1
|
Rao A, Ni Z, Suresh D, Mohanty C, Wang AR, Lee DL, Nickel KP, Varambally SRJ, Lambert PF, Kendziorski C, Iyer G. Targeted inhibition of BET proteins in HPV-16 associated head and neck squamous cell carcinoma reveals heterogeneous transcription response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560587. [PMID: 37873389 PMCID: PMC10592929 DOI: 10.1101/2023.10.02.560587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Integrated human papillomavirus (HPV-16) associated head and neck squamous cell carcinoma (HNSCC) tumors have worse survival outcomes compared to episomal HPV-16 HNSCC tumors. Therefore, there is a need to differentiate treatment for HPV-16 integrated HNSCC from other viral forms. We analyzed TCGA data and found that HPV+ HNSCC expressed higher transcript levels of the bromodomain and extra terminal domain (BET) family of transcriptional coregulators. However, the mechanism of BET protein-mediated transcription of viral-cellular genes in the integrated viral-HNSCC genomes needs to be better understood. We show that BET inhibition downregulates E6 significantly independent of the viral transcription factor, E2, and there was overall heterogeneity in the downregulation of viral transcription in response to the effects of BET inhibition across HPV-associated cell lines. Chemical BET inhibition was phenocopied with the knockdown of BRD4 and mirrored downregulation of viral E6 and E7 expression. Strikingly, there was heterogeneity in the reactivation of p53 levels despite E6 downregulation, while E7 downregulation did not alter Rb levels significantly. We identified that BET inhibition directly downregulated c-Myc and E2F expression and induced CDKN1A expression. Overall, our studies show that BET inhibition provokes a G1-cell cycle arrest with apoptotic activity and suggests that BET inhibition regulates both viral and cellular gene expression in HPV-associated HNSCC.
Collapse
Affiliation(s)
- Aakarsha Rao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Zijian Ni
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dhruthi Suresh
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Albert R. Wang
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Denis L Lee
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705, WI, USA
| | - Kwangok P. Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sooryanarayana Randall J. Varambally
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gopal Iyer
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
2
|
Chowdhary S, Deka R, Panda K, Kumar R, Solomon AD, Das J, Kanoujiya S, Gupta AK, Sinha S, Ruokolainen J, Kesari KK, Gupta PK. Recent Updates on Viral Oncogenesis: Available Preventive and Therapeutic Entities. Mol Pharm 2023; 20:3698-3740. [PMID: 37486263 PMCID: PMC10410670 DOI: 10.1021/acs.molpharmaceut.2c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Human viral oncogenesis is a complex phenomenon and a major contributor to the global cancer burden. Several recent findings revealed cellular and molecular pathways that promote the development and initiation of malignancy when viruses cause an infection. Even, antiviral treatment has become an approach to eliminate the viral infections and prevent the activation of oncogenesis. Therefore, for a better understanding, the molecular pathogenesis of various oncogenic viruses like, hepatitis virus, human immunodeficiency viral (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), and Epstein-Barr virus (EBV), could be explored, especially, to expand many potent antivirals that may escalate the apoptosis of infected malignant cells while sparing normal and healthy ones. Moreover, contemporary therapies, such as engineered antibodies antiviral agents targeting signaling pathways and cell biomarkers, could inhibit viral oncogenesis. This review elaborates the recent advancements in both natural and synthetic antivirals to control viral oncogenesis. The study also highlights the challenges and future perspectives of using antivirals in viral oncogenesis.
Collapse
Affiliation(s)
- Shivam Chowdhary
- Department
of Industrial Microbiology, Sam Higginbottom
University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh India
| | - Rahul Deka
- Department
of Bioengineering and Biotechnology, Birla
Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kingshuk Panda
- Department
of Applied Microbiology, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Rohit Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Abhishikt David Solomon
- Department
of Molecular & Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Jimli Das
- Centre
for
Biotechnology and Bioinformatics, Dibrugarh
University, Assam 786004, India
| | - Supriya Kanoujiya
- School
of
Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashish Kumar Gupta
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi 110029, India
| | - Somya Sinha
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
- Division
of Research and Development, Lovely Professional
University, Phagwara 144411, Punjab, India
| | - Piyush Kumar Gupta
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
- Faculty
of Health and Life Sciences, INTI International
University, Nilai 71800, Malaysia
| |
Collapse
|
3
|
Evolution of SLiM-mediated hijack functions in intrinsically disordered viral proteins. Essays Biochem 2022; 66:945-958. [DOI: 10.1042/ebc20220059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2022]
Abstract
Abstract
Viruses and their hosts are involved in an ‘arms race’ where they continually evolve mechanisms to overcome each other. It has long been proposed that intrinsic disorder provides a substrate for the evolution of viral hijack functions and that short linear motifs (SLiMs) are important players in this process. Here, we review evidence in support of this tenet from two model systems: the papillomavirus E7 protein and the adenovirus E1A protein. Phylogenetic reconstructions reveal that SLiMs appear and disappear multiple times across evolution, providing evidence of convergent evolution within individual viral phylogenies. Multiple functionally related SLiMs show strong coevolution signals that persist across long distances in the primary sequence and occur in unrelated viral proteins. Moreover, changes in SLiMs are associated with changes in phenotypic traits such as host range and tropism. Tracking viral evolutionary events reveals that host switch events are associated with the loss of several SLiMs, suggesting that SLiMs are under functional selection and that changes in SLiMs support viral adaptation. Fine-tuning of viral SLiM sequences can improve affinity, allowing them to outcompete host counterparts. However, viral SLiMs are not always competitive by themselves, and tethering of two suboptimal SLiMs by a disordered linker may instead enable viral hijack. Coevolution between the SLiMs and the linker indicates that the evolution of disordered regions may be more constrained than previously thought. In summary, experimental and computational studies support a role for SLiMs and intrinsic disorder in viral hijack functions and in viral adaptive evolution.
Collapse
|
4
|
Alexandraki A, Strati K. Decitabine Treatment Induces a Viral Mimicry Response in Cervical Cancer Cells and Further Sensitizes Cells to Chemotherapy. Int J Mol Sci 2022; 23:ijms232214042. [PMID: 36430521 PMCID: PMC9692951 DOI: 10.3390/ijms232214042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To investigate the anti-cancer, chemosensitizing and/or immunomodulating effects of decitabine (DAC) to be used as a potential therapeutic agent for the treatment of cervical cancer (CC). METHODS Cervical cancer cell lines were treated with low doses of DAC treatment used as a single agent or in combination with chemotherapy. End-point in vitro assays were developed as indicators of the anti-cancer and/or immunomodulating effects of DAC treatment in CC cells. These assays include cell viability, cell cycle analysis, apoptosis, induction of a viral-mimicry response pathway, expression of MHC-class I and PD-L1 and chemosensitivity. RESULTS High and low doses of DAC treatment induced reduction in cell viability in HeLa (HPV18+), CaSki (HPV16+) and C33A (HPV-) cells. Specifically, a time-dependent reduction in cell viability of HeLa and CaSki cells was observed accompanied by robust cell cycle arrest at G2/M phase and alterations in the cell cycle distribution. Decrease in cell viability was also observed in a non-transformed immortal keratinocyte (HaCat) suggesting a non-cancer specific target effect. DAC treatment also triggered a viral mimicry response through long-term induction of cytoplasmic double-stranded RNA (dsRNA) and activation of downstream IFN-related genes in both HPV+ and HPV- cells. In addition, DAC treatment increased the number of CC cells expressing MHC-class I and PD-L1. Furthermore, DAC significantly increased the proportion of early and late apoptotic CC cells quantified using FACS. Our combination treatments showed that low dose DAC treatment sensitizes cells to chemotherapy. CONCLUSIONS Low doses of DAC treatment promotes robust induction of a viral mimicry response, immunomodulating and chemosensitizing effects in CC, indicating its promising therapeutic role in CC in vitro.
Collapse
|
5
|
Sanchez-Fernandez C, Bolatti EM, Culasso ACA, Chouhy D, Kowalewski MM, Stella EJ, Schurr TG, Rinas MA, Liotta DJ, Campos RH, Giri AA, Badano I. Identification and evolutionary analysis of papillomavirus sequences in New World monkeys (genera Sapajus and Alouatta) from Argentina. Arch Virol 2022; 167:1257-1268. [PMID: 35353206 DOI: 10.1007/s00705-022-05420-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/03/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE In this study, we investigated the occurrence of papillomavirus (PV) infection in non-human primates (NHPs) in northeastern Argentina. We also explored their evolutionary history and evaluated the co-speciation hypothesis in the context of primate evolution. METHODS We obtained DNA samples from 57 individuals belonging to wild and captive populations of Alouatta caraya, Sapajus nigritus, and Sapajus cay. We assessed PV infection by PCR amplification with the CUT primer system and sequencing of 337 bp (112 amino acids) of the L1 gene. The viral sequences were analyzed by phylogenetic and Bayesian coalescence methods to estimate the time to the most common recent ancestor (tMRCA) using BEAST, v1.4.8 software. We evaluated viral/host tree congruence with TreeMap v3.0. RESULTS We identified two novel putative PV sequences of the genus Gammapapillomavirus in Sapajus spp. and Alouatta caraya (SPV1 and AcPV1, respectively). The tMRCA of SPV1 was estimated to be 11,941,682 years before present (ybp), and that of AcPV1 was 46,638,071 ybp, both before the coalescence times of their hosts (6.4 million years ago [MYA] and 6.8 MYA, respectively). Based on the comparison of primate and viral phylogenies, we found that the PV tree was no more congruent with the host tree than a random tree would be (P > 0.05), thus allowing us to reject the model of virus-host coevolution. CONCLUSION This study presents the first evidence of PV infection in platyrrhine species from Argentina, expands the range of described hosts for these viruses, and suggests new scenarios for their origin and dispersal.
Collapse
Affiliation(s)
- C Sanchez-Fernandez
- Laboratorio de Biología Molecular Aplicada, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - E M Bolatti
- Laboratorio de Virología Humana, Instituto de Biología Molecular y Celular de Rosario, CONICET/UNR, Rosario, Argentina.,Área Virología, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - A C A Culasso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - D Chouhy
- Laboratorio de Virología Humana, Instituto de Biología Molecular y Celular de Rosario, CONICET/UNR, Rosario, Argentina.,Área Virología, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - M M Kowalewski
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Estación Biológica Corrientes (EBCo-MACN-CONICET), Corrientes, Argentina
| | - E J Stella
- Laboratorio de Virología Humana, Instituto de Biología Molecular y Celular de Rosario, CONICET/UNR, Rosario, Argentina
| | - T G Schurr
- Laboratory of Molecular Anthropology, Department of Anthropology, University of Pennsylvania, Philadelphia, 19104, USA
| | - M A Rinas
- Ministerio de Ecología y Recursos Naturales Renovables, Posadas, Misiones, Argentina
| | - D J Liotta
- Laboratorio de Biología Molecular Aplicada, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Argentina.,Instituto Nacional de Medicina Tropical, ANLIS, Pto. Iguazú, Misiones, Argentina
| | - R H Campos
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A A Giri
- Laboratorio de Virología Humana, Instituto de Biología Molecular y Celular de Rosario, CONICET/UNR, Rosario, Argentina.,Área Virología, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - I Badano
- Laboratorio de Biología Molecular Aplicada, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Doorbar J, Zheng K, Aiyenuro A, Yin W, Walker CM, Chen Y, Egawa N, Griffin HM. Principles of epithelial homeostasis control during persistent human papillomavirus infection and its deregulation at the cervical transformation zone. Curr Opin Virol 2021; 51:96-105. [PMID: 34628359 DOI: 10.1016/j.coviro.2021.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022]
Abstract
Human papillomaviruses establish a reservoir of infection in the epithelial basal layer. To do this they limit their gene expression to avoid immune detection and modulate epithelial homeostasis pathways to inhibit the timing of basal cell delamination and differentiation to favour persistence. For low-risk Alpha papillomaviruses, which cause benign self-limiting disease in immunocompetent individuals, it appears that cell competition at the lesion edge restricts expansion. These lesions may be considered as self-regulating homeostatic structures, with epithelial cells of the hair follicles and sweat glands, which are proposed targets of the Beta and Mu papillomaviruses, showing similar restrictions to their expansion across the epithelium as a whole. In the absence of immune control, which facilitates deregulated viral gene expression, such lesions can expand, leading to problematic papillomatosis in afflicted individuals. By contrast, he high-risk Alpha HPV types can undergo deregulated viral gene expression in immunocompetent hosts at a number of body sites, including the cervical transformation zone (TZ) where they can drive the formation of neoplasia. Homeostasis at the TZ is poorly understood, but involves two adjacent epithelial cell population, one of which has the potential to stratify and to produce a multilayed squamous epithelium. This process of metaplasia involves a specialised cell type known as the reserve cell, which has for several decades been considered as the cell of origin of cervical cancer. It is becoming clear that during evolution, HPV gene products have acquired functions directly linked to their requirements to modify the normal processes of epithelial homestasis at their various sites of infection. These protein functions are beginning to provide new insight into homeostasis regulation at different body sites, and are likely to be central to our understanding of HPV epithelial tropisms.
Collapse
Affiliation(s)
- John Doorbar
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom.
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Ademola Aiyenuro
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Wen Yin
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Caroline M Walker
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Yuwen Chen
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Heather M Griffin
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| |
Collapse
|
7
|
Beneteau T, Selinger C, Sofonea MT, Alizon S. Episome partitioning and symmetric cell divisions: Quantifying the role of random events in the persistence of HPV infections. PLoS Comput Biol 2021; 17:e1009352. [PMID: 34491986 PMCID: PMC8448377 DOI: 10.1371/journal.pcbi.1009352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/17/2021] [Accepted: 08/16/2021] [Indexed: 12/04/2022] Open
Abstract
Human Papillomaviruses (HPV) are one of the most prevalent sexually transmitted infections (STI) and the most oncogenic viruses known to humans. The vast majority of HPV infections clear in less than 3 years, but the underlying mechanisms, especially the involvement of the immune response, are still poorly known. Building on earlier work stressing the importance of randomness in the type of cell divisions in the clearance of HPV infection, we develop a stochastic mathematical model of HPV dynamics that combines the previous aspect with an explicit description of the intracellular level. We show that the random partitioning of virus episomes upon stem cell division and the occurrence of symmetric divisions dramatically affect viral persistence. These results call for more detailed within-host studies to better understand the relative importance of stochasticity and immunity in HPV infection clearance. Every year, infections by Human Papillomaviruses (HPV) are responsible for a large share of infectious cancers. The prevalence of HPVs is very high, which makes it a major public health issue. Fortunately, most HPV infections (80 to 90%) are cleared naturally within three years. Among the few that persist into chronic infections, the majority also naturally regress. Hence for a given HPV infection, the risk of progression towards cancerous status is low. The immune response is often invoked to explain HPV clearance in non-persisting infections, but many uncertainties remain. Besides immunity, randomness was also suggested to play an important role. Here, we examine how random events occurring during the life cycle of the virus could alter the persistence of the virus inside the host. We develop a mechanistic model that explicitly follows the dynamic of viral copies inside host cells, as well as the dynamics of the epithelium. In our model, infection extinction occurs when all viral copies end up in differentiated cells and migrate towards the surface. This can happen upon cell division during the random allocation of the episomes (i.e. independent circular DNA copies of the viral genome) or when a stem cell divides symmetrically to generate two differentiated cells. We find that the combination of these random events drastically affects infection persistence. More generally, the importance of random fluctuations could match that of immunity and calls for further studies at the within-host and the epidemiological level.
Collapse
Affiliation(s)
- Thomas Beneteau
- Laboratoire MIVEGEC, Université de Montpellier, Centre national de la recherche scientifique, Institut de recherche pour le développement, Montpellier, France
- * E-mail:
| | - Christian Selinger
- Laboratoire MIVEGEC, Université de Montpellier, Centre national de la recherche scientifique, Institut de recherche pour le développement, Montpellier, France
| | - Mircea T. Sofonea
- Laboratoire MIVEGEC, Université de Montpellier, Centre national de la recherche scientifique, Institut de recherche pour le développement, Montpellier, France
| | - Samuel Alizon
- Laboratoire MIVEGEC, Université de Montpellier, Centre national de la recherche scientifique, Institut de recherche pour le développement, Montpellier, France
| |
Collapse
|
8
|
Saied AA, Metwally AA, Mohamed HMA, Haridy MAM. The contribution of bovines to human health against viral infections. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46999-47023. [PMID: 34272669 PMCID: PMC8284698 DOI: 10.1007/s11356-021-14941-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/12/2021] [Indexed: 04/12/2023]
Abstract
In the last 40 years, novel viruses have evolved at a much faster pace than other pathogens. Viral diseases pose a significant threat to public health around the world. Bovines have a longstanding history of significant contributions to human nutrition, agricultural, industrial purposes, medical research, drug and vaccine development, and livelihood. The life cycle, genomic structures, viral proteins, and pathophysiology of bovine viruses studied in vitro paved the way for understanding the human counterparts. Calf model has been used for testing vaccines against RSV, papillomavirus vaccines and anti-HCV agents were principally developed after using the BPV and BVDV model, respectively. Some bovine viruses-based vaccines (BPIV-3 and bovine rotaviruses) were successfully developed, clinically tried, and commercially produced. Cows, immunized with HIV envelope glycoprotein, produced effective broadly neutralizing antibodies in their serum and colostrum against HIV. Here, we have summarized a few examples of human viral infections for which the use of bovines has contributed to the acquisition of new knowledge to improve human health against viral infections covering the convergence between some human and bovine viruses and using bovines as disease models. Additionally, the production of vaccines and drugs, bovine-based products were covered, and the precautions in dealing with bovines and bovine-based materials.
Collapse
Affiliation(s)
- AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt.
- Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt.
| | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt
| | - Hams M A Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohie A M Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
9
|
Kayyal M, Bolhassani A, Noormohammadi Z, Sadeghizadeh M. In Silico Design and Immunological Studies of Two Novel Multiepitope DNA-Based Vaccine Candidates Against High-Risk Human Papillomaviruses. Mol Biotechnol 2021; 63:1192-1222. [PMID: 34308516 DOI: 10.1007/s12033-021-00374-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Human papillomaviruses (HPV)-16 and 18 are the most prevalent types associated with cervical cancer. HPV L1 and L2 capsid proteins and E7 oncoprotein play crucial roles in HPV-related diseases. Hence, these proteins were proposed as target antigens for preventive and therapeutic vaccines. In this study, two multiepitope DNA-based HPV vaccine candidates were designed using in silico analysis including the immunogenic and conserved epitopes of HPV16/18 L1, L2 and E7 proteins (the L1-L2-E7 fusion DNA), and of heat shock protein 70 (HSP70) linked to the L1-L2-E7 DNA construct (the HSP70-L1-L2-E7 fusion DNA). Next, the expression of the L1-L2-E7 and HSP70-L1-L2-E7 multiepitope DNA constructs was evaluated in a mammalian cell line. Finally, immunological responses and antitumor effects of the DNA constructs were investigated in C57BL/6 mice. Our data indicated high expression rates of the designed multiepitope L1-L2-E7 DNA (~ 56.16%) and HSP70-L1-L2-E7 DNA (~ 80.45%) constructs in vitro. The linkage of HSP70 epitopes to the L1-L2-E7 DNA construct significantly increased the gene expression. Moreover, the HSP70-L1-L2-E7 DNA construct could significantly increase immune responses toward Th1 response and CTL activity, and induce stronger antitumor effects in mouse model. Thus, the designed HSP70-L1-L2-E7 DNA construct represents promising results for development of HPV DNA vaccine candidates.
Collapse
Affiliation(s)
- Matin Kayyal
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Identification of a Novel Papillomavirus Type (MfoiPV1) Associated with Acrochordon in a Stone Marten ( Martes foina). Pathogens 2021; 10:pathogens10050539. [PMID: 33946165 PMCID: PMC8146507 DOI: 10.3390/pathogens10050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
Papillomaviruses (PVs) are an extremely large group of viruses that cause skin and mucosal infections in humans and various domestic and wild animals. Nevertheless, there is limited knowledge about PVs in wildlife hosts, including mustelid species. This study describes a case in stone marten (Martes foina) with a clinical manifestation of skin tumor, which is rather atypical for infections with PVs. The result of the papillomavirus PCR performed on the skin tumor sample was positive, and the complete PV genome was determined in the studied sample using next-generation sequencing technology. The analysis of the PV genome revealed infection of the stone marten with a putative new PV type belonging to the Dyonupapillomavirus genus. The proposed new stone marten PV type was named MfoiPV1.
Collapse
|
11
|
Zhang Q, Chen Y, Hu SQ, Pu YM, Zhang K, Wang YX. A HPV16-related prognostic indicator for head and neck squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1492. [PMID: 33313237 PMCID: PMC7729314 DOI: 10.21037/atm-20-6338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The human papillomavirus (HPV) is emerging as an important risk factor in head and neck squamous cell carcinoma (HNSCC) patients. This has been observed particularly in the case of HPV16. The HPV16+ HNSCC subtype has distinct pathological, clinical, molecular, and prognostic characteristics. This study aimed to identify potential microRNAs (miRNAs) and their roles in HPV16+ HNSCC progression. Method miRNA, mRNA and the clinical data of 519 HNSCC and 44 HNSCC-negative samples were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed miRNAs (DEMs) in HPV16-related HNSCC tissues with prognostic value were selected. DEM levels were assessed based on clinicopathological parameters and overall survival (OS). Target genes were also predicted and functional analysis based on Gene Set Enrichment Analysis (GSEA) were then performed. Results In HPV16+ HNSCC tissues, miR-99a-3p and miR-4746-5p were significantly upregulated. In contrast, miR-411-5p was shown to be downregulated. miR-99a-3phighmiR-411-5plowmiR-4746-5phigh expression could estimate improved OS and low frequent perineural invasion (PNI). Predicted target genes were enriched in cell growth, neuroepithelial cell differentiation, MAPK and FoxO signaling pathways. Epithelial mesenchymal transition (EMT) gene set and invasion related genes were downregulated in miR-99a-3phighmiR-411-5plowmiR-4746-5phigh HNSCC patients. Conclusion miR-99a-3p, miR-411-5p and miR-4746-5p might participate in HPV16+ HNSCC progression through EMT related pathways and affect prognosis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yongfeng Chen
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shi-Qi Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu-Mei Pu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kai Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yu-Xin Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Kmetec J, Kuhar U, Fajfar AG, Vengušt DŽ, Vengušt G. A Comprehensive Study of Cutaneous Fibropapillomatosis in Free-Ranging Roe Deer ( Capreolus capreolus) and Red Deer ( Cervus elaphus): from Clinical Manifestations to Whole-Genome Sequencing of Papillomaviruses. Viruses 2020; 12:v12091001. [PMID: 32911735 PMCID: PMC7551761 DOI: 10.3390/v12091001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Papillomaviruses (PVs) are an extremely large group of viruses that cause skin and mucosa infections in humans and various animals. In roe deer and red deer, most PVs belong to the Deltapapillomavirus genus and cause neoplastic changes that are generally described as fibropapillomas. Despite the wide distribution of roe and red deer throughout Europe and beyond, the data in the scientific literature regarding the widespread distribution of PVs and the genetic variability of PV genomes in these species are rather scarce. This study describes cutaneous fibropapillomatosis cases in roe and red deer with clinical manifestations that are typical of infections with PVs. In all cases, the presence of PV DNA was confirmed using PCR, followed by Sanger sequencing of the partial L1 gene. The complete PV genomes were determined in all the investigated samples using next-generation sequencing technology, revealing infections of roe deer with the CcaPV1-type and red deer with the CePV1v-type variant. A comparison of the complete CcaPV1-type and CePV1v-type variant genome sequences reported here with already available complete genome sequences in GenBank revealed their great genetic stability across time and space.
Collapse
Affiliation(s)
- Jernej Kmetec
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.K.); (D.Ž.V.)
| | - Urška Kuhar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (U.K.); (A.G.F.)
| | - Aleksandra Grilc Fajfar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (U.K.); (A.G.F.)
| | - Diana Žele Vengušt
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.K.); (D.Ž.V.)
| | - Gorazd Vengušt
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.K.); (D.Ž.V.)
- Correspondence: ; Tel.: +386-1-4779-196
| |
Collapse
|
13
|
Human papillomavirus genotyping as a tool for cervical cancer prevention: from commercially available human papillomavirus DNA test to next-generation sequencing. Future Sci OA 2020; 6:FSO603. [PMID: 33235804 PMCID: PMC7668120 DOI: 10.2144/fsoa-2019-0159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The biological importance of human papillomavirus (HPV) in the field of medicine – related to cervical carcinogenesis – has been extensively reported in the last decades. For the first time, a direct correlation between cause and effect to explain a cancer development was completely achieved in medical research. Consequently, the Nobel Prize was awarded to HZ Hausen in 2008 for his efforts to understand the effects of persistent infection of oncogenic types of HPV and malignancy transformation. The aim of the present review was to summarize the principal elements of HPV characteristics and their importance in oncology. It is established that HPV is the main etiologic agent for the development of cervical cancer. With the evolution of diagnosis and molecular biology, many tools have become essential for an early diagnosis and thereby, considerably reducing mortality. Molecular biology continues to advance and provide new perspectives with the use of reverse-transcription PCR in automation and genotyping through next-generation sequencing. This article aims to provide an overview of what is currently used in HPV diagnostic and research and future perspectives with the help of technologies such as next-generation sequencing for screening and vaccination.
Collapse
|
14
|
Fox-Lewis A, Allum C, Vokes D, Roberts S. Human papillomavirus and surgical smoke: a systematic review. Occup Environ Med 2020; 77:809-817. [DOI: 10.1136/oemed-2019-106333] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023]
Abstract
ObjectiveTo evaluate what is currently known about the risk to surgeons and other operating theatre (OT) staff of human papillomavirus (HPV) transmission and HPV-related disease following surgical smoke exposure.MethodsA systematic literature search of Embase and Ovid-MEDLINE was undertaken for primary studies relevant to the presence of HPV in surgical smoke, contamination of OT staff with HPV after performing or attending smoke-generating surgical procedures, and the presence of HPV or HPV-related disease in OT staff following occupational surgical smoke exposure. Additional articles were identified by searching the reference lists of relevant published papers.ResultsTwenty-one relevant articles were identified. These demonstrate that surgical smoke from the treatment of HPV-related lesions can contain HPV DNA, and that this can contaminate the upper airways of OT staff. Whether this corresponds to infectious virus is not known. Increased prevalence of HPV infection or HPV-related disease in OT staff following occupational exposure to surgical smoke has not been convincingly shown.ConclusionsWhile HPV transmission to OT staff from surgical smoke remains unproven, it would be safest to treat surgical smoke as potentially infectious. Necessary precautions should be taken when performing smoke-generating procedures, consisting of: (1) local exhaust ventilation, (2) general room ventilation and (3) full personal protective equipment including a fit tested particulate respirator of at least N95 grade. There is currently insufficient evidence to recommend HPV vaccination for OT staff or to state that the above precautions, when used properly, would not be effective at preventing HPV transmission from surgical smoke.
Collapse
|
15
|
Recombination Between High-Risk Human Papillomaviruses and Non-Human Primate Papillomaviruses: Evidence of Ancient Host Switching Among Alphapapillomaviruses. J Mol Evol 2020; 88:453-462. [PMID: 32385625 PMCID: PMC7222169 DOI: 10.1007/s00239-020-09946-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
We use all the currently known 405 Papillomavirus (PV) sequences, 343 curated PV sequences from both humans and animals from the PAVE data base, to analyse the recombination dynamics of these viruses at the whole genome levels. After showing some evidence of human and non-human primate PV recombination, we report a comprehensive recombination analysis of all currently known 82 Alphapapillomaviruses (Alpha-PVs). We carried out an exploratory study and found novel recombination events between High-Risk HPV Types and Macaca fascicularis PV1 (MfPV1), Macaca Fuscata PV2 (MfuPV2) and Pan Paniscus PV1 (PpPV1) Papillomaviruses. This is the first evidence of interactions between PVs from different hosts and hence postulates the likelihood of ancient host switching among Alpha-PVs. Notwithstanding these results should be interpreted with caution because the major and minor parents indicated by RDP4 program are simply the sequences in the alignment that most closely resemble the actual parents. We found statistically significant differences between the phylogenies of the PV sequences with recombination regions and PV sequences without recombination regions using the Shimodaira–Hasegawa phylogenetic incongruence testing. We show that not more than 76MYA Alpha-PVs were in the same biological niche, a pre-requisite for recombination, and as the hosts evolved and diversified, the viruses adapted to specific host niches which eventually led to coevolution with specific hosts before speciation of primate species. Thus providing evidence that in ancient times no earlier than the Cretaceous period of the Mesozoic age, Alpha-PVs recombined and switched hosts, but whether this host switching is occurring currently is unknown. However, a clearer picture of the PVs evolutionary landscape can only be achieved with the incremental discovery of PV sequences, especially from the animal kingdom.
Collapse
|
16
|
Bolatti EM, Zorec TM, Montani ME, Hošnjak L, Chouhy D, Viarengo G, Casal PE, Barquez RM, Poljak M, Giri AA. A Preliminary Study of the Virome of the South American Free-Tailed Bats ( Tadarida brasiliensis) and Identification of Two Novel Mammalian Viruses. Viruses 2020; 12:v12040422. [PMID: 32283670 PMCID: PMC7232368 DOI: 10.3390/v12040422] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Bats provide important ecosystem services as pollinators, seed dispersers, and/or insect controllers, but they have also been found harboring different viruses with zoonotic potential. Virome studies in bats distributed in Asia, Africa, Europe, and North America have increased dramatically over the past decade, whereas information on viruses infecting South American species is scarce. We explored the virome of Tadarida brasiliensis, an insectivorous New World bat species inhabiting a maternity colony in Rosario (Argentina), by a metagenomic approach. The analysis of five pooled oral/anal swab samples indicated the presence of 43 different taxonomic viral families infecting a wide range of hosts. By conventional nucleic acid detection techniques and/or bioinformatics approaches, the genomes of two novel viruses were completely covered clustering into the Papillomaviridae (Tadarida brasiliensis papillomavirus type 1, TbraPV1) and Genomoviridae (Tadarida brasiliensis gemykibivirus 1, TbGkyV1) families. TbraPV1 is the first papillomavirus type identified in this host and the prototype of a novel genus. TbGkyV1 is the first genomovirus reported in New World bats and constitutes a new species within the genus Gemykibivirus. Our findings extend the knowledge about oral/anal viromes of a South American bat species and contribute to understand the evolution and genetic diversity of the novel characterized viruses.
Collapse
Affiliation(s)
- Elisa M. Bolatti
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (D.C.); (G.V.)
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
| | - Tomaž M. Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; (T.M.Z.); (L.H.)
| | - María E. Montani
- Museo Provincial de Ciencias Naturales “Dr. Ángel Gallardo”, San Lorenzo 1949, Rosario 2000, Argentina;
- Programa de Conservación de los Murciélagos de Argentina, Miguel Lillo 251, San Miguel de Tucumán 4000, Argentina;
- Programa de Investigaciones de Biodiversidad Argentina, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán 4000, Argentina
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; (T.M.Z.); (L.H.)
| | - Diego Chouhy
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (D.C.); (G.V.)
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
| | - Gastón Viarengo
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (D.C.); (G.V.)
| | - Pablo E. Casal
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
| | - Rubén M. Barquez
- Programa de Conservación de los Murciélagos de Argentina, Miguel Lillo 251, San Miguel de Tucumán 4000, Argentina;
- Programa de Investigaciones de Biodiversidad Argentina, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán 4000, Argentina
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia; (T.M.Z.); (L.H.)
- Correspondence: (M.P.); (A.A.G.); Tel.: +386-1-543-7454 (M.P.); +54-341-435-0661 (ext. 116) (A.A.G.); Fax: +54-341-439-0465 (A.A.G.)
| | - Adriana A. Giri
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, Rosario 2000, Argentina; (E.M.B.); (D.C.); (G.V.)
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina;
- Correspondence: (M.P.); (A.A.G.); Tel.: +386-1-543-7454 (M.P.); +54-341-435-0661 (ext. 116) (A.A.G.); Fax: +54-341-439-0465 (A.A.G.)
| |
Collapse
|
17
|
Sammarco ML, Tamburro M, Pulliero A, Izzotti A, Ripabelli G. Human Papillomavirus Infections, Cervical Cancer and MicroRNAs: An Overview and Implications for Public Health. Microrna 2020; 9:174-186. [PMID: 31738147 PMCID: PMC7366004 DOI: 10.2174/2211536608666191026115045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/21/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Human Papillomavirus (HPV) is among the most common sexually transmitted infections in both females and males across the world that generally do not cause symptoms and are characterized by high rates of clearance. Persistent infections due at least to twelve well-recognized High-Risk (HR) or oncogenic genotypes, although less frequent, can occur, leading to diseases and malignancies, principally cervical cancer. Three vaccination strategies are currently available for preventing certain HR HPVs-associated diseases, infections due to HPV6 and HPV11 low-risk types, as well as for providing cross-protection against non-vaccine genotypes. Nevertheless, the limited vaccine coverage hampers reducing the burden of HPV-related diseases globally. For HR HPV types, especially HPV16 and HPV18, the E6 and E7 oncoproteins are needed for cancer development. As for other tumors, even in cervical cancer, non-coding microRNAs (miRNAs) are involved in posttranscriptional regulation, resulting in aberrant expression profiles. In this study, we provide a summary of the epidemiological background for HPV occurrence and available immunization programs. In addition, we present an overview of the most relevant evidence of miRNAs deregulation in cervical cancer, underlining that targeting these biomolecules could lead to wide translational perspectives, allowing better diagnosis, prognosis and therapeutics, and with valuable applications in the field of prevention. The literature on this topic is rapidly growing, but advanced investigations are required to achieve more consistent findings on the up-regulated and down-regulated miRNAs in cervical carcinogenesis. Because the expression of miRNAs is heterogeneously reported, it may be valuable to assess factors and risks related to individual susceptibility.
Collapse
Affiliation(s)
| | | | | | | | - Giancarlo Ripabelli
- Address correspondence to this author at the Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy; Tel: +39 0874 404961/743; Fax: +39 0874 404778; E-mail:
| |
Collapse
|
18
|
Zamyatnin AA. Thematic Issue: Immuno-Oncology and Immunotherapy. BIOCHEMISTRY (MOSCOW) 2019; 84:693-694. [PMID: 31509721 DOI: 10.1134/s0006297919070010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, the use of immunotherapeutic approaches for creating new efficient therapeutic agents for cancer treatment is considered as one of the most promising areas in oncology. Despite significant advances in immuno-oncology during the recent years, some unresolved problems remain. The articles included in this thematic issue highlight the topical aspects of cancer immunotherapy by presenting different viewpoints of scientists, physicians, and drug developers.
Collapse
Affiliation(s)
- A A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
19
|
|
20
|
Chen Z, Long T, Wong PY, Ho WCS, Burk RD, Chan PKS. Non-human Primate Papillomaviruses Share Similar Evolutionary Histories and Niche Adaptation as the Human Counterparts. Front Microbiol 2019; 10:2093. [PMID: 31552003 PMCID: PMC6747053 DOI: 10.3389/fmicb.2019.02093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
Given high genetic diversity of papillomaviruses (PV) and complex scenario of virus-host interaction, the genetic basis underlying the mechanisms of HPV carcinogenicity is not well understood. In an effort to evaluate the origin and evolution of PV pathogenicity, we collected paired oral, perianal, and genital swabs from a wild macaque population. Of the 117 surveyed macaques, 88 (75.2%) were positive for PV DNA in one or more sites, mostly common from genital swabs, followed by oral and perianal sites. All putative macaque PV types phylogenetically clustered into the genera Alpha-, Beta-, and Gammapapillomavirus, with a strong phylogeny-tropism association as observed in HPVs. Using a Bayesian Markov Chain Monte Carlo framework, we demonstrated ancient intra-host divergence of primate PVs in which multiple ancestors had split and adapted to specific host ecosystems at least 41 million years ago, prior to the speciation events of primate host species. Following subsequent divergence and niche adaptation, distinct but phylogenetically related PV types were transmitted to similar host ecosystems by closely related host animals when host speciation occurred, which may explain in part the origin of carcinogenicity of HPV type 16 (HPV16) and Macaca fascicularis PV type 3 (MfPV3) that evolved from a most recent common ancestor containing the determinants for cervicovaginal colonization and cervical cancer. The findings identifying evolutionary and biological relatedness between human and non-human primate PVs lay a genetic foundation for research on parasite-host interactions and carcinogenic outcomes, which will prove useful in further study of viral pathogenesis and host specificity.
Collapse
Affiliation(s)
- Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China.,Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Teng Long
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Po Yee Wong
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wendy C S Ho
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Robert D Burk
- Department of Pediatrics, Microbiology and Immunology, Epidemiology and Population Health, and Obstetrics, Gynecology and Woman's Health, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Paul K S Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China.,Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Gheit T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front Oncol 2019; 9:355. [PMID: 31134154 PMCID: PMC6517478 DOI: 10.3389/fonc.2019.00355] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Papillomaviridae is a family of small non-enveloped icosahedral viruses with double-stranded circular DNA. More than 200 different human papillomaviruses (HPVs) have been listed so far. Based on epidemiological data, a subgroup of alphapapillomaviruses (alpha HPVs) was referred to as high-risk (HR) HPV types. HR HPVs are the etiological agents of anogenital cancer and a subset of head and neck cancers. The cutaneous HPV types, mainly from beta and gamma genera, are widely present on the surface of the skin in the general population. However, there is growing evidence of an etiological role of betapapillomaviruses (beta HPVs) in non-melanoma skin cancer (NMSC), together with ultraviolet (UV) radiation. Studies performed on mucosal HR HPV types, such as 16 and 18, showed that both oncoproteins E6 and E7 play a key role in cervical cancer by altering pathways involved in the host immune response to establish a persistent infection and by promoting cellular transformation. Continuous expression of E6 and E7 of mucosal HR HPV types is essential to initiate and to maintain the cellular transformation process, whereas expression of E6 and E7 of cutaneous HPV types is not required for the maintenance of the skin cancer phenotype. Beta HPV types appear to play a role in the initiation of skin carcinogenesis, by exacerbating the accumulation of UV radiation-induced DNA breaks and somatic mutations (the hit-and-run mechanism), and they would therefore act as facilitators rather than direct actors in NMSC. In this review, the natural history of HPV infection and the transforming properties of various HPV genera will be described, with a particular focus on describing the state of knowledge about the role of cutaneous HPV types in NMSC.
Collapse
Affiliation(s)
- Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
22
|
de Oliveira CM, Fregnani JHTG, Villa LL. HPV Vaccine: Updates and Highlights. Acta Cytol 2019; 63:159-168. [PMID: 30870844 DOI: 10.1159/000497617] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/08/2023]
Abstract
HPV is the most common sexually transmitted biological agent and is the cause of many conditions in men and women, including precancer lesions and cancer. Three prophylactic HPV vaccines targeting high-risk HPV types are available in many countries worldwide: 2-, 4- and 9-valent vaccines. All the 3 vaccines use recombinant DNA technology and are prepared from the purified L1 protein that self-assembles to form HPV type-specific empty shells. This non-systematic review aims to summarize the HPV epidemiology and the vaccine development to review the landmark trials of HPV vaccine, to present to most remarkable results from clinical trials and the real world, and to stress the challenges and the barriers for HPV vaccine implementation.
Collapse
Affiliation(s)
| | - José Humberto T G Fregnani
- HPV Research Group, Barretos Cancer Hospital, Barretos (SP), Brazil
- A.C.Camargo Cancer Center, São Paulo (SP), Brazil
| | - Luisa Lina Villa
- Faculdade de Medicina, Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo (SP), Brazil
| |
Collapse
|
23
|
de Oliveira CM. Adaptation of Alpha-Papillomavirus over Millennia. Acta Cytol 2018; 63:97-99. [PMID: 30544125 DOI: 10.1159/000492658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 11/19/2022]
Abstract
Papillomaviruses (PVs) are a group of small DNA viruses that, with around 350 million years of evolution, acquired the capacity of infecting a broad range of vertebrates, including humans. To date, more than 300 PV types have been isolated. Viruses that have a long common evolutionary history with their host typically cause unapparent infections. However, in some Alpha-PV infections, lesions become apparent and may cause benign proliferative disorders or even malignant proliferative lesions of the cervix, vulva, vagina, anus, penis, and oropharynx. The incongruence observed between the topology of the phylogenetic tree of Alpha-PVs and that of their hosts suggests that virus-host codivergence is not the only evolutionary force that has driven the progression of PVs. The integration of the precursors of E5, E6, and E7 on the genome of the ancestral Alpha-PV was important and made the colonization of new niches and the emergence of carcinogenic types possible.
Collapse
|
24
|
Rojas-Cruz A, Reyes-Bermúdez A. Phylogenetic analysis of Alphapapillomavirus based on L1, E6 and E7 regions suggests that carcinogenicity and tissue tropism have appeared multiple times during viral evolution. INFECTION GENETICS AND EVOLUTION 2018; 67:210-221. [PMID: 30458293 DOI: 10.1016/j.meegid.2018.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/18/2022]
Abstract
Members of the Alphapapillomavirus genus are causative agents for cervix cancer and benign lesions in humans. These viruses are classified according to sequence similarities in their L1 region. Yet, viral carcinogenicity has been associated with variations in the proteins encoded by the E6 and E7 genes. In order to relate evolutionary history with origin of carcinogenicity, we performed phylogenetic reconstructions using both nucleotide and predicted amino acid sequences of the L1, E6 and E7 genes. Whilst phylogenetic analysis of L1 reconstructed genus evolutionary history, phylogenies based on E6 and E7 proteins support the idea that mutations at amino acids S/Tx [V/L] (E6) and LxCxE (E7) might be responsible for carcinogenic potential. These findings indicate that virulence within Alphapapillomavirus have appeared multiple times during evolution. Our results reveal that oncogenic potential is not a monophyletic clade-specific adaptation but might be the result of positive selection on random mutations occurring on proteins involved in host infection during viral diversification.
Collapse
Affiliation(s)
- Alexis Rojas-Cruz
- Departamento de Biología, Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180002, Colombia
| | - Alejandro Reyes-Bermúdez
- Departamento de Biología, Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180002, Colombia.
| |
Collapse
|
25
|
Bolatti EM, Hošnjak L, Chouhy D, Re-Louhau MF, Casal PE, Bottai H, Kocjan BJ, Stella EJ, Gorosito MD, Sanchez A, Bussy RF, Poljak M, Giri AA. High prevalence of Gammapapillomaviruses (Gamma-PVs) in pre-malignant cutaneous lesions of immunocompetent individuals using a new broad-spectrum primer system, and identification of HPV210, a novel Gamma-PV type. Virology 2018; 525:182-191. [PMID: 30292127 DOI: 10.1016/j.virol.2018.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
Abstract
Genus Gammapapillomavirus (Gamma-PV) is the most diverse and largest clade within the Papillomaviridae family. A novel set of degenerate primers targeting the E1 gene was designed and further used in combination with the well-known CUT PCR assay to assess HPV prevalence and genus distribution in a variety of cutaneous samples from 448 immunocompetent individuals. General HPV, Gamma-PV and mixed infections prevalence were significantly higher in actinic keratosis with respect to benign and malignant neoplasms, respectively (p = 0.0047, p = 0.0172, p = 0.00001). Gamma-PVs were significantly more common in actinic keratosis biopsies than Beta- and Alpha-PVs (p = 0.002). The full-length genome sequence of a novel putative Gamma-PV type was amplified by 'hanging droplet' long-range PCR and cloned. The novel virus, designated HPV210, clustered within species Gamma-12. This study provides an additional tool enabling detection of HPV infections in skin and adds new insights about possible early roles of Gamma-PVs in the development of cutaneous malignant lesions.
Collapse
Affiliation(s)
- Elisa M Bolatti
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina; Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Diego Chouhy
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina; Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Maria F Re-Louhau
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina
| | - Pablo E Casal
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Hebe Bottai
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Boštjan J Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Emma J Stella
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina
| | - Mario D Gorosito
- División de Anatomía Patológica, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | - Adriana Sanchez
- División de Dermatología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | - Ramón Fernandez Bussy
- División de Dermatología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | - Adriana A Giri
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina; Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
26
|
Araldi RP, Sant’Ana TA, Módolo DG, de Melo TC, Spadacci-Morena DD, de Cassia Stocco R, Cerutti JM, de Souza EB. The human papillomavirus (HPV)-related cancer biology: An overview. Biomed Pharmacother 2018; 106:1537-1556. [DOI: 10.1016/j.biopha.2018.06.149] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
|
27
|
Truchado DA, Williams RA, Benítez L. Natural history of avian papillomaviruses. Virus Res 2018; 252:58-67. [DOI: 10.1016/j.virusres.2018.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/12/2018] [Accepted: 05/13/2018] [Indexed: 11/27/2022]
|
28
|
Mengual-Chuliá B, Wibbelt G, Gottschling M, Bravo IG. Two Novel, Distantly Related Papillomaviruses Isolated from Healthy Skin of the Timor Deer (Rusa timorensis). GENOME ANNOUNCEMENTS 2018; 6:e00505-18. [PMID: 29903818 PMCID: PMC6003732 DOI: 10.1128/genomea.00505-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 11/20/2022]
Abstract
We report the complete genome sequences of Rusa timorensis papillomavirus 1 (RtimPV1) and Rusa timorensis papillomavirus 2 (RtimPV2), isolated from hair follicles of asymptomatic skin from the same Timor deer specimen. RtimPV1 and RtimPV2 are evolutionarily only distantly related. RtimPV1 lacks a canonical E2-binding site, and RtimPV2 does not carry an E6 gene.
Collapse
Affiliation(s)
| | - Gudrun Wibbelt
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Marc Gottschling
- Department Biologie I, Systematic Botany and Mycology, GeoBio-Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ignacio G Bravo
- Centre National de la Recherche Scientifique (CNRS) Laboratory MIVEGEC (UMR CNRS IRD UM), Montpellier, France
| |
Collapse
|
29
|
Mengual-Chuliá B, Wittstatt U, Olias P, Bravo IG. Genome Sequences of Two Novel Papillomaviruses Isolated from Healthy Skin of Pudu puda and Cervus elaphus Deer. GENOME ANNOUNCEMENTS 2018; 6:e00298-18. [PMID: 29724829 PMCID: PMC5940963 DOI: 10.1128/genomea.00298-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 01/13/2023]
Abstract
We report the complete genome sequences of Pudu puda papillomavirus1 (PpudPV1) and Cervus elaphus papillomavirus2 (CelaPV2), isolated from healthy skin hair follicles of a Southern pudu and a red deer, respectively. PpudPV1 is basal to the DyokappaPVs, whereas CelaPV2 is basal to the XiPVs (Beta-XiPV crown group).
Collapse
Affiliation(s)
| | - Ulrich Wittstatt
- Department of Animal Diseases, Zoonoses and Infection Diagnostic, Berlin-Brandenburg State Laboratory, Berlin, Germany
| | - Philipp Olias
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Ignacio G Bravo
- Centre National de la Recherche Scientifique (CNRS), Laboratory MIVEGEC (UMR CNRS IRD UM), Montpellier, France
| |
Collapse
|
30
|
Characteristics of human papillomaviruses infection in men with genital warts in Shanghai. Oncotarget 2018; 7:53903-53910. [PMID: 27270315 PMCID: PMC5288230 DOI: 10.18632/oncotarget.9708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/16/2016] [Indexed: 12/05/2022] Open
Abstract
Human papillomaviruses (HPV) infected men causes continued transmission of HPV to women. The prevalence of 15 high-risk HPV strains (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66 and 68) and 6 low-risk HPV strains (HPV6, 11, 42, 43, 44 and CP8304) were evaluated in 935 males with genital warts. Of the 447 (447/935, 47.8%) HPV DNA positive subjects, 230 (24.6%), 356 (38.1%) and 139 (14.9%) were infected by high-risk, low-risk and both high and low-risk HPV respectively. Of the 356 low-risk HPV infected subjects, 333(93.5%) were infected by single HPV strain; 203 (57.0%), 147 (41.3%), 24 (6.7%) and 5 (1.4%) were infected with HPV genotype 6, 11, CP8304 and 44 respectively; population with age ≤ 20 showed the highest infection rate. High-risk HPV are also highly prevalent in our patients, genotype 16, 58, 51, 39, 52 and 53 are the top five prevalent genotypes with infection rates of 27.4%, 18.7%, 14.3%, 13.9%, 12.6% and 12.6% respectively; only 68.3% subjects were sole infection; subjects with 41 ≤ age ≤ 50 showed the highest infection rate. Both high and low-risk HPV are highly prevalent in men with genital warts, its impact on women HPV control and prevention need further evaluation.
Collapse
|
31
|
Marx B, Miller-Lazic D, Doorbar J, Majewski S, Hofmann K, Hufbauer M, Akgül B. HPV8-E6 Interferes with Syntenin-2 Expression through Deregulation of Differentiation, Methylation and Phosphatidylinositide-Kinase Dependent Mechanisms. Front Microbiol 2017; 8:1724. [PMID: 28970821 PMCID: PMC5609557 DOI: 10.3389/fmicb.2017.01724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/24/2017] [Indexed: 12/01/2022] Open
Abstract
The E6 oncoproteins of high-risk human papillomaviruses (HPV) of genus alpha contain a short peptide sequence at the carboxy-terminus, the PDZ binding domain, with which they interact with the corresponding PDZ domain of cellular proteins. Interestingly, E6 proteins from papillomaviruses of genus beta (betaPV) do not encode a comparable PDZ binding domain. Irrespective of this fact, we previously showed that the E6 protein of HPV8 (betaPV type) could circumvent this deficit by targeting the PDZ protein Syntenin-2 through transcriptional repression (Lazic et al., 2012). Despite its high binding affinity to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), very little is known about Syntenin-2. This study aimed to extend the knowledge on Syntenin-2 and how its expression is controlled. We now identified that Syntenin-2 is expressed at high levels in differentiating and in lower amounts in keratinocytes cultured in serum-free media containing low calcium concentration. HPV8-E6 led to a further reduction of Syntenin-2 expression only in cells cultured in low calcium. In the skin of patients suffering from Epidermodysplasia verruciformis, who are predisposed to betaPV infection, Syntenin-2 was expressed in differentiating keratinocytes of non-lesional skin, but was absent in virus positive squamous tumors. Using 5-Aza-2′-deoxycytidine, which causes DNA demethylation, Syntenin-2 transcription was profoundly activated and fully restored in the absence and presence of HPV8-E6, implicating that E6 mediated repression of Syntenin-2 transcription is due to promoter hypermethylation. Since Syntenin-2 binds to PI(4,5)P2, we further tested whether the PI(4,5)P2 metabolic pathway might govern Syntenin-2 expression. PI(4,5)P2 is generated by the activity of phosphatidylinositol-4-phosphate-5-kinase type I (PIP5KI) or phosphatidylinositol-5-phosphate-4-kinase type II (PIP4KII) isoforms α, β and γ. Phosphatidylinositide kinases have recently been identified as regulators of gene transcription. Surprisingly, transfection of siRNAs directed against PIP5KI and PIP4KII resulted in higher Syntenin-2 expression with the highest effect mediated by siPIP5KIα. HPV8-E6 was able to counteract siPIP4KIIα, siPIP4KIIβ and siPIP5KIγ mediated Syntenin-2 re-expression but not siPIP5KIα. Finally, we identified Syntenin-2 as a key factor regulating PIP5KIα expression. Collectively, our data demonstrates that Syntenin-2 is regulated through multiple mechanisms and that downregulation of Syntenin-2 expression may contribute to E6 mediated dedifferentiation of infected skin cells.
Collapse
Affiliation(s)
- Benjamin Marx
- Institute of Virology, University of CologneCologne, Germany
| | | | - John Doorbar
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Slawomir Majewski
- Department of Dermatology and Venereology, Medical University of WarsawWarsaw, Poland
| | - Kay Hofmann
- Institute for Genetics, University of CologneCologne, Germany
| | - Martin Hufbauer
- Institute of Virology, University of CologneCologne, Germany
| | - Baki Akgül
- Institute of Virology, University of CologneCologne, Germany
| |
Collapse
|
32
|
Kim HJ, Kim HJ. Current status and future prospects for human papillomavirus vaccines. Arch Pharm Res 2017; 40:1050-1063. [PMID: 28875439 DOI: 10.1007/s12272-017-0952-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/24/2017] [Indexed: 01/08/2023]
Abstract
Cervical cancer is the fourth most frequent cancer among women worldwide. Human papillomaviruses (HPVs) cause almost all cervical cancers in low-income countries. Three prophylactic HPV virus-like particle-based vaccines have been licensed to date, and they have all shown high efficacy and reliable safety profiles. However, isolated safety issues have resulted in a reluctance to use these vaccinations. In addition, the high prices of the vaccinations have caused the inequitable distribution of the vaccine: the prices are unaffordable for low-income countries. Meanwhile, great effort has been put into the development of therapeutic HPV vaccines, including protein/peptide-, live vector-, DNA- and cell-based vaccines. These new vaccines have considerable therapeutic potential but limited practical use. The development of immune checkpoint inhibitors and personalized immunotherapy remain challenges for future study. In this article, the current status of the licensed vaccines, therapeutic HPV vaccines and biosimilars, and new platforms for HPV vaccines, are reviewed, and safety issues related to the licensed vaccines are discussed. In addition, the prospects for HPV vaccines are considered.
Collapse
Affiliation(s)
- Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea.
| |
Collapse
|
33
|
Link EK, Hoferer M, Strobel B, Rigbers K, Langenmayer MC, Sutter G, Fux R. Sus scrofa papillomavirus 2 - genetic characterization of a novel suid papillomavirus from wild boar in Germany. J Gen Virol 2017; 98:2113-2117. [PMID: 28758619 DOI: 10.1099/jgv.0.000868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We identified a novel papillomavirus, Sus scrofa papillomavirus 2 (SsPV2), which is the first papillomavirus associated with papillomas in pigs. In skin alterations of a German wild boar, showing typical gross and histological appearance of papillomas, papillomavirus-like particles were demonstrated by electron microscopy. Degenerate papillomavirus-specific primers were used to amplify and sequence parts of the viral DNA. Subsequently, the complete genomic DNA was cloned and sequenced. The SsPV2 genome had a length of 8218 bp, encoded the early proteins E6, E7, E1 and E2, the late proteins L1 and L2 and contained an upstream regulatory region. Genomic characterization demonstrated papillomavirus-typical characteristics as well as unique features. For example, the E2 protein was significantly larger than in every other known papillomavirus species. Phylogenetic analysis was not able to relate SsPV2 unambiguously with other papillomavirus species or existing genera. Therefore, it might be representative of a new papillomavirus genus.
Collapse
Affiliation(s)
- Ellen Kathrin Link
- Institute for Infectious Diseases and Zoonoses, LMU Munich, Veterinärstrasse 13, D-80539 Munich, Germany
| | - Marc Hoferer
- Chemisches und Veterinäruntersuchungsamt Stuttgart, Schaflandstrasse 3/3, D-70736 Fellbach, Germany
| | - Birte Strobel
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe, Germany
| | - Kerstin Rigbers
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe, Germany
| | | | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU Munich, Veterinärstrasse 13, D-80539 Munich, Germany
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, LMU Munich, Veterinärstrasse 13, D-80539 Munich, Germany
| |
Collapse
|
34
|
Bolatti EM, Chouhy D, Hošnjak L, Casal PE, Kocjan BJ, Bottai H, Stella EJ, Sanchez A, Bussy RF, Poljak M, Giri AA. Natural history of human papillomavirus infection of sun-exposed healthy skin of immunocompetent individuals over three climatic seasons and identification of HPV209, a novel betapapillomavirus. J Gen Virol 2017; 98:1334-1348. [PMID: 28590241 DOI: 10.1099/jgv.0.000774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We present the first longitudinal study reporting the natural history of human papillomavirus (HPV) infection in sun-exposed skin of healthy individuals living in a geographical area in which solar UV radiation is influenced by the ozone content of the atmosphere. During three climatic seasons, skin swab samples were obtained from 78 healthy individuals and the prevalence of cutaneous HPVs was assessed with broad-spectrum FAP and CUT primers and determined at 54, 45 and 47 % in spring, summer and winter, respectively. Frequencies of mixed HPV infections were significantly higher in spring with respect to summer and winter (P=0.02). Seventy-one different HPV types/putative types were identified. While 62 volunteers were HPV-infected in at least one season, 23 had persistent infections. β-PVs (β-1) were the most prevalent and persistent. Age was associated with both the infection status (P=0.01) and the type of HPV infection (no infection, indeterminate/transient, persistent P=0.02). The molecular/phylogenetic analysis of the newly identified β-PV, officially designated as HPV209, showed that the virus has a typical genomic organization of cutaneous HPVs with five early (E6, E7, E1, E2 and E4) and two late genes (L2 and L1), which clusters to the species β-2. This provides useful data on cutaneous HPV infections in high UV-exposed regions.
Collapse
Affiliation(s)
- Elisa M Bolatti
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET). Suipacha 590, Rosario 2000, Argentina
| | - Diego Chouhy
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET). Suipacha 590, Rosario 2000, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Suipacha 531, Rosario 2000, Argentina
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana. Zaloška 4, Ljubljana SI-1000, Slovenia
| | - Pablo E Casal
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Suipacha 531, Rosario 2000, Argentina
| | - Boštjan J Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana. Zaloška 4, Ljubljana SI-1000, Slovenia
| | - Hebe Bottai
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Suipacha 531, Rosario 2000, Argentina
| | - Emma J Stella
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET). Suipacha 590, Rosario 2000, Argentina
| | - Adriana Sanchez
- División de Dermatología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | - Ramón Fernandez Bussy
- División de Dermatología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana. Zaloška 4, Ljubljana SI-1000, Slovenia
| | - Adriana A Giri
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Suipacha 531, Rosario 2000, Argentina
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET). Suipacha 590, Rosario 2000, Argentina
| |
Collapse
|
35
|
Araldi RP, Assaf SMR, Carvalho RFD, Carvalho MACRD, Souza JMD, Magnelli RF, Módolo DG, Roperto FP, Stocco RDC, Beçak W. Papillomaviruses: a systematic review. Genet Mol Biol 2017; 40:1-21. [PMID: 28212457 PMCID: PMC5409773 DOI: 10.1590/1678-4685-gmb-2016-0128] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/28/2016] [Indexed: 12/15/2022] Open
Abstract
In the last decades, a group of viruses has received great attention due to its
relationship with cancer development and its wide distribution throughout the
vertebrates: the papillomaviruses. In this article, we aim to review some of the most
relevant reports concerning the use of bovines as an experimental model for studies
related to papillomaviruses. Moreover, the obtained data contributes to the
development of strategies against the clinical consequences of bovine
papillomaviruses (BPV) that have led to drastic hazards to the herds. To overcome the
problem, the vaccines that we have been developing involve recombinant DNA
technology, aiming at prophylactic and therapeutic procedures. It is important to
point out that these strategies can be used as models for innovative procedures
against HPV, as this virus is the main causal agent of cervical cancer, the second
most fatal cancer in women.
Collapse
Affiliation(s)
- Rodrigo Pinheiro Araldi
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil.,Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | | | | | - Jacqueline Mazzuchelli de Souza
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil.,Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Roberta Fiusa Magnelli
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil.,Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Franco Peppino Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Campania, Italy
| | | | - Willy Beçak
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
36
|
Camporeale G, Lorenzo JR, Thomas MG, Salvatierra E, Borkosky SS, Risso MG, Sánchez IE, de Prat Gay G, Alonso LG. Degenerate cysteine patterns mediate two redox sensing mechanisms in the papillomavirus E7 oncoprotein. Redox Biol 2016; 11:38-50. [PMID: 27863297 PMCID: PMC5278158 DOI: 10.1016/j.redox.2016.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 01/06/2023] Open
Abstract
Infection with oncogenic human papillomavirus induces deregulation of cellular redox homeostasis. Virus replication and papillomavirus-induced cell transformation require persistent expression of viral oncoproteins E7 and E6 that must retain their functionality in a persistent oxidative environment. Here, we dissected the molecular mechanisms by which E7 oncoprotein can sense and manage the potentially harmful oxidative environment of the papillomavirus-infected cell. The carboxy terminal domain of E7 protein from most of the 79 papillomavirus viral types of alpha genus, which encloses all the tumorigenic viral types, is a cysteine rich domain that contains two classes of cysteines: strictly conserved low reactive Zn+2 binding and degenerate reactive cysteine residues that can sense reactive oxygen species (ROS). Based on experimental data obtained from E7 proteins from the prototypical viral types 16, 18 and 11, we identified a couple of low pKa nucleophilic cysteines that can form a disulfide bridge upon the exposure to ROS and regulate the cytoplasm to nucleus transport. From sequence analysis and phylogenetic reconstruction of redox sensing states we propose that reactive cysteine acquisition through evolution leads to three separate E7s protein families that differ in the ROS sensing mechanism: non ROS-sensitive E7s; ROS-sensitive E7s using only a single or multiple reactive cysteine sensing mechanisms and ROS-sensitive E7s using a reactive-resolutive cysteine couple sensing mechanism. Transforming protein ROS-sensing. Reactive cysteine acquisition through evolution. Redox-switching mechanism. Papillomavirus-induced cancers.
Collapse
Affiliation(s)
- Gabriela Camporeale
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Juan R Lorenzo
- ULB-Neuroscience Institute, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Maria G Thomas
- RNA Cell Biology Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Edgardo Salvatierra
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir-CONICET and IIBBA-CONICET, Buenos Aires, Argentina
| | - Silvia S Borkosky
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Marikena G Risso
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Ignacio E Sánchez
- Protein Physiology Laboratory, Universidad de Buenos Aires, CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Gonzalo de Prat Gay
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.
| | - Leonardo G Alonso
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
37
|
da Silva FRC, Daudt C, Cibulski SP, Weber MN, Varela APM, Mayer FQ, Roehe PM, Canal CW. Genome characterization of a bovine papillomavirus type 5 from cattle in the Amazon region, Brazil. Virus Genes 2016; 53:130-133. [PMID: 27817150 DOI: 10.1007/s11262-016-1406-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/20/2016] [Indexed: 01/17/2023]
Abstract
Papillomaviruses are small and complex viruses with circular DNA genome that belongs to the Papillomavirus family, which comprises at least 39 genera. The bovine papillomavirus (BPV) causes an infectious disease that is characterized by chronic and proliferative benign tumors that affect cattle worldwide. In the present work, the full genome sequence of BPV type 5, an Epsilonpapillomavirus, is reported. The genome was recovered from papillomatous lesions excised from cattle raised in the Amazon region, Northern Brazil. The genome comprises 7836 base pairs and exhibits the archetypal organization of the Papillomaviridae. This is of significance for the study of BPV biology, since currently available full BPV genome sequences are scarce. The availability of genomic information of BPVs can provide better understanding of the differences in genetics and biology of papillomaviruses.
Collapse
Affiliation(s)
- Flavio R C da Silva
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Prédio 42.602, Porto Alegre, CEP 91540-000, Brazil.,Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Campus Universitário, BR 364, Km 04 - Distrito Industrial, Rio Branco, 69920-900, Brazil
| | - Cíntia Daudt
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Prédio 42.602, Porto Alegre, CEP 91540-000, Brazil
| | - Samuel P Cibulski
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Prédio 42.602, Porto Alegre, CEP 91540-000, Brazil
| | - Matheus N Weber
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Prédio 42.602, Porto Alegre, CEP 91540-000, Brazil
| | - Ana Paula M Varela
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, RS, Brazil
| | - Fabiana Q Mayer
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, RS, Brazil
| | - Paulo M Roehe
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cláudio W Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Prédio 42.602, Porto Alegre, CEP 91540-000, Brazil.
| |
Collapse
|
38
|
Mendes de Oliveira C, Levi JE. The Biological Impact of Genomic Diversity in Cervical Cancer Development. Acta Cytol 2016; 60:513-517. [PMID: 27771695 DOI: 10.1159/000449401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022]
Abstract
Human papillomaviruses (HPVs) are the etiologic agents of cervical cancer, the unique human neoplasia that has one single necessary cause. The diversity of HPVs is well described, with 200 HPV types existing as distinct taxonomic units and each receiving an Arabic number. On a clinical basis, they are usually grouped by their site of occurrence and disease associations. Those types inhabiting the anogenital mucosa are more intensively studied and further divided into cancer-associated HPVs, which are termed 'high risk', while those linked to benign proliferative lesions are assigned as 'low risk'. HPV16 is responsible for approximately 50% of all ICC cases, and paradoxically is one of the most prevalent types among healthy women. Longitudinal studies have shown that when an incidental HPV16 infection becomes persistent it will result in an enhanced risk for the development of high-grade lesions. However, it is unknown why some persistent, HPV16 infections (or infections by other HR-HPV types) progress to CIN3+ while most clear spontaneously. Several epidemiological investigations have focused on cofactors, from the most obvious such as cigarette and other carcinogenic exposures, to coinfections by other STDs such as chlamydia, with no significant findings. Thus, the current focus is on genomic variation from both virus and host. Such studies have been potentialized by the enormous technical advances in nucleic acid sequencing, allowing this relationship to be broadly interrogated. Corroborating subgenomic data from decades ago, an association between HPV16 lineages and carcinogenesis is being revealed. However, this effect does not seem to apply across female populations from different continents/ethnicities, again highlighting a role played by HPV16 adaptation and evasion from the host over time.
Collapse
|
39
|
Durzynska J, Lesniewicz K, Poreba E. Human papillomaviruses in epigenetic regulations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:36-50. [PMID: 28528689 DOI: 10.1016/j.mrrev.2016.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/01/2016] [Accepted: 09/17/2016] [Indexed: 12/12/2022]
Abstract
Human Papillomaviruses (HPVs) are double-stranded DNA viruses, that infect epithelial cells and are etiologically involved in the development of human cancer. Today, over 200 types of human papillomaviruses are known. They are divided into low-risk and high-risk HPVs depending on their potential to induce carcinogenesis, driven by two major viral oncoproteins, E6 and E7. By interacting with cellular partners, these proteins are involved in interdependent viral and cell cycles in stratified differentiating epithelium, and concomitantly induce epigenetic changes in infected cells and those undergoing malignant transformation. E6 and E7 oncoproteins interact with and/or modulate expression of many proteins involved in epigenetic regulation, including DNA methyltransferases, histone-modifying enzymes and subunits of chromatin remodeling complexes, thereby influencing host cell transcription program. Furthermore, HPV oncoproteins modulate expression of cellular micro RNAs. Most of these epigenetic actions in a complex dynamic interplay participate in the maintenance of persistent infection, cell transformation, and development of invasive cancer by a considerable deregulation of tumor suppressor and oncogenes. In this study, we have undertaken to discuss a number of studies concerning epigenetic regulations in HPV-dependent cells and to focus on those that have biological relevance to cancer progression.
Collapse
Affiliation(s)
- Julia Durzynska
- Department of Molecular Virology, Institute of Experimental Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Elzbieta Poreba
- Department of Molecular Virology, Institute of Experimental Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
40
|
da Silva FRC, Cibulski SP, Daudt C, Weber MN, Guimarães LLB, Streck AF, Mayer FQ, Roehe PM, Canal CW. Novel Bovine Papillomavirus Type Discovered by Rolling-Circle Amplification Coupled with Next-Generation Sequencing. PLoS One 2016; 11:e0162345. [PMID: 27606703 PMCID: PMC5015974 DOI: 10.1371/journal.pone.0162345] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023] Open
Abstract
Currently, fifteen bovine papillomavirus (BPV) types have been identified and classified into four genera: Deltapapillomavirus, Epsilonpapillomavirus, Dyoxipapillomavirus, and Xipapillomavirus. Here, the complete genome sequence of a new BPV type (BPV 04AC14) recovered from a papillomatous lesion is reported. The genome is 7,282 bp in length and exhibits the classic genetic organization and motifs of the members of Papillomaviridae. Maximum likelihood phylogenetic analyses revealed that BPV 04AC14 clusters with members of the Xipapillomavirus genus. The nucleotide sequence of the L1 capsid protein of the novel BPV is closely related to its counterpart, BPV3, with which it shares 79% similarity. These findings suggest that this virus is a new BPV type of the Xipapillomavirus genus.
Collapse
Affiliation(s)
- Flavio R. C. da Silva
- Laboratório de Virologia – Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre Rio Branco, Acre, Brazil
| | - Samuel P. Cibulski
- Laboratório de Virologia – Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cíntia Daudt
- Laboratório de Virologia – Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Matheus N. Weber
- Laboratório de Virologia – Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lorena L. B. Guimarães
- Laboratório de Virologia – Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - André F. Streck
- Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fabiana Q. Mayer
- Laboratório de Biologia Molecular – Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Paulo M. Roehe
- Departamento de Microbiologia Imunologia e Parasitologia – Laboratório de Virologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cláudio W. Canal
- Laboratório de Virologia – Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
41
|
Araldi RP, Módolo DG, de Sá Júnior PL, Consonni SR, de Carvalho RF, Roperto FP, Beçak W, de Cassia Stocco R. Genetics and metabolic deregulation following cancer initiation: A world to explore. Biomed Pharmacother 2016; 82:449-58. [DOI: 10.1016/j.biopha.2016.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 02/08/2023] Open
|
42
|
Bolatti EM, Chouhy D, Casal PE, Pérez GR, Stella EJ, Sanchez A, Gorosito M, Bussy RF, Giri AA. Characterization of novel human papillomavirus types 157, 158 and 205 from healthy skin and recombination analysis in genus γ-Papillomavirus. INFECTION GENETICS AND EVOLUTION 2016; 42:20-9. [PMID: 27108808 DOI: 10.1016/j.meegid.2016.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/17/2023]
Abstract
Gammapapillomavirus (γ-PV) is a diverse and rapidly expanding genus, currently consisting of 79 fully characterized human PV (HPV) types. In this study, three novel types, HPV157, HPV158 and HPV205, obtained from healthy sun-exposed skin of two immunocompetent individuals, were amplified by the "Hanging droplet" long PCR technique, cloned, sequenced and characterized. HPV157, HPV158 and HPV205 genomes comprise 7154-bp, 7192-bp and 7298-bp, respectively, and contain four early (E1, E2, E6 and E7) and two late genes (L1 and L2). Phylogenetic analysis of the L1 ORF placed all novel types within the γ-PV genus: HPV157 was classified as a new member of species γ-12 while HPV158 and HPV205 belong to species γ-1. We then explored potential recombination events in genus γ-PV with the RDP4 program in a dataset of 74 viruses (71 HPV types with available full-length genomes and the 3 novel types). Two events, both located in the E1 ORF, met the inclusion criterion (p-values <0.05 with at least four methods) and persisted in different ORF combinations: an inter-species recombination in species γ-8 (major and minor parents: species γ-24 and γ-11, respectively), and an intra-species recombination in species γ-7 (recombinant strain: HPV170; major and minor parents: HPV-109 and HPV-149, respectively). These findings were confirmed by phylogenetic tree incongruence analysis. An additional incongruence was found in members of species γ-9 but it was not detected by the RDP4. This report expands our knowledge of the family Papillomaviridae and provides for the first time in silico evidence of recombination in genus γ-PV.
Collapse
Affiliation(s)
- Elisa M Bolatti
- Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina.
| | - Diego Chouhy
- Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina; Area Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| | - Pablo E Casal
- Area Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| | - Germán R Pérez
- Area Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| | - Emma J Stella
- Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina.
| | - Adriana Sanchez
- División de Dermatología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina.
| | - Mario Gorosito
- División de Anatomía Patológica, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina.
| | - Ramón Fernandez Bussy
- División de Dermatología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina.
| | - Adriana A Giri
- Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina; Area Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
43
|
Houldcroft CJ, Underdown SJ. Neanderthal genomics suggests a pleistocene time frame for the first epidemiologic transition. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 160:379-88. [PMID: 27063929 DOI: 10.1002/ajpa.22985] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 02/10/2016] [Accepted: 03/03/2016] [Indexed: 12/13/2022]
Abstract
High quality Altai Neanderthal and Denisovan genomes are revealing which regions of archaic hominin DNA have persisted in the modern human genome. A number of these regions are associated with response to infection and immunity, with a suggestion that derived Neanderthal alleles found in modern Europeans and East Asians may be associated with autoimmunity. As such Neanderthal genomes are an independent line of evidence of which infectious diseases Neanderthals were genetically adapted to. Sympathetically, human genome adaptive introgression is an independent line of evidence of which infectious diseases were important for AMH coming in to Eurasia and interacting with Neanderthals. The Neanderthals and Denisovans present interesting cases of hominin hunter-gatherers adapted to a Eurasian rather than African infectious disease package. Independent sources of DNA-based evidence allow a re-evaluation of the first epidemiologic transition and how infectious disease affected Pleistocene hominins. By combining skeletal, archaeological and genetic evidence from modern humans and extinct Eurasian hominins, we question whether the first epidemiologic transition in Eurasia featured a new package of infectious diseases or a change in the impact of existing pathogens. Coupled with pathogen genomics, this approach supports the view that many infectious diseases are pre-Neolithic, and the list continues to expand. The transfer of pathogens between hominin populations, including the expansion of pathogens from Africa, may also have played a role in the extinction of the Neanderthals and offers an important mechanism to understand hominin-hominin interactions well back beyond the current limits for aDNA extraction from fossils alone. Am J Phys Anthropol 160:379-388, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Charlotte J Houldcroft
- Division of Biological Anthropology, Department of Archaeology & Anthropology, University of Cambridge, Cambridge, CB2 3QG, UK.,Infection, Inflammation and Rheumatology Section, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Simon J Underdown
- Human Origins and Palaeoenvironmental Research Group (HOPE), Department of Anthropology & Geography, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
44
|
Mengual-Chuliá B, Bedhomme S, Lafforgue G, Elena SF, Bravo IG. Assessing parallel gene histories in viral genomes. BMC Evol Biol 2016; 16:32. [PMID: 26847371 PMCID: PMC4743424 DOI: 10.1186/s12862-016-0605-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/29/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The increasing abundance of sequence data has exacerbated a long known problem: gene trees and species trees for the same terminal taxa are often incongruent. Indeed, genes within a genome have not all followed the same evolutionary path due to events such as incomplete lineage sorting, horizontal gene transfer, gene duplication and deletion, or recombination. Considering conflicts between gene trees as an obstacle, numerous methods have been developed to deal with these incongruences and to reconstruct consensus evolutionary histories of species despite the heterogeneity in the history of their genes. However, inconsistencies can also be seen as a source of information about the specific evolutionary processes that have shaped genomes. RESULTS The goal of the approach here proposed is to exploit this conflicting information: we have compiled eleven variables describing phylogenetic relationships and evolutionary pressures and submitted them to dimensionality reduction techniques to identify genes with similar evolutionary histories. To illustrate the applicability of the method, we have chosen two viral datasets, namely papillomaviruses and Turnip mosaic virus (TuMV) isolates, largely dissimilar in genome, evolutionary distance and biology. Our method pinpoints viral genes with common evolutionary patterns. In the case of papillomaviruses, gene clusters match well our knowledge on viral biology and life cycle, illustrating the potential of our approach. For the less known TuMV, our results trigger new hypotheses about viral evolution and gene interaction. CONCLUSIONS The approach here presented allows turning phylogenetic inconsistencies into evolutionary information, detecting gene assemblies with similar histories, and could be a powerful tool for comparative pathogenomics.
Collapse
Affiliation(s)
- Beatriz Mengual-Chuliá
- Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain.,Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain
| | - Stéphanie Bedhomme
- Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain.,Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain.,Centre d'Ecologie Fonctionnelle et Evolutive, UMR CNRS 5175, Montpellier, France
| | - Guillaume Lafforgue
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR CNRS 5175, Montpellier, France.,Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain.,I2SysBio, Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain.,The Santa Fe Institute, Santa Fe, NM, USA
| | - Ignacio G Bravo
- Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain. .,MIVEGEC (UMR CNRS 5290, IRD 224, UM), National Center for Scientific Research (CNRS), Montpellier, France. .,National Center for Scientific Research (CNRS), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR CNRS 5290, IRD 224, UM, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, Cedex 5, France.
| |
Collapse
|
45
|
Zehender G, Frati ER, Martinelli M, Bianchi S, Amendola A, Ebranati E, Ciccozzi M, Galli M, Lai A, Tanzi E. Dating the origin and dispersal of Human Papillomavirus type 16 on the basis of ancestral human migrations. INFECTION GENETICS AND EVOLUTION 2016; 39:258-264. [PMID: 26827632 DOI: 10.1016/j.meegid.2016.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 01/04/2023]
Abstract
A major limitation when reconstructing the origin and evolution of HPV-16 is the lack of reliable substitution rate estimates for the viral genes. On the basis of the hypothesis of human HPV-16 co-divergence, we estimated a mean evolutionary rate of 1.47×10(-7) (95% HPD=0.64-2.47×10(-7)) subs/site/year for the viral LCR region. The results of a Bayesian phylogeographical analysis suggest that the currently circulating HPV-16 most probably originated in Africa about 110 thousand years ago (Kya), before giving rise to four known geographical lineages: the Asian/European lineage, which most probably originated in Asia a mean 38 Kya, and the Asian/American and two African lineages, which probably respectively originated about 33 and 27 Kya. These data closely reflect current hypotheses concerning modern human expansion based on studies of mitochondrial DNA phylogeny. The correlation between ancient human migration and the present HPV phylogeny may be explained by the co-existence of modes of transmission other than sexual transmission.
Collapse
Affiliation(s)
- Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy.
| | - Elena Rosanna Frati
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Marianna Martinelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Silvia Bianchi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Antonella Amendola
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Erika Ebranati
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Massimo Ciccozzi
- Department of Infectious, Parasitic and Immunomediated Diseases, National Institute of Health, Rome, Italy; Campus Bio-Medico University, Rome, Italy
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Elisabetta Tanzi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
46
|
Natural History of Human Papilloma Virus Infection of the Cervix. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2015. [DOI: 10.1007/s13669-015-0135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Doorbar J, Egawa N, Griffin H, Kranjec C, Murakami I. Human papillomavirus molecular biology and disease association. Rev Med Virol 2015; 25 Suppl 1:2-23. [PMID: 25752814 PMCID: PMC5024016 DOI: 10.1002/rmv.1822] [Citation(s) in RCA: 530] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/12/2014] [Accepted: 06/25/2014] [Indexed: 12/27/2022]
Abstract
Human papillomaviruses (HPVs) have evolved over millions of years to propagate themselves in a range of different animal species including humans. Viruses that have co‐evolved slowly in this way typically cause chronic inapparent infections, with virion production in the absence of apparent disease. This is the case for many Beta and Gamma HPV types. The Alpha papillomavirus types have however evolved immunoevasion strategies that allow them to cause persistent visible papillomas. These viruses activate the cell cycle as the infected epithelial cell differentiates in order to create a replication competent environment that allows viral genome amplification and packaging into infectious particles. This is mediated by the viral E6, E7, and E5 proteins. High‐risk E6 and E7 proteins differ from their low‐risk counterparts however in being able to drive cell cycle entry in the upper epithelial layers and also to stimulate cell proliferation in the basal and parabasal layers. Deregulated expression of these cell cycle regulators underlies neoplasia and the eventual progression to cancer in individuals who cannot resolve high‐risk HPV infection. Most work to date has focused on the study of high‐risk HPV types such as HPV 16 and 18, which has led to an understanding of the molecular pathways subverted by these viruses. Such approaches will lead to the development of better strategies for disease treatment, including targeted antivirals and immunotherapeutics. Priorities are now focused toward understanding HPV neoplasias at sites other than the cervix (e.g. tonsils, other transformation zones) and toward understanding the mechanisms by which low‐risk HPV types can sometimes give rise to papillomatosis and under certain situations even cancers. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
48
|
de Oliveira CM, Bravo IG, Santiago e Souza NC, Genta MLND, Fregnani JHTG, Tacla M, Carvalho JP, Longatto-Filho A, Levi JE. High-level of viral genomic diversity in cervical cancers: A Brazilian study on human papillomavirus type 16. INFECTION GENETICS AND EVOLUTION 2015; 34:44-51. [PMID: 26160543 DOI: 10.1016/j.meegid.2015.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/02/2015] [Accepted: 07/04/2015] [Indexed: 01/31/2023]
Abstract
Invasive cervical cancer (ICC) is the third most frequent cancer among women worldwide and is associated with persistent infection by carcinogenic human papillomaviruses (HPVs). The combination of large populations of viral progeny and decades of sustained infection may allow for the generation of intra-patient diversity, in spite of the assumedly low mutation rates of PVs. While the natural history of chronic HPVs infections has been comprehensively described, within-host viral diversity remains largely unexplored. In this study we have applied next generation sequencing to the analysis of intra-host genetic diversity in ten ICC and one condyloma cases associated to single HPV16 infection. We retrieved from all cases near full-length genomic sequences. All samples analyzed contained polymorphic sites, ranging from 3 to 125 polymorphic positions per genome, and the median probability of a viral genome picked at random to be identical to the consensus sequence in the lesion was only 40%. We have also identified two independent putative duplication events in two samples, spanning the L2 and the L1 gene, respectively. Finally, we have identified with good support a chimera of human and viral DNA. We propose that viral diversity generated during HPVs chronic infection may be fueled by innate and adaptive immune pressures. Further research will be needed to understand the dynamics of viral DNA variability, differentially in benign and malignant lesions, as well as in tissues with differential intensity of immune surveillance. Finally, the impact of intralesion viral diversity on the long-term oncogenic potential may deserve closer attention.
Collapse
Affiliation(s)
- Cristina Mendes de Oliveira
- Laboratório de Virologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil; Infections and Cancer Laboratory, Catalan Institute of Oncology, Barcelona, Spain.
| | - Ignacio G Bravo
- Infections and Cancer Laboratory, Catalan Institute of Oncology, Barcelona, Spain
| | | | | | | | - Maricy Tacla
- Gynecology Department, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jesus Paula Carvalho
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina, São Paulo, Brazil
| | - Adhemar Longatto-Filho
- Molecular Oncology Research Center, Hospital de Câncer de Barretos, Barretos, São Paulo, Brazil; Laboratory of Medical Investigation (LIM) 14, Faculty of Medicine, University of São Paulo, São Paulo, Brazil; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - José Eduardo Levi
- Laboratório de Virologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Bravo IG, Félez-Sánchez M. Papillomaviruses: Viral evolution, cancer and evolutionary medicine. EVOLUTION MEDICINE AND PUBLIC HEALTH 2015; 2015:32-51. [PMID: 25634317 PMCID: PMC4356112 DOI: 10.1093/emph/eov003] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Papillomaviruses (PVs) are a numerous family of small dsDNA viruses infecting virtually all mammals. PVs cause infections without triggering a strong immune response, and natural infection provides only limited protection against reinfection. Most PVs are part and parcel of the skin microbiota. In some cases, infections by certain PVs take diverse clinical presentations from highly productive self-limited warts to invasive cancers. We propose PVs as an excellent model system to study the evolutionary interactions between the immune system and pathogens causing chronic infections: genotypically, PVs are very diverse, with hundreds of different genotypes infecting skin and mucosa; phenotypically, they display extremely broad gradients and trade-offs between key phenotypic traits, namely productivity, immunogenicity, prevalence, oncogenicity and clinical presentation. Public health interventions have been launched to decrease the burden of PV-associated cancers, including massive vaccination against the most oncogenic human PVs, as well as systematic screening for PV chronic anogenital infections. Anti-PVs vaccines elicit protection against infection, induce cross-protection against closely related viruses and result in herd immunity. However, our knowledge on the ecological and intrapatient dynamics of PV infections remains fragmentary. We still need to understand how the novel anthropogenic selection pressures posed by vaccination and screening will affect viral circulation and epidemiology. We present here an overview of PV evolution and the connection between PV genotypes and the phenotypic, clinical manifestations of the diseases they cause. This differential link between viral evolution and the gradient cancer-warts-asymptomatic infections makes PVs a privileged playground for evolutionary medicine research.
Collapse
Affiliation(s)
- Ignacio G Bravo
- Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain; Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain; Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain; Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain
| | - Marta Félez-Sánchez
- Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain; Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain Infections and Cancer Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Spain; Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain
| |
Collapse
|
50
|
Lopera EA, Baena A, Florez V, Montiel J, Duque C, Ramirez T, Borrero M, Cordoba CM, Rojas F, Pareja R, Bedoya AM, Bedoya G, Sanchez GI. Unexpected inverse correlation between Native American ancestry and Asian American variants of HPV16 in admixed Colombian cervical cancer cases. INFECTION GENETICS AND EVOLUTION 2014; 28:339-48. [PMID: 25446942 DOI: 10.1016/j.meegid.2014.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/18/2014] [Accepted: 10/16/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND European (E) variants of HPV 16 are evenly distributed among world regions, meanwhile Non-European variants such as European-Asian (EAs), Asian American (AA) and African (Af) are mostly confined to Eastern Asia, The Americas and African regions respectively. Several studies have shown that genetic variation of HPV 16 is associated with the risk of cervical cancer, which also seems to be dependent on the population. This relationship between ethnicity and variants have led to the suggestion that there is co-evolution of variants with humankind. Our aim was to evaluate the relationship between the individual ancestry proportion and infection with HPV 16 variants in cervical cancer. METHODS We examined the association between ancestry and HPV 16 variants in samples of 82 cervical cancer cases from different regions of Colombia. Individual ancestry proportions (European, African and Native American) were estimated by genotyping 106 ancestry informative markers. Variants were identified by PCR amplification of the E6 gene, followed by reverse line blot hybridization (RLB) with variants specific probes. RESULTS Overall European (E) and Asian American (AA) variants frequency was 66.5% and 33.5% respectively. Similar distribution was observed in cases with higher proportions of European or African ancestry. A higher Native American ancestry was significantly associated with higher frequency of E variants (median ancestry>23.6%, Age and place of birth adjusted OR: 3.55, 95% CI: 1.26-10.03, p=0.01). Even further, an inverse geographic correlation between Native American ancestry and frequency of infections with AA variants was observed (ρ=-0.825, p=0.008). Regions with higher proportion of Native American ancestry had a lower frequency of AA variants of HPV 16. CONCLUSIONS This study suggests replacement of AA variants by E variants of human papillomavirus 16 in cervical cancer cases with high Native American ancestry.
Collapse
Affiliation(s)
- Esteban A Lopera
- Infection and Cancer Group, School of Medicine and Corporación Académica para el Estudio de Patologías Tropicales, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Armando Baena
- Infection and Cancer Group, School of Medicine and Corporación Académica para el Estudio de Patologías Tropicales, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Victor Florez
- Infection and Cancer Group, School of Medicine and Corporación Académica para el Estudio de Patologías Tropicales, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Jehidys Montiel
- Infection and Cancer Group, School of Medicine and Corporación Académica para el Estudio de Patologías Tropicales, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Constanza Duque
- Genética Molecular, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia; Universidad Cooperativa de Colombia, Carrera 42 No 49-95, Medellín, Colombia
| | - Tatiana Ramirez
- Infection and Cancer Group, School of Medicine and Corporación Académica para el Estudio de Patologías Tropicales, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Mauricio Borrero
- Infection and Cancer Group, School of Medicine and Corporación Académica para el Estudio de Patologías Tropicales, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia; Instituto de Cancerología Las Américas, Carrera 70 No 1-35, Torre 5, Medellín, Colombia; Department of Gynecology and Obstetrics, School of Medicine, Universidad de Antioquia, UdeA, Calle 70 No 52-52, Medellín, Colombia
| | - Carlos M Cordoba
- Department of Gynecology and Obstetrics, School of Medicine, Universidad de Antioquia, UdeA, Calle 70 No 52-52, Medellín, Colombia
| | - Fredy Rojas
- Instituto de Cancerología Las Américas, Carrera 70 No 1-35, Torre 5, Medellín, Colombia
| | - Rene Pareja
- Instituto de Cancerología Las Américas, Carrera 70 No 1-35, Torre 5, Medellín, Colombia
| | - Astrid M Bedoya
- Infection and Cancer Group, School of Medicine and Corporación Académica para el Estudio de Patologías Tropicales, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia; Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Gabriel Bedoya
- Genética Molecular, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Gloria I Sanchez
- Infection and Cancer Group, School of Medicine and Corporación Académica para el Estudio de Patologías Tropicales, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia.
| |
Collapse
|