1
|
Meyer J, Payr M, Duss O, Hennig J. Exploring the dynamics of messenger ribonucleoprotein-mediated translation repression. Biochem Soc Trans 2024; 52:2267-2279. [PMID: 39601754 DOI: 10.1042/bst20231240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Translational control is crucial for well-balanced cellular function and viability of organisms. Different mechanisms have evolved to up- and down-regulate protein synthesis, including 3' untranslated region (UTR)-mediated translation repression. RNA binding proteins or microRNAs interact with regulatory sequence elements located in the 3' UTR and interfere most often with the rate-limiting initiation step of translation. Dysregulation of post-transcriptional gene expression leads to various kinds of diseases, emphasizing the significance of understanding the mechanisms of these processes. So far, only limited mechanistic details about kinetics and dynamics of translation regulation are understood. This mini-review focuses on 3' UTR-mediated translational regulation mechanisms and demonstrates the potential of using single-molecule fluorescence-microscopy for kinetic and dynamic studies of translation regulation in vivo and in vitro.
Collapse
Affiliation(s)
- Julia Meyer
- Department of Biochemistry IV - Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Marco Payr
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Candidate for Joint PhD Degree From EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Olivier Duss
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Janosch Hennig
- Department of Biochemistry IV - Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Fernández-García L, Angulo J, López-Lastra M. The Polypyrimidine Tract-Binding Protein Is a Transacting Factor for the Dengue Virus Internal Ribosome Entry Site. Viruses 2024; 16:1757. [PMID: 39599871 PMCID: PMC11599071 DOI: 10.3390/v16111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Dengue virus (DENV) is an enveloped, positive sense, single-stranded RNA virus belonging to the Flaviviridae. Translation initiation of the DENV mRNA (vRNA) can occur following a cap-dependent, 5'-3'end-dependent internal ribosome entry site (IRES)-independent or IRES-dependent mechanism. This study evaluated the activity of DENV IRES in BHK-21 cells and the role of the polypyrimidine-tract binding protein (PTB) isoforms PTB1, PTB2, and PTB4 as IRES-transacting factors (ITAFs) for the DENV IRES. The results show that DENV-IRES activity is stimulated in DENV-replicating BHK-21 cells and cells expressing the Foot-and-mouth disease virus leader or Human rhinovirus 2A proteases. Protease activity was necessary, although a complete shutdown of cap-dependent translation initiation was not a requirement to stimulate DENV IRES activity. Regarding PTB, the results show that PTB1 > PTB2 > PTB4 stimulates DENV-IRES activity in BHK-21 cells. Mutations in the PTB RNA recognition motifs (RRMs), RRM1/RRM2 or RRM3/RRM4, differentially impact PTB1, PTB2, and PTB4's ability to promote DENV IRES-mediated translation initiation in BHK-21 cells. PTB1-induced DENV-IRES stimulation is rescinded when RRM1/RRM2 or RRM3/RRM4 are disrupted. Mutations in RRM1/RRM2 or RRM3/RRM4 do not affect the ITAF activity of PTB2. Mutating RRM3/RRM4, but not RRM1/RRM2, abolishes the ability of PTB4 to stimulate the DENV IRES. Thus, PTB1, PTB2, and PTB4 are ITAFs for the DENV IRES.
Collapse
Affiliation(s)
- Leandro Fernández-García
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile; (L.F.-G.); (J.A.)
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile; (L.F.-G.); (J.A.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile; (L.F.-G.); (J.A.)
| |
Collapse
|
3
|
Hanson WA, Romero Agosto GA, Rouskin S. Viral RNA Interactome: The Ultimate Researcher's Guide to RNA-Protein Interactions. Viruses 2024; 16:1702. [PMID: 39599817 PMCID: PMC11599142 DOI: 10.3390/v16111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
RNA molecules in the cell are bound by a multitude of RNA-binding proteins (RBPs) with a variety of regulatory consequences. Often, interactions with these RNA-binding proteins are facilitated by the complex secondary and tertiary structures of RNA molecules. Viral RNAs especially are known to be heavily structured and interact with many RBPs, with roles including genome packaging, immune evasion, enhancing replication and transcription, and increasing translation efficiency. As such, the RNA-protein interactome represents a critical facet of the viral replication cycle. Characterization of these interactions is necessary for the development of novel therapeutics targeted at the disruption of essential replication cycle events. In this review, we aim to summarize the various roles of RNA structures in shaping the RNA-protein interactome, the regulatory roles of these interactions, as well as up-to-date methods developed for the characterization of the interactome and directions for novel, RNA-directed therapeutics.
Collapse
Affiliation(s)
| | | | - Silvi Rouskin
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; (W.A.H.); (G.A.R.A.)
| |
Collapse
|
4
|
Xu C, Jiang Y, Wang M, Cheng A, Zhang W, Ou X, Sun D, Yang Q, Wu Y, Tian B, He Y, Wu Z, Zhang S, Zhao X, Huang J, Zhu D, Chen S, Liu M, Jia R. Duck hepatitis A virus utilizes PCBP2 to facilitate viral translation and replication. Vet Res 2024; 55:110. [PMID: 39300570 PMCID: PMC11414061 DOI: 10.1186/s13567-024-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is an important member of the Picornaviridae family that causes highly fatal hepatitis in ducklings. Since picornaviruses have small genomes with limited coding capacity, they must utilize host proteins for viral cap-independent translation and RNA replication. Here, we report the role of duck poly(rC)-binding protein 2 (PCBP2) in regulating the replication and translation of DHAV-1. During DHAV-1 infection, PCBP2 expression was upregulated. A biotinylated RNA pull-down assay revealed that PCBP2 positively regulates DHAV-1 translation through specific interactions with structural domains II and III of the DHAV-1 internal ribosome entry site (IRES). Further studies revealed that PCBP2 promotes DHAV-1 replication via an interaction of its KH1 domain (aa 1-92) with DHAV-1 3Dpol. Thus, our studies demonstrated the specific role of PCBP2 in regulating DHAV-1 translation and replication, revealing a novel mechanism by which host‒virus interactions regulate viral translation and replication. These findings contribute to further understanding of the pathogenesis of picornavirus infections.
Collapse
Affiliation(s)
- Chenxia Xu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yurui Jiang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China.
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China.
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, 225100, China
| | - Xumin Ou
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Di Sun
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiao Yang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ying Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Tian
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhen Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shaqiu Zhang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinxin Zhao
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juan Huang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dekang Zhu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mafeng Liu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Renyong Jia
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, 611130, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
5
|
Li L, Li X, Zhong H, Li M, Wan B, He W, Zhang Y, Du Y, Chen D, Zhang W, Ji P, Jiang D, Han S. VP3 protein of Senecavirus A promotes viral IRES-driven translation and attenuates innate immunity by specifically relocalizing hnRNPA2B1. J Virol 2024; 98:e0122724. [PMID: 39207136 PMCID: PMC11406996 DOI: 10.1128/jvi.01227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Viruses deploy sophisticated strategies to hijack the host's translation machinery to favor viral protein synthesis and counteract innate cellular defenses. However, little is known about the mechanisms by which Senecavirus A (SVA) controls the host's translation. Using a series of sophisticated molecular cell manipulation techniques, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) was identified as an essential host factor involved in translation control in SVA-infected cells. It was also determined that the SVA structural protein, VP3, binds to and relocalizes hnRNPA2B1, which interferes with the host's protein synthesis machinery to establish a cellular environment that facilitates viral propagation via a two-pronged strategy: first, hnRNPA2B1 serves as a potent internal ribosome entry site (IRES) trans-acting factor, which is selectively co-opted to promote viral IRES-driven translation by supporting the assembly of translation initiation complexes. Second, a strong repression of host cell translation occurs in the context of the VP3-hnRNPA2B1 interaction, resulting in attenuation of the interferons response. This is the first study to demonstrate the interaction between SVA VP3 and hnRNPA2B1, and to characterize their key roles in manipulating translation. This novel dual mechanism, which regulates selective mRNA translation and immune evasion of virus-infected cells, highlights the VP3-hnRNPA2B1 complex as a potential target for the development of modified antiviral or oncolytic reagents. IMPORTANCE Viral reproduction is contingent on viral protein synthesis, which relies entirely on the host's translation machinery. As such, viruses often need to control the cellular translational apparatus to favor viral protein production and avoid host innate defenses. Senecavirus A (SVA) is an important virus, both as an emerging pathogen in the pork industry and as a potential oncolytic virus for neuroendocrine cancers. Here, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) was identified as a critical regulator of the translational landscape during SVA infection. This study supports a model whereby the VP3 protein of SVA efficiently subverts the host's protein synthesis machinery through its ability to bind to and relocalize hnRNPA2B1, not only selectively promoting viral internal ribosome entry site-driven translation but also resulting in global translation shutdown and immune evasion. Together, these data provide new insights into how the complex interactions between translation machinery, SVA, and innate immunity contribute to the pathogenicity of the SVA.
Collapse
Affiliation(s)
- Lu Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xinwei Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Han Zhong
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mingyang Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Wenrui He
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Yuhang Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Yongkun Du
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Dongjie Chen
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengchao Ji
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Dawei Jiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Shichong Han
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
6
|
Su CI, Chuang ZS, Shie CT, Wang HI, Kao YT, Yu CY. A cis-acting ligase ribozyme generates circular RNA in vitro for ectopic protein functioning. Nat Commun 2024; 15:6607. [PMID: 39098891 PMCID: PMC11298514 DOI: 10.1038/s41467-024-51044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
Delivering synthetic protein-coding RNA bypassing the DNA stage for ectopic protein functioning is a novel therapeutic strategy. Joining the linear RNA head-to-tail covalently could be a state-of-the-art strategy for functioning longer. Here we enroll a cis-acting ligase ribozyme (RzL) to generate circular RNA (circRNA) in vitro for ectopic protein expression. The RNA circularization is confirmed by masking the 5' phosphate group, resisting exonuclease RNase R digestion, failing for further tailing, and sequencing the RT-PCR products of the joined region. Interestingly, one internal ribosome entry site (IRES) renders circRNA translation competent, but two IRES in cis, not trans, hamper the translation. The circRNA with highly potent in translation is conferred for antiviral functioning. Accompanying specific guided RNA, a circRNA expressing ribonuclease Cas13 shows excellent potential against the corresponding RNA virus, further extending circRNA functioning in its growing list of applications.
Collapse
Affiliation(s)
- Chan-I Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Zih-Shiuan Chuang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan
- National Infectious Diseases Bank, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Chi-Ting Shie
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Hsin-I Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Yu-Ting Kao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan.
- National Infectious Diseases Bank, National Health Research Institutes, Miaoli, 350, Taiwan.
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
7
|
Li Y, Zhang L, Wang L, Li J, Zhao Y, Liu F, Wang Q. Structure and function of type IV IRES in picornaviruses: a systematic review. Front Microbiol 2024; 15:1415698. [PMID: 38855772 PMCID: PMC11157119 DOI: 10.3389/fmicb.2024.1415698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
The Picornaviridae is a family of icosahedral viruses with single-stranded, highly diverse positive-sense RNA genomes. Virions consist of a capsid, without envelope, surrounding a core of RNA genome. A typical genome of picornavirus harbors a well-conserved and highly structured RNA element known as the internal ribosome entry site (IRES), functionally essential for viral replication and protein translation. Based on differences in their structures and mechanisms of action, picornaviral IRESs have been categorized into five types: type I, II, III, IV, and V. Compared with the type IV IRES, the others not only are structurally complicated, but also involve multiple initiation factors for triggering protein translation. The type IV IRES, often referred to as hepatitis C virus (HCV)-like IRES due to its structural resemblance to the HCV IRES, exhibits a simpler and more compact structure than those of the other four. The increasing identification of picornaviruses with the type IV IRES suggests that this IRES type seems to reveal strong retention and adaptation in terms of viral evolution. Here, we systematically reviewed structural features and biological functions of the type IV IRES in picornaviruses. A comprehensive understanding of the roles of type IV IRESs will contribute to elucidating the replication mechanism and pathogenesis of picornaviruses.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Lei Zhang
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao, China
| | - Jing Li
- Market Supervision Administration of Huangdao District, Qingdao, China
| | - Yanwei Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
8
|
Zhang Z, Zhang S, Wong HT, Li D, Feng B. Targeted Gene Insertion: The Cutting Edge of CRISPR Drug Development with Hemophilia as a Highlight. BioDrugs 2024; 38:369-385. [PMID: 38489061 PMCID: PMC11055778 DOI: 10.1007/s40259-024-00654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
The remarkable advance in gene editing technology presents unparalleled opportunities for transforming medicine and finding cures for hereditary diseases. Human trials of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9)-based therapeutics have demonstrated promising results in disrupting or deleting target sequences to treat specific diseases. However, the potential of targeted gene insertion approaches, which offer distinct advantages over disruption/deletion methods, remains largely unexplored in human trials due to intricate technical obstacles and safety concerns. This paper reviews the recent advances in preclinical studies demonstrating in vivo targeted gene insertion for therapeutic benefits, targeting somatic solid tissues through systemic delivery. With a specific emphasis on hemophilia as a prominent disease model, we highlight advancements in insertion strategies, including considerations of DNA repair pathways, targeting site selection, and donor design. Furthermore, we discuss the complex challenges and recent breakthroughs that offer valuable insights for progressing towards clinical trials.
Collapse
Affiliation(s)
- Zhenjie Zhang
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Siqi Zhang
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
| | - Hoi Ting Wong
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
9
|
Khan D, Fox PL. Host-like RNA Elements Regulate Virus Translation. Viruses 2024; 16:468. [PMID: 38543832 PMCID: PMC10976276 DOI: 10.3390/v16030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Viruses are obligate, intracellular parasites that co-opt host cell machineries for propagation. Critical among these machineries are those that translate RNA into protein and their mechanisms of control. Most regulatory mechanisms effectuate their activity by targeting sequence or structural features at the RNA termini, i.e., at the 5' or 3' ends, including the untranslated regions (UTRs). Translation of most eukaryotic mRNAs is initiated by 5' cap-dependent scanning. In contrast, many viruses initiate translation at internal RNA regions at internal ribosome entry sites (IRESs). Eukaryotic mRNAs often contain upstream open reading frames (uORFs) that permit condition-dependent control of downstream major ORFs. To offset genome compression and increase coding capacity, some viruses take advantage of out-of-frame overlapping uORFs (oORFs). Lacking the essential machinery of protein synthesis, for example, ribosomes and other translation factors, all viruses utilize the host apparatus to generate virus protein. In addition, some viruses exhibit RNA elements that bind host regulatory factors that are not essential components of the translation machinery. SARS-CoV-2 is a paradigm example of a virus taking advantage of multiple features of eukaryotic host translation control: the virus mimics the established human GAIT regulatory element and co-opts four host aminoacyl tRNA synthetases to form a stimulatory binding complex. Utilizing discontinuous transcription, the elements are present and identical in all SARS-CoV-2 subgenomic RNAs (and the genomic RNA). Thus, the virus exhibits a post-transcriptional regulon that improves upon analogous eukaryotic regulons, in which a family of functionally related mRNA targets contain elements that are structurally similar but lacking sequence identity. This "thrifty" virus strategy can be exploited against the virus since targeting the element can suppress the expression of all subgenomic RNAs as well as the genomic RNA. Other 3' end viral elements include 3'-cap-independent translation elements (3'-CITEs) and 3'-tRNA-like structures. Elucidation of virus translation control elements, their binding proteins, and their mechanisms can lead to novel therapeutic approaches to reduce virus replication and pathogenicity.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
10
|
Kim YA, Mousavi K, Yazdi A, Zwierzyna M, Cardinali M, Fox D, Peel T, Coller J, Aggarwal K, Maruggi G. Computational design of mRNA vaccines. Vaccine 2024; 42:1831-1840. [PMID: 37479613 DOI: 10.1016/j.vaccine.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
mRNA technology has emerged as a successful vaccine platform that offered a swift response to the COVID-19 pandemic. Accumulating evidence shows that vaccine efficacy, thermostability, and other important properties, are largely impacted by intrinsic properties of the mRNA molecule, such as RNA sequence and structure, both of which can be optimized. Designing mRNA sequence for vaccines presents a combinatorial problem due to an extremely large selection space. For instance, due to the degeneracy of the genetic code, there are over 10632 possible mRNA sequences that could encode the spike protein, the COVID-19 vaccines' target. Moreover, designing different elements of the mRNA sequence simultaneously against multiple objectives such as translational efficiency, reduced reactogenicity, and improved stability requires an efficient and sophisticated optimization strategy. Recently, there has been a growing interest in utilizing computational tools to redesign mRNA sequences to improve vaccine characteristics and expedite discovery timelines. In this review, we explore important biophysical features of mRNA to be considered for vaccine design and discuss how computational approaches can be applied to rapidly design mRNA sequences with desirable characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeff Coller
- Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
11
|
Wu J, Sun C, Guan J, Abdullah SW, Wang X, Ren M, Qiao L, Sun S, Guo H. Nuclear ribonucleoprotein RALY downregulates foot-and-mouth disease virus replication but antagonized by viral 3C protease. Microbiol Spectr 2024; 12:e0365823. [PMID: 38323828 PMCID: PMC10913732 DOI: 10.1128/spectrum.03658-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.
Collapse
Affiliation(s)
- Jin'en Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chao Sun
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junyong Guan
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuefei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lu Qiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- School of Animal Science, Yangtze University, Jingzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
12
|
Brito Querido J, Díaz-López I, Ramakrishnan V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat Rev Mol Cell Biol 2024; 25:168-186. [PMID: 38052923 DOI: 10.1038/s41580-023-00624-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 12/07/2023]
Abstract
The regulation of gene expression is fundamental for life. Whereas the role of transcriptional regulation of gene expression has been studied for several decades, it has been clear over the past two decades that post-transcriptional regulation of gene expression, of which translation regulation is a major part, can be equally important. Translation can be divided into four main stages: initiation, elongation, termination and ribosome recycling. Translation is controlled mainly during its initiation, a process which culminates in a ribosome positioned with an initiator tRNA over the start codon and, thus, ready to begin elongation of the protein chain. mRNA translation has emerged as a powerful tool for the development of innovative therapies, yet the detailed mechanisms underlying the complex process of initiation remain unclear. Recent studies in yeast and mammals have started to shed light on some previously unclear aspects of this process. In this Review, we discuss the current state of knowledge on eukaryotic translation initiation and its regulation in health and disease. Specifically, we focus on recent advances in understanding the processes involved in assembling the 43S pre-initiation complex and its recruitment by the cap-binding complex eukaryotic translation initiation factor 4F (eIF4F) at the 5' end of mRNA. In addition, we discuss recent insights into ribosome scanning along the 5' untranslated region of mRNA and selection of the start codon, which culminates in joining of the 60S large subunit and formation of the 80S initiation complex.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Irene Díaz-López
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
13
|
Tidu A, Martin F. The interplay between cis- and trans-acting factors drives selective mRNA translation initiation in eukaryotes. Biochimie 2024; 217:20-30. [PMID: 37741547 DOI: 10.1016/j.biochi.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Translation initiation consists in the assembly of the small and large ribosomal subunits on the start codon. This important step directly modulates the general proteome in living cells. Recently, genome wide studies revealed unexpected translation initiation events from unsuspected novel open reading frames resulting in the synthesis of a so-called 'dark proteome'. Indeed, the identification of the start codon by the translation machinery is a critical step that defines the translational landscape of the cell. Therefore, translation initiation is a highly regulated process in all organisms. In this review, we focus on the various cis- and trans-acting factors that rule the regulation of translation initiation in eukaryotes. Recent discoveries have shown that the guidance of the translation machinery for the choice of the start codon require sophisticated molecular mechanisms. In particular, the 5'UTR and the coding sequences contain cis-acting elements that trigger the use of AUG codons but also non-AUG codons to initiate protein synthesis. The use of these alternative start codons is also largely influenced by numerous trans-acting elements that drive selective mRNA translation in response to environmental changes.
Collapse
Affiliation(s)
- Antonin Tidu
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Franck Martin
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France.
| |
Collapse
|
14
|
Levintov L, Vashisth H. Structural and computational studies of HIV-1 RNA. RNA Biol 2024; 21:1-32. [PMID: 38100535 PMCID: PMC10730233 DOI: 10.1080/15476286.2023.2289709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses remain a global threat to animals, plants, and humans. The type 1 human immunodeficiency virus (HIV-1) is a member of the retrovirus family and carries an RNA genome, which is reverse transcribed into viral DNA and further integrated into the host-cell DNA for viral replication and proliferation. The RNA structures from the HIV-1 genome provide valuable insights into the mechanisms underlying the viral replication cycle. Moreover, these structures serve as models for designing novel therapeutic approaches. Here, we review structural data on RNA from the HIV-1 genome as well as computational studies based on these structural data. The review is organized according to the type of structured RNA element which contributes to different steps in the viral replication cycle. This is followed by an overview of the HIV-1 transactivation response element (TAR) RNA as a model system for understanding dynamics and interactions in the viral RNA systems. The review concludes with a description of computational studies, highlighting the impact of biomolecular simulations in elucidating the mechanistic details of various steps in the HIV-1's replication cycle.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| | - Harish Vashisth
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| |
Collapse
|
15
|
Wang L, Song Y, Yan X, Xu T. A novel protein encoded by circVPS13D attenuates antiviral innate immunity by targeting MAVS in teleost fish. J Virol 2023; 97:e0088623. [PMID: 37843373 PMCID: PMC10688384 DOI: 10.1128/jvi.00886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE The expression of circVPS13D was upregulated with SCRV invasion, which proved that circVPS13D was involved in the regulation of the antiviral immune response. Our study revealed that the existence of circVPS13D promoted the replication of SCRV. Functionally, circVPS13D negatively regulates the antiviral responses of fish. Mechanistically, we confirmed that circVPS13D inhibited RLRs antiviral signaling pathway via the encoded protein VPS13D-170aa by targeting MAVS. Our study provided novel insights into the roles of protein-coding circRNAs and supported VPS13D-170aa as a negative regulator in the antiviral immune responses of teleost fish.
Collapse
Affiliation(s)
- Linchao Wang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanhong Song
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Gong P, Shen Q, Zhang M, Qiao R, Jiang J, Su L, Zhao S, Fu S, Ma Y, Ge L, Wang Y, Lozano-Durán R, Wang A, Li F, Zhou X. Plant and animal positive-sense single-stranded RNA viruses encode small proteins important for viral infection in their negative-sense strand. MOLECULAR PLANT 2023; 16:1794-1810. [PMID: 37777826 DOI: 10.1016/j.molp.2023.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/03/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Positive-sense single-stranded RNA (+ssRNA) viruses, the most abundant viruses of eukaryotes in nature, require the synthesis of negative-sense RNA (-RNA) using their genomic (positive-sense) RNA (+RNA) as a template for replication. Based on current evidence, viral proteins are translated via viral +RNAs, whereas -RNA is considered to be a viral replication intermediate without coding capacity. Here, we report that plant and animal +ssRNA viruses contain small open reading frames (ORFs) in their -RNA (reverse ORFs [rORFs]). Using turnip mosaic virus (TuMV) as a model for plant +ssRNA viruses, we demonstrate that small proteins encoded by rORFs display specific subcellular localizations, and confirm the presence of rORF2 in infected cells through mass spectrometry analysis. The protein encoded by TuMV rORF2 forms punctuate granules that are localized in the perinuclear region and co-localized with viral replication complexes. The rORF2 protein can directly interact with the viral RNA-dependent RNA polymerase, and mutation of rORF2 completely abolishes virus infection, whereas ectopic expression of rORF2 rescues the mutant virus. Furthermore, we show that several rORFs in the -RNA of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have the ability to suppress type I interferon production and facilitate the infection of vesicular stomatitis virus. In addition, we provide evidence that TuMV might utilize internal ribosome entry sites to translate these small rORFs. Taken together, these findings indicate that the -RNA of +ssRNA viruses can also have the coding capacity and that small proteins encoded therein play critical roles in viral infection, revealing a viral proteome larger than previously thought.
Collapse
Affiliation(s)
- Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingtang Shen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mingzhen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Jiang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lili Su
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Siwen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuai Fu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Ma
- University of the Chinese Academy of Sciences, Beijing, China
| | - Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, 72076 Tübingen, Germany
| | - Aiming Wang
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Imai S, Suzuki H, Fujiyoshi Y, Shimada I. Dynamically regulated two-site interaction of viral RNA to capture host translation initiation factor. Nat Commun 2023; 14:4977. [PMID: 37640715 PMCID: PMC10462655 DOI: 10.1038/s41467-023-40582-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Many RNA viruses employ internal ribosome entry sites (IRESs) in their genomic RNA to commandeer the host's translational machinery for replication. The IRES from encephalomyocarditis virus (EMCV) interacts with eukaryotic translation initiation factor 4 G (eIF4G), recruiting the ribosomal subunit for translation. Here, we analyze the three-dimensional structure of the complex composed of EMCV IRES, the HEAT1 domain fragment of eIF4G, and eIF4A, by cryo-electron microscopy. Two distinct eIF4G-interacting domains on the IRES are identified, and complex formation changes the angle therebetween. Further, we explore the dynamics of these domains by using solution NMR spectroscopy, revealing conformational equilibria in the microsecond to millisecond timescale. In the lowly-populated conformations, the base-pairing register of one domain is shifted with the structural transition of the three-way junction, as in the complex structure. Our study provides insights into the viral RNA's sophisticated strategy for optimal docking to hijack the host protein.
Collapse
Affiliation(s)
- Shunsuke Imai
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, 230-0045, Japan.
| | - Hiroshi Suzuki
- Cellular and Structural Physiology Laboratory (CeSPL), Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Laboratory (CeSPL), Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ichio Shimada
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, 230-0045, Japan.
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
18
|
Kumar S, Verma R, Saha S, Agrahari AK, Shukla S, Singh ON, Berry U, Anurag, Maiti TK, Asthana S, Ranjith-Kumar CT, Surjit M. RNA-Protein Interactome at the Hepatitis E Virus Internal Ribosome Entry Site. Microbiol Spectr 2023; 11:e0282722. [PMID: 37382527 PMCID: PMC10434006 DOI: 10.1128/spectrum.02827-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/11/2023] [Indexed: 06/30/2023] Open
Abstract
Multiple processes exist in a cell to ensure continuous production of essential proteins either through cap-dependent or cap-independent translation processes. Viruses depend on the host translation machinery for viral protein synthesis. Therefore, viruses have evolved clever strategies to use the host translation machinery. Earlier studies have shown that genotype 1 hepatitis E virus (g1-HEV) uses both cap-dependent and cap-independent translation machineries for its translation and proliferation. Cap-independent translation in g1-HEV is driven by an 87-nucleotide-long RNA element that acts as a noncanonical, internal ribosome entry site-like (IRESl) element. Here, we have identified the RNA-protein interactome of the HEV IRESl element and characterized the functional significance of some of its components. Our study identifies the association of HEV IRESl with several host ribosomal proteins, demonstrates indispensable roles of ribosomal protein RPL5 and DHX9 (RNA helicase A) in mediating HEV IRESl activity, and establishes the latter as a bona fide internal translation initiation site. IMPORTANCE Protein synthesis is a fundamental process for survival and proliferation of all living organisms. The majority of cellular proteins are produced through cap-dependent translation. Cells also use a variety of cap-independent translation processes to synthesize essential proteins during stress. Viruses depend on the host cell translation machinery to synthesize their own proteins. Hepatitis E virus (HEV) is a major cause of hepatitis worldwide and has a capped positive-strand RNA genome. Viral nonstructural and structural proteins are synthesized through a cap-dependent translation process. An earlier study from our laboratory reported the presence of a fourth open reading frame (ORF) in genotype 1 HEV, which produces the ORF4 protein using a cap-independent internal ribosome entry site-like (IRESl) element. In the current study, we identified the host proteins that associate with the HEV-IRESl RNA and generated the RNA-protein interactome. Through a variety of experimental approaches, our data prove that HEV-IRESl is a bona fide internal translation initiation site.
Collapse
Affiliation(s)
- Shiv Kumar
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Rohit Verma
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sandhini Saha
- Laboratory of Functional Proteomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Ashish Kumar Agrahari
- Noncommunicable Disease Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Shivangi Shukla
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Oinam Ningthemmani Singh
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Umang Berry
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Anurag
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Tushar Kanti Maiti
- Laboratory of Functional Proteomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Shailendra Asthana
- Noncommunicable Disease Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - C. T. Ranjith-Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
19
|
Solodushko V, Fouty B. Terminal hairpins improve protein expression in IRES-initiated mRNA in the absence of a cap and polyadenylated tail. Gene Ther 2023; 30:620-627. [PMID: 36828937 PMCID: PMC9951143 DOI: 10.1038/s41434-023-00391-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023]
Abstract
Synthesizing mRNA in vitro is a standard and simple procedure. Adding the 5' cap and 3' polyadenylated (poly(A)) tail to make this mRNA functional for use as a vaccine or therapy increases the time and cost of production and usually decreases the yield, however. We designed mRNA that lacked a cap and poly(A) tail but included an internal ribosomal entry site (IRES) to initiate protein translation. To protect the 5' and 3' ends of mRNA from exonucleases, we added stable terminal hairpins. When compared against typical mRNA (i.e., mRNA that contained a cap and poly(A) tail but lacked hairpins), expression of the delivered reporter protein in HEK293 cells was similar. Using a triple instead of a single hairpin at each end increased protein expression even more. This method has the potential to simplify the production and reduce the cost of synthesizing exogenous mRNA for use as biologics or vaccines.
Collapse
Affiliation(s)
- Victor Solodushko
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
- The Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
| | - Brian Fouty
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
- The Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
- Department of Internal Medicine, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
- The Division of Pulmonary and Critical Care Medicine, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
| |
Collapse
|
20
|
Abstract
Viruses lack the properties to replicate independently due to the limited resources encoded in their genome; therefore, they hijack the host cell machinery to replicate and survive. Picornaviruses get the prerequisite for effective protein synthesis through specific sequences known as internal ribosome entry sites (IRESs). In the past 2 decades, significant progress has been made in identifying different types of IRESs in picornaviruses. This review will discuss the past and current findings related to the five different types of IRESs and various internal ribosome entry site trans-acting factors (ITAFs) that either promote or suppress picornavirus translation and replication. Some IRESs are inefficient and thus require ITAFs. To achieve their full efficiency, they recruit various ITAFs, which enable them to translate more effectively and efficiently, except type IV IRES, which does not require any ITAFs. Although there are two kinds of ITAFs, one promotes viral IRES-dependent translation, and the second type restricts. Picornaviruses IRESs are classified into five types based on their use of sequence, ITAFs, and initiation factors. Some ITAFs regulate IRES activity by localizing to the viral replication factories in the cytoplasm. Also, some drugs, chemicals, and herbal extracts also regulate viral IRES-dependent translation and replication. Altogether, this review will elaborate on our understanding of the past and recent advancements in the IRES-dependent translation and replication of picornaviruses. IMPORTANCE The family Picornaviridae is divided into 68 genera and 158 species. The viruses belonging to this family range from public health importance, such as poliovirus, enterovirus A71, and hepatitis A virus, to animal viruses of great economic importance, such as foot-and-mouth disease virus. The genomes of picornaviruses contain 5' untranslated regions (5' UTRs), which possess crucial and highly structured stem-loops known as IRESs. IRES assemble the ribosomes and facilitate the cap-independent translation. Virus-host interaction is a hot spot for researchers, which warrants deep insight into understanding viral pathogenesis better and discovering new tools and ways for viral restriction to improve human and animal health. The cap-independent translation in the majority of picornaviruses is modulated by ITAFs, which bind to various IRES regions to initiate the translation. The discoveries of ITAFs substantially contributed to understanding viral replication behavior and enhanced our knowledge about virus-host interaction more effectively than ever before. This review discussed the various types of IRESs found in Picornaviridae, past and present discoveries regarding ITAFs, and their mechanism of action. The herbal extracts, drugs, and chemicals, which indicated their importance in controlling viruses, were also summarized. In addition, we discussed the movement of ITAFs from the nucleus to viral replication factories. We believe this review will stimulate researchers to search for more novel ITAFs, drugs, herbal extracts, and chemicals, enhancing the understanding of virus-host interaction.
Collapse
|
21
|
Liu Y, Cui J, Hoffman AR, Hu JF. Eukaryotic translation initiation factor eIF4G2 opens novel paths for protein synthesis in development, apoptosis and cell differentiation. Cell Prolif 2023; 56:e13367. [PMID: 36547008 PMCID: PMC9977666 DOI: 10.1111/cpr.13367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022] Open
Abstract
Protein translation is a critical regulatory event involved in nearly all physiological and pathological processes. Eukaryotic translation initiation factors are dedicated to translation initiation, the most highly regulated stage of protein synthesis. Eukaryotic translation initiation factor 4G2 (eIF4G2, also called p97, NAT1 and DAP5), an eIF4G family member that lacks the binding sites for 5' cap binding protein eIF4E, is widely considered to be a key factor for internal ribosome entry sites (IRESs)-mediated cap-independent translation. However, recent findings demonstrate that eIF4G2 also supports many other translation initiation pathways. In this review, we summarize the role of eIF4G2 in a variety of cap-independent and -dependent translation initiation events. Additionally, we also update recent findings regarding the role of eIF4G2 in apoptosis, cell survival, cell differentiation and embryonic development. These studies reveal an emerging new picture of how eIF4G2 utilizes diverse translational mechanisms to regulate gene expression.
Collapse
Affiliation(s)
- Yudi Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital, Jilin University, Changchun, Jilin, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
22
|
Wu GH, Lee KM, Kao CY, Shih SR. The internal ribosome entry site determines the neurotropic potential of enterovirus A71. Microbes Infect 2023; 25:105107. [PMID: 36708870 DOI: 10.1016/j.micinf.2023.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
The mechanisms underlying tissue-specific replication of enteroviruses are currently unclear. Although enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are both common pathogens that cause hand-foot-mouth disease, they display quite different neurotropic properties. Herein, we characterized the role of the internal ribosomal entry site (IRES) in determining neurovirulence using an oral inoculation model of EV-A71. The receptor transgenic (hSCARB2-Tg) mice developed neurological symptoms after being infected with a mouse-adapted EV-A71 strain (MP4) via different administrative routes. Intragastric administration of the MP4 strain caused pathological changes such as neuronal loss and neuropil vacuolation, whereas replacing EV-A71 IRES with CV-A16 abolished the neuropathological phenotypes. The attenuated neurotropic potential of IRES-swapped EV-A71 was observed even in mice that received intraperitoneal and intracerebral inoculations. Fewer chimeric MP4 viral RNAs and proteins were detected in the mouse tissues, regardless of the inoculation route. Tissue-specific replication can be reflected in cell-based characterization. While chimeric MP4 virus replicated poorly in human intestinal C2BBe1 and neuroblastoma SH-SY5Y cells, its replication in susceptible rhabdomyosarcoma cells was not affected. Overall, our results demonstrated that the IRES determined the neurotropic potential of EV-A71 and CV-A16, emphasizing the importance of the IRES in tissue tropism, along with the host receptors.
Collapse
Affiliation(s)
- Guan-Hong Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan
| | - Kuo-Ming Lee
- International Master Degree Program for Molecular Medicine in Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan; Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan; Division of Pediatric Infectious Diseases, Chang Gung Memorial Hospital, Linkou, Taoyuan, 333 Taiwan
| | - Chia-Yu Kao
- Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan
| | - Shin-Ru Shih
- Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, 333 Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333 Taiwan.
| |
Collapse
|
23
|
Wang Y, Zou W, Niu Y, Wang S, Chen B, Xiong R, Zhang P, Luo Z, Wu Y, Fan C, Zhong Z, Xu P, Peng Y. Phosphorylation of enteroviral 2A pro at Ser/Thr125 benefits its proteolytic activity and viral pathogenesis. J Med Virol 2023; 95:e28400. [PMID: 36511115 PMCID: PMC10107306 DOI: 10.1002/jmv.28400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/19/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Enteroviral 2A proteinase (2Apro ), a well-established and important viral functional protein, plays a key role in shutting down cellular cap-dependent translation, mainly via its proteolytic activity, and creating optimal conditions for Enterovirus survival. Accumulated data show that viruses take advantage of various signaling cascades for their life cycle; studies performed by us and others have demonstrated that the extracellular signal-regulated kinase (ERK) pathway is essential for enterovirus A71 (EV-A71) and other viruses replication. We recently showed that ERK1/2 is required for the proteolytic activity of viral 2Apro ; however, the mechanism underlying the regulation of 2Apro remains unknown. Here, we demonstrated that the 125th residue Ser125 of EV-A71 2Apro or Thr125 of coxsackievirus B3 2Apro , which is highly conserved in the Enterovirus, was phosphorylated by ERK1/2. Importantly, 2Apro with phosphor-Ser/Thr125 had much stronger proteolytic activity toward eukaryotic initiation factor 4GI and rendered the virus more efficient for multiplication and pathogenesis in hSCARB2 knock-in mice than that in nonphospho-Ser/Thr125A (S/T125A) mutants. Notably, phosphorylation-mimic mutations caused deleterious changes in 2Apro catalytic function (S/T125D/E) and in viral propagation (S125D). Crystal structure simulation analysis showed that Ser125 phosphorylation in EV-A71 2Apro enabled catalytic Cys to adopt an optimal conformation in the catalytic triad His-Asp-Cys, which enhances 2Apro proteolysis. Therefore, we are the first to report Ser/Thr125 phosphorylation of 2Apro increases enteroviral adaptation to the host to ensure enteroviral multiplication, causing pathogenicity. Additionally, weakened viruses containing a S/T125A mutation could be a general strategy to develop attenuated Enterovirus vaccines.
Collapse
Affiliation(s)
- Yuya Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenjia Zou
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Sanyuan Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Bangtao Chen
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Rui Xiong
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Peng Zhang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Queen Mary School, Nanchang University Jiangxi Medical College, Nanchang, China
| | - Yong Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Yihong Peng
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
24
|
Brownsword MJ, Locker N. A little less aggregation a little more replication: Viral manipulation of stress granules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1741. [PMID: 35709333 PMCID: PMC10078398 DOI: 10.1002/wrna.1741] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 01/31/2023]
Abstract
Recent exciting studies have uncovered how membrane-less organelles, also known as biocondensates, are providing cells with rapid response pathways, allowing them to re-organize their cellular contents and adapt to stressful conditions. Their assembly is driven by the phase separation of their RNAs and intrinsically disordered protein components into condensed foci. Among these, stress granules (SGs) are dynamic cytoplasmic biocondensates that form in response to many stresses, including activation of the integrated stress response or viral infections. SGs sit at the crossroads between antiviral signaling and translation because they concentrate signaling proteins and components of the innate immune response, in addition to translation machinery and stalled mRNAs. Consequently, they have been proposed to contribute to antiviral activities, and therefore are targeted by viral countermeasures. Equally, SGs components can be commandeered by viruses for their own efficient replication. Phase separation processes are an important component of the viral life cycle, for example, driving the assembly of replication factories or inclusion bodies. Therefore, in this review, we will outline the recent understanding of this complex interplay and tug of war between viruses, SGs, and their components. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Matthew J. Brownsword
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| |
Collapse
|
25
|
Andreev DE, Niepmann M, Shatsky IN. Elusive Trans-Acting Factors Which Operate with Type I (Poliovirus-like) IRES Elements. Int J Mol Sci 2022; 23:ijms232415497. [PMID: 36555135 PMCID: PMC9778869 DOI: 10.3390/ijms232415497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The phenomenon of internal initiation of translation was discovered in 1988 on poliovirus mRNA. The prototypic cis-acting element in the 5' untranslated region (5'UTR) of poliovirus mRNA, which is able to direct initiation at an internal start codon without the involvement of a cap structure, has been called an IRES (Internal Ribosome Entry Site or Segment). Despite its early discovery, poliovirus and other related IRES elements of type I are poorly characterized, and it is not yet clear which host proteins (a.k.a. IRES trans-acting factors, ITAFs) are required for their full activity in vivo. Here we discuss recent and old results devoted to type I IRESes and provide evidence that Poly(rC) binding protein 2 (PCBP2), Glycyl-tRNA synthetase (GARS), and Cold Shock Domain Containing E1 (CSDE1, also known as UNR) are major regulators of type I IRES activity.
Collapse
Affiliation(s)
- Dmitry E. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Ivan N. Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence:
| |
Collapse
|
26
|
Sadic M, Schneider WM, Katsara O, Medina GN, Fisher A, Mogulothu A, Yu Y, Gu M, de los Santos T, Schneider RJ, Dittmann M. DDX60 selectively reduces translation off viral type II internal ribosome entry sites. EMBO Rep 2022; 23:e55218. [PMID: 36256515 PMCID: PMC9724679 DOI: 10.15252/embr.202255218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
Abstract
Co-opting host cell protein synthesis is a hallmark of many virus infections. In response, certain host defense proteins limit mRNA translation globally, albeit at the cost of the host cell's own protein synthesis. Here, we describe an interferon-stimulated helicase, DDX60, that decreases translation from viral internal ribosome entry sites (IRESs). DDX60 acts selectively on type II IRESs of encephalomyocarditis virus (EMCV) and foot and mouth disease virus (FMDV), but not by other IRES types or by 5' cap. Correspondingly, DDX60 reduces EMCV and FMDV (type II IRES) replication, but not that of poliovirus or bovine enterovirus 1 (BEV-1; type I IRES). Furthermore, replacing the IRES of poliovirus with a type II IRES is sufficient for DDX60 to inhibit viral replication. Finally, DDX60 selectively modulates the amount of translating ribosomes on viral and in vitro transcribed type II IRES mRNAs, but not 5' capped mRNA. Our study identifies a novel facet in the repertoire of interferon-stimulated effector genes, the selective downregulation of translation from viral type II IRES elements.
Collapse
Affiliation(s)
| | | | | | - Gisselle N Medina
- Plum Island Animal Disease Center, ARSUSDAGreenportNYUSA,National Bio and Agro‐Defense Facility (NBAF), ARSUSDAManhattanKSUSA
| | | | - Aishwarya Mogulothu
- Plum Island Animal Disease Center, ARSUSDAGreenportNYUSA,Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutStorrsCTUSA
| | - Yingpu Yu
- The Rockefeller UniversityNew YorkNYUSA
| | | | | | | | | |
Collapse
|
27
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Mechanism underlying circRNA dysregulation in the TME of digestive system cancer. Front Immunol 2022; 13:951561. [PMID: 36238299 PMCID: PMC9550895 DOI: 10.3389/fimmu.2022.951561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are a new series of noncoding RNAs (ncRNAs) that have been reported to be expressed in eukaryotic cells and have a variety of biological functions in the regulation of cancer pathogenesis and progression. The TME, as a microscopic ecological environment, consists of a variety of cells, including tumor cells, immune cells and other normal cells, ECM and a large number of signaling molecules. The crosstalk between circRNAs and the TME plays a complicated role in affecting the malignant behaviors of digestive system cancers. Herein, we summarize the mechanisms underlying aberrant circRNA expression in the TME of the digestive system cancers, including immune surveillance, angiogenesis, EMT, and ECM remodelling. The regulation of the TME by circRNA is expected to be a new therapeutic method.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| |
Collapse
|
28
|
Zitzmann C, Dächert C, Schmid B, van der Schaar H, van Hemert M, Perelson AS, van Kuppeveld FJ, Bartenschlager R, Binder M, Kaderali L. Mathematical modeling of plus-strand RNA virus replication to identify broad-spectrum antiviral treatment strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.07.25.501353. [PMID: 35923314 PMCID: PMC9347285 DOI: 10.1101/2022.07.25.501353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to establish replication organelles (so-called "replication factories"), which provide a protected environment for the replicase complex, consisting of the viral genome and proteins necessary for viral RNA synthesis. In the current study, we investigate pan-viral similarities and virus-specific differences in the life cycle of this highly relevant group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackievirus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations by an intrinsic immune response. Based on these measurements, we developed a detailed mathematical model of the replication of HCV, DENV, and CVB3 and show that only small virus-specific changes in the model were necessary to describe the in vitro dynamics of the different viruses. Our model correctly predicted virus-specific mechanisms such as host cell translation shut off and different kinetics of replication organelles. Further, our model suggests that the ability to suppress or shut down host cell mRNA translation may be a key factor for in vitro replication efficiency which may determine acute self-limited or chronic infection. We further analyzed potential broad-spectrum antiviral treatment options in silico and found that targeting viral RNA translation, especially polyprotein cleavage, and viral RNA synthesis may be the most promising drug targets for all plus-strand RNA viruses. Moreover, we found that targeting only the formation of replicase complexes did not stop the viral replication in vitro early in infection, while inhibiting intracellular trafficking processes may even lead to amplified viral growth. Author summary Plus-strand RNA viruses comprise a large group of related and medically relevant viruses. The current global pandemic of COVID-19 caused by the SARS-coronavirus-2 as well as the constant spread of diseases such as dengue and chikungunya fever show the necessity of a comprehensive and precise analysis of plus-strand RNA virus infections. Plus-strand RNA viruses share similarities in their life cycle. To understand their within-host replication strategies, we developed a mathematical model that studies pan-viral similarities and virus-specific differences of three plus-strand RNA viruses, namely hepatitis C, dengue, and coxsackievirus. By fitting our model to in vitro data, we found that only small virus-specific variations in the model were required to describe the dynamics of all three viruses. Furthermore, our model predicted that ribosomes involved in viral RNA translation seem to be a key player in plus-strand RNA replication efficiency, which may determine acute or chronic infection outcome. Furthermore, our in-silico drug treatment analysis suggests that targeting viral proteases involved in polyprotein cleavage, in combination with viral RNA replication, may represent promising drug targets with broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Carolin Zitzmann
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Christopher Dächert
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Schmid
- Dept of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Hilde van der Schaar
- Division of infectious Diseases and Immunology, Virology Section, Dept of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martijn van Hemert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Frank J.M. van Kuppeveld
- Division of infectious Diseases and Immunology, Virology Section, Dept of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ralf Bartenschlager
- Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Dept of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
29
|
Meng E, Deng J, Jiang R, Wu H. CircRNA-Encoded Peptides or Proteins as New Players in Digestive System Neoplasms. Front Oncol 2022; 12:944159. [PMID: 35936754 PMCID: PMC9355255 DOI: 10.3389/fonc.2022.944159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) were considered non-coding RNAs. Nowadays, a large number of studies have found that these RNAs contain open reading frames that can be translated in a cap-independent manner, such as internal ribosome entry site (IRES) and N6-methyladenosine (m6A). The encoded peptides or proteins affect the occurrence and development of tumors by regulating the Yap-hippo and the Wnt/β-catenin signaling pathways, as well as the malignant progression of tumors through phosphorylation and ubiquitination of specific molecules. This review will summarize the regulation of circRNA translation and the functional roles and underlying mechanisms of circRNA-derived peptides or proteins in digestive tract tumors. Some circRNA-encoded peptides or proteins may be used as tumor biomarkers and prognostic factors for early screening and treatment of clinical gastrointestinal tumors.
Collapse
|
30
|
Miyoshi K, Hagita H, Horiguchi T, Tanimura A, Noma T. Redefining GBA gene structure unveils the ability of Cap-independent, IRES-dependent gene regulation. Commun Biol 2022; 5:639. [PMID: 35831491 PMCID: PMC9279297 DOI: 10.1038/s42003-022-03577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
Glucosylceramide is the primary molecule of glycosphingolipids, and its metabolic regulation is crucial for life. Defects in the catabolizing enzyme, glucocerebrosidase (GCase), cause a lysosomal storage disorder known as Gaucher disease. However, the genetic regulation of GCase has not been fully understood. Here we show the redefined structure of the GCase coding gene (GBA), and clarify the regulatory mechanisms of its transcription and translation. First, alternative uses of the two GBA gene promoters were identified in fibroblasts and HL60-derived macrophages. Intriguingly, both GBA transcripts and GCase activities were induced in macrophages but not in neutrophils. Second, we observed cap-independent translation occurs via unique internal ribosome entry site activities in first promoter-driven GBA transcripts. Third, the reciprocal expression was observed in GBA and miR22-3p versus GBAP1 transcripts before and after HL60-induced macrophage differentiation. Nevertheless, these findings clearly demonstrate novel cell-type-specific GBA gene expression regulatory mechanisms, providing new insights into GCase biology. The cell type-specific expression of the glucocerebrosidase gene, associated with the lysosomal storage disorder called Gaucher disease, is linked to cis- and trans-regulatory transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- Keiko Miyoshi
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504, Japan.
| | - Hiroko Hagita
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504, Japan
| | - Taigo Horiguchi
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504, Japan
| | - Ayako Tanimura
- Division of Food & Health Sciences, Department of Environmental and Symbiotic Sciences, Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, 862-8502, Japan
| | - Takafumi Noma
- Department of Nutrition and Health Promotion, Faculty of Human Life Studies, Hiroshima Jogakuin University, 4-13-1 Ushita-higashi, Higashi-ku, Hiroshima, 732-0063, Japan
| |
Collapse
|
31
|
Experimental evidence for occurrence of putative copy-choice recombination between two Senecavirus A genomes. Vet Microbiol 2022; 271:109487. [DOI: 10.1016/j.vetmic.2022.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022]
|
32
|
Bujanic L, Shevchuk O, von Kügelgen N, Kalinina A, Ludwik K, Koppstein D, Zerna N, Sickmann A, Chekulaeva M. The key features of SARS-CoV-2 leader and NSP1 required for viral escape of NSP1-mediated repression. RNA (NEW YORK, N.Y.) 2022; 28:766-779. [PMID: 35232816 PMCID: PMC9014875 DOI: 10.1261/rna.079086.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2, responsible for the ongoing global pandemic, must overcome a conundrum faced by all viruses. To achieve its own replication and spread, it simultaneously depends on and subverts cellular mechanisms. At the early stage of infection, SARS-CoV-2 expresses the viral nonstructural protein 1 (NSP1), which inhibits host translation by blocking the mRNA entry tunnel on the ribosome; this interferes with the binding of cellular mRNAs to the ribosome. Viral mRNAs, on the other hand, overcome this blockade. We show that NSP1 enhances expression of mRNAs containing the SARS-CoV-2 leader. The first stem-loop (SL1) in the viral leader is both necessary and sufficient for this enhancement mechanism. Our analysis pinpoints specific residues within SL1 (three cytosine residues at the positions 15, 19, and 20) and another within NSP1 (R124), which are required for viral evasion, and thus might present promising drug targets. We target SL1 with the antisense oligo (ASO) to efficiently and specifically down-regulate SARS-CoV-2 mRNA. Additionally, we carried out analysis of a functional interactome of NSP1 using BioID and identified components of antiviral defense pathways. Our analysis therefore suggests a mechanism by which NSP1 inhibits the expression of host genes while enhancing that of viral RNA. This analysis helps reconcile conflicting reports in the literature regarding the mechanisms by which the virus avoids NSP1 silencing.
Collapse
Affiliation(s)
- Lucija Bujanic
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Olga Shevchuk
- Leibniz-Institut für Analytische Wissenschaften-ISAS, 44139 Dortmund, Germany
| | - Nicolai von Kügelgen
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Anna Kalinina
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Katarzyna Ludwik
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - David Koppstein
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Nadja Zerna
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS, 44139 Dortmund, Germany
| | - Marina Chekulaeva
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| |
Collapse
|
33
|
Tang Q, Xu Z, Zhang F, Cai Y, Chen Y, Lu B, Zhou HB, Lan K, Wu S. Identification of a novel binding inhibitor that blocks the interaction between hSCARB2 and VP1 of enterovirus 71. CELL INSIGHT 2022; 1:100016. [PMID: 37193133 PMCID: PMC10120312 DOI: 10.1016/j.cellin.2022.100016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/13/2022] [Accepted: 02/08/2022] [Indexed: 05/18/2023]
Abstract
Enterovirus 71 (EV-A71) infection causes severe hand-foot-and-mouth disease that leads to cardiopulmonary complications and death in young children under 5 years of age. Although there are available vaccines for EV-A71 C4, however, there are no efficient drugs for severe cases. Thus, there is an urgent need to find new direct-antiviral agents (DAAs) to control EV-A71 infection. In this study, we report our discovery of the EV-A71 capsid inhibitor PTC-209HBr, a small-molecule Bmi-1 inhibitor and an anticancer agent, and its derivatives that inhibit multiple enteroviruses with an EC50 at a submicromolar efficacy. The mechanism of action of PTC-209HBr was confirmed by time-of-addition, resistance selection and reverse genetics experiments, microscale thermophoresis (MST), viral binding and entry assays, coimmunoprecipitation (Co-IP) and immunofluorescence experiments (IF). Mechanistic studies indicated that PTC-209HBr inhibited EV-A71 infection by impeding the binding between VP1 and the receptor hSCARB2 during the early stage of EV-A71 infection through hindering viral entry into host cells. Collectively, these findings indicated that PCT-209HBr is a novel inhibitor of enteroviruses with a confirmed mechanism of action that can be further developed into EV-A71 DAAs.
Collapse
Affiliation(s)
- Qi Tang
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhichao Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Fan Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Yang Cai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Yinuo Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Baojing Lu
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hai-bing Zhou
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430071, China
- Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Shuwen Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
34
|
Abstract
Enterovirus 71 (EV71) is the major pathogen of hand, foot, and mouth disease. In severe cases, it can cause life-threatening neurological complications, such as aseptic meningitis and polio-like paralysis. There are no specific antiviral treatments for EV71 infections. In a previous study, the host protein growth arrest and DNA damage-inducible protein 34 (GADD34) expression was upregulated during EV71 infection determined by ribosome profiling and RNA-sequencing. Here, we investigated the interactions of host protein GADD34 and EV71 during infections. Rhabdomyosarcoma (RD) cells were infected with EV71 resulting in a significant increase in expression of GADD34 mRNA and protein. Through screening of EV71 protein we determined that the non-structural precursor protein 3CD is responsible for upregulating GADD34. EV71 3CD increased the RNA and protein levels of GADD34, while the 3CD mutant Y441S could not. 3CD upregulated GADD34 translation via the upstream open reading frame (uORF) of GADD34 5'untranslated regions (UTR). EV71 replication was attenuated by the knockdown of GADD34. The function of GADD34 to dephosphorylate eIF2α was unrelated to the upregulation of EV71 replication, but the PEST 1, 2, and 3 regions of GADD34 were required. GADD34 promoted the EV71 internal ribosome entry site (IRES) activity through the PEST repeats and affected several other viruses. Finally, GADD34 amino acids 563 to 565 interacted with 3CD, assisting GADD34 to target the EV71 IRES. Our research reveals a new mechanism by which GADD34 promotes viral IRES and how the EV71 non-structural precursor protein 3CD regulates host protein expression to support viral replication. IMPORTANCE Identification of host factors involved in viral replication is an important approach in discovering viral pathogenic mechanisms and identifying potential therapeutic targets. Previously, we screened host proteins that were upregulated by EV71 infection. Here, we report the interaction between the upregulated host protein GADD34 and EV71. EV71 non-structural precursor protein 3CD activates the RNA and protein expression of GADD34. Our study reveals that 3CD regulates the uORF of the 5′-UTR to increase GADD34 translation, providing a new explanation for how viral proteins regulate host protein expression. GADD34 is important for EV71 replication, and the key functional domains of GADD34 that promote EV71 are PEST 1, 2, and 3 regions. We report that GADD34 promotes viral IRES for the first time and this process is independent of its eIF2α phosphatase activity.
Collapse
|
35
|
A Split NanoLuc Reporter Quantitatively Measures Circular RNA IRES Translation. Genes (Basel) 2022; 13:genes13020357. [PMID: 35205400 PMCID: PMC8871761 DOI: 10.3390/genes13020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/02/2023] Open
Abstract
Internal ribosomal entry sites (IRESs) are RNA secondary structures that mediate translation independent from the m7G RNA cap. The dicistronic luciferase assay is the most frequently used method to measure IRES-mediated translation. While this assay is quantitative, it requires numerous controls and can be time-consuming. Circular RNAs generated by splinted ligation have been shown to also accurately report on IRES-mediated translation, however suffer from low yield and other challenges. More recently, cellular sequences were shown to facilitate RNA circle formation through backsplicing. Here, we used a previously published backsplicing circular RNA split GFP reporter to create a highly sensitive and quantitative split nanoluciferase (NanoLuc) reporter. We show that NanoLuc expression requires backsplicing and correct orientation of a bona fide IRES. In response to cell stress, IRES-directed NanoLuc expression remained stable or increased while a capped control reporter decreased in translation. In addition, we detected NanoLuc expression from putative cellular IRESs and the Zika virus 5' untranslated region that is proposed to harbor IRES function. These data together show that our IRES reporter construct can be used to verify, identify and quantify the ability of sequences to mediate IRES-translation within a circular RNA.
Collapse
|
36
|
Shi B, Song Q, Luo X, Song J, Xia D, Xia Z, Liu M, Wang W, Wang R, Du H, Wei Q, Han J. Identification of an IRES within the coding region of the structural protein of human rhinovirus 16. J Med Virol 2021; 94:2653-2661. [PMID: 34873729 DOI: 10.1002/jmv.27507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/13/2021] [Accepted: 12/02/2021] [Indexed: 11/07/2022]
Abstract
As an alternative mechanism for cap-dependent (m7GpppN) translation, internal ribosome entry site (IRES)-dependent translation has been observed in the 5' untranslated regions (5' UTR) and coding regions of a number of viral and eukaryotic mRNAs. In this study, a series of 5' terminal truncated structural protein genes that were fused with GFP was used to screen for potential IRESs, and IRESs were identified using a bicistronic luciferase vector or GFP expression vector possessing a hairpin structure. Our results revealed that a putative IRES was located between nt 1982 and 2281 in the VP3 coding region of the human rhinovirus 16 (HRV16) genomes. We also demonstrated that effective IRES-initiated protein expression in vitro did not occur through splicing sites or cryptic promoters. We confirmed that thapsigargin (TG), an inducer of endoplasmic reticulum stress (ERS), facilitated increased IRES activity in a dose-dependent manner. Additionally, the secondary structure of the IRES was predicted online using the RNAfold web server.
Collapse
Affiliation(s)
- Bingtian Shi
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Qinqin Song
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xiaonuan Luo
- Department of Pathology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, China
| | - Juan Song
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Dong Xia
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhiqiang Xia
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Mi Liu
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Wenjun Wang
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ruifang Wang
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Haijun Du
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Qiang Wei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Han
- Center for Viral Resource, State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
37
|
Liu W, Sun Y, Qiu X, Meng C, Song C, Tan L, Liao Y, Liu X, Ding C. Genome-Wide Analysis of Alternative Splicing during Host-Virus Interactions in Chicken. Viruses 2021; 13:v13122409. [PMID: 34960678 PMCID: PMC8703359 DOI: 10.3390/v13122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
The chicken is a model animal for the study of evolution, immunity and development. In addition to their use as a model organism, chickens also represent an important agricultural product. Pathogen invasion has already been shown to modulate the expression of hundreds of genes, but the role of alternative splicing in avian virus infection remains unclear. We used RNA-seq data to analyze virus-induced changes in the alternative splicing of Gallus gallus, and found that a large number of alternative splicing events were induced by virus infection both in vivo and in vitro. Virus-responsive alternative splicing events preferentially occurred in genes involved in metabolism and transport. Many of the alternatively spliced transcripts were also expressed from genes with a function relating to splicing or immune response, suggesting a potential impact of virus infection on pre-mRNA splicing and immune gene regulation. Moreover, exon skipping was the most frequent AS event in chickens during virus infection. This is the first report describing a genome-wide analysis of alternative splicing in chicken and contributes to the genomic resources available for studying host-virus interaction in this species. Our analysis fills an important knowledge gap in understanding the extent of genome-wide alternative splicing dynamics occurring during avian virus infection and provides the impetus for the further exploration of AS in chicken defense signaling and homeostasis.
Collapse
Affiliation(s)
- Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Xiufan Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-21-3429-3441
| |
Collapse
|
38
|
Tsu BV, Fay EJ, Nguyen KT, Corley MR, Hosuru B, Dominguez VA, Daugherty MD. Running With Scissors: Evolutionary Conflicts Between Viral Proteases and the Host Immune System. Front Immunol 2021; 12:769543. [PMID: 34790204 PMCID: PMC8591160 DOI: 10.3389/fimmu.2021.769543] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Many pathogens encode proteases that serve to antagonize the host immune system. In particular, viruses with a positive-sense single-stranded RNA genome [(+)ssRNA], including picornaviruses, flaviviruses, and coronaviruses, encode proteases that are not only required for processing viral polyproteins into functional units but also manipulate crucial host cellular processes through their proteolytic activity. Because these proteases must cleave numerous polyprotein sites as well as diverse host targets, evolution of these viral proteases is expected to be highly constrained. However, despite this strong evolutionary constraint, mounting evidence suggests that viral proteases such as picornavirus 3C, flavivirus NS3, and coronavirus 3CL, are engaged in molecular 'arms races' with their targeted host factors, resulting in host- and virus-specific determinants of protease cleavage. In cases where protease-mediated cleavage results in host immune inactivation, recurrent host gene evolution can result in avoidance of cleavage by viral proteases. In other cases, such as recently described examples in NLRP1 and CARD8, hosts have evolved 'tripwire' sequences that mimic protease cleavage sites and activate an immune response upon cleavage. In both cases, host evolution may be responsible for driving viral protease evolution, helping explain why viral proteases and polyprotein sites are divergent among related viruses despite such strong evolutionary constraint. Importantly, these evolutionary conflicts result in diverse protease-host interactions even within closely related host and viral species, thereby contributing to host range, zoonotic potential, and pathogenicity of viral infection. Such examples highlight the importance of examining viral protease-host interactions through an evolutionary lens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthew D. Daugherty
- Division of Biological Sciences, University of California, San Diego, CA, United States
| |
Collapse
|
39
|
Wang N, Wang H, Shi J, Li C, Liu X, Fan J, Sun C, Cameron CE, Qi H, Yu L. The Stem-Loop I of Senecavirus A IRES Is Essential for Cap-Independent Translation Activity and Virus Recovery. Viruses 2021; 13:v13112159. [PMID: 34834966 PMCID: PMC8619302 DOI: 10.3390/v13112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/07/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
Senecavirus A (SVA) is a picornavirus that causes vesicular disease in swine and the only member of the Senecavirus genus. Like in all members of Picornaviridae, the 5′ untranslated region (5’UTR) of SVA contains an internal ribosome entry site (IRES) that initiates cap-independent translation. For example, the replacement of the IRES of foot-and-mouth disease virus (FMDV) with its relative bovine rhinitis B virus (BRBV) affects the viral translation efficiency and virulence. Structurally, the IRES from SVA resembles that of hepatitis C virus (HCV), a flavivirus. Given the roles of the IRES in cap-independent translation for picornaviruses, we sought to functionally characterize the IRES of this genus by studying chimeric viruses generated by exchanging the native SVA IRES with that of HCV either entirely or individual domains. First, the results showed that a chimeric SVA virus harboring the IRES from HCV, H-SVA, is viable and replicated normally in rodent-derived BHK-21 cells but displays replication defects in porcine-derived ST cells. In the generation of chimeric viruses in which domain-specific elements from SVA were replaced with those of HCV, we identified an essential role for the stem-loop I element for IRES activity and recombinant virus recovery. Furthermore, a series of stem-loop I mutants allowed us to functionally characterize discrete IRES regions and correlate impaired IRES activities, using reporter systems with our inability to recover recombinant viruses in two different cell types. Interestingly, mutant viruses harboring partially defective IRES were viable. However, no discernable replication differences were observed, relative to the wild-type virus, suggesting the cooperation of additional factors, such as intermolecular viral RNA interactions, act in concert in regulating IRES-dependent translation during infection. Altogether, we found that the stem-loop I of SVA is an essential element for IRES-dependent translation activity and viral replication.
Collapse
Affiliation(s)
- Nana Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.W.); (H.W.); (J.S.); (C.L.); (J.F.); (C.S.)
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.W.); (H.W.); (J.S.); (C.L.); (J.F.); (C.S.)
| | - Jiabao Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.W.); (H.W.); (J.S.); (C.L.); (J.F.); (C.S.)
| | - Chen Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.W.); (H.W.); (J.S.); (C.L.); (J.F.); (C.S.)
| | - Xinran Liu
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Junhao Fan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.W.); (H.W.); (J.S.); (C.L.); (J.F.); (C.S.)
| | - Chao Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.W.); (H.W.); (J.S.); (C.L.); (J.F.); (C.S.)
| | - Craig E. Cameron
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27516, USA;
| | - Hong Qi
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, School of Environment, Harbin 150090, China
- Correspondence: (H.Q.); (L.Y.); Tel.: +86-451-51051738 (L.Y.)
| | - Li Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (N.W.); (H.W.); (J.S.); (C.L.); (J.F.); (C.S.)
- Correspondence: (H.Q.); (L.Y.); Tel.: +86-451-51051738 (L.Y.)
| |
Collapse
|
40
|
Identification of cryptic putative IRESs within the ORF encoding the nonstructural proteins of the human rhinovirus 16 genome. Arch Virol 2021; 166:3373-3386. [PMID: 34608523 DOI: 10.1007/s00705-021-05209-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
Internal ribosome entry site (IRES)-dependent translation is a mechanism distinct from 5' cap-dependent translation. IRES elements are located mainly in the 5' untranslated regions (UTRs) of viral and eukaryotic mRNAs. However, IRESs are also found in the coding regions of some viral and eukaryotic genomes to initiate the translation of some functional truncated isoforms. Here, five putative IRES elements of human rhinovirus 16 (HRV16) were identified in the coding region of the nonstructural proteins P2 and P3 through fusion with green fluorescent protein (GFP) expression vectors and bicistronic vectors with a hairpin structure. These five putative IRESs were located at nucleotide positions 4286-4585, 5002-5126, 6245-6394, 6619-6718, and 6629-6778 in the HRV16 genome. The functionality of the five IRESs was confirmed by their ability to initiate GFP expression in vitro. This suggests that an alternative mechanism might be used to increase the efficiency of replication of HRV16.
Collapse
|
41
|
Abdullah SW, Wu J, Zhang Y, Bai M, Guan J, Liu X, Sun S, Guo H. DDX21, a Host Restriction Factor of FMDV IRES-Dependent Translation and Replication. Viruses 2021; 13:v13091765. [PMID: 34578346 PMCID: PMC8473184 DOI: 10.3390/v13091765] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
In cells, the contributions of DEAD-box helicases (DDXs), without which cellular life is impossible, are of utmost importance. The extremely diverse roles of the nucleolar helicase DDX21, ranging from fundamental cellular processes such as cell growth, ribosome biogenesis, protein translation, protein–protein interaction, mediating and sensing transcription, and gene regulation to viral manipulation, drew our attention. We designed this project to study virus–host interactions and viral pathogenesis. A pulldown assay was used to investigate the association between foot-and-mouth disease virus (FMDV) and DDX21. Further insight into the DDX21–FMDV interaction was obtained through dual-luciferase, knockdown, overexpression, qPCR, and confocal microscopy assays. Our results highlight the antagonistic feature of DDX21 against FMDV, as it progressively inhibited FMDV internal ribosome entry site (IRES) -dependent translation through association with FMDV IRES domains 2, 3, and 4. To subvert this host helicase antagonism, FMDV degraded DDX21 through its non-structural proteins 2B, 2C, and 3C protease (3Cpro). Our results suggest that DDX21 is degraded during 2B and 2C overexpression and FMDV infection through the caspase pathway; however, DDX21 is degraded through the lysosomal pathway during 3Cpro overexpression. Further investigation showed that DDX21 enhanced interferon-beta and interleukin-8 production to restrict viral replication. Together, our results demonstrate that DDX21 is a novel FMDV IRES trans-acting factor, which negatively regulates FMDV IRES-dependent translation and replication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiqi Sun
- Correspondence: (S.S.); (H.G.); Tel.: +86-0931-8312213 (S.S. & H.G.)
| | - Huichen Guo
- Correspondence: (S.S.); (H.G.); Tel.: +86-0931-8312213 (S.S. & H.G.)
| |
Collapse
|
42
|
Aviner R, Li KH, Frydman J, Andino R. Cotranslational prolyl hydroxylation is essential for flavivirus biogenesis. Nature 2021; 596:558-564. [PMID: 34408324 PMCID: PMC8789550 DOI: 10.1038/s41586-021-03851-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 07/23/2021] [Indexed: 02/07/2023]
Abstract
Viral pathogens are an ongoing threat to public health worldwide. Analysing their dependence on host biosynthetic pathways could lead to effective antiviral therapies1. Here we integrate proteomic analyses of polysomes with functional genomics and pharmacological interventions to define how enteroviruses and flaviviruses remodel host polysomes to synthesize viral proteins and disable host protein production. We find that infection with polio, dengue or Zika virus markedly modifies polysome composition, without major changes to core ribosome stoichiometry. These viruses use different strategies to evict a common set of translation initiation and RNA surveillance factors from polysomes while recruiting host machineries that are specifically required for viral biogenesis. Targeting these specialized viral polysomes could provide a new approach for antiviral interventions. For example, we find that both Zika and dengue use the collagen proline hydroxylation machinery to mediate cotranslational modification of conserved proline residues in the viral polyprotein. Genetic or pharmacological inhibition of proline hydroxylation impairs nascent viral polyprotein folding and induces its aggregation and degradation. Notably, such interventions prevent viral polysome remodelling and lower virus production. Our findings delineate the modular nature of polysome specialization at the virus-host interface and establish a powerful strategy to identify targets for selective antiviral interventions.
Collapse
Affiliation(s)
- Ranen Aviner
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Biology and Genetics, Stanford University, Stanford, CA, USA
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA, USA.
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
43
|
Yang S, He Y, Chen X, Kalim U, Wang Y, Yang S, Qi H, Cheng H, Lu X, Wang X, Shen Q, Zhang W. Viral Metagenomics Reveals Diverse Viruses in the Feces Samples of Raccoon Dogs. Front Vet Sci 2021; 8:693564. [PMID: 34322538 PMCID: PMC8311183 DOI: 10.3389/fvets.2021.693564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Raccoon dogs as an ancient species of Canidae are the host of many viruses, including rabies virus, canine distemper virus, severe acute respiratory syndrome coronavirus, and so on. With the development of raccoon dog breeding in recent years, some viruses which infected poultry or pigs were also detected from raccoon dogs. At present, the fecal virome of raccoon dogs has been rarely studied. Using an unbiased viral metagenomic approach, we investigated the fecal virome in raccoon dogs collected from one farm of Jilin Province, China. Many DNA or RNA viruses identified in those fecal samples were mainly from seven families, including Circoviridae, Smacoviridae, Genomoviridae, Parvoviridae, Picornaviridae, Astroviridae, and Hepeviridae. This study increased our understanding of the fecal virome in raccoon dog and provided valuable information for the monitoring, prevention, and treatment of viral diseases of these animals.
Collapse
Affiliation(s)
- Shixing Yang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yumin He
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ullah Kalim
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shuyu Yang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Haifeng Qi
- School of Medicine, Jiangsu University, Zhenjiang, China
| | | | - Xiang Lu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaochun Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Quan Shen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
44
|
Lee S, Lee YS, Choi Y, Son A, Park Y, Lee KM, Kim J, Kim JS, Kim VN. The SARS-CoV-2 RNA interactome. Mol Cell 2021; 81:2838-2850.e6. [PMID: 33989516 PMCID: PMC8075806 DOI: 10.1016/j.molcel.2021.04.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 is an RNA virus whose success as a pathogen relies on its abilities to repurpose host RNA-binding proteins (RBPs) and to evade antiviral RBPs. To uncover the SARS-CoV-2 RNA interactome, we here develop a robust ribonucleoprotein (RNP) capture protocol and identify 109 host factors that directly bind to SARS-CoV-2 RNAs. Applying RNP capture on another coronavirus, HCoV-OC43, revealed evolutionarily conserved interactions between coronaviral RNAs and host proteins. Transcriptome analyses and knockdown experiments delineated 17 antiviral RBPs, including ZC3HAV1, TRIM25, PARP12, and SHFL, and 8 proviral RBPs, such as EIF3D and CSDE1, which are responsible for co-opting multiple steps of the mRNA life cycle. This also led to the identification of LARP1, a downstream target of the mTOR signaling pathway, as an antiviral host factor that interacts with the SARS-CoV-2 RNAs. Overall, this study provides a comprehensive list of RBPs regulating coronaviral replication and opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Sungyul Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Suk Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yeon Choi
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ahyeon Son
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Youngran Park
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Min Lee
- International Vaccine Institute, Seoul, Republic of Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Nucleocytoplasmic Trafficking Perturbation Induced by Picornaviruses. Viruses 2021; 13:v13071210. [PMID: 34201715 PMCID: PMC8310216 DOI: 10.3390/v13071210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022] Open
Abstract
Picornaviruses are positive-stranded RNA viruses. Even though replication and translation of their genome take place in the cytoplasm, these viruses evolved different strategies to disturb nucleocytoplasmic trafficking of host proteins and RNA. The major targets of picornavirus are the phenylalanine-glycine (FG)-nucleoporins, which form a mesh in the central channel of the nuclear pore complex through which protein cargos and karyopherins are actively transported in both directions. Interestingly, while enteroviruses use the proteolytic activity of their 2A protein to degrade FG-nucleoporins, cardioviruses act by triggering phosphorylation of these proteins by cellular kinases. By targeting the nuclear pore complex, picornaviruses recruit nuclear proteins to the cytoplasm, where they increase viral genome translation and replication; they affect nuclear translocation of cytoplasmic proteins such as transcription factors that induce innate immune responses and retain host mRNA in the nucleus thereby preventing cell emergency responses and likely making the ribosomal machinery available for translation of viral RNAs.
Collapse
|
46
|
Han S, Wang X, Guan J, Wu J, Zhang Y, Li P, Liu Z, Abdullah SW, Zhang Z, Jin Y, Sun S, Guo H. Nucleolin Promotes IRES-Driven Translation of Foot-and-Mouth Disease Virus by Supporting the Assembly of Translation Initiation Complexes. J Virol 2021; 95:e0023821. [PMID: 33853964 PMCID: PMC8315980 DOI: 10.1128/jvi.00238-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleolin (NCL), a stress-responsive RNA-binding protein, has been implicated in the translation of internal ribosome entry site (IRES)-containing mRNAs, which encode proteins involved in cell proliferation, carcinogenesis, and viral infection (type I IRESs). However, the details of the mechanisms by which NCL participates in IRES-driven translation have not hitherto been described. Here, we identified NCL as a protein that interacts with the IRES of foot-and-mouth disease virus (FMDV), which is a type II IRES. We also mapped the interactive regions within FMDV IRES and NCL in vitro. We found that NCL serves as a substantial regulator of FMDV IRES-driven translation but not of bulk cellular or vesicular stomatitis virus cap-dependent translation. NCL also modulates the translation of and infection by Seneca Valley virus (type III-like IRES) and classical swine fever virus (type III IRES), which suggests that its function is conserved in unrelated IRES-containing viruses. We also show that NCL affects viral replication by directly regulating the production of viral proteins and indirectly regulating FMDV RNA synthesis. Importantly, we observed that the cytoplasmic relocalization of NCL during FMDV infection is a substantial step for viral IRES-driven translation and that NCL specifically promotes the initiation phase of the translation process by recruiting translation initiation complexes to viral IRES. Finally, the functional importance of NCL in FMDV pathogenicity was confirmed in vivo. Taken together, our findings demonstrate a specific function for NCL in selective mRNA translation and identify a target for the development of a broad-spectrum class of antiviral interventions. IMPORTANCE FMDV usurps the cellular translation machinery to initiate viral protein synthesis via a mechanism driven by IRES elements. It allows the virus to shut down bulk cellular translation, while providing an advantage for its own gene expression. With limited coding capacity in its own genome, FMDV has evolved a mechanism to hijack host proteins to promote the recruitment of the host translation machinery, a process that is still not well understood. Here, we identified nucleolin (NCL) as a positive regulator of the IRES-driven translation of FMDV. Our study supports a model in which NCL relocalizes from the nucleus to the cytoplasm during the course of FMDV infection, where the cytoplasmic NCL promotes FMDV IRES-driven translation by bridging the translation initiation complexes with viral IRES. Our study demonstrates a previously uncharacterized role of NCL in the translation initiation of IRES-containing viruses, with important implications for the development of broad antiviral interventions.
Collapse
Affiliation(s)
- Shichong Han
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Xiaojia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, People’s Republic of China
| | - Junyong Guan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Jinen Wu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Zhihui Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Ye Jin
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
- College of Animal Science, Yangtze University, Jingzhou, Hubei, People’s Republic of China
| |
Collapse
|
47
|
Su YS, Hwang LH, Chen CJ. Heat Shock Protein A6, a Novel HSP70, Is Induced During Enterovirus A71 Infection to Facilitate Internal Ribosomal Entry Site-Mediated Translation. Front Microbiol 2021; 12:664955. [PMID: 34025620 PMCID: PMC8137988 DOI: 10.3389/fmicb.2021.664955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a human pathogen causing hand, foot, and mouth disease (HFMD) in children. Its infection can lead to severe neurological diseases or even death in some cases. While being produced in a large quantity during infection, viral proteins often require the assistance from cellular chaperones for proper folding. In this study, we found that heat shock protein A6 (HSPA6), whose function in viral life cycle is scarcely studied, was induced and functioned as a positive regulator for EV-A71 infection. Depletion of HSPA6 led to the reductions of EV-A71 viral proteins, viral RNA and virions as a result of the downregulation of internal ribosomal entry site (IRES)-mediated translation. Unlike other HSP70 isoforms such as HSPA1, HSPA8, and HSPA9, which regulate all phases of the EV-A71 life, HSPA6 was required for the IRES-mediated translation only. Unexpectedly, the importance of HSPA6 in the IRES activity could be observed in the absence of viral proteins, suggesting that HSPA6 facilitated IRES activity through cellular factor(s) instead of viral proteins. Intriguingly, the knockdown of HSPA6 also caused the reduction of luciferase activity driven by the IRES from coxsackievirus A16, echovirus 9, encephalomyocarditis virus, or hepatitis C virus, supporting that HSPA6 may assist the function of a cellular protein generally required for viral IRES activities.
Collapse
Affiliation(s)
- Yu-Siang Su
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Lih-Hwa Hwang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ju Chen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
48
|
Yang TH, Wang CY, Tsai HC, Liu CT. Human IRES Atlas: an integrative platform for studying IRES-driven translational regulation in humans. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6263636. [PMID: 33942874 PMCID: PMC8094437 DOI: 10.1093/database/baab025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022]
Abstract
It is now known that cap-independent translation initiation facilitated by internal ribosome entry sites (IRESs) is vital in selective cellular protein synthesis under stress and different physiological conditions. However, three problems make it hard to understand transcriptome-wide cellular IRES-mediated translation initiation mechanisms: (i) complex interplay between IRESs and other translation initiation–related information, (ii) reliability issue of in silico cellular IRES investigation and (iii) labor-intensive in vivo IRES identification. In this research, we constructed the Human IRES Atlas database for a comprehensive understanding of cellular IRESs in humans. First, currently available and suitable IRES prediction tools (IRESfinder, PatSearch and IRESpy) were used to obtain transcriptome-wide human IRESs. Then, we collected eight genres of translation initiation–related features to help study the potential molecular mechanisms of each of the putative IRESs. Three functional tests (conservation, structural RNA–protein scores and conditional translation efficiency) were devised to evaluate the functionality of the identified putative IRESs. Moreover, an easy-to-use interface and an IRES–translation initiation interaction map for each gene transcript were implemented to help understand the interactions between IRESs and translation initiation–related features. Researchers can easily search/browse an IRES of interest using the web interface and deduce testable mechanism hypotheses of human IRES-driven translation initiation based on the integrated results. In summary, Human IRES Atlas integrates putative IRES elements and translation initiation–related experiments for better usage of these data and deduction of mechanism hypotheses. Database URL: http://cobishss0.im.nuk.edu.tw/Human_IRES_Atlas/
Collapse
Affiliation(s)
- Tzu-Hsien Yang
- Department of Information Management, National University of Kaohsiung, 700, Kaohsiung University Rd., Nanzih District, Kaohsiung, Taiwan 811, Republic of China
| | - Chung-Yu Wang
- Department of Information Management, National University of Kaohsiung, 700, Kaohsiung University Rd., Nanzih District, Kaohsiung, Taiwan 811, Republic of China
| | - Hsiu-Chun Tsai
- Department of Information Management, National University of Kaohsiung, 700, Kaohsiung University Rd., Nanzih District, Kaohsiung, Taiwan 811, Republic of China
| | - Cheng-Tse Liu
- Department of Information Management, National University of Kaohsiung, 700, Kaohsiung University Rd., Nanzih District, Kaohsiung, Taiwan 811, Republic of China
| |
Collapse
|
49
|
Expression of Secreted Neutrophil Gelatinase-Associated Lipocalin in 293T Cell Using the Inducible Dual-Function System. Processes (Basel) 2021. [DOI: 10.3390/pr9050855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as a promising biomarker for the early prediction of acute kidney injury (AKI). The production of recombinant NGAL is considered to be necessary for the development of a detection method. This study intended to express the recombinant NGAL protein in 293T cell under the Tet-On inducible system and human serum albumin signal sequence (HSA-SS). The transfection efficiency and protein modulation were assessed by detecting the expression of the enhanced green fluorescent protein (EGFP) and secreted NGAL protein. Both proteins were detected only in the presence of a doxycycline (Dox) inducer. Cell toxicity was not found under any conditions. Moreover, a higher level of soluble NGAL protein in the supernatant secreted by HSA-SS compared with a native signal peptide (Nat-SS) was observed. In summary, this work successfully optimized the conditions for induction of NGAL expression. This system will provide as an efficient strategy to produce other recombinant proteins secreted from a mammalian cell.
Collapse
|
50
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|