Huainan City, Anhui Province 232001, China.,Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education of Anhui Higher Education Institutes, 168 Taifeng Road, Huainan City, Anhui Province 232001, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, 168 Taifeng Road, Huainan City, Anhui Province 232001, China
| | - Xing-Rong Tao
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, 168 Taifeng Road, Huainan City, Anhui Province 232001, China.,Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education of Anhui Higher Education Institutes, 168 Taifeng Road, Huainan City, Anhui Province 232001, China.,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, 168 Taifeng Road, Huainan City, Anhui Province 232001, China
| |
Collapse
|
40
|
Tan X, Coureuil M, Ramond E, Euphrasie D, Dupuis M, Tros F, Meyer J, Nemazanyy I, Chhuon C, Guerrera IC, Ferroni A, Sermet-Gaudelus I, Nassif X, Charbit A, Jamet A. Chronic Staphylococcus aureus Lung Infection Correlates With Proteogenomic and Metabolic Adaptations Leading to an Increased Intracellular Persistence. Clin Infect Dis 2020; 69:1937-1945. [PMID: 30753350 DOI: 10.1093/cid/ciz106] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/31/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic lung infection in cystic fibrosis (CF) patients by Staphylococcus aureus is a well-established epidemiological fact. Indeed, S. aureus is the most commonly identified pathogen in the lungs of CF patients. Improving our understanding of the mechanisms associated with the persistence of S. aureus is therefore an important issue. METHODS We selected pairs of sequential S. aureus isolates from 3 patients with CF and from 1 patient with non-CF chronic lung disease. We used a combination of genomic, proteomic, and metabolomic approaches with functional assays for in-depth characterization of S. aureus long-term persistence. RESULTS In this study, we show that late S. aureus isolates from CF patients have an increased ability for intracellular survival in CF bronchial epithelial-F508del cells compared to ancestral early isolates. Importantly, the increased ability to persist intracellularly was confirmed for S. aureus isolates within the own-patient F508del epithelial cells. An increased ability to form biofilm was also demonstrated. Furthermore, we identified the underlying genetic modifications that induce altered protein expression profiles and notable metabolic changes. These modifications affect several metabolic pathways and virulence regulators that could constitute therapeutic targets. CONCLUSIONS Our results strongly suggest that the intracellular environment might constitute an important niche of persistence and relapse necessitating adapted antibiotic treatments.
Collapse
Affiliation(s)
- Xin Tan
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Mathieu Coureuil
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Elodie Ramond
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Daniel Euphrasie
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Marion Dupuis
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Fabiola Tros
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Julie Meyer
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Ivan Nemazanyy
- Plateforme d'étude du métabolisme, Structure Fédérative de Recherche INSERM US24/CNRS UMS3633, Paris, France
| | - Cerina Chhuon
- Plateforme Protéome Institut Necker-Enfants Malades, PPN, Structure Fédérative de Recherche SFR Necker, University Paris Descartes, Paris, France
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Agnes Ferroni
- Laboratoire de Microbiologie de l'hopital Necker, University Paris Descartes, Paris, France
| | - Isabelle Sermet-Gaudelus
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Canalopathies épithéliales: la mucoviscidose et autres maladies, Paris, France
| | - Xavier Nassif
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Alain Charbit
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Anne Jamet
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| |
Collapse
|
41
|
Speziale P, Pietrocola G. The Multivalent Role of Fibronectin-Binding Proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in Host Infections. Front Microbiol 2020; 11:2054. [PMID: 32983039 PMCID: PMC7480013 DOI: 10.3389/fmicb.2020.02054] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/05/2020] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus, one of the most important human pathogens, is the causative agent of several infectious diseases including sepsis, pneumonia, osteomyelitis, endocarditis and soft tissue infections. This pathogenicity is due to a multitude of virulence factors including several cell wall-anchored proteins (CWA). CWA proteins have modular structures with distinct domains binding different ligands. The majority of S. aureus strains express two CWA fibronectin (Fn)-binding adhesins FnBPA and FnBPB (Fn-binding proteins A and B), which are encoded by closely related genes. The N-terminus of FnBPA and FnBPB comprises an A domain which binds ligands such as fibrinogen, elastin and plasminogen. The A domain of FnBPB also interacts with histones and this binding results in the neutralization of the antimicrobial activity of these molecules. The C-terminal moiety of these adhesins comprises a long, intrinsically disordered domain composed of 11/10 fibronectin-binding repeats. These repetitive motifs of FnBPs promote invasion of cells that are not usually phagocytic via a mechanism by which they interact with integrin α5β1 through a Fn mediated-bridge. The FnBPA and FnBPB A domains engage in homophilic cell-cell interactions and promote biofilm formation and enhance platelet aggregation. In this review we update the current understanding of the structure and functional properties of FnBPs and emphasize the role they may have in the staphylococcal infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| |
Collapse
|
42
|
Szafraniec GM, Szeleszczuk P, Dolka B. A Review of Current Knowledge on Staphylococcus agnetis in Poultry. Animals (Basel) 2020; 10:ani10081421. [PMID: 32823920 PMCID: PMC7460464 DOI: 10.3390/ani10081421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This literature review provides a synthesis and evaluation of the current knowledge on Staphylococcus agnetis (S. agnetis) and its implications in poultry pathology. Recent studies revealed that S. agnetis can cause bacterial chondronecrosis with osteomyelitis (BCO), endocarditis, and septicemia in broiler chickens. Lameness constitutes one of the major health and welfare problems causing huge economic losses in the poultry industry. To date, a range of infectious and non-infectious factors have been associated with lameness in poultry. Among bacteria of the genus Staphylococcus, Staphylococcus aureus is the main species associated with locomotor problems. This contrasts with S. agnetis, which until recently had not been considered as a poultry pathogen. Previously only reported in cattle, S. agnetis has expanded its host range to chickens, and due to its unique characteristics has become recognized as a new emerging pathogen. The genotypic and phenotypic similarities between S. agnetis and other two staphylococci (S. hyicus and S. chromogenes) make this pathogen capable of escaping recognition due to misidentification. Although a significant amount of research on S. agnetis has been conducted, many facts about this novel species are still unknown and further studies are required to understand its full significance in poultry pathology. Abstract This review aims to summarize recent discoveries and advancements regarding the characteristics of Staphylococcus agnetis (S. agnetis) and its role in poultry pathology. S. agnetis is an emerging pathogen that was primarily associated with mastitis in dairy cattle. After a presumed host jump from cattle to poultry, it was identified as a pathological agent in broiler chickens (Gallus gallus domesticus), causing lameness induced by bacterial chondronecrosis with osteomyelitis (BCO), septicemia, and valvular endocarditis. Economic and welfare losses caused by lameness are global problems in the poultry industry, and S. agnetis has been shown to have a potential to induce high incidences of lameness in broiler chickens. S. agnetis exhibits a distinct repertoire of virulence factors found in many different staphylococci. It is closely related to S. hyicus and S. chromogenes, hence infections caused by S. agnetis may be misdiagnosed or even undiagnosed. As there are very few reports on S. agnetis in poultry, many facts about its pathogenesis, epidemiology, routes of transmission, and the potential impacts on the poultry industry remain unknown.
Collapse
|
43
|
A comprehensive review of bacterial osteomyelitis with emphasis on Staphylococcus aureus. Microb Pathog 2020; 148:104431. [PMID: 32801004 DOI: 10.1016/j.micpath.2020.104431] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis, a significant infection of bone tissue, gives rise to two main groups of infection: acute and chronic. These groups are further categorized in terms of the duration of infection. Usually, children and adults are more susceptible to acute and chronic infections, respectively. The aforementioned groups of osteomyelitis share almost 80% of the corresponding bacterial pathogens. Among all bacteria, Staphylococcus aureus (S. aureus) is a significant pathogen and is associated with a high range of osteomyelitis symptoms. S. aureus has many strategies for interacting with host cells including Small Colony Variant (SCV), biofilm formation, and toxin secretion. In addition, it induces an inflammatory response and causes host cell death by apoptosis and necrosis. However, any possible step to take in this respect is dependent on the conditions and host responses. In the absence of any immune responses and antibiotics, bacteria actively duplicate themselves; however, in the presence of phagocytic cell and harassing conditions, they turn into a SCV, remaining sustainable for a long time. SCV is characterized by notable advantages such as (a) intracellular life that mediates a dam against immune cells and (b) low ATP production that mediates resistance against antibiotics.
Collapse
|
44
|
Häffner N, Bär J, Dengler Haunreiter V, Mairpady Shambat S, Seidl K, Crosby HA, Horswill AR, Zinkernagel AS. Intracellular Environment and agr System Affect Colony Size Heterogeneity of Staphylococcus aureus. Front Microbiol 2020; 11:1415. [PMID: 32695082 PMCID: PMC7339952 DOI: 10.3389/fmicb.2020.01415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus causes chronic and relapsing infections, which may be difficult to treat. So-called small colony variants (SCVs) have been associated with chronic infections and their occurrence has been shown to increase under antibiotic pressure, low pH and intracellular localization. In clinics, S. aureus isolated from invasive infections often show a dysfunction in the accessory gene regulator (agr), a major virulence regulatory system in S. aureus. To assess whether intracellular environment and agr function influence SCV formation, an infection model was established using lung epithelial cells and skin fibroblasts. This allowed analyzing intracellular survival and localization of a panel of S. aureus wild type strains and their isogenic agr knock out mutants as well as a natural dysfunctional agr strain by confocal laser scanning microscopy (CLSM). Furthermore, bacterial colonies were quantified after 1, 3, and 5 days of intracellular survival by time-lapse analysis to determine kinetics of colony appearance and SCV formation. Here, we show that S. aureus strains with an agr knock out predominantly resided in a neutral environment, whereas wild type strains and an agr complemented strain resided in an acidic environment. S. aureus agr mutants derived from an intracellular environment showed a higher percentage of SCVs as compared to their corresponding wild type strains. Neutralizing acidic phagolysosomes with chloroquine resulted in a significant reduction of SCVs in S. aureus wild type strain 6850, but not in its agr mutant indicating a pH dependent formation of SCVs in the wild type strain. The in-depth understanding of the interplay between intracellular persistence, agr function and pH should help to identify new therapeutic options facilitating the treatment of chronic S. aureus infections in the future.
Collapse
Affiliation(s)
- Nicola Häffner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Julian Bär
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vanina Dengler Haunreiter
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kati Seidl
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Heidi A Crosby
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Veterans Affairs Eastern Colorado Health Care System, Denver, CO, United States
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Evolutionary causes and consequences of bacterial antibiotic persistence. Nat Rev Microbiol 2020; 18:479-490. [PMID: 32461608 DOI: 10.1038/s41579-020-0378-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Antibiotic treatment failure is of growing concern. Genetically encoded resistance is key in driving this process. However, there is increasing evidence that bacterial antibiotic persistence, a non-genetically encoded and reversible loss of antibiotic susceptibility, contributes to treatment failure and emergence of resistant strains as well. In this Review, we discuss the evolutionary forces that may drive the selection for antibiotic persistence. We review how some aspects of antibiotic persistence have been directly selected for whereas others result from indirect selection in disparate ecological contexts. We then discuss the consequences of antibiotic persistence on pathogen evolution. Persisters can facilitate the evolution of antibiotic resistance and virulence. Finally, we propose practical means to prevent persister formation and how this may help to slow down the evolution of virulence and resistance in pathogens.
Collapse
|
46
|
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020; 25:E2193. [PMID: 32397080 PMCID: PMC7248934 DOI: 10.3390/molecules25092193] [Citation(s) in RCA: 339] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology offers many advantages in various fields of science. In this regard, nanoparticles are the essential building blocks of nanotechnology. Recent advances in nanotechnology have proven that nanoparticles acquire a great potential in medical applications. Formation of stable interactions with ligands, variability in size and shape, high carrier capacity, and convenience of binding of both hydrophilic and hydrophobic substances make nanoparticles favorable platforms for the target-specific and controlled delivery of micro- and macromolecules in disease therapy. Nanoparticles combined with the therapeutic agents overcome problems associated with conventional therapy; however, some issues like side effects and toxicity are still debated and should be well concerned before their utilization in biological systems. It is therefore important to understand the specific properties of therapeutic nanoparticles and their delivery strategies. Here, we provide an overview on the unique features of nanoparticles in the biological systems. We emphasize on the type of clinically used nanoparticles and their specificity for therapeutic applications, as well as on their current delivery strategies for specific diseases such as cancer, infectious, autoimmune, cardiovascular, neurodegenerative, ocular, and pulmonary diseases. Understanding of the characteristics of nanoparticles and their interactions with the biological environment will enable us to establish novel strategies for the treatment, prevention, and diagnosis in many diseases, particularly untreatable ones.
Collapse
Affiliation(s)
- Abuzer Alp Yetisgin
- Materials Science and Nano-Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Merve Zuvin
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
| | - Ali Kosar
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
47
|
Joyce P, Ulmefors H, Maghrebi S, Subramaniam S, Wignall A, Jõemetsa S, Höök F, Prestidge CA. Enhancing the Cellular Uptake and Antibacterial Activity of Rifampicin through Encapsulation in Mesoporous Silica Nanoparticles. NANOMATERIALS 2020; 10:nano10040815. [PMID: 32344619 PMCID: PMC7221943 DOI: 10.3390/nano10040815] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/23/2022]
Abstract
An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of Staphylococcus aureus (SCV S. aureus) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV S. aureus, with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection.
Collapse
Affiliation(s)
- Paul Joyce
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (P.J.); (S.J.); (F.H.)
| | - Hanna Ulmefors
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5090, Australia; (H.U.); (S.M.); (S.S.); (A.W.)
- ARC Centre of Excellence in Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5090, Australia
| | - Sajedeh Maghrebi
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5090, Australia; (H.U.); (S.M.); (S.S.); (A.W.)
- ARC Centre of Excellence in Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5090, Australia
| | - Santhni Subramaniam
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5090, Australia; (H.U.); (S.M.); (S.S.); (A.W.)
- ARC Centre of Excellence in Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5090, Australia
| | - Anthony Wignall
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5090, Australia; (H.U.); (S.M.); (S.S.); (A.W.)
- ARC Centre of Excellence in Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5090, Australia
| | - Silver Jõemetsa
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (P.J.); (S.J.); (F.H.)
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (P.J.); (S.J.); (F.H.)
| | - Clive A. Prestidge
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5090, Australia; (H.U.); (S.M.); (S.S.); (A.W.)
- ARC Centre of Excellence in Bio-Nano Science and Technology, University of South Australia, Adelaide, South Australia 5090, Australia
- Correspondence:
| |
Collapse
|
48
|
Deramaudt TB, Ali M, Vinit S, Bonay M. Sulforaphane reduces intracellular survival of Staphylococcus aureus in macrophages through inhibition of JNK and p38 MAPK‑induced inflammation. Int J Mol Med 2020; 45:1927-1941. [PMID: 32323751 PMCID: PMC7169961 DOI: 10.3892/ijmm.2020.4563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages are active contributors to the innate immune defense system. As macrophage activation is clearly affected by the surrounding microenvironment, the present study investigated the effect of sulforaphane (SFN) on the bactericidal activity of macrophages and the underlying molecular mechanisms involved in this process. Human THP-1-derived macrophages, primary human peripheral blood mononuclear cell-derived macrophages, and primary mouse bone marrow derived-macrophages (BMDMs) pretreated with SFN or DMSO were utilized in a model of Staphylococcus aureus infection. The results suggested that SFN pretreatment of macrophages effectively repressed the intracellular survival of S. aureus through modulation of p38/JNK signaling and decreased S. aureus-induced caspases-3/7-dependent cell apoptosis, potentially through downregulation of microRNA (miR)-142-5p and miR-146a-5p. As SFN is a well-known activator of nuclear factor erythroid 2-related factor 2 (Nrf2), Nrf2−/− BMDMs were used to demonstrate that the SFN-mediated inhibitory effect was independent of Nrf2. Nevertheless, an increase in intracellular bacterial survival in Nrf2-deficient macrophages was observed. In addition, SFN pretreatment suppressed S. aureus-induced transcriptional expression of genes coding for the proinflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), as well as for the M1 markers C-C motif chemokine receptor 7, IL-23 and inducible nitric oxide synthase (iNOS). Western blot analysis indicated that S. aureus challenge activated p38 mitogen-activated protein kinase (MAPK) (p38) and c-Jun N-terminal kinase (JNK) MAPK signaling pathways, while SFN pretreatment prevented p38 and JNK phosphorylation. Pretreatment with 2 specific inhibitors of p38 and JNK, SB203580 and SP600125, respectively, resulted in a decrease in S. aureus-induced proinflammatory gene expression levels compared with those observed in the SFN-pretreated macrophages. Furthermore, THP-1-derived macrophages pretreated with SB203580 or SP600125 prior to bacterial infection exhibited a significant inhibition in intracellular S. aureus survival. In conclusion, we hypothesize that concomitant targeting of the p38/JNK-inflammatory response and the S. aureus-induced apoptosis with SFN may be a promising therapeutic approach in S. aureus infection.
Collapse
Affiliation(s)
- Therese B Deramaudt
- Department of Neuromuscular Handicap: Biotherapies and Therapeutic Innovations, National Institute of Health and Medical Research, University of Versailles‑Saint‑Quentin‑en‑Yvelines, 78180 Montigny‑le‑Bretonneux, France
| | - Malika Ali
- Department of Neuromuscular Handicap: Biotherapies and Therapeutic Innovations, National Institute of Health and Medical Research, University of Versailles‑Saint‑Quentin‑en‑Yvelines, 78180 Montigny‑le‑Bretonneux, France
| | - Stephane Vinit
- Department of Neuromuscular Handicap: Biotherapies and Therapeutic Innovations, National Institute of Health and Medical Research, University of Versailles‑Saint‑Quentin‑en‑Yvelines, 78180 Montigny‑le‑Bretonneux, France
| | - Marcel Bonay
- Department of Neuromuscular Handicap: Biotherapies and Therapeutic Innovations, National Institute of Health and Medical Research, University of Versailles‑Saint‑Quentin‑en‑Yvelines, 78180 Montigny‑le‑Bretonneux, France
| |
Collapse
|
49
|
Lee J, Zilm PS, Kidd SP. Novel Research Models for Staphylococcus aureus Small Colony Variants (SCV) Development: Co-pathogenesis and Growth Rate. Front Microbiol 2020; 11:321. [PMID: 32184775 PMCID: PMC7058586 DOI: 10.3389/fmicb.2020.00321] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/13/2020] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus remains a great burden on the healthcare system. Despite prescribed treatments often seemingly to be successful, S. aureus can survive and cause a relapsing infection which cannot be cleared. These infections are in part due to quasi-dormant sub-population which is tolerant to antibiotics and able to evade the host immune response. These include Small Colony Variants (SCVs). Because SCVs readily revert to non-SCV cell types under laboratory conditions, the characterization of SCVs has been problematic. This mini-review covers the phenotypic and genetic changes in stable SCVs including the selection of SCVs by and interactions with other bacterial species.
Collapse
Affiliation(s)
- James Lee
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia.,Research Centre for Infectious Diseases, Adelaide, SA, Australia.,Australian Centre for Antimicrobial Resistance Ecology, Adelaide, SA, Australia
| | - Peter S Zilm
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Stephen P Kidd
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia.,Research Centre for Infectious Diseases, Adelaide, SA, Australia.,Australian Centre for Antimicrobial Resistance Ecology, Adelaide, SA, Australia
| |
Collapse
|
50
|
Maghrebi S, Joyce P, Jambhrunkar M, Thomas N, Prestidge CA. Poly(lactic- co-glycolic) Acid-Lipid Hybrid Microparticles Enhance the Intracellular Uptake and Antibacterial Activity of Rifampicin. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8030-8039. [PMID: 32013379 DOI: 10.1021/acsami.9b22991] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An urgent demand exists for the development of effective carrier systems that systematically enhance the cellular uptake and localization of antibiotic drugs for the treatment of intracellular pathogens. Commercially available antibiotics suffer from poor cellular penetration, restricting their efficacy against pathogens hosted and protected within phagocytic cells. In this study, the potency of the antibiotic rifampicin against intracellular small colony variants of Staphylococcus aureus was improved through encapsulation within a strategically engineered cell-penetrant delivery system, composed of lipid nanoparticles encapsulated within a poly(lactic-co-glycolic) acid (PLGA) nanoparticle matrix. PLGA-lipid hybrid (PLH) microparticles were synthesized through the process of spray drying, whereby rifampicin was loaded within both the polymer and lipid phases, to create a nanoparticle-in-microparticle system capable of efficient redispersion in aqueous biorelevant media and with programmable release kinetics. The ability of PLH particles to disintegrate into nanoscale agglomerates of the precursor nanoparticles was shown to be instrumental in optimizing rifampicin uptake in RAW264.7 macrophages, with a 7.2- and 1.6-fold increase in cellular uptake, when compared to the pure drug and PLGA microparticles (of an equivalent initial particle size), respectively. The enhanced phagocytosis and extended drug release mechanism (under the acidic macrophage environment) associated with PLH particles induced a 2.5-log reduction in colony forming units compared to initial colonies at 2.50 μg/mL rifampicin dose. Thus, the ability of PLH particles to reduce the intracellular viability of S. aureus, without demonstrating significant cellular toxicity, satisfies the requirements necessary for the safe and efficacious delivery of antibiotics to macrophages for the treatment of intracellular infections.
Collapse
Affiliation(s)
- Sajedeh Maghrebi
- School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5000 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia 5000 , Australia
| | - Paul Joyce
- School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5000 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia 5000 , Australia
| | - Manasi Jambhrunkar
- School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5000 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia 5000 , Australia
| | - Nicky Thomas
- School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5000 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia 5000 , Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5000 , Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia 5000 , Australia
| |
Collapse
|