1
|
Song J, Liang W, Huang H, Jia H, Yang S, Wang C, Yang H. A new fusion strategy for rapid strain differentiation based on MALDI-TOF MS and Raman spectra. Analyst 2024; 149:5287-5297. [PMID: 39283198 DOI: 10.1039/d4an00916a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Typing of bacterial subspecies is urgently needed for the diagnosis and efficient treatment during disease outbreaks. Physicochemical spectroscopy can provide a rapid analysis but its identification accuracy is still far from satisfactory. Herein, a novel feature-extractor-based fusion-assisted machine learning strategy has been developed for high accuracy and rapid strain differentiation using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and Raman spectroscopy. Based on this fusion approach, rapid and reliable identification and analysis can be performed within 24 hours. Validation on a panel of important pathogens comprising Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii showed that the identification accuracies of k-nearest neighbors (KNNs), support vector machines (SVMs) and artificial neural networks (ANNs) were 100%. In particular, when benchmarked against a MALDI-TOF MS spectral dataset, the new approach improved the identification accuracy of Acinetobacter baumannii from 87.67% to 100%. This work demonstrates the effectiveness of combining MALDI-TOF MS and Raman spectroscopy fusion data in pathogenic bacterial subtyping.
Collapse
Affiliation(s)
- Jian Song
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenlong Liang
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
- International Joint Laboratory of Catalytic Chemistry, College of Science, Shanghai University, Shanghai 20044, China.
| | - Hongtao Huang
- College of Educational Information Technology, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hongyan Jia
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shouning Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chunlei Wang
- International Joint Laboratory of Catalytic Chemistry, College of Science, Shanghai University, Shanghai 20044, China.
| | - Huayan Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Mocellin RR, Toigo AL, Dos Santos CC, Frazzon J, Nunes GT, Bugoni L, Prichula J, Frazzon APG. Metal tolerance in enterococci isolated from seabirds in Abrolhos Archipelago, Brazil: Evaluating their role as bioindicators of marine pollution. MARINE POLLUTION BULLETIN 2024; 207:116866. [PMID: 39216259 DOI: 10.1016/j.marpolbul.2024.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Microbiota exposed to pollution provide insights into host physiology and ecosystem disruption. This study evaluated Enterococcus spp. tolerant to arsenic (As), copper (Cu), and mercury (Hg) from red-billed tropicbirds (Phaethon aethereus) and brown boobies (Sula leucogaster), which previously showed these metals in their blood and feathers, and their potential use as bioindicators of metal contamination. Enterococcus casseliflavus (47.9 %), E. faecalis (34.1 %), E. hirae (11.7 %), and E. faecium (5.3 %) were identified. Both seabird species had a high incidence of As-tolerant bacteria (84.0 %), with 40.4 % of these strains containing As efflux system genes (arsA_I and arsA_II). Cu efflux pump gene (tcrB) was detected in 30.9 % of strains, while Hg reductase genes (mer) were not found. As- and Cu-tolerance in enterococci observed in this study underlines their potential as bioindicators in metal-polluted marine environments. Further research may elucidate the role of these metal-tolerant enterococci in seabird gut and their adaptability to polluted environments.
Collapse
Affiliation(s)
- Raquel Rita Mocellin
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil
| | - Amanda Ladeira Toigo
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil
| | - Camila Coutinho Dos Santos
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil
| | - Jeverson Frazzon
- Departamento de Ciência de Alimentos, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Guilherme Tavares Nunes
- Centro de Estudos Costeiros, Limnológicos e Marinhos, Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Tramandaí, 976, 95625-000 Imbé, RS, Brazil
| | - Leandro Bugoni
- Laboratório de Aves Aquáticas e Tartarugas Marinhas, Universidade Federal do Rio Grande - FURG, Av. Itália, s/n, 96203-900 Rio Grande, RS, Brazil
| | - Janira Prichula
- Department of Ophthalmology, Mass Eye and Ear, Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ana Paula Guedes Frazzon
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Rodó X, Pozdniakova S, Borràs S, Matsuki A, Tanimoto H, Armengol MP, Pey I, Vila J, Muñoz L, Santamaria S, Cañas L, Morguí JA, Fontal A, Curcoll R. Microbial richness and air chemistry in aerosols above the PBL confirm 2,000-km long-distance transport of potential human pathogens. Proc Natl Acad Sci U S A 2024; 121:e2404191121. [PMID: 39250672 PMCID: PMC11420185 DOI: 10.1073/pnas.2404191121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/09/2024] [Indexed: 09/11/2024] Open
Abstract
The existence of viable human pathogens in bioaerosols which can cause infection or affect human health has been the subject of little research. In this study, data provided by 10 tropospheric aircraft surveys over Japan in 2014 confirm the existence of a vast diversity of microbial species up to 3,000 m height, which can be dispersed above the planetary boundary layer over distances of up to 2,000 km, thanks to strong winds from an area covered with massive cereal croplands in Northeast (NE) Asia. Microbes attached to aerosols reveal the presence of diverse bacterial and fungal taxa, including potential human pathogens, originating from sewage, pesticides, or fertilizers. Over 266 different fungal and 305 bacterial genera appeared in the 10 aircraft transects. Actinobacteria, Bacillota, Proteobacteria, and Bacteroidetes phyla dominated the bacteria composition and, for fungi, Ascomycota prevailed over Basidiomycota. Among the pathogenic species identified, human pathogens include bacteria such as Escherichia coli, Serratia marcescens, Prevotella melaninogenica, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus saprophyticus, Cutibacterium acnes, Clostridium difficile, Clostridium botulinum, Stenotrophomonas maltophilia, Shigella sonnei, Haemophillus parainfluenzae and Acinetobacter baumannii and health-relevant fungi such as Malassezia restricta, Malassezia globosa, Candida parapsilosis and Candida zeylanoides, Sarocladium kiliense, Cladosporium halotolerans, and Cladosporium herbarum. Diversity estimates were similar at heights and surface when entrainment of air from high altitudes occurred. Natural antimicrobial-resistant bacteria (ARB) cultured from air samples were found indicating long-distance spread of ARB and microbial viability. This would represent a novel way to disperse both viable human pathogens and resistance genes among distant geographical regions.
Collapse
Affiliation(s)
- Xavier Rodó
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona08010, Spain
- Climate and Health Group, Climate, Air pollution, Nature and Urban Health, Barcelona Institute for Global Health, Barcelona08003, Spain
| | - Sofya Pozdniakova
- Climate and Health Group, Climate, Air pollution, Nature and Urban Health, Barcelona Institute for Global Health, Barcelona08003, Spain
| | - Sílvia Borràs
- Climate and Health Group, Climate, Air pollution, Nature and Urban Health, Barcelona Institute for Global Health, Barcelona08003, Spain
| | - Atsushi Matsuki
- Division of Atmospheric Environmental Studies, Kanazawa University, Kanazawa920-1164, Japan
| | - Hiroshi Tanimoto
- Earth System Division, National Institute for Environmental Studies, Tsukuba305-8506, Japan
| | - Maria-Pilar Armengol
- Translational Genomics Facility, Fundació Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona08916, Spain
| | - Irina Pey
- Translational Genomics Facility, Fundació Institut de Recerca en Ciències de la Salut Germans Trias i Pujol, Badalona08916, Spain
| | - Jordi Vila
- Department of Clinical Microbiology, Biomedical Diagnostic Center, Hospital Clinic School of Medicine, University of Barcelona, Barcelona08036, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Laura Muñoz
- Department of Clinical Microbiology, Biomedical Diagnostic Center, Hospital Clinic School of Medicine, University of Barcelona, Barcelona08036, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Samuel Santamaria
- Climate and Health Group, Climate, Air pollution, Nature and Urban Health, Barcelona Institute for Global Health, Barcelona08003, Spain
| | - Lidia Cañas
- Climate and Health Group, Climate, Air pollution, Nature and Urban Health, Barcelona Institute for Global Health, Barcelona08003, Spain
| | - Josep-Anton Morguí
- Climate and Health Group, Climate, Air pollution, Nature and Urban Health, Barcelona Institute for Global Health, Barcelona08003, Spain
| | - Alejandro Fontal
- Climate and Health Group, Climate, Air pollution, Nature and Urban Health, Barcelona Institute for Global Health, Barcelona08003, Spain
- Department of Microbiology, Genetics and Statistics, Faculty of Biology, University of Barcelona, Barcelona08028, Spain
| | - Roger Curcoll
- Ionising Radiation, Health and Environment, Institute of Energy Technologies, Universitat Politècnica de Catalunya, Barcelona08028, Spain
| |
Collapse
|
4
|
Yadav A, Yadav AK, NaziaTarannum. Fabrication of Aluminum Foil Integrated Pegylated Gold Nanoparticle Surface-Enhanced Raman Scattering Substrate for the Detection and Classification of Uropathogenic Bacteria. ACS APPLIED BIO MATERIALS 2024; 7:6127-6137. [PMID: 39133870 DOI: 10.1021/acsabm.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Rapid detection and classification of pathogenic microbes for food hygiene, healthcare, environmental contamination, and chemical and biological exposures remain a major challenge due to nonavailability of fast and accurate detection methods. The delay in clinical diagnosis of the most frequent bacterial infections, particularly urinary tract infections (UTIs), which affect about half of the population at least once in their lifetime, can be fatal if not detected and treated appropriately. In this work, we have fabricated aluminum (Al) foil integrated pegylated gold nanoparticles (AuNPs) as a potential surface-enhanced Raman scattering (SERS) substrate, which is used for the detection and classification of uropathogens, namely, E. coli, S. aureus, and P. aeruginosa directly from the culture without any pretreatment. The substrate is first drop cast with bacterial pellets and then pegylated AuNPs, and the interaction of two on Al foil base gives identifiable characteristic Raman peaks with good reproducibility. With the use of chemometric methods such as principal component analysis (PCA), the Al foil-based SERS substrate offers a quick, effective detection and classification of three strains of UTI bacteria with the least bacterial concentration (105 cells mL-1) necessary for clinical diagnosis. In addition, this substrate was able to detect E. coli positive clinical samples by giving SERS fingerprint information directly from centrifuged urine samples within minutes. The stability of pegylated AuNPs provides for its application at the point of care with rapid and easy detection of uropathogens as well as the possibility of advancement in healthcare applications.
Collapse
Affiliation(s)
- Akanksha Yadav
- Department of Physics, Chaudhary Charan Singh University, Meerut 250004, India
| | - Anil K Yadav
- Department of Physics, Chaudhary Charan Singh University, Meerut 250004, India
| | - NaziaTarannum
- Department of Chemistry, Chaudhary Charan Singh University, Meerut 250004, India
| |
Collapse
|
5
|
Mao Q, Zhang X, Xu Z, Xiao Y, Song Y, Xu F. Identification of Escherichia coli strains using MALDI-TOF MS combined with long short-term memory neural networks. Aging (Albany NY) 2024; 16:11018-11026. [PMID: 38950328 PMCID: PMC11272126 DOI: 10.18632/aging.205995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024]
Abstract
The current study aims to develop a new technique for the precise identification of Escherichia coli strains, utilizing matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) combined with a long short-term memory (LSTM) neural network. A total of 48 Escherichia coli strains were isolated and cultured on tryptic soy agar medium for 24 hours for the generation of MALDI-TOF MS spectra. Eight hundred MALDI-TOF MS spectra were obtained per strain, resulting in a database of 38,400 spectra. Fifty percent of the data was utilized for LSTM neural network training, with fine-tuned parameters for strain-level identification. The other half served as the test set to assess model performance. Traditional PCA dimension reduction of MALDI-TOF MS spectra indicated 47 out of 48 strains to be unclassifiable. In contrast, the LSTM neural network demonstrated remarkable efficacy. After 20 training epochs, the model achieved a loss value of 0.0524, an accuracy of 0.999, a precision of 0.985, and a recall of 0.982. When tested on the unseen data, the model attained an overall accuracy of 92.24%. The integration of MALDI-TOF MS and LSTM neural network markedly enhances the identification of Escherichia coli strains. This innovative approach offers an effective and accurate tool for MALDI-TOF MS-based strain-level identification, thus expanding the analytical capabilities of microbial diagnostics.
Collapse
Affiliation(s)
- Qiqi Mao
- Department of General Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315040, China
| | - Xie Zhang
- Department of Medicine and Pharmacy, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315040, China
| | - Zeping Xu
- Department of Medicine and Pharmacy, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315040, China
| | - Ya Xiao
- School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yufei Song
- Department of Gastroenterology, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315040, China
| | - Feng Xu
- Department of Gastroenterology, Li Huili Hospital Affiliated to Ningbo University, Ningbo 315040, China
| |
Collapse
|
6
|
McGalliard R, Muhamadali H, AlMasoud N, Haldenby S, Romero-Soriano V, Allman E, Xu Y, Roberts AP, Paterson S, Carrol ED, Goodacre R. Bacterial discrimination by Fourier transform infrared spectroscopy, MALDI-mass spectrometry and whole-genome sequencing. Future Microbiol 2024; 19:795-810. [PMID: 38652264 PMCID: PMC11290759 DOI: 10.2217/fmb-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Aim: Proof-of-concept study, highlighting the clinical diagnostic ability of FT-IR compared with MALDI-TOF MS, combined with WGS. Materials & methods: 104 pathogenic isolates of Neisseria meningitidis, Streptococcus pneumoniae, Streptococcus pyogenes and Staphylococcus aureus were analyzed. Results: Overall prediction accuracy was 99.6% in FT-IR and 95.8% in MALDI-TOF-MS. Analysis of N. meningitidis serogroups was superior in FT-IR compared with MALDI-TOF-MS. Phylogenetic relationship of S. pyogenes was similar by FT-IR and WGS, but not S. aureus or S. pneumoniae. Clinical severity was associated with the zinc ABC transporter and DNA repair genes in S. pneumoniae and cell wall proteins (biofilm formation, antibiotic and complement permeability) in S. aureus via WGS. Conclusion: FT-IR warrants further clinical evaluation as a promising diagnostic tool.
Collapse
Affiliation(s)
- Rachel McGalliard
- Department of Clinical Infection, Microbiology & Immunology, University of Liverpool Institute of Infection, Veterinary & Ecological Sciences, Ronald Ross Building, 8 West Derby Street, Liverpool, UK
- Department of Infectious Diseases, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, UK
| | - Howbeer Muhamadali
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- center for Metabolomics Research, Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, UK
| | - Najla AlMasoud
- College of Science, Princess Nourah Bint Abdulrahman University, Department of Chemistry, Riyadh, 11671, Saudi Arabia
| | - Sam Haldenby
- center for Genomic Research, University of Liverpool, Mersey Bio Building, Crown Street, Liverpool, UK
| | - Valeria Romero-Soriano
- center for Genomic Research, University of Liverpool, Mersey Bio Building, Crown Street, Liverpool, UK
| | - Ellie Allman
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Yun Xu
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- center for Metabolomics Research, Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Steve Paterson
- center for Genomic Research, University of Liverpool, Mersey Bio Building, Crown Street, Liverpool, UK
| | - Enitan D Carrol
- Department of Clinical Infection, Microbiology & Immunology, University of Liverpool Institute of Infection, Veterinary & Ecological Sciences, Ronald Ross Building, 8 West Derby Street, Liverpool, UK
- Department of Infectious Diseases, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, UK
| | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- center for Metabolomics Research, Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, UK
| |
Collapse
|
7
|
Calderaro A, Chezzi C. MALDI-TOF MS: A Reliable Tool in the Real Life of the Clinical Microbiology Laboratory. Microorganisms 2024; 12:322. [PMID: 38399726 PMCID: PMC10892259 DOI: 10.3390/microorganisms12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Matrix-Assisted Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) in the last decade has revealed itself as a valid support in the workflow in the clinical microbiology laboratory for the identification of bacteria and fungi, demonstrating high reliability and effectiveness in this application. Its use has reduced, by 24 h, the time to obtain a microbiological diagnosis compared to conventional biochemical automatic systems. MALDI-TOF MS application to the detection of pathogens directly in clinical samples was proposed but requires a deeper investigation, whereas its application to positive blood cultures for the identification of microorganisms and the detection of antimicrobial resistance are now the most useful applications. Thanks to its rapidity, accuracy, and low price in reagents and consumables, MALDI-TOF MS has also been applied to different fields of clinical microbiology, such as the detection of antibiotic susceptibility/resistance biomarkers, the identification of aminoacidic sequences and the chemical structure of protein terminal groups, and as an emerging method in microbial typing. Some of these applications are waiting for an extensive evaluation before confirming a transfer to the routine. MALDI-TOF MS has not yet been used for the routine identification of parasites; nevertheless, studies have been reported in the last few years on its use in the identification of intestinal protozoa, Plasmodium falciparum, or ectoparasites. Innovative applications of MALDI-TOF MS to viruses' identification were also reported, seeking further studies before adapting this tool to the virus's diagnostic. This mini-review is focused on the MALDI-TOF MS application in the real life of the diagnostic microbiology laboratory.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy;
| | | |
Collapse
|
8
|
Sekiguchi Y, Teramoto K, Tourlousse DM, Ohashi A, Hamajima M, Miura D, Yamada Y, Iwamoto S, Tanaka K. A large-scale genomically predicted protein mass database enables rapid and broad-spectrum identification of bacterial and archaeal isolates by mass spectrometry. Genome Biol 2023; 24:257. [PMID: 38049850 PMCID: PMC10696839 DOI: 10.1186/s13059-023-03096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/24/2023] [Indexed: 12/06/2023] Open
Abstract
MALDI-TOF MS-based microbial identification relies on reference spectral libraries, which limits the screening of diverse isolates, including uncultured lineages. We present a new strategy for broad-spectrum identification of bacterial and archaeal isolates by MALDI-TOF MS using a large-scale database of protein masses predicted from nearly 200,000 publicly available genomes. We verify the ability of the database to identify microorganisms at the species level and below, achieving correct identification for > 90% of measured spectra. We further demonstrate its utility by identifying uncultured strains from mouse feces with metagenomics, allowing the identification of new strains by customizing the database with metagenome-assembled genomes.
Collapse
Affiliation(s)
- Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, Ibaraki, 305-8566, Japan.
| | | | - Dieter M Tourlousse
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, Ibaraki, 305-8566, Japan
| | - Akiko Ohashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, Ibaraki, 305-8566, Japan
| | - Mayu Hamajima
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, Ibaraki, 305-8566, Japan
| | - Daisuke Miura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, Ibaraki, 305-8566, Japan
| | - Yoshihiro Yamada
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| |
Collapse
|
9
|
Gao W, Han Y, Chen L, Tan X, Liu J, Xie J, Li B, Zhao H, Yu S, Tu H, Feng B, Yang F. Fusion data from FT-IR and MALDI-TOF MS result in more accurate classification of specific microbiota. Analyst 2023; 148:5650-5657. [PMID: 37800908 DOI: 10.1039/d3an01108a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Microbes are usually present as a specific microbiota, and their classification remains a challenge. MALDI-TOF MS is particularly successful in library-based microbial identification at the species level as it analyzes the molecular weight of peptides and ribosomal proteins. FT-IR allows more accurate classification of bacteria at the subspecies level due to the high sensitivity, specificity and repeatability of FT-IR signals from bacteria, which is not achievable with MALDI-TOF MS. Previous studies have shown that more accurate identification results can be obtained by the fusion of FT-IR and MALDI-TOF MS spectral data. Here, we constructed 20 groups of model microbiota samples and used FT-IR, MALDI-TOF MS, and their fusion data to classify them. Hierarchical clustering analysis (HCA) showed that the classification accuracy of FT-IR, MALDI-TOF MS, and the fusion data was 85%, 90%, and 100%, respectively. These results indicate that both FT-IR and MALDI-TOF MS can effectively classify specific microbiota, and the fusion of their spectral data could improve the classification accuracy. The FT-IR and MALDI-TOF MS data fusion strategy may be a promising technology for specific microbiota classification.
Collapse
Affiliation(s)
- Wenjing Gao
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Ying Han
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | | | - Xue Tan
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | - Jieyou Liu
- Zhuhai DL Biotech Co., Ltd, Zhuhai, Guangdong 519041, China
| | - Jinghang Xie
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Bin Li
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Huilin Zhao
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Huabin Tu
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | - Bin Feng
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| |
Collapse
|
10
|
Cuénod A, Agnetti J, Seth-Smith HMB, Roloff T, Wälchli D, Shcherbakov D, Akbergenov R, Tschudin-Sutter S, Bassetti S, Siegemund M, Nickel CH, Moran-Gilad J, Keys TG, Pflüger V, Thomson NR, Egli A. Bacterial genome-wide association study substantiates papGII of Escherichia coli as a major risk factor for urosepsis. Genome Med 2023; 15:89. [PMID: 37904175 PMCID: PMC10614358 DOI: 10.1186/s13073-023-01243-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/02/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are among the most common bacterial infections worldwide, often caused by uropathogenic Escherichia coli. Multiple bacterial virulence factors or patient characteristics have been linked separately to progressive, more invasive infections. In this study, we aim to identify pathogen- and patient-specific factors that drive the progression to urosepsis by jointly analysing bacterial and host characteristics. METHODS We analysed 1076 E. coli strains isolated from 825 clinical cases with UTI and/or bacteraemia by whole-genome sequencing (Illumina). Sequence types (STs) were determined via srst2 and capsule loci via fastKaptive. We compared the isolates from urine and blood to confirm clonality. Furthermore, we performed a bacterial genome-wide association study (bGWAS) (pyseer) using bacteraemia as the primary clinical outcome. Clinical data were collected by an electronic patient chart review. We concurrently analysed the association of the most significant bGWAS hit and important patient characteristics with the clinical endpoint bacteraemia using a generalised linear model (GLM). Finally, we designed qPCR primers and probes to detect papGII-positive E. coli strains and prospectively screened E. coli from urine samples (n = 1657) at two healthcare centres. RESULTS Our patient cohort had a median age of 75.3 years (range: 18.00-103.1) and was predominantly female (574/825, 69.6%). The bacterial phylogroups B2 (60.6%; 500/825) and D (16.6%; 137/825), which are associated with extraintestinal infections, represent the majority of the strains in our collection, many of which encode a polysaccharide capsule (63.4%; 525/825). The most frequently observed STs were ST131 (12.7%; 105/825), ST69 (11.0%; 91/825), and ST73 (10.2%; 84/825). Of interest, in 12.3% (13/106) of cases, the E. coli pairs in urine and blood were only distantly related. In line with previous bGWAS studies, we identified the gene papGII (p-value < 0.001), which encodes the adhesin subunit of the E. coli P-pilus, to be associated with 'bacteraemia' in our bGWAS. In our GLM, correcting for patient characteristics, papGII remained highly significant (odds ratio = 5.27, 95% confidence interval = [3.48, 7.97], p-value < 0.001). An independent cohort of cases which we screened for papGII-carrying E. coli at two healthcare centres further confirmed the increased relative frequency of papGII-positive strains causing invasive infection, compared to papGII-negative strains (p-value = 0.033, chi-squared test). CONCLUSIONS This study builds on previous work linking papGII with invasive infection by showing that it is a major risk factor for progression from UTI to bacteraemia that has diagnostic potential.
Collapse
Affiliation(s)
- Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.
- Parasites and Microbes, Wellcome Trust Sanger Institute, Hinxton, UK.
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland.
- Department of Microbiology and Immunology, McGill University, Montréal, Canada.
| | - Jessica Agnetti
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Helena M B Seth-Smith
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Tim Roloff
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Denise Wälchli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Dimitri Shcherbakov
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Rashid Akbergenov
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sarah Tschudin-Sutter
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Stefano Bassetti
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Martin Siegemund
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Intensive Care Unit, University Hospital Basel, Basel, Switzerland
| | - Christian H Nickel
- Emergency Department, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jacob Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Timothy G Keys
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Nicholas R Thomson
- Parasites and Microbes, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Wang X, Wu G, Han S, Yang J, He X, Li H. Differentiation and Identification of Endophytic Bacteria from Populus Based on Mass Fingerprints and Gene Sequences. Int J Mol Sci 2023; 24:13449. [PMID: 37686254 PMCID: PMC10487577 DOI: 10.3390/ijms241713449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Plant endophytic bacteria play important roles in plants' growth and resistance to stress. It is important to characterize endophytic bacteria to be able to understand their benefits. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a powerful technique for bacterial identification due to its high throughput and simple procedures. In this study, the endophytic bacteria separated from Populus (the leaves, roots and stems of Populus tomentosa Carrière; stems of Populus nigra Linn. var. nigra; and stems of Populus canadensis Moench) were identified and classified based on MALDI-TOF MS data and 16S rRNA gene sequencing. The sampling and preparation of bacteria were optimized to obtain meaningful protein mass fingerprints. The composite correlation index (CCI) values of the inter-genera and inter-species protein mass fingerprints demonstrated sufficient differences between the strains. In the CCI value matrix for ten species in the same genus, all the CCI values were less than 0.5. Among the species, 95.6% of all the CCI values were less than 0.5. After data processing, the classification capacity of the protein mass fingerprints was verified using inter-specific and inter-generic PCoA. To compare different methods' potential for differentiation and phylogenetic analysis, a dendrogram of the MS profiles and a phylogenetic tree based on the 16S rRNA gene sequences were constructed using 61 endophytic bacteria found in Populus. The clustering and grouping results show that the phylogenetic analysis based on MALDI-TOF MS is similar to that based on 16S rRNA gene sequencing. This study provides a valuable reference for differentiating and identifying endophytic bacteria according to their protein mass fingerprints.
Collapse
Affiliation(s)
- Xia Wang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (X.W.); (G.W.); (S.H.); (J.Y.)
- Department of Chemistry, MOE (Ministry of Education) Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Guanqi Wu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (X.W.); (G.W.); (S.H.); (J.Y.)
- Department of Chemistry, MOE (Ministry of Education) Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Shuo Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (X.W.); (G.W.); (S.H.); (J.Y.)
| | - Jingjing Yang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (X.W.); (G.W.); (S.H.); (J.Y.)
| | - Xiangwei He
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (X.W.); (G.W.); (S.H.); (J.Y.)
| | - Haifang Li
- Department of Chemistry, MOE (Ministry of Education) Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Celik C, Kalin G, Cetinkaya Z, Ildiz N, Ocsoy I. Recent Advances in Colorimetric Tests for the Detection of Infectious Diseases and Antimicrobial Resistance. Diagnostics (Basel) 2023; 13:2427. [PMID: 37510171 PMCID: PMC10377832 DOI: 10.3390/diagnostics13142427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Diagnosis of infection-causing microorganisms with sensitive, rapid, selective and economical diagnostic tests is critical to start the right treatment. With these tests, the spread of infections can be prevented. In addition to that, the detection of antimicrobial resistance also makes a significant contribution to public health. In recent years, different types of diagnostic tests have been developed as alternatives to traditional diagnostic tests used in clinics. In particular, colorimetric tests, which minimize the need for an instrument, have advantages owing to their cost effectiveness, rapid response and naked-eye detection and practical use. In this review, we especially focused on pH indicators and nanomaterial-based colorimetric tests in detection of infection-causing microorganisms and antimicrobial resistance.
Collapse
Affiliation(s)
- Cagla Celik
- Pharmacy Services Program, Vocational School of Health Services, Hitit University, Corum 19000, Turkey
| | - Gamze Kalin
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | | | - Nilay Ildiz
- Medical Imaging Department, Vocational School of Health Services, Bandırma Onyedi Eylul University, Bandirma 10200, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
13
|
Zhou W, Niu D, Gao S, Zhong Q, Liu C, Liao X, Cao X, Zhang Z, Zhang Y, Shen H. Prevalence, biofilm formation, and mass spectrometric characterization of linezolid-resistant Staphylococcus capitis isolated from a tertiary hospital in China. J Glob Antimicrob Resist 2023; 33:155-163. [PMID: 36724854 DOI: 10.1016/j.jgar.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES Linezolid-resistant Staphylococcus capitis (LRSC) has become a new challenge for clinical anti-infective therapy. The present study aimed to investigate the trends of LRSC prevalence in a tertiary hospital of China 2017-2020. The resistance mechanisms, virulence genes, biofilm formation, and mass spectrometric characteristics of LRSC isolates were also analysed. METHODS This study retrospectively analysed the antibiotic resistance trends of coagulase negative staphylococci (CoNS) isolated from clinical samples collected between 2017-2020. Antimicrobial resistance profiles were tested by micro-broth dilution and the E-test method. Antimicrobial resistance genes and virulence genes were detected by polymerase chain reaction, and dru-typing sequences were obtained by Sanger sequencing. Crystal violet staining in 96-well plates was used to detect biofilm formation ability. Mass spectrometric characterization of LRSC was analysed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) coupled with ClinProTools. RESULTS The linezolid resistance rate in 3575 CoNS clinical strains was 1.6%, wherein the great majority of was LRSC (91.1%, n = 51/56), with a resistant rate of 15.5% (n = 51/328) in all S. capitis isolates. In this study, 48 out of the 51 LRSC strains and 54 of 277 linezolid-susceptible S. capitis (LSSC) strains were enrolled. G2576T, C2104T, T2130A, C2163T, and T2319C mutations in the 23S rRNA V region and acquisition of cfr were the main linezolid resistant mechanisms in LRSC. The biofilm-forming ability of LRSC was more potent than LSSC, with a higher detection rate of bap (P < 0.05). Eleven mass spectrometric peaks of interest were identified by using MALDI-TOF MS and ClinProTools, which were differently distributed between LRSC and LSSC strains, with the area under the receiver operating characteristic curve of more than 0.8, especially for 5465.37 m/z. CONCLUSIONS Linezolid resistance was mediated by mutations in the 23S rRNA V region and presence of the cfr gene in LRSC strains. LRSC strains have stronger biofilm-forming ability than LSSC strains, which maybe associated with the adhesion-related gene of bap. Further, linezolid-resistant and linezolid-susceptible S. capitis could be rapidly identified with mass spectrometric characterization. To the best of our knowledge, this study is the first to document the biofilm formation ability of LRSC and the potential usefulness of MALDI-TOF MS for the discrimination of LRSC and LSSC.
Collapse
Affiliation(s)
- Wanqing Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Dongmei Niu
- Department of Laboratory Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shuo Gao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qiao Zhong
- Department of Laboratory Medicine, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, China
| | - Chang Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiwei Liao
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhifeng Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yan Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Outurquin G, Obin O, Petit A, Weiss R, Léké A, Adjidé C, Mullié C. Bacillus cereus strains from donor human milk and hospital environment: uncovering a putative common origin using comparative analysis of toxin and infra-red spectroscopy profiles. AIMS Microbiol 2023; 9:419-430. [PMID: 37649803 PMCID: PMC10462457 DOI: 10.3934/microbiol.2023022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 09/01/2023] Open
Abstract
Bacillus cereus is reported as a common cause of toxin-induced food poisoning and of contamination in pasteurized human milk donations. As various toxins can be produced by B. cereus, the aim of this work was first to investigate the toxigenic potential and profiles of 63 B. cereus isolates from Amiens Picardie human milk bank. A comparison to the toxigenic profiles of 27 environmental B. cereus isolates harvested in the hospital in which this human milk bank is situated was performed. Toxin gene prevalences were the highest for nhe (ABC) and entFM followed by cytK and hbl(ACD). A 27% prevalence was found for ces human milk isolates, which is higher than previous works reporting on pasteurized milk and dairy products. No significant differences could be found between human milk and environmental isolates regarding toxin gene prevalences and/or toxin gene profiles. The second aim was to establish whether a B. cereus cross-contamination between human milk and the environment could occur. This was achieved with the help of Fourrier-transform infra-red spectroscopy which enabled the discrimination of 2 main clusters of 11 and 8 isolates, each containing human milk and Amiens Picardie human milk bank environmental isolates. For these two clusters, the time sequence showed that human milk isolates were the first to occur and might have contaminated the milk bank environment as well as other human milk donations. Routinely used on B. cereus isolates, Fourrier-transform infra-red spectroscopy could help in rapidly detecting such clusters and in limiting the spread of a B. cereus strain that might generate rejection of pasteurized donation by the human milk bank.
Collapse
Affiliation(s)
- Gaëtan Outurquin
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Odile Obin
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Anaïs Petit
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Roxane Weiss
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - André Léké
- Lactarium–Biberonnerie, Unité des soins intensifs de néonatologie et de médecine néonatale, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Crespin Adjidé
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Catherine Mullié
- Laboratoire Hygiène Risque Biologique & Environnement, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
- Laboratoire AGIR UR UPJV 4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
15
|
Zhang YM, Tsao MF, Chang CY, Lin KT, Keller JJ, Lin HC. Rapid identification of carbapenem-resistant Klebsiella pneumoniae based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry and an artificial neural network model. J Biomed Sci 2023; 30:25. [PMID: 37069555 PMCID: PMC10108464 DOI: 10.1186/s12929-023-00918-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a clinically critical pathogen that causes severe infection. Due to improper antibiotic administration, the prevalence of CRKP infection has been increasing considerably. In recent years, the utilization of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has enabled the identification of bacterial isolates at the families and species level. Moreover, machine learning (ML) classifiers based on MALDI-TOF MS have been recently considered a novel method to detect clinical antimicrobial-resistant pathogens. METHODS A total of 2683 isolates (369 CRKP cases and 2314 carbapenem-susceptible Klebsiella pneumoniae [CSKP]) collected in the clinical laboratories of Taipei Medical University Hospital (TMUH) were included in this study, and 80% of data was split into the training data set that were submitted for the ML model. The remaining 20% of data was used as the independent data set for external validation. In this study, we established an artificial neural network (ANN) model to analyze all potential peaks on mass spectrum simultaneously. RESULTS Our artificial neural network model for detecting CRKP isolates showed the best performance of area under the receiver operating characteristic curve (AUROC = 0.91) and of area under precision-recall curve (AUPRC = 0.90). Furthermore, we proposed the top 15 potential biomarkers in probable CRKP isolates at 2480, 4967, 12,362, 12,506, 12,855, 14,790, 15,730, 16,176, 16,218, 16,758, 16,919, 17,091, 18,142, 18,998, and 19,095 Da. CONCLUSIONS Compared with the prior MALDI-TOF and machine learning studies of CRKP, the amount of data in our study was more sufficient and allowing us to conduct external validation. With better generalization abilities, our artificial neural network model can serve as a reliable screening tool for CRKP isolates in clinical practice. Integrating our model into the current workflow of clinical laboratories can assist the rapid identification of CRKP before the completion of traditional antimicrobial susceptibility testing. The combination of MADLI-TOF MS and machine learning techniques can support physicians in selecting suitable antibiotics, which has the potential to enhance the patients' outcomes and lower the prevalence of antimicrobial resistance.
Collapse
Affiliation(s)
- Yu-Ming Zhang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Fen Tsao
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ching-Yu Chang
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kuan-Ting Lin
- Department of Business Administration, National Taiwan University, Taipei, Taiwan
| | - Joseph Jordan Keller
- Western Michigan University Homer Stryker M.D. School of Medicine, Department of Psychiatry, Kalamazoo, MI, USA
| | - Hsiu-Chen Lin
- Department of Clinical Pathology, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing St, Taipei, 11031, Taiwan.
| |
Collapse
|
16
|
Jarzembowski T, Piechowicz L, Bronk M, Pałubicka A, Naumiuk Ł. Changes in the Protein Profile in Staphylococcal Strains from Patients Infected with the SARS-CoV-2 Virus. Pol J Microbiol 2023; 72:93-99. [PMID: 36803915 DOI: 10.33073/pjm-2023-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/03/2022] [Indexed: 02/22/2023] Open
Abstract
Staphylococcus aureus strains are particularly often isolated from patients with SARS-CoV-2 infection. The aim of the current research was to determine whether the SARS-CoV-2 virus infection affects the protein profile of S. aureus. Bacteria were isolated from the forty swabs collected from the patients in the hospitals of the Pomeranian region. MALDI-TOF MS spectra were obtained using a Microflex LT instrument. Twenty-nine peaks were identified. The peak (2,430) is described here for the first time and was unique for the isolates from patients infected with the SARS-CoV-2 virus. These results support the hypothesis of bacterial adaptation to the conditions caused by viral infection.
Collapse
Affiliation(s)
- Tomasz Jarzembowski
- 1Department of Medical of Microbiology, Medical Faculty, Medical University of Gdansk, Gdansk, Poland
| | - Lidia Piechowicz
- 1Department of Medical of Microbiology, Medical Faculty, Medical University of Gdansk, Gdansk, Poland
| | - Marek Bronk
- 2Department of Clinical Microbiology, Hospital of the Medical University of Gdansk, Gdansk, Poland
| | - Anna Pałubicka
- 3Specialist Hospital in Koscierzyna Sp. z o.o., Department of Laboratory and Microbiological Diagnostics, Koscierzyna, Poland
| | - Łukasz Naumiuk
- 2Department of Clinical Microbiology, Hospital of the Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
17
|
Jun SY, Kim YA, Lee SJ, Jung WW, Kim HS, Kim SS, Kim H, Yong D, Lee K. Performance Comparison Between Fourier-Transform Infrared Spectroscopy-based IR Biotyper and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for Strain Diversity. Ann Lab Med 2023; 43:174-179. [PMID: 36281511 PMCID: PMC9618903 DOI: 10.3343/alm.2023.43.2.174] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/30/2022] [Accepted: 09/29/2022] [Indexed: 12/27/2022] Open
Abstract
Background Development of an accessible method to routinely evaluate the clonality of strains is needed in microbiology laboratories. We compared the discriminatory power of the Fourier-transform infrared (FTIR) spectroscopy-based IR Biotyper (Bruker Daltonics GmbH, Bremen, Germany) to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), using whole-genome sequencing (WGS) as the reference method. Methods Eighty-three extended-spectrum β-lactamase-producing Escherichia coli isolates were tested using WGS, MALDI-TOF MS, and IR Biotyper. Simpson's diversity index (SDI), a statistical analysis for testing the homogeneity of a dendrogram, and the adjusted Rand index (aRI) were used to compare the discriminatory ability between typing tests. Results The SDI (95% confidence interval) was 0.969 (0.952-0.985) for WGS, 0.865 (0.807-0.924) for MALDI-TOF MS, and 0.974 (0.965-0.983) for IR Biotyper. Compared with WGS, IR Biotyper showed compatible diversity, whereas MALDI-TOF MS did not. The concordance and aRI improved from 66.3% to 84.3% and from 0.173 to 0.538, respectively, for IR Biotyper versus MALDI-TOF MS with WGS as the reference method. IR Biotyper showed substantially improved performance in strain typing compared with MALDI-TOF MS. Conclusions IR Biotyper is useful for diversity analysis with improved discriminatory power over MALDI-TOF MS in comparison with WGS as a reference method. IR Biotyper is an accessible method to evaluate the clonality of strains and could be applied in epidemiological analysis during an outbreak of a health care facility, as well as for research on the transmission of resistant bacteria in community settings.
Collapse
Affiliation(s)
- Son Young Jun
- Department of Laboratory Medicine, National Insurance Service Ilsan Hospital, Goyang, Korea
| | - Young Ah Kim
- Department of Laboratory Medicine, National Insurance Service Ilsan Hospital, Goyang, Korea
| | - Suk-Jun Lee
- Department of Biomedical Laboratory Science, Cheongju University, Cheongju, Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, Cheongju University, Cheongju, Korea
| | - Hyun-Sook Kim
- Department of Biomedical Laboratory Science, Cheongju University, Cheongju, Korea
| | - Sung-Soo Kim
- Department of Health Administration & Healthcare, Cheongju University, Cheongju, Korea
| | - Hyunsoo Kim
- Department of Laboratory Medicine, National Police Hospital, Seoul, Korea
| | - Dongeun Yong
- Research Institute of Bacterial Resistance and Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungwon Lee
- Research Institute of Bacterial Resistance and Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea.,Seoul Clinical Laboratories, Yongin, Korea
| |
Collapse
|
18
|
Osińska A, Korzeniewska E, Korzeniowska-Kowal A, Wzorek A, Harnisz M, Jachimowicz P, Buta-Hubeny M, Zieliński W. The challenges in the identification of Escherichia coli from environmental samples and their genetic characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11572-11583. [PMID: 36094711 PMCID: PMC9898413 DOI: 10.1007/s11356-022-22870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Escherichia coli bacteria are an essential indicator in evaluations of environmental pollution, which is why they must be correctly identified. This study aimed to determine the applicability of various methods for identifying E. coli strains in environmental samples. Bacterial strains preliminary selected on mFc and Chromocult media as E. coli were identified using MALDI Biotyper techniques, based on the presence of genes characteristic of E. coli (uidA, uspA, yaiO), as well as by 16S rRNA gene sequencing. The virulence and antibiotic resistance genes pattern of bacterial strains were also analyzed to investigate the prevalence of factors that may indicate adaptation to unsupportive environmental conditions and could have any significance in further identification of E. coli. Of the strains that had been initially identified as E. coli with culture-based methods, 36-81% were classified as E. coli with the use of selected techniques. The value of Cohen's kappa revealed the highest degree of agreement between the results of 16S rRNA gene sequencing, the results obtained in the MALDI Biotyper system, and the results of the analysis based on the presence of the yaiO gene. The results of this study could help in the selection of more accurate and reliable methods which can be used in a preliminary screening and more precise identification of E. coli isolated from environmental samples.
Collapse
Affiliation(s)
- Adriana Osińska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Anna Wzorek
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Piotr Jachimowicz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| |
Collapse
|
19
|
Sahayasheela VJ, Lankadasari MB, Dan VM, Dastager SG, Pandian GN, Sugiyama H. Artificial intelligence in microbial natural product drug discovery: current and emerging role. Nat Prod Rep 2022; 39:2215-2230. [PMID: 36017693 PMCID: PMC9931531 DOI: 10.1039/d2np00035k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: up to the end of 2022Microorganisms are exceptional sources of a wide array of unique natural products and play a significant role in drug discovery. During the golden era, several life-saving antibiotics and anticancer agents were isolated from microbes; moreover, they are still widely used. However, difficulties in the isolation methods and repeated discoveries of the same molecules have caused a setback in the past. Artificial intelligence (AI) has had a profound impact on various research fields, and its application allows the effective performance of data analyses and predictions. With the advances in omics, it is possible to obtain a wealth of information for the identification, isolation, and target prediction of secondary metabolites. In this review, we discuss drug discovery based on natural products from microorganisms with the help of AI and machine learning.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan.
| | - Manendra B Lankadasari
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vipin Mohan Dan
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Syed G Dastager
- NCIM Resource Centre, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Pune, Maharashtra, India
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan.
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Ramadan AA. Bacterial typing methods from past to present: A comprehensive overview. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Bacterial diversity of loggerhead and green turtle eggs from two major nesting beaches from the Turkish coast of the Mediterranean. Arch Microbiol 2022; 204:682. [DOI: 10.1007/s00203-022-03292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
22
|
Desoky ESM, Rady MM, Nader MM, Mostafa NG, Elrys AS, Mathai A, AbuQamar SF, El-Tarabily KA, El-Saadony MT. Integrated application of bacterial carbonate precipitation and silicon nanoparticles enhances productivity, physiological attributes, and antioxidant defenses of wheat ( Triticum aestivum L.) under semi-arid conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:947949. [PMID: 36388534 PMCID: PMC9641219 DOI: 10.3389/fpls.2022.947949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The use of calcium carbonate-precipitating bacteria (CCPB) has become a well-established ground-improvement technique. However, the effect of the interaction of CCPB with nanoparticles (NPs) on plant performance is still meager. In this study, we aimed at evaluating the role of CCPB and/or silicon NPs (Si-NPs) on the growth, physio-biochemical traits, and antioxidative defense of wheat (Triticum aestivum L.) under semi-arid environmental conditions. A 2-year pot experiment was carried out to determine the improvement of the sandy soil inoculated with CCPB and the foliar application of Si-NPs on wheat plants. We tested the following treatments: spraying plants with 1.0 or 1.5 mM Si-NPs (control = 0 mM Si-NPs), soil inoculated with Bacillus lichenforms (MA16), Bacillus megaterium (MA27), or Bacillus subtilis (MA34), and the interaction of individual Bacillus species with Si-NPs. Our results showed that soil inoculation with any of the three isolated CCPB and/or foliar application of Si-NPs at the rates of 1.0 or 1.5 mM significantly improved (p ≤ 0.05) the physiological and biochemical attributes as well as the enzymatic antioxidant activities of wheat plants. Therefore, the combined treatments of CCPB + Si-NPs were more effective in enhancing physio-biochemical characteristics and enzymatic antioxidant activities than the individual treatments of CCPB or Si-NPs, thus achieving the best performance in the treatment of MA34 + 1.5 mM Si-NPs. Our results demonstrated that the co-application of CCPB and Si-NPs, particularly MA34 + 1.5 mM Si-NPs, considerably activated the antioxidant defense system to mitigate the adverse effects of oxidative stress, thus increasing tolerance and enhancing the production of wheat plants in sandy soils under semi-arid environmental conditions.
Collapse
Affiliation(s)
- El-Sayed M. Desoky
- Department of Botany, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mostafa M. Rady
- Department of Botany, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Maha M. Nader
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Nadeen G. Mostafa
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed S. Elrys
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Archana Mathai
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
23
|
Li D, Yi J, Han G, Qiao L. MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS MEASUREMENT SCIENCE AU 2022; 2:385-404. [PMID: 36785658 PMCID: PMC9885950 DOI: 10.1021/acsmeasuresciau.2c00019] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 05/04/2023]
Abstract
In the decade after being awarded the Nobel Prize in Chemistry in 2002, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been widely used as an analytical chemistry tool for the detection of large and small molecules (e.g., polymers, proteins, peptides, nucleic acids, amino acids, lipids, etc.) and for clinical analysis and research (e.g., pathogen identification, genetic disorders screening, cancer diagnosis, etc.). In view of the fast development of MALDI-TOF MS in clinical usage, this review systematically summarizes the most important applications of MALDI-TOF MS in clinical analysis and research by analyzing MALDI TOF MS-related reviews collected in the Web of Science database. On the basis of the analysis of keyword co-occurrence of over 2000 review articles, four themes consisting of "pathogen identification", "disease diagnosis", "nucleic acids analysis", and "small molecules analysis" were found. For each theme, the review further outlined their application implications, analytical methods, and systems as well as limitations that need to be addressed. Overall, the review summarizes and elaborates on the clinical applications of MALDI-TOF MS, providing a comprehensive picture for researchers embarking on MALDI TOF MS-related clinical analysis and research.
Collapse
|
24
|
Horká M, Růžička F, Siváková A, Karásek P, Šalplachta J, Pantůček R, Roth M. Capillary electrophoretic methods for classification of methicillin-resistant Staphylococcus aureus (MRSA) clones. Anal Chim Acta 2022; 1227:340305. [DOI: 10.1016/j.aca.2022.340305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022]
|
25
|
Chiquet C, Bron AM, Lundström M, Maurin M. Acute postoperative endophthalmitis: Microbiology from the laboratory to the bedside. Surv Ophthalmol 2022; 67:1698-1710. [PMID: 35843367 DOI: 10.1016/j.survophthal.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Postoperative endophthalmitis is a dreaded complication of intraocular surgery. Acute presentations need prompt management and good knowledge of differential diagnoses. In the last 10 years, progress in direct microbial detection and identification from intraocular samples included the use of blood culture systems and, more recently, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, improving the rate of bacterial identification. Whatever the method used, diagnostic sensitivity is better for vitreous samples than for aqueous humor samples. Besides, molecular biology techniques have further improved the identification rate of infectious agents in intraocular samples. They also provide faster results compared to culture-based techniques. Quantitative real-time PCR (qPCR) can also determine the bacterial load in intraocular samples. Several studies have shown that intraocular bacterial loads in endophthalmitis patients are usually high, which helps differentiating infection from contamination. The prognostic value of qPCR remains to be validated. Whole genome DNA sequencing technologies facilitate direct and sequencing of single DNA molecules. They have the potential to increase the rate of microbiological identification. Some antibiotic resistance markers (e.g., methicillin resistance in staphylococci and vancomycin resistance in enterococci) may be detected earlier using molecular techniques (usually real-time PCR tests). Early determination of the involved microorganism and their antibiotic resistances can help establishing an earlier therapeutic strategy.
Collapse
Affiliation(s)
- Christophe Chiquet
- Department of Ophthalmology, University Hospital of Grenoble, France; Grenoble Alpes University, Grenoble, France; HP2 Laboratory, INSERM U1042, University Grenoble Alpes, Grenoble, France.
| | - Alain M Bron
- Department of Ophthalmology, University Hospital, Dijon, France; Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Mats Lundström
- Department of Clinical Sciences, Ophthalmology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Max Maurin
- Laboratoire de Bactériologie, Institut de Biologie et Pathologie, CHU, Grenoble, Alpes; University Grenoble Alpes, CNRS, Grenoble, INP; CHU Grenoble Alpes, TIMC-IMAG, 38000, Grenoble, France
| |
Collapse
|
26
|
Sogawa K, Ishizaki N, Ishige T, Murata S, Taniguchi T, Furuhata K. Evaluation of Serotyping of Environmental and Clinical Isolates of Legionella pneumophila using MALDI-TOF MS. Biocontrol Sci 2022; 27:81-86. [PMID: 35753796 DOI: 10.4265/bio.27.81] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Legionella pneumophila (L. pneumophila) is responsible for most Legionnaire's disease cases diagnosed worldwide. The species includes 16 serogroups, but most Legionnaire's disease cases (85.7% in Europe, 87.0% in Japan) are caused by L. pneumophila serogroup 1. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can be used to identify the L. pneumophila serogroup. In this study, we compared three sample preparation methods that are compatible with MALDI-TOF MS: the direct colony transfer method (DCTM), on-target extraction method (OTEM), and in-tube extraction method (ITEM). The aim was to improve the low identification rates for L. pneumophila, and establish and validate a simple, rapid and robust MALDI-TOF MS-based method for routine use in microbiological laboratories for assignment of L. pneumophila isolates to serogroups and identification of reliable peak biomarkers. Using ITEM, 100.0% (29/29) of hot spring water samples and clinical isolates were correctly identified at the species level. Augmented reference spectra correctly identified all 29 strains at the species level and 29 isolates at the serogroup level, displaying sensitivity, specificity and accuracy of 100.0% for serogroup assignment. MALDI-TOF MS is a relatively inexpensive method for assignment of L. pneumophila serogroups that can serve as a first-line tool for rapid prospective typing.
Collapse
Affiliation(s)
- Kazuyuki Sogawa
- Department of Biochemistry, School of Life and Environmental Science, Azabu University
| | - Naoto Ishizaki
- Department of Microbiology, School of Life and Environmental Science, Azabu University
| | - Takayuki Ishige
- Department of Clinical Laboratory, Chiba University Hospital
| | - Syota Murata
- Department of Clinical Laboratory, Chiba University Hospital
| | | | - Katsunori Furuhata
- Department of Microbiology, School of Life and Environmental Science, Azabu University
| |
Collapse
|
27
|
Santos M, Mariz M, Tiago I, Martins J, Alarico S, Ferreira P. A review on urinary tract infections diagnostic methods: Laboratory-based and point-of-care approaches. J Pharm Biomed Anal 2022; 219:114889. [PMID: 35724611 DOI: 10.1016/j.jpba.2022.114889] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/18/2022] [Accepted: 06/11/2022] [Indexed: 02/07/2023]
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases worldwide. This type of infections can be healthcare-associated or community-acquired and affects millions of people every year. Different diagnostic procedures are available to detect pathogens in urine and they can be divided into two main categories: laboratory-based and point-of-care (POC) detection techniques. Traditional methodologies are often time-consuming, thus, achieving a rapid and accurate identification of pathogens is a challenging feature that has been pursued by many research groups and companies operating in this area. The purpose of this review is to compare and highlight advantages and disadvantages of the traditional and currently most used detection methods, as well as the emerging POC approaches and the relevant advances in on-site detection of pathogens´ mechanisms, suitable to be adapted to UTI diagnosis. Lately, the commercially available UTI self-testing kits and devices are helping in the diagnosis of urinary infections as patients or care givers are able to perform the test, easily and comfortably at home and, upon the result, decide when to attend an appointment/Urgent Health Care Unit.
Collapse
Affiliation(s)
- Marta Santos
- CIEPQPF, Chemical Engineering Department, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Marcos Mariz
- CIEPQPF, Chemical Engineering Department, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Igor Tiago
- CFE, Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Jimmy Martins
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Susana Alarico
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC, Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Paula Ferreira
- CIEPQPF, Chemical Engineering Department, University of Coimbra, 3030-790 Coimbra, Portugal; Department of Chemical and Biological Engineering, Coimbra Institute of Engineering, 3030-199 Coimbra, Portugal.
| |
Collapse
|
28
|
An ultrasensitive and dual-recognition SERS biosensor based on Fe3O4@Au-Teicoplanin and aptamer functionalized Au@Ag nanoparticles for detection of Staphylococcus aureus. Talanta 2022; 250:123648. [DOI: 10.1016/j.talanta.2022.123648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022]
|
29
|
Kontopodi E, Hettinga K, Stahl B, van Goudoever JB, M van Elburg R. Testing the effects of processing on donor human Milk: Analytical methods. Food Chem 2022; 373:131413. [PMID: 34700038 DOI: 10.1016/j.foodchem.2021.131413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/01/2023]
Abstract
Holder pasteurization is the current recommended method for donor human milk treatment. This method effectively eliminates most life-threatening contaminants in donor milk, but it also greatly reduces some of its biological properties. Consequently, there is a growing interest for developing novel processing methods that can ensure both microbial inactivation and a higher retention of the functional components of donor milk. Our aim was to offer a comprehensive overview of the analytical techniques available for the evaluation of such methods. To suggest an efficient workflow for the analysis of processed donor milk, a safety analytical panel as well as a nutritional value and functionality analytical panel are discussed, together with the principles, benefits, and drawbacks of the available techniques. Concluding on the suitability of a novel method requires a multifactorial approach which can be achieved by a combination of analytical targets and by using complementary assays to cross-validate the obtained results.
Collapse
Affiliation(s)
- Eva Kontopodi
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Human Milk Bank, Amsterdam, the Netherlands; Food Quality and Design Group, Wageningen University & Research, the Netherlands.
| | - Kasper Hettinga
- Food Quality and Design Group, Wageningen University & Research, the Netherlands
| | - Bernd Stahl
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Danone Nutricia Research, Utrecht, the Netherlands
| | - Johannes B van Goudoever
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Human Milk Bank, Amsterdam, the Netherlands
| | - Ruurd M van Elburg
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Human Milk Bank, Amsterdam, the Netherlands
| |
Collapse
|
30
|
van den Beld MJC, Rossen JWA, Evers N, Kooistra-Smid MAMD, Reubsaet FAG. MALDI-TOF MS Using a Custom-Made Database, Biomarker Assignment, or Mathematical Classifiers Does Not Differentiate Shigella spp. and Escherichia coli. Microorganisms 2022; 10:microorganisms10020435. [PMID: 35208889 PMCID: PMC8878589 DOI: 10.3390/microorganisms10020435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/22/2022] Open
Abstract
Shigella spp. and E. coli are closely related and cannot be distinguished using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) with commercially available databases. Here, three alternative approaches using MALDI-TOF MS to identify and distinguish Shigella spp., E. coli, and its pathotype EIEC were explored and evaluated using spectra of 456 Shigella spp., 42 E. coli, and 61 EIEC isolates. Identification with a custom-made database resulted in >94% Shigella identified at the genus level and >91% S. sonnei and S. flexneri at the species level, but the distinction of S. dysenteriae, S. boydii, and E. coli was poor. With biomarker assignment, 98% S. sonnei isolates were correctly identified, although specificity was low. Discriminating markers for S. dysenteriae, S. boydii, and E. coli were not assigned at all. Classification models using machine learning correctly identified Shigella in 96% of isolates, but most E. coli isolates were also assigned to Shigella. None of the proposed alternative approaches were suitable for clinical diagnostics for identifying Shigella spp., E. coli, and EIEC, reflecting their relatedness and taxonomical classification. We suggest the use of MALDI-TOF MS for the identification of the Shigella spp./E. coli complex, but other tests should be used for distinction.
Collapse
Affiliation(s)
- Maaike J. C. van den Beld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (N.E.); (F.A.G.R.)
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.W.A.R.); (M.A.M.D.K.-S.)
- Correspondence: ; Tel.: +31-88-689-3454
| | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.W.A.R.); (M.A.M.D.K.-S.)
- Department of Pathology, University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT 84132, USA
- Laboratory of Clinical Microbiology and Infectious Diseases, Isala Hospital, Dr. Van Heesweg 2, 8025 AB Zwolle, The Netherlands
| | - Noah Evers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (N.E.); (F.A.G.R.)
| | - Mirjam A. M. D. Kooistra-Smid
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.W.A.R.); (M.A.M.D.K.-S.)
- Department of Medical Microbiology, Certe, Van Swietenlaan 2, 9728 NZ Groningen, The Netherlands
| | - Frans A. G. Reubsaet
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (N.E.); (F.A.G.R.)
| |
Collapse
|
31
|
El-Ashry RM, El-Saadony MT, El-Sobki AE, El-Tahan AM, Al-Otaibi S, El-Shehawi AM, Saad AM, Elshaer N. Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant. Saudi J Biol Sci 2022; 29:920-932. [PMID: 35197760 PMCID: PMC8848026 DOI: 10.1016/j.sjbs.2021.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Nemours effective management tactics were used to reduce world crop losses caused by plant-parasitic nematodes. Nowadays the metallic nanoparticles are easily developed with desired size and shape. Nanoparticles (NPs) technology becomes a recognized need for researchers. Ecofriendly and biosafe SiNPs are developed from microorganisms. Recently, silicon nanoparticles (SiNPs) have gained novel pesticide properties against numerous agricultural pests. This study assessed the biosynthesis of SiNPs from Fusarium oxysporum SM5. The obtained SiNPs were spherical with a size of 45 nm and a negative charge of -25.65. The nematocidal effect of SiNPs against egg hatching and second-stage juveniles (J2) of root-knot nematode (RKN) (Meloidogyne incognita) was evaluated on eggplant,Solanum melongena L. plants. In vitro, all tested SiNPs concentrations significantly (p ≤ 0.05) inhibited the percentage of egg hatching at a different time of exposure than control. Meanwhile, after 72 h, the percent mortality of J2 ranged from 87.00 % to 98.50 %, with SiNPs (100 and 200 ppm). The combination between SiNPs and the half-recommended doses (0.5 RD) of commercial nematicides namely, fenamiphos (Femax 40 % EC)R, nemathorin (Fosthiazate 10 % WG) R, and fosthiazate (krenkel 75 % EC) R confirmed the increase of egg hatching inhibition and J2 mortality after exposure to SiNPs (100 ppm) mixed with 0.5 RD of synthetic nematicides. The findings suggest that the combination between SiNPs, and 0.5 RD of nematicides reduced nematode reproduction, gall formation, egg masses on roots and final population of J2 in the soil. Therefore, improving the plant growth parameters by reducing the M. incognita population.
Collapse
Affiliation(s)
- Ramadan M. El-Ashry
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed E.A. El-Sobki
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Saad Al-Otaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Nashwa Elshaer
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| |
Collapse
|
32
|
COSTA LETÍCIADAF, FALCÃO DAIANEA, GRASSOTTI TIELAT, CHRISTIANO FRANCIELED, FRAZZON JEVERSON, FRAZZON ANAPAULAG. Antimicrobial resistance of enterococci isolated from food in South Brazil: Comparing pre- and post-RDC 20/2011. AN ACAD BRAS CIENC 2022; 94:e20201765. [DOI: 10.1590/0001-3765202220201765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/15/2021] [Indexed: 11/22/2022] Open
|
33
|
Sandy-Hodgetts K, Andersen CA, Al-Jalodi O, Serena L, Teimouri C, Serena TE. Uncovering the high prevalence of bacterial burden in surgical site wounds with point-of-care fluorescence imaging. Int Wound J 2021; 19:1438-1448. [PMID: 34962067 PMCID: PMC9493216 DOI: 10.1111/iwj.13737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 01/21/2023] Open
Abstract
Detection of bacterial burden within or near surgical wounds is critical to reducing the occurrence of surgical site infection (SSI). A distinct lack of reliable methods to identify postoperative bioburden has forced reliance on clinical signs and symptoms of infection (CSS). As a result, infection management has been reactive, rather than proactive. Fluorescence imaging of bacterial burden (FL) is positioned to potentially flip that paradigm. This post hoc analysis evaluated 58 imaged and biopsied surgical site wounds from the multi‐centre fluorescence imaging assessment and guidance clinical trial. Diagnostic accuracy measures of CSS and FL were evaluated. A reader study investigated the impact of advanced image interpretation experience on imaging sensitivity. Forty‐four of fifty‐eight surgical site wounds (75.8%) had bacterial loads >104 CFU/g (median = 3.11 × 105 CFU/g); however, only 3 of 44 were CSS positive (sensitivity of 6.8%). FL improved sensitivity of bacterial detection by 5.7‐fold compared with CSS alone (P = .0005). Sensitivity improved by 11.3‐fold over CSS among clinicians highly experienced with FL interpretation (P < .0001). Surgical sites that reach the stage of referral to a wound specialist frequently harbour asymptomatic high bacterial loads that delay healing and increase infection risk. Advanced imaging of pathological bacterial burden improves surgical site monitoring and may reduce the rate of SSIs.
Collapse
Affiliation(s)
- Kylie Sandy-Hodgetts
- School of Biomedical Sciences, Pathology and Laboratory Science, University of Western Australia, Perth, Western Australia, Australia.,Centre for Molecular Medicine & Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| | - Charles A Andersen
- Wound Care Clinic, Madigan Army Medical Center, Joint Base Lewis-McChord, Renton, Washington, USA
| | - Omar Al-Jalodi
- SerenaGroup Research Foundation, Cambridge, Massachusetts, USA
| | - Laura Serena
- SerenaGroup Research Foundation, Cambridge, Massachusetts, USA
| | | | - Thomas E Serena
- SerenaGroup Research Foundation, Cambridge, Massachusetts, USA
| |
Collapse
|
34
|
Taguchi T, Ishikawa M, Ichikawa M, Tadenuma T, Hirakawa Y, Yoshino T, Maeda Y, Takeuchi H, Nojima D, Tanaami T, Matsunaga T, Tanaka T. Amplification-free detection of bacterial genes using a signaling probe-based DNA microarray. Biosens Bioelectron 2021; 194:113659. [PMID: 34571443 DOI: 10.1016/j.bios.2021.113659] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/31/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022]
Abstract
In this study, we developed a novel DNA microarray system that does not require fluorophore-labeling, amplification, or washing of the target nucleic acid fragments. Two types of DNA probes (so-called "signaling probes") labeled with a fluorescence dye (Cy3) and quencher molecule (BHQ2) were spotted on the DNA microarray such that fluorescent signals of Cy3 could be quenched by BHQ2 due to duplex formation between the probes. The addition of the target DNA or RNA fragments disrupted the duplex formed by the probes, resulting in the generation of fluorescence signals. We examined the assay conditions of the signaling probe-based DNA microarray, including the design of the probes, hybridization temperatures, and methods for fragmentation of target molecules. Since this approach does not require time-consuming processes, including labeling, amplification, and washing, the assay achieved specific detection of 16S rDNA and 16S rRNA extracted from Escherichia coli within 60 min, which was significantly rapid compared to conventional PCR-dependent DNA microarrays.
Collapse
Affiliation(s)
- Tomoyuki Taguchi
- Yokogawa Electric Corporation, 2-9-32, Naka-cho, Musashino-shi, Tokyo, 180-8750, Japan
| | - Machi Ishikawa
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Momoko Ichikawa
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Takashi Tadenuma
- Yokogawa Electric Corporation, 2-9-32, Naka-cho, Musashino-shi, Tokyo, 180-8750, Japan
| | - Yuko Hirakawa
- Yokogawa Electric Corporation, 2-9-32, Naka-cho, Musashino-shi, Tokyo, 180-8750, Japan; Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hiyori Takeuchi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Daisuke Nojima
- Yokogawa Electric Corporation, 2-9-32, Naka-cho, Musashino-shi, Tokyo, 180-8750, Japan
| | - Takeo Tanaami
- Yokogawa Electric Corporation, 2-9-32, Naka-cho, Musashino-shi, Tokyo, 180-8750, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan; Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
35
|
Huang Y, Li J, Wang Q, Tang K, Li C. Rapid detection of KPC-producing Klebsiella pneumoniae in China based on MALDI-TOF MS. J Microbiol Methods 2021; 192:106385. [PMID: 34843862 DOI: 10.1016/j.mimet.2021.106385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) represent a serious threat to public health and their timely detection is essential for patient management and the prevention of nosocomial infections. Here, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to rapidly identify dominant KPC-Kp in China, by using an automated detection of a KPC-specific peak (at 4521 m/z) by a genetic algorithm using ClinProTools software. Whole-genome sequencing (WGS) was used to understand the genetic environment of the blaKPC-2 gene. In this study, we analyzed 235 K. pneumoniae Chinese clinical isolates, of which 175 (93 KPC-positive isolates and 82 KPC-negative isolates) isolates were used to build a model to select a KPC-specific peak, and another 60 isolates for external validation. In addition, all the spectra were visually inspected by the FlexAnalysis software to evaluate the accuracy of the automated detection. The results showed a 4521 m/z peak found in all blaKPC-2-positive isolates but absent in blaKPC-2-negative isolates. Interestingly, all KPC-Kp belonged to ST11, the dominant clone in China. WGS analysis of a representative isolate showed that the genetic environment of KPC-2 was IS26-ISKpn27-blaKPC-2-ΔISKpn6-Tn1721, similar to the KPC-2 genetic environment of ST11 KPC-Kp previously reported in China. Therefore, the 4521 m/z peak is closely related to ST11 KPC-Kp. In summary, we used MALDI-TOF MS to quickly detect KPC-Kp in the process of routine bacterial identification without increasing costs or requiring further knowledge, which has broad application prospects in drug resistance analysis and infection control.
Collapse
Affiliation(s)
- Yun Huang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Juan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qianyu Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Kewen Tang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Congrong Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
36
|
Li G, Lin P, Wang K, Gu CC, Kusari S. Artificial intelligence-guided discovery of anticancer lead compounds from plants and associated microorganisms. Trends Cancer 2021; 8:65-80. [PMID: 34750090 DOI: 10.1016/j.trecan.2021.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022]
Abstract
Plants and associated microorganisms are essential sources of natural products against human cancer diseases, partly exemplified by plant-derived anticancer drugs such as Taxol (paclitaxel). Natural products provide diverse mechanisms of action and can be used directly or as prodrugs for further anticancer optimization. Despite the success, major bottlenecks can delay anticancer lead discovery and implementation. Recent advances in sequencing and omics-related technology have provided a mine of information for developing new therapeutics from natural products. Artificial intelligence (AI), including machine learning (ML), has offered powerful techniques for extensive data analysis and prediction-making in anticancer leads discovery. This review presents an overview of current AI-guided solutions to discover anticancer lead compounds, focusing on natural products from plants and associated microorganisms.
Collapse
Affiliation(s)
- Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China.
| | - Ping Lin
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Ke Wang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Chen-Chen Gu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Souvik Kusari
- Center for Mass Spectrometry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund 44227, Germany.
| |
Collapse
|
37
|
Taban BM, Numanoglu Cevik Y. The efficiency of MALDI-TOF MS method in detecting Staphylococcus aureus isolated from raw milk and artisanal dairy foods. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1977392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Birce Mercanoglu Taban
- Dairy Technology Department, Faculty of Agriculture, Veterinary and Agriculture Campus, Ankara University, Diskapi, Ankara, Turkey
| | - Yasemin Numanoglu Cevik
- Microbiology and Reference Laboratory and Biological Products Department, General Directorate of Public Health, Ministry of Health, Ankara, Turkey
| |
Collapse
|
38
|
Reducing time in detection of Listeria monocytogenes from food by MALDI-TOF mass spectrometry. Journal of Food Science and Technology 2021; 58:4102-4109. [PMID: 34538894 DOI: 10.1007/s13197-020-04869-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/28/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
In this study, direct detection of L. monocytogenes from liquid culture and enrichment broths containing foods was investigated by using MALDI-TOF MS. For determining the sole effect of food constituents on detection and accuracy of identification in enrichment broths, sterile foods were used before the experiments with food. L. monocytogenes could be detected in BHI broth after 24 h of incubation. Detection period was determined as 18 h for 3 × 101 cfu/mL initial bacterial count in BHI broth containing sterile food. The period extended in ONE broth containing sterile garnish, which was 24 and 30 h for 3 × 101 and 1 cfu/mL inoculum, respectively. It was found that identification times in UHT milk were longer than that of canned garnish. In the experiments performed with foods having a specific microbiota; White cheese, iceberg lettuce, parsley and watermelon were used. Although no reliable identification was obtained by using White cheese, iceberg lettuce and parsley, L. monocytogenes could be detected in 24 h in the enrichment broth containing watermelon. Detection was achieved during a single step enrichment in a reduced time of 24 h for even 1 cfu/mL initial inoculum.
Collapse
|
39
|
Microbial Reduction of Fumonisin B1 by the New Isolate Serratia marcescens 329-2. Toxins (Basel) 2021; 13:toxins13090638. [PMID: 34564642 PMCID: PMC8473028 DOI: 10.3390/toxins13090638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
The mycotoxin fumonisin (FB) has become a major problem in maize products in southeastern Asia. Fumonisin can affect the health of humans and many animals. Fumonisin contamination can be reduced by detoxifying microbial enzyme. Screening of 95 potent natural sources resulted in 5.3% of samples yielding a total of five bacterial isolates that were a promising solution, reducing approximately 10.0-30.0% of fumonisin B1 (FB1). Serratia marcescens, one of the dominant degrading bacteria, was identified with Gram staining, 16S rRNA gene, and MALDI-TOF/TOF MS. Cell-free extract showed the highest fumonisin reduction rates, 30.3% in solution and 37.0% in maize. Crude proteins from bacterial cells were analyzed with a label-free quantification technique. The results showed that hydrolase enzymes and transferase enzymes that can cooperate in the fumonisin degradation process were highly expressed in comparison to their levels in a control. These studies have shown that S. marcescens 329-2 is a new potential bacterium for FB1 reduction, and the production of FB1-reducing enzymes should be further explored.
Collapse
|
40
|
Desiderato CK, Sachsenmaier S, Ovchinnikov KV, Stohr J, Jacksch S, Desef DN, Crauwels P, Egert M, Diep DB, Goldbeck O, Riedel CU. Identification of Potential Probiotics Producing Bacteriocins Active against Listeria monocytogenes by a Combination of Screening Tools. Int J Mol Sci 2021; 22:ijms22168615. [PMID: 34445321 PMCID: PMC8395247 DOI: 10.3390/ijms22168615] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is an important food-borne pathogen and a serious concern to food industries. Bacteriocins are antimicrobial peptides produced naturally by a wide range of bacteria mostly belonging to the group of lactic acid bacteria (LAB), which also comprises many strains used as starter cultures or probiotic supplements. Consequently, multifunctional strains that produce bacteriocins are an attractive approach to combine a green-label approach for food preservation with an important probiotic trait. Here, a collection of bacterial isolates from raw cow's milk was typed by 16S rRNA gene sequencing and MALDI-Biotyping and supernatants were screened for the production of antimicrobial compounds. Screening was performed with live Listeria monocytogenes biosensors using a growth-dependent assay and pHluorin, a pH-dependent protein reporting membrane damage. Purification by cation exchange chromatography and further investigation of the active compounds in supernatants of two isolates belonging to the species Pediococcus acidilactici and Lactococcus garvieae suggest that their antimicrobial activity is related to heat-stable proteins/peptides that presumably belong to the class IIa bacteriocins. In conclusion, we present a pipeline of methods for high-throughput screening of strain libraries for potential starter cultures and probiotics producing antimicrobial compounds and their identification and analysis.
Collapse
Affiliation(s)
- Christian K. Desiderato
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (C.K.D.); (S.S.); (J.S.); (D.N.D.); (P.C.); (O.G.)
| | - Steffen Sachsenmaier
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (C.K.D.); (S.S.); (J.S.); (D.N.D.); (P.C.); (O.G.)
| | - Kirill V. Ovchinnikov
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Universitetstunet 3, 1433 Ås, Norway; (K.V.O.); (D.B.D.)
| | - Jonas Stohr
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (C.K.D.); (S.S.); (J.S.); (D.N.D.); (P.C.); (O.G.)
| | - Susanne Jacksch
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Campus Schwenningen, Jakob-Kienzle-Straße 17, 78054 Villingen-Schwenningen, Germany; (S.J.); (M.E.)
| | - Dominique N. Desef
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (C.K.D.); (S.S.); (J.S.); (D.N.D.); (P.C.); (O.G.)
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (C.K.D.); (S.S.); (J.S.); (D.N.D.); (P.C.); (O.G.)
| | - Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Campus Schwenningen, Jakob-Kienzle-Straße 17, 78054 Villingen-Schwenningen, Germany; (S.J.); (M.E.)
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Universitetstunet 3, 1433 Ås, Norway; (K.V.O.); (D.B.D.)
| | - Oliver Goldbeck
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (C.K.D.); (S.S.); (J.S.); (D.N.D.); (P.C.); (O.G.)
| | - Christian U. Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (C.K.D.); (S.S.); (J.S.); (D.N.D.); (P.C.); (O.G.)
- Correspondence: ; Tel.: +49-731-5024853
| |
Collapse
|
41
|
Hui JO, Flick T, Loo JA, Campuzano IDG. Unequivocal Identification of Aspartic Acid and isoAspartic Acid by MALDI-TOF/TOF: From Peptide Standards to a Therapeutic Antibody. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1901-1909. [PMID: 33390012 DOI: 10.1021/jasms.0c00370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aspartic acid (Asp) to isoaspartic acid (isoAsp) isomerization in therapeutic monoclonal antibodies (mAbs) and other biotherapeutics is a critical quality attribute (CQA) that requires careful control and monitoring during the drug discovery and production processes. The unwanted formation of isoAsp within biotherapeutics and resultant structural changes in the peptide backbone may negatively impact the efficacy, potency, and safety of the molecule or become immunogenic, especially if the isomerization occurs within the mAb complementarity determining region (CDR). Herein we describe a MALDI-TOF/TOF mass spectrometry method that affords unequivocal identification of the presence and the exact position of the isoAsp residue(s) in peptide standards ranging in size from a tripeptide to a docosapeptide (22 residues). In general, the peptide bond immediately N-terminal to the isoAsp residue is more susceptible to MALDI-TOF/TOF fragmentation than its unmodified counterpart. In some of the peptides evaluated in this study, fragmentation of the peptide bond C-terminal to the isoAsp residue (the aspartate effect) is also enhanced when compared to the control. Relative quantification by MALDI-TOF/TOF of this chemical modification is dependent upon a successful reversed-phase HPLC (rpHPLC) separation of the control and modified peptides. This method has also been validated on a therapeutic mAb that contains a well-documented isoAsp residue in the heavy chain CDR3 after forced degradation. Moreover, we also demonstrate that higher energy C-trap dissociation of only the singly charged species, and not the multiply charged form, of the isoAsp containing peptide, separated by rpHPLC, results in LC-MS/MS fragmentation that is highly consistent to that of MALDI-TOF/TOF.
Collapse
Affiliation(s)
- John O Hui
- Amgen Research, Discovery Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Tawnya Flick
- Attribute Sciences, Pivotal, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Joseph A Loo
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Iain D G Campuzano
- Amgen Research, Discovery Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| |
Collapse
|
42
|
Rapid detection by MALDI-TOF MS of isolates from cystic fibrosis patients belonging to the epidemic clones Achromobacter xylosoxidans ST137 or Achromobacter ruhlandii DES. J Clin Microbiol 2021; 59:e0094621. [PMID: 34346714 DOI: 10.1128/jcm.00946-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective: Achromobacter spp. are increasingly reported among cystic fibrosis patients. Genotyping requires time consuming methods such as Multilocus-Sequence-Typing or Pulsed-Field-Gel-Electrophoresis. Therefore, data on the prevalence of the multiresistant epidemic clones, especially A. xylosoxidans ST137 (AxST137) and the Danish Epidemic Strain A. ruhlandii (DES) are lacking. We recently developed and published a database for Achromobacter species identification by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS, Bruker Daltonics). The aim of this study was to evaluate the ability of the MALDI-TOF MS to distinguish these multiresistant epidemic clones within Achromobacter species. Methods: All the spectra of A.xylosoxidans (n=1571) and A.ruhlandii (n=174) used to build the local database were analysed by ClinProTools™, MALDI Biotyper® PCA, MALDI Biotyper® dendrogram and flexAnalysis™ softwares for biomarker peaks detection. Two-hundred-two isolates (including 48 isolates of AxST137 and 7 of DES) were tested. Results: Specific biomarker peaks were identified: absent peak at m/z 6651 for AxST137 isolates and present peak at m/z 9438 for DES isolates. All tested isolates were well typed by our local database and clustered within distinct groups (ST137 or non-ST137 and DES or non-DES) no matter the MALDI-TOF software or only by simple visual inspection of the spectra by any user. Conclusions: The use of MALDI-TOF MS allowed identifying isolates of A. xylosoxidans belonging to the AxST137 clone which spread in France and Belgium (the Belgian epidemic clone) and of A. ruhlandii belonging to the DES clone. This tool will help implementation of segregation measures to avoid inter-patient transmission of these resistant clones.
Collapse
|
43
|
Cell-Main Spectra Profile Screening Technique in Simulation of Circulating Tumour Cells Using MALDI-TOF Mass Spectrometry. Cancers (Basel) 2021; 13:cancers13153775. [PMID: 34359679 PMCID: PMC8345129 DOI: 10.3390/cancers13153775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Cancer cells can detach from a primary tumour and present in peripheral blood as circulating tumour cells, or in the widest sense, as circulating atypical cells (CAC). Although CAC are a promising biomarker for non-invasive cancer screening, they occur at very low frequency and their detection and characterization remains challenging. We here validated isolation and concentration of untouched CAC from spiked cancer cell blood samples and combined this with matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). This workflow was optimised to detect as little as six cancer cells per 5000 white blood cells. Future development of our workflow may cover a larger range of cancer types and further improvements to enable the use of MALDI-TOF MS as a cancer-screening platform in clinical settings. Abstract Circulating atypical cells (CAC) are released from a primary tumour site into peripheral blood and are indicators of cancer metastasis. CAC occur at very low frequency in circulating blood, and their detection remains challenging. Moreover, white blood cells (WBC) are the major contaminant in enriched CAC samples. Here, we developed matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) as a novel CAC characterization platform. Main spectra profiles (MSP) of normal and cancer cells were generated by MALDI-TOF MS, and a cell-main spectra database was then compiled and analysed using the MALDI Biotyper software. Logarithmic scores accurately predicted distinct cell types. The feasibility of this workflow was then validated using simulated samples, which were prepared by 5000 WBC of three healthy individuals spiked with varying numbers (3, 6, 12, 25, 50, and 100) of lung, colon, or prostate cancer cells. MALDI-TOF MS was able to detect cancer cells down to six cells over the background noise of 5000 WBC with significantly higher predictive scores as compared to WBC alone. Further development of cell-MSP database to cover all cancer types sourced from cell lines and patient tumours may enable the use of MALDI-TOF MS as a cancer-screening platform in clinical settings in the future.
Collapse
|
44
|
A new MALDI-TOF approach for the quick sequence type identification of Legionella pneumophila. J Microbiol Methods 2021; 188:106292. [PMID: 34303751 DOI: 10.1016/j.mimet.2021.106292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recently, MALDI-TOF has emerged as a quick tool for bacterial typing. The aim was to evaluate if MALDI-TOF based typing of Legionella pneumophila can achieve the same discriminatory power as that of the Sequence Based Typing (SBT) method. METHODS The Sequence Type (ST) was obtained from the 90 strains included in the training set and an in-house MALDI-TOF library based on the Main Spectra Profile (MSP) was generated for the identification of such ST. Then, our library was validated by three procedures: a) creating a dendrogram, b) searching for specific peaks present exclusively in each MSP entry, and c) analysing a validation set composed of 14 strains with known ST. Fully characterized L. pneumophila ATCC 33152, which belongs to ST 36, was used as a control strain. RESULTS In the training set, 17 strains belonged to ST 1, 1 to ST 20, 63 to ST 22, 1 to ST 146, 6 to ST 578, and 2 to ST 1086. Specific peaks present in each MSPs spectrum, which are considered type-specific biomarkers, ranged from 2 to 11; more concretely, MSP for ST 1 identification shows 2 specific peaks; MSP for ST 20 identification: 9 specific peaks; MSP for ST 22 and ST 36 identification: 11 specific peaks; MSP for ST 146 identification: 5 specific peaks; and MSP for ST 578 and ST 1086 identification: 3 specific peaks. Using the validation set (nine strains belonging to ST 22 and five to ST 1), MALDI-TOF assigned accurately the ST in 30 min per tested strain with a full match. CONCLUSIONS The ST of L. pneumophila can be identified and reported in few minutes directly from colonies grown on BCYE agar using MALDI-TOF.
Collapse
|
45
|
Jankoski PR, Correa APF, Brandelli A, Motta ASDA. Biological activity of bacteria isolated from wetland sediments collected from a conservation unit in the southern region of Brazil. AN ACAD BRAS CIENC 2021; 93:e20191269. [PMID: 34287454 DOI: 10.1590/0001-3765202120191269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/23/2020] [Indexed: 11/22/2022] Open
Abstract
Wetlands are ecosystems rich in biodiversity and their ecological importance is recognized worldwide. Sediment samples were subjected to physical-chemical analysis and organic carbon content varied from 3.0% to 4.8%, the clay between 32 and 40%, silt with 41% and 43%, sand coarse varied between 6 and 11% and fine sand between 7 and 16%. The nitrogen values varied from 0.25% to 0.48%, the pH from 5.4 to 7.5 and the humidity varied from 44 to 56%. The selected isolates were evaluated for enzymatic properties and 64% showed positive results for amylase, 16% for gelatinase, 37% for lipase, 91% for protease and 2.7% for inulinase. Six bacterial isolates were selected for the overlapping assay and Bacillus sp. sed 2.2 showed inhibitory activity against Corynebacterium fimi NCTC 7547, and the antimicrobial substance was partially purified. The characterization of the substance was carried and the substance was stable at 100° C for up to 10 minutes and sensitive to the enzymes papain and trypsin. This substance was active against some species of Listeria, including Listeria monocytogenes ATCC 7644. The microorganims obtained from sediment samples were important sources of bioactive compounds, including enzymes and peptides, being a source of bioactive compounds to be studied.
Collapse
Affiliation(s)
- Priscila R Jankoski
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Rua Sarmento Leite, 500, sala 216, Cidade Baixa, 90050-170 Porto Alegre, RS, Brazil
| | - Ana Paula F Correa
- Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia de Alimentos, Departamento de Ciência dos Alimentos, Av. Bento Gonçalves, 9500, Campus do Vale, Prédio 43212, Santo Antônio, 91501-970 Porto Alegre, RS, Brazil
| | - Adriano Brandelli
- Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia de Alimentos, Departamento de Ciência dos Alimentos, Av. Bento Gonçalves, 9500, Campus do Vale, Prédio 43212, Santo Antônio, 91501-970 Porto Alegre, RS, Brazil
| | - Amanda S DA Motta
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Rua Sarmento Leite, 500, sala 216, Cidade Baixa, 90050-170 Porto Alegre, RS, Brazil
| |
Collapse
|
46
|
Occurrence of the p019 Gene in the blaKPC-Harboring Plasmids: Adverse Clinical Impact for Direct Tracking of KPC-Producing Klebsiella pneumoniae by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol 2021; 59:e0023821. [PMID: 33980650 DOI: 10.1128/jcm.00238-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been used for the direct detection of KPC-producing isolates by analysis of the 11,109 Da mass peak representing the P019 protein. In this study, we evaluate the presence of the 11,109 Da mass peak in a collection of 435 unduplicated Klebsiella pneumoniae clinical isolates. The prevalence of the P019 peak in the blaKPC K. pneumoniae isolates was 49.2% (32/65). The 11,109 Da mass peak was not observed in any of the other carbapenemase (319) or noncarbapenemase producers (116). Computational analysis of the presence of the p019 gene was performed in the aforementioned carbapenemase-producing K. pneumoniae isolates fully characterized by whole-genome sequencing (WGS) and in a further collection of 1,649 K. pneumoniae genomes included in EuSCAPE. Herein, we have demonstrated that the p019 gene is not exclusively linked to the pKpQil plasmid but that it is present in the following plasmids: IncFIB(K)/IncFII(K)/ColRNAI, IncFIB(pQil), IncFIB(pQil)/ColRNAI, IncFIB(pQil)/IncFII(K), IncFIB(K)/IncFII(K), and IncX3. In addition, we have proven the independent movement of the Tn4401 and the ISKpn31, of which the p019 gene is a component. The absence of the p019 gene was obvious in Col440I, Col(pHAD28), IncFIB(K)/IncX3/IncFII(K), and IncFIB(K)/IncFII(K) plasmids. In addition, we also observed another plasmid in which neither Tn4401 nor ISKpn31 was found, IncP6. In the EuSCAPE, the occurrence of p019 varied from 0% to 100% among the different geographical locations. The adverse clinical impact of the diminished prevalence of the p019 gene within the plasmid encoding KPC-producing Klebsiella pneumoniae puts forward the need for reconsideration when applying this technique in a clinical setting.
Collapse
|
47
|
Serena TE, Bowler PG, Schultz GS, D’souza A, Rennie MY. Are Semi-Quantitative Clinical Cultures Inadequate? Comparison to Quantitative Analysis of 1053 Bacterial Isolates from 350 Wounds. Diagnostics (Basel) 2021; 11:1239. [PMID: 34359322 PMCID: PMC8303231 DOI: 10.3390/diagnostics11071239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/22/2023] Open
Abstract
Early awareness and management of bacterial burden and biofilm is essential to wound healing. Semi-quantitative analysis of swab or biopsy samples is a relatively simple method for measuring wound microbial load. The accuracy of semi-quantitative culture analysis was compared to 'gold standard' quantitative culture analysis using 428 tissue biopsies from 350 chronic wounds. Semi-quantitative results, obtained by serial dilution of biopsy homogenates streaked onto culture plates divided into 4 quadrants representing occasional, light, moderate, and heavy growth, were compared to total bacterial load quantified as colony-forming units per gram (CFU/g). Light growth, typically considered an insignificant finding, averaged a clinically significant 2.5 × 105 CFU/g (SE = 6.3 × 104 CFU/g). Occasional growth (range: 102-106 CFU/g) and light growth (103-107 CFU/g) corresponded to quantitative values that spanned a 5-log range; moderate and heavy growth corresponded to a range of 4-log and 6-log, respectively, with a high degree of overlap in range of CFU/g per category. Since tissue biopsy and quantitative culture cannot be widely practiced and semi-quantitative analysis is unreliable, other clinically relevant approaches are required to determine wound bioburden and guide best management practices. Fluorescence imaging is a point-of-care technology that offers great potential in this field.
Collapse
Affiliation(s)
| | | | - Gregory S. Schultz
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, FL 32610, USA;
| | - Anna D’souza
- MolecuLight Inc., Toronto, ON M5G 1T6, Canada; (A.D.); (M.Y.R.)
| | | |
Collapse
|
48
|
An Improved Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Data Analysis Pipeline for the Identification of Carbapenemase-Producing Klebsiella pneumoniae. J Clin Microbiol 2021; 59:e0080021. [PMID: 33952594 DOI: 10.1128/jcm.00800-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The increasing emergence of carbapenemase-producing Klebsiella pneumoniae (CPK) isolates is a global health alarm. Rapid methods that require minimum sample preparation and rapid data analysis are urgently required. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been used by clinical laboratories for identification of antibiotic-resistant bacteria; however, discrepancies have arisen regarding biological and technical issues. The aim of this study was to standardize an operating procedure and data analysis for identification of CPK by MALDI-TOF MS. To evaluate this approach, a series of 162 K. pneumoniae isolates (112 CPK and 50 non-CPK) were processed in the MALDI BioTyper system (Bruker Daltonik, Germany) following a standard operating procedure. The study was conducted in two stages; the first is denominated the "reproducibility stage" and the second "CPK identification." The first stage was designed to evaluate the biological and technical variation associated with the entire analysis of CPK and the second stage to assess the final accuracy of MALDI-TOF MS for the identification of CPK. Therefore, we present an improved MALDI-TOF MS data analysis pipeline using neural network analysis implemented in Clover MS Data Analysis Software (Clover Biosoft, Spain) that is designed to reduce variability, guarantee interlaboratory reproducibility, and maximize the information selected from the bacterial proteome. Using the random forest (RF) algorithm, 100% of CPK isolates were correctly identified when all the peaks in the spectra were selected as input features and total ion current (TIC) normalization was applied. Thus, we have demonstrated that real-time direct tracking of CPK is possible using MALDI-TOF MS.
Collapse
|
49
|
Selective Capture and Identification of Methicillin-Resistant Staphylococcus aureus by Combining Aptamer-Modified Magnetic Nanoparticles and Mass Spectrometry. Int J Mol Sci 2021; 22:ijms22126571. [PMID: 34207373 PMCID: PMC8234742 DOI: 10.3390/ijms22126571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
A nucleic acid aptamer that specifically recognizes methicillin-resistant Staphylococcus aureus (MRSA) has been immobilized on magnetic nanoparticles to capture the target bacteria prior to mass spectrometry analysis. After the MRSA species were captured, they were further eluted from the nanoparticles and identified using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The combination of aptamer-based capture/enrichment and MS analysis of microorganisms took advantage of the selectivity of both techniques and should enhance the accuracy of MRSA identification. The capture and elution efficiencies for MRSA were optimized by examining factors such as incubation time, temperature, and elution solvents. The aptamer-modified magnetic nanoparticles showed a capture rate of more than 90% under the optimized condition, whereas the capture rates were less than 11% for non-target bacteria. The as-prepared nanoparticles exhibited only a 5% decrease in the capture rate and a 9% decrease in the elution rate after 10 successive cycles of utilization. Most importantly, the aptamer-modified nanoparticles revealed an excellent selectivity towards MRSA in bacterial mixtures. The capture of MRSA at a concentration of 102 CFU/mL remained at a good percentage of 82% even when the other two species were at 104 times higher concentration (106 CFU/mL). Further, the eluted MRSA bacteria were successfully identified using MALDI mass spectrometry.
Collapse
|
50
|
Tambong JT, Xu R, Gerdis S, Daniels GC, Chabot D, Hubbard K, Harding MW. Molecular Analysis of Bacterial Isolates From Necrotic Wheat Leaf Lesions Caused by Xanthomonas translucens, and Description of Three Putative Novel Species, Sphingomonas albertensis sp. nov., Pseudomonas triticumensis sp. nov. and Pseudomonas foliumensis sp. nov. Front Microbiol 2021; 12:666689. [PMID: 34093484 PMCID: PMC8170138 DOI: 10.3389/fmicb.2021.666689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Xanthomonas translucens is the etiological agent of the wheat bacterial leaf streak (BLS) disease. The isolation of this pathogen is usually based on the Wilbrink's-boric acid-cephalexin semi-selective medium which eliminates 90% of other bacteria, some of which might be novel species. In our study, a general purpose nutrient agar was used to isolate 49 bacterial strains including X. translucens from necrotic wheat leaf tissues. Maximum likelihood cluster analysis of 16S rRNA sequences grouped the strains into 10 distinct genera. Pseudomonas (32.7%) and Pantoea (28.6%) were the dominant genera while Xanthomonas, Clavibacter and Curtobacterium had 8.2%, each. Erwinia and Sphingomonas had two strains, each. BLAST and phylogenetic analyses of multilocus sequence analysis (MLSA) of specific housekeeping genes taxonomically assigned all the strains to validly described bacterial species, except three strains (10L4B, 12L4D and 32L3A) of Pseudomonas and two (23L3C and 15L3B) of Sphingomonas. Strains 10L4B and12L4D had Pseudomonas caspiana as their closest known type strain while strain 32L3A was closest to Pseudomonas asturiensis. Sphingomonas sp. strains 23L3C and 15L3B were closest to S. faeni based on MLSA analysis. Our data on MLSA, whole genome-based cluster analysis, DNA-DNA hybridization and average nucleotide identity, matrix-assisted laser desorption/ionization-time-of-flight, chemotaxonomy and phenotype affirmed that these 5 strains constitute three novel lineages and are taxonomically described in this study. We propose the names, Sphingomonas albertensis sp. nov. (type strain 23L3CT = DOAB 1063T = CECT 30248T = LMG 32139T), Pseudomonas triticumensis sp. nov. (type strain 32L3AT = DOAB 1067T = CECT 30249T = LMG 32140T) and Pseudomonas foliumensis sp. nov. (type strain 10L4BT = DOAB 1069T = CECT 30250T = LMG 32142T). Comparative genomics of these novel species, relative to their closest type strains, revealed unique repertoires of core secretion systems and secondary metabolites/antibiotics. Also, the detection of CRISPR-Cas systems in the genomes of these novel species suggests an acquired mechanism for resistance against foreign mobile genetic elements. The results presented here revealed a cohabitation, within the BLS lesions, of diverse bacterial species, including novel lineages.
Collapse
Affiliation(s)
- James T Tambong
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Renlin Xu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Suzanne Gerdis
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Greg C Daniels
- Crop Diversification Centre South, Alberta Agriculture and Forestry, Brooks, AB, Canada
| | - Denise Chabot
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Keith Hubbard
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Michael W Harding
- Crop Diversification Centre South, Alberta Agriculture and Forestry, Brooks, AB, Canada
| |
Collapse
|