1
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
2
|
Mathanlal T, Zorzano MP, Martin-Torres J. Design, development, and operation of an ISO class 5 cleanroom for planetary instrumentation and planetary protection protocols. Heliyon 2024; 10:e36276. [PMID: 39263159 PMCID: PMC11387226 DOI: 10.1016/j.heliyon.2024.e36276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Cleanrooms are controlled environments where the number of airborne particles is reduced to a level defined by an International Organization for Standardization (ISO) standard. These facilities have applications in different fields, such as the electronic, pharmaceutical, and healthcare sectors, and are also necessary for the assembly, testing and handling of space hardware. Cleanrooms are expensive to build and maintain and require the permanent designation of infrastructures and dedicated spaces within a building. Once built, clean rooms cannot be used for any other purpose, as contamination is a significant risk. The restricted access to these facilities limits the process of designing, testing, and calibrating instruments developed by academic institutions, small companies, and space startups. Here we present a Commercial Off-The-Shelf (COTS) procedure for building and maintaining a highly controlled ISO class 5 cleanroom, according to ISO14644 standards. We provide a detailed explanation of how to design, develop and operate a portable, modular, and cost-effective ISO class 5 cleanroom that can be used for the usual workflow of development, integration, test procedures and planetary protection associated with the design of instrumentation for planetary exploration.
Collapse
Affiliation(s)
- Thasshwin Mathanlal
- Department of Planetary Sciences, School of Geosciences, University of Aberdeen, Meston building, Aberdeen, AB24 3UE, UK
| | - Maria-Paz Zorzano
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Javier Martin-Torres
- Department of Planetary Sciences, School of Geosciences, University of Aberdeen, Meston building, Aberdeen, AB24 3UE, UK
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), 18100, Granada, Spain
| |
Collapse
|
3
|
Zaccaria T, de Jonge MI, Domínguez-Andrés J, Netea MG, Beblo-Vranesevic K, Rettberg P. Survival of Environment-Derived Opportunistic Bacterial Pathogens to Martian Conditions: Is There a Concern for Human Missions to Mars? ASTROBIOLOGY 2024; 24:100-113. [PMID: 38227836 DOI: 10.1089/ast.2023.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The health of astronauts during space travel to new celestial bodies in the Solar System is a critical factor in the planning of a mission. Despite cleaning and decontamination protocols, microorganisms from the Earth have been and will be identified on spacecraft. This raises concerns for human safety and planetary protection, especially if these microorganisms can evolve and adapt to the new environment. In this study, we examined the tolerance of clinically relevant nonfastidious bacterial species that originate from environmental sources (Burkholderia cepacia, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Serratia marcescens) to simulated martian conditions. Our research showed changes in growth and survival of these species in the presence of perchlorates, under desiccating conditions, exposure to ultraviolet radiation, and exposure to martian atmospheric composition and pressure. In addition, our results demonstrate that growth was enhanced by the addition of a martian regolith simulant to the growth media. Additional future research is warranted to examine potential changes in the infectivity, pathogenicity, and virulence of these species with exposure to martian conditions.
Collapse
Affiliation(s)
- Tommaso Zaccaria
- Research Group Astrobiology, Radiation Biology Department, Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Cologne, Germany
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marien I de Jonge
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jorge Domínguez-Andrés
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G Netea
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Kristina Beblo-Vranesevic
- Research Group Astrobiology, Radiation Biology Department, Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Cologne, Germany
| | - Petra Rettberg
- Research Group Astrobiology, Radiation Biology Department, Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Cologne, Germany
| |
Collapse
|
4
|
Kimura S, Ishikawa S, Hayashi N, Fujita K, Inatomi Y, Suzuki S. Bacterial and fungal bioburden reduction on material surfaces using various sterilization techniques suitable for spacecraft decontamination. Front Microbiol 2023; 14:1253436. [PMID: 38152378 PMCID: PMC10751312 DOI: 10.3389/fmicb.2023.1253436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Planetary protection is a guiding principle aiming to prevent microbial contamination of the solar system by spacecraft (forward contamination) and extraterrestrial contamination of the Earth (backward contamination). Bioburden reduction on spacecraft, including cruise and landing systems, is required to prevent microbial contamination from Earth during space exploration missions. Several sterilization methods are available; however, selecting appropriate methods is essential to eliminate a broad spectrum of microorganisms without damaging spacecraft components during manufacturing and assembly. Here, we compared the effects of different bioburden reduction techniques, including dry heat, UV light, isopropyl alcohol (IPA), hydrogen peroxide (H2O2), vaporized hydrogen peroxide (VHP), and oxygen and argon plasma on microorganisms with different resistance capacities. These microorganisms included Bacillus atrophaeus spores and Aspergillus niger spores, Deinococcus radiodurans, and Brevundimonas diminuta, all important microorganisms for considering planetary protection. Bacillus atrophaeus spores showed the highest resistance to dry heat but could be reliably sterilized (i.e., under detection limit) through extended time or increased temperature. Aspergillus niger spores and D. radiodurans were highly resistant to UV light. Seventy percent of IPA and 7.5% of H2O2 treatments effectively sterilized D. radiodurans and B. diminuta but showed no immediate bactericidal effect against B. atrophaeus spores. IPA immediately sterilized A. niger spores, but H2O2 did not. During VHP treatment under reduced pressure, viable B. atrophaeus spores and A. niger spores were quickly reduced by approximately two log orders. Oxygen plasma sterilized D. radiodurans but did not eliminate B. atrophaeus spores. In contrast, argon plasma sterilized B. atrophaeus but not D. radiodurans. Therefore, dry heat could be used for heat-resistant component bioburden reduction, and VHP or plasma for non-heat-resistant components in bulk bioburden reduction. Furthermore, IPA, H2O2, or UV could be used for additional surface bioburden reduction during assembly and testing. The systemic comparison of sterilization efficiencies under identical experimental conditions in this study provides basic criteria for determining which sterilization techniques should be selected during bioburden reduction for forward planetary protection.
Collapse
Affiliation(s)
- Shunta Kimura
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
- Space Exploration Innovation Hub Center, Japan Aerospace Exploration Agency, Sagamihara, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Sagamihara, Japan
| | - Shu Ishikawa
- Engineering Division, Kajima Corporation, Tokyo, Japan
| | - Nobuya Hayashi
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhisa Fujita
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
- Safety and Mission Assurance Department, Japan Aerospace Exploration Agency, Tsukuba, Japan
| | - Yuko Inatomi
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
- Space Exploration Innovation Hub Center, Japan Aerospace Exploration Agency, Sagamihara, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Sagamihara, Japan
| | - Shino Suzuki
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
- Space Exploration Innovation Hub Center, Japan Aerospace Exploration Agency, Sagamihara, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Sagamihara, Japan
- Geobiology and Astrobiology Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
5
|
Schuler CG, Winebrenner DP, Elam WT, Burnett J, Boles BW, Mikucki JA. Microbial Transport by a Descending Ice Melting Probe: Implications for Subglacial and Ocean World Exploration. ASTROBIOLOGY 2023; 23:1153-1164. [PMID: 37279037 DOI: 10.1089/ast.2021.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ocean Worlds beneath thick ice covers in our solar system, as well as subglacial lakes on Earth, may harbor biological systems. In both cases, thick ice covers (>100 s of meters) present significant barriers to access. Melt probes are emerging as tools for reaching and sampling these realms due to their small logistical footprint, ability to transport payloads, and ease of cleaning in the field. On Earth, glaciers are immured with various abundances of microorganisms and debris. The potential for bioloads to accumulate around and be dragged by a probe during descent has not previously been investigated. Due to the pristine nature of these environments, minimizing and understanding the risk of forward contamination and considering the potential of melt probes to act as instrument-induced special regions are essential. In this study, we examined the effect that two engineering descent strategies for melt probes have on the dragging of bioloads. We also tested the ability of a field cleaning protocol to rid a common contaminant, Bacillus. These tests were conducted in a synthetic ice block immured with bioloads using the Ice Diver melt probe. Our data suggest minimal dragging of bioloads by melt probes, but conclude that modifications for further minimization and use in special regions should be made.
Collapse
Affiliation(s)
- Caleb G Schuler
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Dale P Winebrenner
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - W Timothy Elam
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Justin Burnett
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Bruce W Boles
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jill A Mikucki
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
6
|
Napoli A, Coleine C, Ulrich NJ, Moeller R, Billi D, Selbmann L. Snow Surface Microbial Diversity at the Detection Limit within the Vicinity of the Concordia Station, Antarctica. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010113. [PMID: 36676062 PMCID: PMC9863605 DOI: 10.3390/life13010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023]
Abstract
The Concordia Research Station provides a unique location for preparatory activities for future human journey to Mars, to explore microbial diversity at subzero temperatures, and monitor the dissemination of human-associated microorganisms within the pristine surrounding environment. Amplicon sequencing was leveraged to investigate the microbial diversity of surface snow samples collected monthly over a two-year period, at three distances from the Station (10, 500, and 1000 m). Even when the extracted total DNA was below the detection limit, 16S rRNA gene sequencing was successfully performed on all samples, while 18S rRNA was amplified on 19 samples out of 51. No significant relationships were observed between microbial diversity and seasonality (summer or winter) or distance from the Concordia base. This suggested that if present, the anthropogenic impact should have been below the detectable limit. While harboring low microbial diversity, the surface snow samples were characterized by heterogeneous microbiomes. Ultimately, our study corroborated the use of DNA sequencing-based techniques for revealing microbial presence in remote and hostile environments, with implications for Planetary Protection during space missions and for life-detection in astrobiology relevant targets.
Collapse
Affiliation(s)
- Alessandro Napoli
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Nikea J. Ulrich
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Ralf Moeller
- Aerospace Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), 28359 Cologne, Germany
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg (BRSU), 53359 Rheinbach, Germany
- Correspondence: (R.M.); (D.B.)
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (R.M.); (D.B.)
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), 16128 Genoa, Italy
| |
Collapse
|
7
|
Wynne JJ, Titus TN, Agha‐Mohammadi A, Azua‐Bustos A, Boston PJ, de León P, Demirel‐Floyd C, De Waele J, Jones H, Malaska MJ, Miller AZ, Sapers HM, Sauro F, Sonderegger DL, Uckert K, Wong UY, Alexander EC, Chiao L, Cushing GE, DeDecker J, Fairén AG, Frumkin A, Harris GL, Kearney ML, Kerber L, Léveillé RJ, Manyapu K, Massironi M, Mylroie JE, Onac BP, Parazynski SE, Phillips‐Lander CM, Prettyman TH, Schulze‐Makuch D, Wagner RV, Whittaker WL, Williams KE. Fundamental Science and Engineering Questions in Planetary Cave Exploration. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2022JE007194. [PMID: 36582809 PMCID: PMC9787064 DOI: 10.1029/2022je007194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/17/2023]
Abstract
Nearly half a century ago, two papers postulated the likelihood of lunar lava tube caves using mathematical models. Today, armed with an array of orbiting and fly-by satellites and survey instrumentation, we have now acquired cave data across our solar system-including the identification of potential cave entrances on the Moon, Mars, and at least nine other planetary bodies. These discoveries gave rise to the study of planetary caves. To help advance this field, we leveraged the expertise of an interdisciplinary group to identify a strategy to explore caves beyond Earth. Focusing primarily on astrobiology, the cave environment, geology, robotics, instrumentation, and human exploration, our goal was to produce a framework to guide this subdiscipline through at least the next decade. To do this, we first assembled a list of 198 science and engineering questions. Then, through a series of social surveys, 114 scientists and engineers winnowed down the list to the top 53 highest priority questions. This exercise resulted in identifying emerging and crucial research areas that require robust development to ultimately support a robotic mission to a planetary cave-principally the Moon and/or Mars. With the necessary financial investment and institutional support, the research and technological development required to achieve these necessary advancements over the next decade are attainable. Subsequently, we will be positioned to robotically examine lunar caves and search for evidence of life within Martian caves; in turn, this will set the stage for human exploration and potential habitation of both the lunar and Martian subsurface.
Collapse
Affiliation(s)
- J. Judson Wynne
- Department of Biological Sciences and Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffAZUSA
| | | | | | - Armando Azua‐Bustos
- Centro de AstrobiologíaCSIC‐INTAUnidad María de MaeztuInstituto Nacional de Técnica Aeroespacial Ctra de Torrejón a AjalvirMadridSpain
- Instituto de Ciencias BiomédicasFacultad de Ciencias de la SaludUniversidad Autónoma de ChileSantiagoChile
| | | | - Pablo de León
- Human Spaceflight LaboratoryDepartment of Space StudiesUniversity of North DakotaGrand ForksNDUSA
| | | | - Jo De Waele
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Heather Jones
- Robotics InstituteCarnegie Mellon UniversityPittsburghPAUSA
| | - Michael J. Malaska
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Ana Z. Miller
- Laboratório HERCULESUniversity of ÉvoraÉvoraPortugal
- Instituto de Recursos Naturales y AgrobiologíaConsejo Superior de Investigaciones CientíficasSevilleSpain
| | - Haley M. Sapers
- Department of Earth and Space Science and EngineeringYork UniversityTorontoONCanada
| | - Francesco Sauro
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Derek L. Sonderegger
- Department of Mathematics and StatisticsNorthern Arizona UniversityFlagstaffAZUSA
| | - Kyle Uckert
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - E. Calvin Alexander
- Earth and Environmental Sciences DepartmentUniversity of MinnesotaMinneapolisMNUSA
| | - Leroy Chiao
- Department of Mechanical EngineeringRice UniversityHoustonTXUSA
| | - Glen E. Cushing
- U.S. Geological SurveyAstrogeology Science CenterFlagstaffAZUSA
| | - John DeDecker
- Center for Mineral Resources ScienceColorado School of MinesGoldenCOUSA
| | - Alberto G. Fairén
- Centro de AstrobiologíaCSIC‐INTAUnidad María de MaeztuInstituto Nacional de Técnica Aeroespacial Ctra de Torrejón a AjalvirMadridSpain
- Department of AstronomyCornell UniversityIthacaNYUSA
| | - Amos Frumkin
- Institute of Earth SciencesThe Hebrew UniversityJerusalemIsrael
| | - Gary L. Harris
- Human Spaceflight LaboratoryDepartment of Space StudiesUniversity of North DakotaGrand ForksNDUSA
| | - Michelle L. Kearney
- Department of Astronomy and Planetary SciencesNorthern Arizona UniversityFlagstaffAZUSA
| | - Laura Kerber
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Richard J. Léveillé
- Department of Earth and Planetary SciencesMcGill UniversityMontrealQCCanada
- Geosciences DepartmentJohn Abbott CollegeSte‐Anne‐de‐BellevueQCCanada
| | | | - Matteo Massironi
- Dipartimento di GeoscienzeUniversità degli Studi di PadovaPadovaItaly
| | - John E. Mylroie
- Department of GeosciencesMississippi State UniversityStarkvilleMSUSA
| | - Bogdan P. Onac
- School of GeosciencesUniversity of South FloridaTampaFLUSA
- Emil G. Racoviță InstituteBabeș‐Bolyai UniversityCluj‐NapocaRomania
| | | | | | | | - Dirk Schulze‐Makuch
- Astrobiology GroupCenter of Astronomy and AstrophysicsTechnische Universität BerlinBerlinGermany
- Section GeomicrobiologyGFZ German Research Centre for GeosciencesPotsdamGermany
- Department of Experimental LimnologyLeibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)StechlinGermany
| | - Robert V. Wagner
- School of Earth and Space ExplorationArizona State UniversityTempeAZUSA
| | - William L. Whittaker
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Kaj E. Williams
- U.S. Geological SurveyAstrogeology Science CenterFlagstaffAZUSA
| |
Collapse
|
8
|
Host-Associated Phages Disperse across the Extraterrestrial Analogue Antarctica. Appl Environ Microbiol 2022; 88:e0031522. [PMID: 35499326 DOI: 10.1128/aem.00315-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extreme Antarctic conditions provide one of the closest analogues of extraterrestrial environments. Since air and snow samples, especially from polar regions, yield DNA amounts in the lower picogram range, binning of prokaryotic genomes is challenging and renders studying the dispersal of biological entities across these environments difficult. Here, we hypothesized that dispersal of host-associated bacteriophages (adsorbed, replicating, or prophages) across the Antarctic continent can be tracked via their genetic signatures, aiding our understanding of virus and host dispersal across long distances. Phage genome fragments (PGFs) reconstructed from surface snow metagenomes of three Antarctic stations were assigned to four host genomes, mainly Betaproteobacteria, including Ralstonia spp. We reconstructed the complete genome of a temperate phage with nearly complete alignment to a prophage in the reference genome of Ralstonia pickettii 12D. PGFs from different stations were related to each other at the genus level and matched similar hosts. Metagenomic read mapping and nucleotide polymorphism analysis revealed a wide dispersal of highly identical PGFs, 13 of which were detected in seawater from the Western Antarctic Peninsula at a distance of 5,338 km from the snow sampling stations. Our results suggest that host-associated phages, especially of Ralstonia sp., disperse over long distances despite the harsh conditions of the Antarctic continent. Given that 14 phages associated with two R. pickettii draft genomes isolated from space equipment were identified, we conclude that Ralstonia phages are ideal mobile genetic elements to track dispersal and contamination in ecosystems relevant for astrobiology. IMPORTANCE Host-associated phages of the bacterium Ralstonia identified in snow samples can be used to track microbial dispersal over thousands of kilometers across the Antarctic continent, which functions as an extraterrestrial analogue because of its harsh environmental conditions. Due to the presence of these bacteria carrying genome-integrated prophages on space-related equipment and the potential for dispersal of host-associated phages demonstrated here, our work has implications for planetary protection, a discipline in astrobiology interested in preventing contamination of celestial bodies with alien biomolecules or forms of life.
Collapse
|
9
|
Waters SM, Robles-Martínez JA, Nicholson WL. Growth at 5 kPa Causes Differential Expression of a Number of Signals in a Bacillus subtilis Strain Adapted to Enhanced Growth at Low Pressure. ASTROBIOLOGY 2021; 21:1076-1088. [PMID: 34357782 DOI: 10.1089/ast.2020.2389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To determine microbial evolutionary strategies to low-pressure (LP; 5 kPa) growth, an environmental condition not experienced on Earth until ∼20 km in altitude, a previously described evolutionary experiment was conducted. The resulting LP evolved strain WN1106, isolated from the terminus of the experiment, was shown to have several genomic mutations absent in the ancestral strain, WN624. Three of the mutations were in regulatory genes: resD, walK, and rnjB. Here we report on transcriptional microarray data from the LP-evolved WN1106 and compare those results with the previously reported ancestral WN624 transcriptional array data at either 5 or 101 kPa. At 5 kPa, WN1106 differentially expresses signals that are under the control of regulators ResD, WalK, and RnjB compared with (1) itself at ∼101 kPa and (2) WN624 at 5 kPa. These results were further confirmed by quantitative reverse transcriptase-polymerase chain reaction of a target transcript from each regulon. This work indicates that the three mutated coding regions had transcriptional control effects on each respective regulon.
Collapse
Affiliation(s)
- Samantha M Waters
- Universities Space Research Association, Washington, DC, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, USA
- Space Life Sciences Lab, Department of Microbiology and Cell Science, University of Florida, Kennedy Space Center, Florida, USA
| | - José A Robles-Martínez
- Space Life Sciences Lab, Department of Microbiology and Cell Science, University of Florida, Kennedy Space Center, Florida, USA
| | - Wayne L Nicholson
- Space Life Sciences Lab, Department of Microbiology and Cell Science, University of Florida, Kennedy Space Center, Florida, USA
| |
Collapse
|
10
|
Danko D, Malli Mohan GB, Sierra MA, Rucker M, Singh NK, Regberg AB, Bell MS, O’Hara NB, Ounit R, Mason CE, Venkateswaran K. Characterization of Spacesuit Associated Microbial Communities and Their Implications for NASA Missions. Front Microbiol 2021; 12:608478. [PMID: 34394013 PMCID: PMC8358432 DOI: 10.3389/fmicb.2021.608478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Crewed National Aeronautics and Space Administration (NASA) missions to other solar system bodies are currently being planned. One high-profile scientific focus during such expeditions would be life detection, specifically the discovery of past or present microbial life, if they exist. However, both humans and associated objects typically carry a high microbial burden. Thus, it is essential to distinguish between microbes brought with the expedition and those present on the exploring planets. Modern spacesuits are unique, customized spacecraft which provide protection, mobility and life support to crew during spacewalks, yet they vent, and the mobility of microbes through spacesuits has not been studied. RESULTS To evaluate the microbial colonization of spacesuits, NASA used an Extravehicular Activity swab kit to examine viable microbial populations of 48 samples from spacesuits using both traditional microbiological methods and molecular sequencing methods. The cultivable microbial population ranged from below the detection limit to 9 × 102 colony forming units per 25 cm2 of sample and also significantly varied by the location. The cultivable microbial diversity was dominated by members of Bacillus, Arthrobacter, and Ascomycota. However, 16S rRNA-based viable bacterial burden ranged from 105 to 106 copies per 25 cm2 of sample. Shotgun metagenome sequencing revealed the presence of a diverse microbial population on the spacesuit surfaces, including Curtobacterium and Methylobacterium from across all sets of spacesuits in high abundance. Among bacterial species identified, higher abundance of Cutibacterium acnes, Methylobacterium oryzae, and M. phyllosphaerae reads were documented. CONCLUSION The results of this study provide evidence that identical microbial strains may live on the wrist joint, inner gauntlet, and outer gauntlet of spacesuits. This raises the possibility, but does not confirm that microbial contaminants on the outside of the suits could contaminate planetary science operations unless additional measures are taken. Overall, these data provide the first estimate of microbial distribution associated with spacesuit surfaces, which will help future mission planners develop effective planetary protection strategies.
Collapse
Affiliation(s)
- David Danko
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine of Cornell University, Manhattan, NY, United States
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Ganesh Babu Malli Mohan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Maria A. Sierra
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine of Cornell University, Manhattan, NY, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Michelle Rucker
- Exploration Mission Planning Office, Johnson Space Center, Houston, TX, United States
| | - Nitin K. Singh
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine of Cornell University, Manhattan, NY, United States
| | - Aaron B. Regberg
- Astromaterials Research and Exploration Science Division, Johnson Space Center, Houston, TX, United States
| | - Mary S. Bell
- Jacobs@NASA/Johnson Space Center, Houston, TX, United States
| | - Niamh B. O’Hara
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Rachid Ounit
- Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA, United States
| | - Christopher E. Mason
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
11
|
Danko DC, Sierra MA, Benardini JN, Guan L, Wood JM, Singh N, Seuylemezian A, Butler DJ, Ryon K, Kuchin K, Meleshko D, Bhattacharya C, Venkateswaran KJ, Mason CE. A comprehensive metagenomics framework to characterize organisms relevant for planetary protection. MICROBIOME 2021; 9:82. [PMID: 33795001 PMCID: PMC8016160 DOI: 10.1186/s40168-021-01020-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/02/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Clean rooms of the Space Assembly Facility (SAF) at the Jet Propulsion Laboratory (JPL) at NASA are the final step of spacecraft cleaning and assembly before launching into space. Clean rooms have stringent methods of air-filtration and cleaning to minimize microbial contamination for exoplanetary research and minimize the risk of human pathogens, but they are not sterile. Clean rooms make a selective environment for microorganisms that tolerate such cleaning methods. Previous studies have attempted to characterize the microbial cargo through sequencing and culture-dependent protocols. However, there is not a standardized metagenomic workflow nor analysis pipeline for spaceflight hardware cleanroom samples to identify microbial contamination. Additionally, current identification methods fail to characterize and profile the risk of low-abundance microorganisms. RESULTS A comprehensive metagenomic framework to characterize microorganisms relevant for planetary protection in multiple cleanroom classifications (from ISO-5 to ISO-8.5) and sample types (surface, filters, and debris collected via vacuum devices) was developed. Fifty-one metagenomic samples from SAF clean rooms were sequenced and analyzed to identify microbes that could potentially survive spaceflight based on their microbial features and whether the microbes expressed any metabolic activity or growth. Additionally, an auxiliary testing was performed to determine the repeatability of our techniques and validate our analyses. We find evidence that JPL clean rooms carry microbes with attributes that may be problematic in space missions for their documented ability to withstand extreme conditions, such as psychrophilia and ability to form biofilms, spore-forming capacity, radiation resistance, and desiccation resistance. Samples from ISO-5 standard had lower microbial diversity than those conforming to ISO-6 or higher filters but still carried a measurable microbial load. CONCLUSIONS Although the extensive cleaning processes limit the number of microbes capable of withstanding clean room condition, it is important to quantify thresholds and detect organisms that can inform ongoing Planetary Protection goals, provide a biological baseline for assembly facilities, and guide future mission planning. Video Abstract.
Collapse
Affiliation(s)
- David C Danko
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Maria A Sierra
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - James N Benardini
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, Pasadena, CA, 91109, USA
| | - Lisa Guan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, Pasadena, CA, 91109, USA
| | - Jason M Wood
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, Pasadena, CA, 91109, USA
| | - Nitin Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, Pasadena, CA, 91109, USA
| | - Arman Seuylemezian
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, Pasadena, CA, 91109, USA
| | - Daniel J Butler
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Krista Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Katerina Kuchin
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Dmitry Meleshko
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Chandrima Bhattacharya
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kasthuri J Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, Pasadena, CA, 91109, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Effects of Heavy Ion Particle Irradiation on Spore Germination of Bacillus spp. from Extremely Hot and Cold Environments. Life (Basel) 2020; 10:life10110264. [PMID: 33143156 PMCID: PMC7693761 DOI: 10.3390/life10110264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Extremophiles are optimal models in experimentally addressing questions about the effects of cosmic radiation on biological systems. The resistance to high charge energy (HZE) particles, and helium (He) ions and iron (Fe) ions (LET at 2.2 and 200 keV/µm, respectively, until 1000 Gy), of spores from two thermophiles, Bacillushorneckiae SBP3 and Bacilluslicheniformis T14, and two psychrotolerants, Bacillus sp. A34 and A43, was investigated. Spores survived He irradiation better, whereas they were more sensitive to Fe irradiation (until 500 Gy), with spores from thermophiles being more resistant to irradiations than psychrotolerants. The survived spores showed different germination kinetics, depending on the type/dose of irradiation and the germinant used. After exposure to He 1000 Gy, D-glucose increased the lag time of thermophilic spores and induced germination of psychrotolerants, whereas L-alanine and L-valine increased the germination efficiency, except alanine for A43. FTIR spectra showed important modifications to the structural components of spores after Fe irradiation at 250 Gy, which could explain the block in spore germination, whereas minor changes were observed after He radiation that could be related to the increased permeability of the inner membranes and alterations of receptor complex structures. Our results give new insights on HZE resistance of extremophiles that are useful in different contexts, including astrobiology.
Collapse
|
13
|
Tait AW, Gagen EJ, Wilson SA, Tomkins AG, Southam G. Eukaryotic Colonization of Micrometer-Scale Cracks in Rocks: A "Microfluidics" Experiment Using Naturally Weathered Meteorites from the Nullarbor Plain, Australia. ASTROBIOLOGY 2020; 20:364-374. [PMID: 31873039 DOI: 10.1089/ast.2019.2077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The advent of microfluidics has revolutionized the way we understand how microorganisms propagate through microporous spaces. Here, we apply this understanding to the study of how endolithic environmental microorganisms colonize the interiors of sterile rock. The substrates used for our study are stony meteorites from the Nullarbor Plain, Australia; a semiarid limestone karst that provides an ideal setting for preserving meteorites. Periodic flooding of the Nullarbor provides a mechanism by which microorganisms and exogenous nutrients may infiltrate meteorites. Our laboratory experiments show that environmental microorganisms reach depths greater than 400 μm by propagating through existing brecciation, passing through cracks no wider than the diameter of a resident cell (i.e., ∼5 μm). Our observations are consistent with the propagation of these eukaryotic cells via growth and cell division rather than motility. The morphology of the microorganisms changed as a result of propagation through micrometer-scale cracks, as has been observed previously for bacteria on microfluidic chips. It has been suggested that meteorites could have served as preferred habitats for microorganisms on ancient Mars. Based on our results, the depths reached by terrestrial microorganisms within meteorites would be sufficient to mitigate against the harmful effects of ionizing radiation, such as UV light, in Earth's deserts and potentially on Mars, if similar processes of microbial colonization had once been active there. Thus, meteorites landing in ancient lakes on Mars, that later dried out, could have been some of the last inhabited locations on the surface, serving as refugia before the planet's surface became inhospitable. Finally, our observations suggest that terrestrial microorganisms can colonize very fine cracks within meteorites (and potentially spaceships and rovers) on unexpectedly short timescales, with important implications for both recognition of extraterrestrial life in returned geological samples and planetary protection.
Collapse
Affiliation(s)
- Alastair W Tait
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Australia
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - Emma J Gagen
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Australia
| | - Siobhan A Wilson
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Australia
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| | - Andrew G Tomkins
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Australia
| | - Gordon Southam
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
14
|
Panitz C, Frösler J, Wingender J, Flemming HC, Rettberg P. Tolerances of Deinococcus geothermalis Biofilms and Planktonic Cells Exposed to Space and Simulated Martian Conditions in Low Earth Orbit for Almost Two Years. ASTROBIOLOGY 2019; 19:979-994. [PMID: 30925079 DOI: 10.1089/ast.2018.1913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fossilized biofilms represent one of the oldest known confirmations of life on the Earth. The success of microbes in biofilms results from properties that are inherent in the biofilm, including enhanced interaction, protection, and biodiversity. Given the diversity of microbes that live in biofilms in harsh environments on the Earth, it is logical to hypothesize that, if microbes inhabit other bodies in the Universe, there are also biofilms on those bodies. The Biofilm Organisms Surfing Space experiment was conducted as part of the EXPOSE-R2 mission on the International Space Station. The experiment was an international collaboration designed to perform a comparative study regarding the survival of biofilms versus planktonic cells of various microorganisms, exposed to space and Mars-like conditions. The objective was to determine whether there are lifestyle-dependent differences to cope with the unique mixture of stress factors, including desiccation, temperature oscillations, vacuum, or a Mars-like gas atmosphere and pressure in combination with extraterrestrial or Mars-like ultraviolet (UV) radiation residing during the long-term space mission. In this study, the outcome of the flight and mission ground reference analysis of Deinococcus geothermalis is presented. Cultural tests demonstrated that D. geothermalis remained viable in the desiccated state, being able to survive space and Mars-like conditions and tolerating high extraterrestrial UV radiation for more than 2 years. Culturability decreased, but was better preserved, in the biofilm consortium than in planktonic cells. These results are correlated to differences in genomic integrity after exposure, as visualized by random amplified polymorphic DNA-polymerase chain reaction. Interestingly, cultivation-independent viability markers such as membrane integrity, ATP content, and intracellular esterase activity remained nearly unaffected, indicating that subpopulations of the cells had survived in a viable but nonculturable state. These findings support the hypothesis of long-term survival of microorganisms under the harsh environmental conditions in space and on Mars to a higher degree if exposed as biofilm.
Collapse
Affiliation(s)
- Corinna Panitz
- 1Institute of Pharmacology and Toxicology, University Hospital/RWTH Aachen, Aachen, Germany
| | - Jan Frösler
- 2Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Jost Wingender
- 2Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | | | - Petra Rettberg
- 3Research Group Astrobiology, Radiation Biology Department, Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Cologne, Germany
| |
Collapse
|
15
|
Fairén AG, Schulze-Makuch D, Whyte L, Parro V, Pavlov A, Gómez-Elvira J, Azua-Bustos A, Fink W, Baker V. Planetary Protection and the astrobiological exploration of Mars: Proactive steps in moving forward. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2019; 63:1491-1497. [PMID: 39868344 PMCID: PMC7617346 DOI: 10.1016/j.asr.2019.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Future efforts towards Mars exploration should include a discussion about the effects that the strict application of Planetary Protection policies is having on the astrobiological exploration of Mars, which is resulting in a continued delay in the search for Martian life. As proactive steps in the path forward, here we propose advances in three areas. First, we suggest that a redefinition of Planetary Protection and Special Regions is required for the case of Mars. Particularly, we propose a definition for special places on Mars that we can get to in the next 10-20 years with rovers and landers, where try to address questions regarding whether there is present-day near-surface life on Mars or not, and crucially doing so before the arrival of manned missions. We propose to call those special places 'Astrobiology Priority Exploration" regions (APEX regions). Second, we stress the need for the development of robotic tools for the characterization of complex organic compounds as unequivocal signs of life, and particularly new generations of complex organic chemistry and biosignature detection instruments, including advances in DNA sequencing. And third, we advocate for a change from the present generation of SUV-sized landers and rovers to new robotic assets that are much easier to decontaminate such as microlanders: they would be very small with limited sensing capabilities, but there would be many of them available for launch and coordination from an orbiting platform. Implementing these changes will help to move forward with an exploration approach that is much less risky to the potential Mars biosphere, while also being much more scientifically rigorous about the exploration of the 'life on Mars" question - a question that needs to be answered both for astrobiological discovery and for learning more definitive lessons on Planetary Protection.
Collapse
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiologìa (CSIC-INTA), Madrid28850, Spain
- Department of Astronomy, Cornell University, Ithaca, NY14853, USA
| | - Dirk Schulze-Makuch
- Center of Astronomy and Astrophysics, Technical University Berlin, 10623Berlin, Germany
- School of the Environment, Washington State University, Pullman, WA, USA
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Victor Parro
- Centro de Astrobiologìa (CSIC-INTA), Madrid28850, Spain
| | | | | | - Armando Azua-Bustos
- Centro de Astrobiologìa (CSIC-INTA), Madrid28850, Spain
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Wolfgang Fink
- College of Engineering, University of Arizona, Tucson, AZ85721, USA
| | - Victor Baker
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ85721, USA
| |
Collapse
|
16
|
Zammuto V, Fuchs FM, Fiebrandt M, Stapelmann K, Ulrich NJ, Maugeri TL, Pukall R, Gugliandolo C, Moeller R. Comparing Spore Resistance of Bacillus Strains Isolated from Hydrothermal Vents and Spacecraft Assembly Facilities to Environmental Stressors and Decontamination Treatments. ASTROBIOLOGY 2018; 18:1425-1434. [PMID: 30289268 DOI: 10.1089/ast.2017.1715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Submarine hydrothermal vents are inhabited by a variety of microorganisms capable of tolerating environmental extremes, making them ideal candidates to further expand our knowledge of the limitations for terrestrial life, including their ability to survive the exposure of spaceflight-relevant conditions. The spore resistance of two Bacillus spp. strains, APA and SBP3, isolated from two shallow vents off Panarea Island (Aeolian Islands, Italy), to artificial and environmental stressors (i.e., UVC radiation, X-rays, heat, space vacuum, hydrogen peroxide [H2O2], and low-pressure plasma), was compared with that of two close phylogenetic relatives (Bacillus horneckiae and Bacillus oceanisediminis). Additional comparisons were made with Bacillus sp. isolated from spacecraft assembly facilities (B. horneckiae, Bacillus pumilus SAFR-032, and Bacillus nealsonii) and the biodosimetry strain and space microbiology model organism Bacillus subtilis. Overall, a high degree of spore resistance to stressors was observed for the strains isolated from spacecraft assembly facilities, with an exceptional level of resistance seen by B. pumilus SAFR-032. The environmental isolate SBP3 showed a more robust spore resistance to UVC, X-rays, H2O2, dry heat, and space vacuum than the closely related B. horneckiae. Both strains (SBP3 and APA) were more thermotolerant than their relatives, B. horneckiae and B. oceanisediminis, respectively. SBP3 may have a novel use as a bacterial model organism for future interrogations into the potential of forward contamination in extraterrestrial environments (e.g., icy moons of Jupiter or Saturn), spacecraft sterilization and, broadly, microbial responses to spaceflight-relevant environmental stressors.
Collapse
Affiliation(s)
- Vincenzo Zammuto
- 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Research Center for Extreme Environments and Extremophiles, University of Messina , Messina, Italy
| | - Felix M Fuchs
- 2 Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Marcel Fiebrandt
- 3 Biomedical Applications of Plasma Technology, Institute for Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Technology, Ruhr University Bochum , Bochum, Germany
| | - Katharina Stapelmann
- 3 Biomedical Applications of Plasma Technology, Institute for Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Technology, Ruhr University Bochum , Bochum, Germany
| | - Nikea J Ulrich
- 2 Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Teresa L Maugeri
- 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Research Center for Extreme Environments and Extremophiles, University of Messina , Messina, Italy
| | - Rüdiger Pukall
- 4 Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig, Germany
| | - Concetta Gugliandolo
- 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Research Center for Extreme Environments and Extremophiles, University of Messina , Messina, Italy
| | - Ralf Moeller
- 2 Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR e.V.), Cologne, Germany
| |
Collapse
|
17
|
Fajardo-Cavazos P, Morrison MD, Miller KM, Schuerger AC, Nicholson WL. Transcriptomic responses of Serratia liquefaciens cells grown under simulated Martian conditions of low temperature, low pressure, and CO 2-enriched anoxic atmosphere. Sci Rep 2018; 8:14938. [PMID: 30297913 PMCID: PMC6175911 DOI: 10.1038/s41598-018-33140-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/21/2018] [Indexed: 11/21/2022] Open
Abstract
Results from previous experiments indicated that the Gram-negative α-proteobacterium Serratia liquefaciens strain ATCC 27592 was capable of growth under low temperature (0 °C), low pressure (0.7 kPa), and anoxic, CO2-dominated atmosphere–conditions intended to simulate the near-subsurface environment of Mars. To probe the response of its transcriptome to this extreme environment, S. liquefaciens ATCC 27592 was cultivated under 4 different environmental simulations: 0 °C, 0.7 kPa, CO2 atmosphere (Condition A); 0 °C, ~101.3 kPa, CO2 atmosphere (Condition B); 0 °C, ~101.3 kPa, ambient N2/O2 atmosphere (Condition C); and 30 °C, ~101.3 kPa, N2/O2 atmosphere (Condition D; ambient laboratory conditions). RNA-seq was performed on ribosomal RNA-depleted total RNA isolated from triplicate cultures grown under Conditions A-D and the datasets generated were subjected to transcriptome analyses. The data from Conditions A, B, or C were compared to laboratory Condition D. Significantly differentially expressed transcripts were identified belonging to a number of KEGG pathway categories. Up-regulated genes under all Conditions A, B, and C included those encoding transporters (ABC and PTS transporters); genes involved in translation (ribosomes and their biogenesis, biosynthesis of both tRNAs and aminoacyl-tRNAs); DNA repair and recombination; and non-coding RNAs. Genes down-regulated under all Conditions A, B, and C included: transporters (mostly ABC transporters); flagellar and motility proteins; genes involved in phenylalanine metabolism; transcription factors; and two-component systems. The results are discussed in the context of Mars astrobiology and planetary protection.
Collapse
Affiliation(s)
- Patricia Fajardo-Cavazos
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL 32953, USA
| | - Michael D Morrison
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL 32953, USA
| | - Kathleen M Miller
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL 32953, USA
| | - Andrew C Schuerger
- Department of Plant Pathology, University of Florida, Merritt Island, FL 32953, USA
| | - Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL 32953, USA.
| |
Collapse
|
18
|
Nicholson WL, Schuerger AC, Douki T. The Photochemistry of Unprotected DNA and DNA inside Bacillus subtilis Spores Exposed to Simulated Martian Surface Conditions of Atmospheric Composition, Temperature, Pressure, and Solar Radiation. ASTROBIOLOGY 2018; 18:393-402. [PMID: 29589975 DOI: 10.1089/ast.2017.1721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
DNA is considered a potential biomarker for life-detection experiments destined for Mars. Experiments were conducted to examine the photochemistry of bacterial DNA, either unprotected or within Bacillus subtilis spores, in response to exposure to simulated martian surface conditions consisting of the following: temperature (-10°C), pressure (0.7 kPa), atmospheric composition [CO2 (95.54%), N2 (2.7%), Ar (1.6%), O2 (0.13%), and H2O (0.03%)], and UV-visible-near IR solar radiation spectrum (200-1100 nm) calibrated to 4 W/m2 of UVC (200-280 nm). While the majority (99.9%) of viable spores deposited in multiple layers on spacecraft-qualified aluminum coupons were inactivated within 5 min, a detectable fraction survived for up to the equivalent of ∼115 martian sols. Spore photoproduct (SP) was the major lesion detected in spore DNA, with minor amounts of cyclobutane pyrimidine dimers (CPD), in the order TT CPD > TC CPD >> CT CPD. In addition, the (6-4)TC, but not the (6-4)TT, photoproduct was detected in spore DNA. When unprotected DNA was exposed to simulated martian conditions, all photoproducts were detected. Surprisingly, the (6-4)TC photoproduct was the major photoproduct, followed by SP ∼ TT CPD > TC CPD > (6-4)TT > CT CPD > CC CPD. Differences in the photochemistry of unprotected DNA and spore DNA in response to simulated martian surface conditions versus laboratory conditions are reviewed and discussed. The results have implications for the planning of future life-detection experiments that use DNA as the target, and for the long-term persistence on Mars of forward contaminants or their DNA. Key Words: Bacillus subtilis-DNA-Mars-Photochemistry-Spore-Ultraviolet. Astrobiology 18, 393-402.
Collapse
Affiliation(s)
- Wayne L Nicholson
- 1 Department of Microbiology and Cell Science, University of Florida , Merritt Island, Florida, USA
| | - Andrew C Schuerger
- 2 Department of Plant Pathology, University of Florida , Merritt Island, Florida, USA
| | - Thierry Douki
- 3 Univ. Grenoble Alpes , CEA, CNRS, INAC, SyMMES/CIBEST, Grenoble, France
| |
Collapse
|
19
|
Fuchs FM, Raguse M, Fiebrandt M, Madela K, Awakowicz P, Laue M, Stapelmann K, Moeller R. Investigating the Detrimental Effects of Low Pressure Plasma Sterilization on the Survival of Bacillus subtilis Spores Using Live Cell Microscopy. J Vis Exp 2017. [PMID: 29286386 DOI: 10.3791/56666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Plasma sterilization is a promising alternative to conventional sterilization methods for industrial, clinical, and spaceflight purposes. Low pressure plasma (LPP) discharges contain a broad spectrum of active species, which lead to rapid microbial inactivation. To study the efficiency and mechanisms of sterilization by LPP, we use spores of the test organism Bacillus subtilis because of their extraordinary resistance against conventional sterilization procedures. We describe the production of B. subtilis spore monolayers, the sterilization process by low pressure plasma in a double inductively coupled plasma reactor, the characterization of spore morphology using scanning electron microscopy (SEM), and the analysis of germination and outgrowth of spores by live cell microscopy. A major target of plasma species is genomic material (DNA) and repair of plasma-induced DNA lesions upon spore revival is crucial for survival of the organism. Here, we study the germination capacity of spores and the role of DNA repair during spore germination and outgrowth after treatment with LPP by tracking fluorescently-labelled DNA repair proteins (RecA) with time-resolved confocal fluorescence microscopy. Treated and untreated spore monolayers are activated for germination and visualized with an inverted confocal live cell microscope over time to follow the reaction of individual spores. Our observations reveal that the fraction of germinating and outgrowing spores is dependent on the duration of LPP-treatment reaching a minimum after 120 s. RecA-YFP (yellow fluorescence protein) fluorescence was detected only in few spores and developed in all outgrowing cells with a slight elevation in LPP-treated spores. Moreover, some of the vegetative bacteria derived from LPP-treated spores showed an increase in cytoplasm and tended to lyse. The described methods for analysis of individual spores could be exemplary for the study of other aspects of spore germination and outgrowth.
Collapse
Affiliation(s)
- Felix M Fuchs
- Department of Radiation Biology, Institute of Aerospace Medicine, Space Microbiology Research Group, German Aerospace Center (DLR e.V.)
| | - Marina Raguse
- Department of Radiation Biology, Institute of Aerospace Medicine, Space Microbiology Research Group, German Aerospace Center (DLR e.V.); Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Technology, Ruhr-University Bochum; Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Technology, Biomedical Applications of Plasma Technology, Ruhr-University Bochum
| | - Marcel Fiebrandt
- Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Technology, Ruhr-University Bochum
| | - Kazimierz Madela
- Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute
| | - Peter Awakowicz
- Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Technology, Ruhr-University Bochum
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute
| | - Katharina Stapelmann
- Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Technology, Biomedical Applications of Plasma Technology, Ruhr-University Bochum
| | - Ralf Moeller
- Department of Radiation Biology, Institute of Aerospace Medicine, Space Microbiology Research Group, German Aerospace Center (DLR e.V.);
| |
Collapse
|
20
|
Pacelli C, Selbmann L, Moeller R, Zucconi L, Fujimori A, Onofri S. Cryptoendolithic Antarctic Black Fungus Cryomyces antarcticus Irradiated with Accelerated Helium Ions: Survival and Metabolic Activity, DNA and Ultrastructural Damage. Front Microbiol 2017; 8:2002. [PMID: 29089932 PMCID: PMC5650992 DOI: 10.3389/fmicb.2017.02002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/28/2017] [Indexed: 11/22/2022] Open
Abstract
Space represents an extremely harmful environment for life and survival of terrestrial organisms. In the last decades, a considerable deal of attention was paid to characterize the effects of spaceflight relevant radiation on various model organisms. The aim of this study was to test the survival capacity of the cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 to space relevant radiation, to outline its endurance to space conditions. In the frame of an international radiation campaign, dried fungal colonies were irradiated with accelerated Helium ion (150 MeV/n, LET 2.2 keV/μm), up to a final dose of 1,000 Gy, as one of the space-relevant ionizing radiation. Results showed that the fungus maintained high survival and metabolic activity with no detectable DNA and ultrastructural damage, even after the highest dose irradiation. These data give clues on the resistance of life toward space ionizing radiation in general and on the resistance and responses of eukaryotic cells in particular.
Collapse
Affiliation(s)
- Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Ralf Moeller
- German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, Cologne, Germany
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Akira Fujimori
- National Institute of Radiological Sciences, Research Center for Charged Particle Therapy, Chiba, Japan
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
21
|
Fairén AG, Parro V, Schulze-Makuch D, Whyte L. Searching for Life on Mars Before It Is Too Late. ASTROBIOLOGY 2017; 17:962-970. [PMID: 28885042 PMCID: PMC5655416 DOI: 10.1089/ast.2017.1703] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Decades of robotic exploration have confirmed that in the distant past, Mars was warmer and wetter and its surface was habitable. However, none of the spacecraft missions to Mars have included among their scientific objectives the exploration of Special Regions, those places on the planet that could be inhabited by extant martian life or where terrestrial microorganisms might replicate. A major reason for this is because of Planetary Protection constraints, which are implemented to protect Mars from terrestrial biological contamination. At the same time, plans are being drafted to send humans to Mars during the 2030 decade, both from international space agencies and the private sector. We argue here that these two parallel strategies for the exploration of Mars (i.e., delaying any efforts for the biological reconnaissance of Mars during the next two or three decades and then directly sending human missions to the planet) demand reconsideration because once an astronaut sets foot on Mars, Planetary Protection policies as we conceive them today will no longer be valid as human arrival will inevitably increase the introduction of terrestrial and organic contaminants and that could jeopardize the identification of indigenous martian life. In this study, we advocate for reassessment over the relationships between robotic searches, paying increased attention to proactive astrobiological investigation and sampling of areas more likely to host indigenous life, and fundamentally doing this in advance of manned missions. Key Words: Contamination-Earth Mars-Planetary Protection-Search for life (biosignatures). Astrobiology 17, 962-970.
Collapse
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, New York
| | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Dirk Schulze-Makuch
- Center of Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany
- SETI Institute, Mountain View, California
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Québec, Canada
| |
Collapse
|
22
|
Mora M, Mahnert A, Koskinen K, Pausan MR, Oberauner-Wappis L, Krause R, Perras AK, Gorkiewicz G, Berg G, Moissl-Eichinger C. Microorganisms in Confined Habitats: Microbial Monitoring and Control of Intensive Care Units, Operating Rooms, Cleanrooms and the International Space Station. Front Microbiol 2016; 7:1573. [PMID: 27790191 PMCID: PMC5061736 DOI: 10.3389/fmicb.2016.01573] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/20/2016] [Indexed: 01/15/2023] Open
Abstract
Indoor environments, where people spend most of their time, are characterized by a specific microbial community, the indoor microbiome. Most indoor environments are connected to the natural environment by high ventilation, but some habitats are more confined: intensive care units, operating rooms, cleanrooms and the international space station (ISS) are extraordinary living and working areas for humans, with a limited exchange with the environment. The purposes for confinement are different: a patient has to be protected from infections (intensive care unit, operating room), product quality has to be assured (cleanrooms), or confinement is necessary due to extreme, health-threatening outer conditions, as on the ISS. The ISS represents the most secluded man-made habitat, constantly inhabited by humans since November 2000 – and, inevitably, also by microorganisms. All of these man-made confined habitats need to be microbiologically monitored and controlled, by e.g., microbial cleaning and disinfection. However, these measures apply constant selective pressures, which support microbes with resistance capacities against antibiotics or chemical and physical stresses and thus facilitate the rise of survival specialists and multi-resistant strains. In this article, we summarize the available data on the microbiome of aforementioned confined habitats. By comparing the different operating, maintenance and monitoring procedures as well as microbial communities therein, we emphasize the importance to properly understand the effects of confinement on the microbial diversity, the possible risks represented by some of these microorganisms and by the evolution of (antibiotic) resistances in such environments – and the need to reassess the current hygiene standards.
Collapse
Affiliation(s)
- Maximilian Mora
- Department for Internal Medicine, Medical University of Graz, Graz Austria
| | - Alexander Mahnert
- Institute of Environmental Biotechnology, Graz University of Technology, Graz Austria
| | - Kaisa Koskinen
- Department for Internal Medicine, Medical University of Graz, GrazAustria; BioTechMed-Graz, GrazAustria
| | - Manuela R Pausan
- Department for Internal Medicine, Medical University of Graz, Graz Austria
| | | | - Robert Krause
- Department for Internal Medicine, Medical University of Graz, Graz Austria
| | - Alexandra K Perras
- Department for Internal Medicine, Medical University of Graz, GrazAustria; Department for Microbiology, University of Regensburg, RegensburgGermany
| | - Gregor Gorkiewicz
- BioTechMed-Graz, GrazAustria; Department of Pathology, Medical University of Graz, GrazAustria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz Austria
| | | |
Collapse
|
23
|
Nagler K, Julius C, Moeller R. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments. ASTROBIOLOGY 2016; 16:500-512. [PMID: 27304705 DOI: 10.1089/ast.2015.1419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
UNLABELLED In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies. KEY WORDS Bacillus species-Spores-Germination-High salinity-Salt stress-NaCl-Inhibition. Astrobiology 16, 500-512.
Collapse
Affiliation(s)
- Katja Nagler
- German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine , Radiation Biology Department, Space Microbiology Research Group, Cologne, Germany
| | - Christina Julius
- German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine , Radiation Biology Department, Space Microbiology Research Group, Cologne, Germany
| | - Ralf Moeller
- German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine , Radiation Biology Department, Space Microbiology Research Group, Cologne, Germany
| |
Collapse
|
24
|
Nagler K, Moeller R. Systematic investigation of germination responses of Bacillus subtilis spores in different high-salinity environments. FEMS Microbiol Ecol 2015; 91:fiv023. [PMID: 25764471 DOI: 10.1093/femsec/fiv023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2015] [Indexed: 11/14/2022] Open
Abstract
High-salinity environments play an increasingly important role in ecology regarding soil salinization due to human-induced processes, but also need to be considered in terms of natural soil desiccation and extreme habitats. It has been shown previously that spore germination of the ubiquitous soil bacterium Bacillus subtilis is detrimentally affected by the presence of high NaCl concentrations, but the underlying mechanisms and effects of other salts remained obscure. To address these two points, we performed a systematic analysis with 32 different salts using spectrophotometric and microscopic methods. It could be shown that inhibitory strength varies considerably among different salts. Although osmotic effects seem to play an important role, ionic composition and concentration (especially of the anion) as well as chemical properties seem to be decisive for the extent of germination inhibition. At the current state of knowledge, fluxes of ions, Ca(2+)-DPA and water are likely affected by all salts, whereas the exact inhibition mechanism of each salt might further depend on the respective properties of the involved ions. Hence, the observed inhibition likely is a result of several phenomena interacting with each other. Altogether this study highlights the complex impact of ionic environments on the life cycle of spore formers.
Collapse
Affiliation(s)
- Katja Nagler
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, Linder Höhe, D-51147 Cologne (Köln), Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, Linder Höhe, D-51147 Cologne (Köln), Germany
| |
Collapse
|
25
|
Thiel CS, Tauber S, Schütte A, Schmitz B, Nuesse H, Moeller R, Ullrich O. Functional activity of plasmid DNA after entry into the atmosphere of earth investigated by a new biomarker stability assay for ballistic spaceflight experiments. PLoS One 2014; 9:e112979. [PMID: 25426925 PMCID: PMC4245111 DOI: 10.1371/journal.pone.0112979] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/17/2014] [Indexed: 11/18/2022] Open
Abstract
Sounding rockets represent an excellent platform for testing the influence of space conditions during the passage of Earth's atmosphere and re-entry on biological, physical and chemical experiments for astrobiological purposes. We designed a robust functionality biomarker assay to analyze the biological effects of suborbital spaceflights prevailing during ballistic rocket flights. During the TEXUS-49 rocket mission in March 2011, artificial plasmid DNA carrying a fluorescent marker (enhanced green fluorescent protein: EGFP) and an antibiotic resistance cassette (kanamycin/neomycin) was attached on different positions of rocket exterior; (i) circular every 90 degree on the outer surface concentrical of the payload, (ii) in the grooves of screw heads located in between the surface application sites, and (iii) on the surface of the bottom side of the payload. Temperature measurements showed two major peaks at 118 and 130°C during the 780 seconds lasting flight on the inside of the recovery module, while outer gas temperatures of more than 1000°C were estimated on the sample application locations. Directly after retrieval and return transport of the payload, the plasmid DNA samples were recovered. Subsequent analyses showed that DNA could be recovered from all application sites with a maximum of 53% in the grooves of the screw heads. We could further show that up to 35% of DNA retained its full biological function, i.e., mediating antibiotic resistance in bacteria and fluorescent marker expression in eukariotic cells. These experiments show that our plasmid DNA biomarker assay is suitable to characterize the environmental conditions affecting DNA during an atmospheric transit and the re-entry and constitute the first report of the stability of DNA during hypervelocity atmospheric transit indicating that sounding rocket flights can be used to model the high-speed atmospheric entry of organics-laden artificial meteorites.
Collapse
Affiliation(s)
- Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- * E-mail: (CT); (OU)
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | | | - Harald Nuesse
- Institute of Medical Physics and Biophysics, University of Muenster, Münster, Germany
| | - Ralf Moeller
- German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, Linder Hoehe, Cologne (Köln), Germany
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- * E-mail: (CT); (OU)
| |
Collapse
|
26
|
Abstract
ABSTRACT
The family
Bacillaceae
constitutes a phenotypically diverse and globally ubiquitous assemblage of bacteria. Investigation into how evolution has shaped, and continues to shape, this family has relied on several widely ranging approaches from classical taxonomy, ecological field studies, and evolution in soil microcosms to genomic-scale phylogenetics, laboratory, and directed evolution experiments. One unifying characteristic of the
Bacillaceae
, the endospore, poses unique challenges to answering questions regarding both the calculation of evolutionary rates and claims of extreme longevity in ancient environmental samples.
Collapse
|
27
|
Tan IS, Ramamurthi KS. Spore formation in Bacillus subtilis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:212-25. [PMID: 24983526 PMCID: PMC4078662 DOI: 10.1111/1758-2229.12130] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 05/04/2023]
Abstract
Although prokaryotes ordinarily undergo binary fission to produce two identical daughter cells, some are able to undergo alternative developmental pathways that produce daughter cells of distinct cell morphology and fate. One such example is a developmental programme called sporulation in the bacterium Bacillus subtilis, which occurs under conditions of environmental stress. Sporulation has long been used as a model system to help elucidate basic processes of developmental biology including transcription regulation, intercellular signalling, membrane remodelling, protein localization and cell fate determination. This review highlights some of the recent work that has been done to further understand prokaryotic cell differentiation during sporulation and its potential applications.
Collapse
Affiliation(s)
- Irene S Tan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA; NIH-Johns Hopkins University Graduate Partnerships Program, Baltimore, MD, 21218, USA
| | | |
Collapse
|
28
|
Kawaguchi Y, Sugino T, Tabata M, Okudaira K, Imai E, Yano H, Hasegawa S, Hashimoto H, Yabuta H, Kobayashi K, Kawai H, Mita H, Yokobori SI, Yamagishi A. Fluorescence imaging of microbe-containing particles shot from a two-stage Light-gas gun into an aerogel. ORIGINS LIFE EVOL B 2014; 44:43-60. [PMID: 25086872 DOI: 10.1007/s11084-014-9361-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/26/2014] [Indexed: 10/24/2022]
Abstract
We have proposed an experiment (the Tanpopo mission) to capture microbes on the Japan Experimental Module of the International Space Station. An ultra low-density silica aerogel will be exposed to space for more than 1 year. After retrieving the aerogel, particle tracks and particles found in it will be visualized by fluorescence microscopy after staining it with a DNA-specific fluorescence dye. In preparation for this study, we simulated particle trapping in an aerogel so that methods could be developed to visualize the particles and their tracks. During the Tanpopo mission, particles that have an orbital velocity of ~8 km/s are expected to collide with the aerogel. To simulate these collisions, we shot Deinococcus radiodurans-containing Lucentite particles into the aerogel from a two-stage light-gas gun (acceleration 4.2 km/s). The shapes of the captured particles, and their tracks and entrance holes were recorded with a microscope/camera system for further analysis. The size distribution of the captured particles was smaller than the original distribution, suggesting that the particles had fragmented. We were able to distinguish between microbial DNA and inorganic compounds after staining the aerogel with the DNA-specific fluorescence dye SYBR green I as the fluorescence of the stained DNA and the autofluorescence of the inorganic particles decay at different rates. The developed methods are suitable to determine if microbes exist at the International Space Station altitude.
Collapse
Affiliation(s)
- Yuko Kawaguchi
- Department of Applied Life Sciences School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Smith DJ. Microbes in the upper atmosphere and unique opportunities for astrobiology research. ASTROBIOLOGY 2013; 13:981-90. [PMID: 24106911 DOI: 10.1089/ast.2013.1074] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.
Collapse
Affiliation(s)
- David J Smith
- NASA John F. Kennedy Space Center , Surface Systems Office, Kennedy Space Center, Florida
| |
Collapse
|
30
|
Stapelmann K, Fiebrandt M, Raguse M, Awakowicz P, Reitz G, Moeller R. Utilization of low-pressure plasma to inactivate bacterial spores on stainless steel screws. ASTROBIOLOGY 2013; 13:597-606. [PMID: 23768085 PMCID: PMC3713438 DOI: 10.1089/ast.2012.0949] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/12/2013] [Indexed: 05/22/2023]
Abstract
A special focus area of planetary protection is the monitoring, control, and reduction of microbial contaminations that are detected on spacecraft components and hardware during and after assembly. In this study, wild-type spores of Bacillus pumilus SAFR-032 (a persistent spacecraft assembly facility isolate) and the laboratory model organism B. subtilis 168 were used to study the effects of low-pressure plasma, with hydrogen alone and in combination with oxygen and evaporated hydrogen peroxide as a process gas, on spore survival, which was determined by a colony formation assay. Spores of B. pumilus SAFR-032 and B. subtilis 168 were deposited with an aseptic technique onto the surface of stainless steel screws to simulate a spore-contaminated spacecraft hardware component, and were subsequently exposed to different plasmas and hydrogen peroxide conditions in a very high frequency capacitively coupled plasma reactor (VHF-CCP) to reduce the spore burden. Spores of the spacecraft isolate B. pumilus SAFR-032 were significantly more resistant to plasma treatment than spores of B. subtilis 168. The use of low-pressure plasma with an additional treatment of evaporated hydrogen peroxide also led to an enhanced spore inactivation that surpassed either single treatment when applied alone, which indicates the potential application of this method as a fast and suitable way to reduce spore-contaminated spacecraft hardware components for planetary protection purposes.
Collapse
Affiliation(s)
- Katharina Stapelmann
- Ruhr University Bochum (RUB), Institute for Electrical Engineering and Plasma Technology (AEPT), Bochum, Germany
| | - Marcel Fiebrandt
- Ruhr University Bochum (RUB), Institute for Electrical Engineering and Plasma Technology (AEPT), Bochum, Germany
| | - Marina Raguse
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne (Köln), Germany
| | - Peter Awakowicz
- Ruhr University Bochum (RUB), Institute for Electrical Engineering and Plasma Technology (AEPT), Bochum, Germany
| | - Günther Reitz
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne (Köln), Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne (Köln), Germany
| |
Collapse
|
31
|
Moeller R, Reitz G, Li Z, Klein S, Nicholson WL. Multifactorial resistance of Bacillus subtilis spores to high-energy proton radiation: role of spore structural components and the homologous recombination and non-homologous end joining DNA repair pathways. ASTROBIOLOGY 2012; 12:1069-77. [PMID: 23088412 PMCID: PMC3491616 DOI: 10.1089/ast.2012.0890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior.
Collapse
Affiliation(s)
- Ralf Moeller
- German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, Radiation Biology Department, Cologne, Germany.
| | | | | | | | | |
Collapse
|
32
|
Protective role of spore structural components in determining Bacillus subtilis spore resistance to simulated mars surface conditions. Appl Environ Microbiol 2012; 78:8849-53. [PMID: 23064347 DOI: 10.1128/aem.02527-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spores of wild-type and mutant Bacillus subtilis strains lacking various structural components were exposed to simulated Martian atmospheric and UV irradiation conditions. Spore survival and mutagenesis were strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid as key protectants.
Collapse
|
33
|
Siefert JL, Souza V, Eguiarte L, Olmedo-Alvarez G. Microbial stowaways: inimitable survivors or hopeless pioneers? ASTROBIOLOGY 2012; 12:710-715. [PMID: 22920519 DOI: 10.1089/ast.2012.0833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The resiliency of prokaryotic life has provided colonization across the globe and in the recesses of Earth's most extreme environments. Horizontal gene transfer provides access to a global bank of genetic resources that creates diversity and allows real-time adaptive potential to the clonal prokaryotic world. We assess the likelihood that this Earth-based strategy could provide survival and adaptive potential, in the case of microbial stowaways off Earth.
Collapse
Affiliation(s)
- Janet L Siefert
- Department of Statistics, Rice University, Houston, Texas, USA.
| | | | | | | |
Collapse
|
34
|
Moeller R, Reitz G, Nicholson The Protect Team WL, Horneck G. Mutagenesis in bacterial spores exposed to space and simulated martian conditions: data from the EXPOSE-E spaceflight experiment PROTECT. ASTROBIOLOGY 2012; 12:457-468. [PMID: 22680692 DOI: 10.1089/ast.2011.0739] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As part of the PROTECT experiment of the EXPOSE-E mission on board the International Space Station (ISS), the mutagenic efficiency of space was studied in spores of Bacillus subtilis 168. After 1.5 years' exposure to selected parameters of outer space or simulated martian conditions, the rates of induced mutations to rifampicin resistance (Rif(R)) and sporulation deficiency (Spo(-)) were quantified. In all flight samples, both mutations, Rif(R) and Spo(-), were induced and their rates increased by several orders of magnitude. Extraterrestrial solar UV radiation (>110 nm) as well as simulated martian UV radiation (>200 nm) led to the most pronounced increase (up to nearly 4 orders of magnitude); however, mutations were also induced in flight samples shielded from insolation, which were exposed to the same conditions except solar irradiation. Nucleotide sequencing located the Rif(R) mutations in the rpoB gene encoding the β-subunit of RNA polymerase. Mutations isolated from flight and parallel mission ground reference (MGR) samples were exclusively localized to Cluster I. The 21 Rif(R) mutations isolated from the flight experiment showed all a C to T transition and were all localized to one hotspot: H482Y. In mutants isolated from the MGR, the spectrum was wider with predicted amino acid changes at residues Q469K/L/R, H482D/P/R/Y, and S487L. The data show the unique mutagenic power of space and martian surface conditions as a consequence of DNA injuries induced by solar UV radiation and space vacuum or the low pressure of Mars.
Collapse
Affiliation(s)
- Ralf Moeller
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR) , Cologne, Germany.
| | | | | | | |
Collapse
|
35
|
Horneck G, Moeller R, Cadet J, Douki T, Mancinelli RL, Nicholson WL, Panitz C, Rabbow E, Rettberg P, Spry A, Stackebrandt E, Vaishampayan P, Venkateswaran KJ. Resistance of bacterial endospores to outer space for planetary protection purposes--experiment PROTECT of the EXPOSE-E mission. ASTROBIOLOGY 2012; 12:445-56. [PMID: 22680691 PMCID: PMC3371261 DOI: 10.1089/ast.2011.0737] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the "trip to Mars" spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the "stay on Mars" spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the "trip to Mars" or "stay on Mars" spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations.
Collapse
Affiliation(s)
- Gerda Horneck
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nicholson WL, Moeller R, Horneck G. Transcriptomic responses of germinating Bacillus subtilis spores exposed to 1.5 years of space and simulated martian conditions on the EXPOSE-E experiment PROTECT. ASTROBIOLOGY 2012; 12:469-86. [PMID: 22680693 DOI: 10.1089/ast.2011.0748] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Because of their ubiquity and resistance to spacecraft decontamination, bacterial spores are considered likely potential forward contaminants on robotic missions to Mars. Thus, it is important to understand their global responses to long-term exposure to space or martian environments. As part of the PROTECT experiment, spores of B. subtilis 168 were exposed to real space conditions and to simulated martian conditions for 559 days in low-Earth orbit mounted on the EXPOSE-E exposure platform outside the European Columbus module on the International Space Station. Upon return, spores were germinated, total RNA extracted, fluorescently labeled, and used to probe a custom Bacillus subtilis microarray to identify genes preferentially activated or repressed relative to ground control spores. Increased transcript levels were detected for a number of stress-related regulons responding to DNA damage (SOS response, SPβ prophage induction), protein damage (CtsR/Clp system), oxidative stress (PerR regulon), and cell envelope stress (SigV regulon). Spores exposed to space demonstrated a much broader and more severe stress response than spores exposed to simulated martian conditions. The results are discussed in the context of planetary protection for a hypothetical journey of potential forward contaminant spores from Earth to Mars and their subsequent residence on Mars.
Collapse
Affiliation(s)
- Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Space Life Sciences Laboratory, Kennedy Space Center, FL 32899, USA.
| | | | | |
Collapse
|
37
|
Fajardo-Cavazos P, Waters SM, Schuerger AC, George S, Marois JJ, Nicholson WL. Evolution of Bacillus subtilis to enhanced growth at low pressure: up-regulated transcription of des-desKR, encoding the fatty acid desaturase system. ASTROBIOLOGY 2012; 12:258-270. [PMID: 22416764 DOI: 10.1089/ast.2011.0728] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The atmospheric pressure on Mars ranges from 1-10 mbar, about 1% of Earth pressure (∼1013 mbar). Low pressure is a growth-inhibitory factor for terrestrial microorganisms on Mars, and a putative low-pressure barrier for growth of Earth bacteria of ∼25 mbar has been postulated. In a previous communication, we described the isolation of a strain of Bacillus subtilis that had evolved enhanced growth ability at the near-inhibitory low pressure of 50 mbar. To explore mechanisms that enabled growth of the low-pressure-adapted strain, numerous genes differentially transcribed between the ancestor strain WN624 and low-pressure-evolved strain WN1106 at 50 mbar were identified by microarray analysis. Among these was a cluster of three candidate genes (des, desK, and desR), whose mRNA levels in WN1106 were higher than the ancestor on the microarrays. Up-regulation of these genes was confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. The des, desK, and desR genes encode the Des membrane fatty acid (FA) desaturase, the DesK sensor kinase, and the DesR response regulator, respectively, which function to maintain membrane fluidity in acute response to temperature downshift. Pressure downshift caused an up-regulation of des mRNA levels only in WN1106, but expression of a des-lacZ transcriptional fusion was unaffected, which suggests that des regulation was different in response to temperature versus pressure downshift. Competition experiments showed that inactivation of the des gene caused a slight, but statistically significant, loss of fitness of strain WN1106 at 50 mbar. Further, analysis of membrane FA composition of cells grown at 1013 versus 50 mbar revealed a decrease in the ratio of unsaturated to saturated FAs but an increase in the ratio of anteiso- to iso-FAs. The present study represents a first step toward identification of molecular mechanisms by which B. subtilis could sense and respond to the novel environmental stress of low pressure.
Collapse
Affiliation(s)
- Patricia Fajardo-Cavazos
- Department of Microbiology and Cell Science, University of Florida, Kennedy Space Center, 32899, USA
| | | | | | | | | | | |
Collapse
|
38
|
Nicholson WL, Ricco AJ, Agasid E, Beasley C, Diaz-Aguado M, Ehrenfreund P, Friedericks C, Ghassemieh S, Henschke M, Hines JW, Kitts C, Luzzi E, Ly D, Mai N, Mancinelli R, McIntyre M, Minelli G, Neumann M, Parra M, Piccini M, Rasay RM, Ricks R, Santos O, Schooley A, Squires D, Timucin L, Yost B, Young A. The O/OREOS mission: first science data from the Space Environment Survivability of Living Organisms (SESLO) payload. ASTROBIOLOGY 2011; 11:951-8. [PMID: 22091486 DOI: 10.1089/ast.2011.0714] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report the first telemetered spaceflight science results from the orbiting Space Environment Survivability of Living Organisms (SESLO) experiment, executed by one of the two 10 cm cube-format payloads aboard the 5.5 kg Organism/Organic Exposure to Orbital Stresses (O/OREOS) free-flying nanosatellite. The O/OREOS spacecraft was launched successfully to a 72° inclination, 650 km Earth orbit on 19 November 2010. This satellite provides access to the radiation environment of space in relatively weak regions of Earth's protective magnetosphere as it passes close to the north and south magnetic poles; the total dose rate is about 15 times that in the orbit of the International Space Station. The SESLO experiment measures the long-term survival, germination, and growth responses, including metabolic activity, of Bacillus subtilis spores exposed to the microgravity, ionizing radiation, and heavy-ion bombardment of its high-inclination orbit. Six microwells containing wild-type (168) and six more containing radiation-sensitive mutant (WN1087) strains of dried B. subtilis spores were rehydrated with nutrient medium after 14 days in space to allow the spores to germinate and grow. Similarly, the same distribution of organisms in a different set of microwells was rehydrated with nutrient medium after 97 days in space. The nutrient medium included the redox dye Alamar blue, which changes color in response to cellular metabolic activity. Three-color transmitted intensity measurements of all microwells were telemetered to Earth within days of each of the 48 h growth experiments. We report here on the evaluation and interpretation of these spaceflight data in comparison to delayed-synchronous laboratory ground control experiments.
Collapse
|
39
|
Litchman E. Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol Lett 2010; 13:1560-72. [DOI: 10.1111/j.1461-0248.2010.01544.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Exploring the low-pressure growth limit: evolution of Bacillus subtilis in the laboratory to enhanced growth at 5 kilopascals. Appl Environ Microbiol 2010; 76:7559-65. [PMID: 20889789 DOI: 10.1128/aem.01126-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth of Bacillus subtilis cells, normally adapted at Earth-normal atmospheric pressure (∼101.3 kPa), was progressively inhibited by lowering of pressure in liquid LB medium until growth essentially ceased at 2.5 kPa. Growth inhibition was immediately reversible upon return to 101.3 kPa, albeit at a slower rate. A population of B. subtilis cells was cultivated at the near-inhibitory pressure of 5 kPa for 1,000 generations, where a stepwise increase in growth was observed, as measured by the turbidity of 24-h cultures. An isolate from the 1,000-generation population was obtained that showed an increase in fitness at 5 kPa when compared to the ancestral strain or a strain obtained from a parallel population that evolved for 1,000 generations at 101.3 kPa. The results from this preliminary study have implications for understanding the ability of terrestrial microbes to grow in low-pressure environments such as Mars.
Collapse
|
41
|
Fajardo-Cavazos P, Schuerger AC, Nicholson WL. Exposure of DNA and Bacillus subtilis spores to simulated martian environments: use of quantitative PCR (qPCR) to measure inactivation rates of DNA to function as a template molecule. ASTROBIOLOGY 2010; 10:403-411. [PMID: 20528195 DOI: 10.1089/ast.2009.0408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Several NASA and ESA missions are planned for the next decade to investigate the possibility of present or past life on Mars. Evidence of extraterrestrial life will likely rely on the detection of biomolecules, which highlights the importance of preventing forward contamination not only with viable microorganisms but also with biomolecules that could compromise the validity of life-detection experiments. The designation of DNA as a high-priority biosignature makes it necessary to evaluate its persistence in extraterrestrial environments and the effects of those conditions on its biological activity. We exposed DNA deposited on spacecraft-qualified aluminum coupons to a simulated martian environment for periods ranging from 1 minute to 1 hour and measured its ability to function as a template for replication in a quantitative polymerase chain reaction (qPCR) assay. We found that inactivation of naked DNA or DNA extracted from exposed spores of Bacillus subtilis followed a multiphasic UV-dose response and that a fraction of DNA molecules retained functionality after 60 minutes of exposure to simulated full-spectrum solar radiation in martian atmospheric conditions. The results indicate that forward-contaminant DNA could persist for considerable periods of time at the martian surface.
Collapse
Affiliation(s)
- Patricia Fajardo-Cavazos
- Department of Microbiology and Cell Science, University of Florida , Kennedy Space Center, Florida 32899, USA.
| | | | | |
Collapse
|