1
|
Colón Ortiz R, Knerler S, Fridman LB, Mercado A, Price AS, Rosado-Franco JJ, Wilkins H, Flores BR, Orsburn BC, Williams DW. Cocaine regulates antiretroviral therapy CNS access through pregnane-x receptor-mediated drug transporter and metabolizing enzyme modulation at the blood brain barrier. Fluids Barriers CNS 2024; 21:5. [PMID: 38200564 PMCID: PMC10777548 DOI: 10.1186/s12987-023-00507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Appropriate interactions between antiretroviral therapies (ART) and drug transporters and metabolizing enzymes at the blood brain barrier (BBB) are critical to ensure adequate dosing of the brain to achieve HIV suppression. These proteins are modulated by demographic and lifestyle factors, including substance use. While understudied, illicit substances share drug transport and metabolism pathways with ART, increasing the potential for adverse drug:drug interactions. This is particularly important when considering the brain as it is relatively undertreated compared to peripheral organs and is vulnerable to substance use-mediated damage. METHODS We used an in vitro model of the human BBB to determine the extravasation of three first-line ART drugs, emtricitabine (FTC), tenofovir (TFV), and dolutegravir (DTG), in the presence and absence of cocaine, which served as our illicit substance model. The impact of cocaine on BBB integrity and permeability, drug transporters, metabolizing enzymes, and their master transcriptional regulators were evaluated to determine the mechanisms by which substance use impacted ART central nervous system (CNS) availability. RESULTS We determined that cocaine had a selective impact on ART extravasation, where it increased FTC's ability to cross the BBB while decreasing TFV. DTG concentrations that passed the BBB were below quantifiable limits. Interestingly, the potent neuroinflammatory modulator, lipopolysaccharide, had no effect on ART transport, suggesting a specificity for cocaine. Unexpectedly, cocaine did not breach the BBB, as permeability to albumin and 4 kDa FITC-dextran, as well as tight junction proteins and adhesion molecules remained unchanged. Rather, cocaine selectively decreased the pregnane-x receptor (PXR), but not constitutive androstane receptor (CAR). Consequently, drug transporter expression and activity decreased in endothelial cells of the BBB, including p-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 4 (MRP4). Further, cytochrome P450 3A4 (CYP3A4) enzymatic activity increased following cocaine treatment that coincided with decreased expression. Finally, cocaine modulated adenylate kinases that are required to facilitate biotransformation of ART prodrugs to their phosphorylated, pharmacologically active counterparts. CONCLUSION Our findings indicate that additional considerations are needed in CNS HIV treatment strategies for people who use cocaine, as it may limit ART efficacy through regulation of drug transport and metabolizing pathways at the BBB.
Collapse
Affiliation(s)
- Rodnie Colón Ortiz
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Stephen Knerler
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Lisa B Fridman
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Alicia Mercado
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Amira-Storm Price
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Jose J Rosado-Franco
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Hannah Wilkins
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Bianca R Flores
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Dionna W Williams
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Molecular Microbiology & Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road NE, 30322, Atlanta, Georgia.
| |
Collapse
|
2
|
Fridman LB, Knerler S, Price AS, Ortiz RC, Mercado A, Wilkins H, Flores BR, Orsburn BC, Williams DW. Cocaine Regulates Antiretroviral Therapy CNS Access Through Pregnane-X Receptor-Mediated Drug Transporter and Metabolizing Enzyme Modulation at the Blood Brain Barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551042. [PMID: 37546800 PMCID: PMC10402182 DOI: 10.1101/2023.07.28.551042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background Appropriate interactions between antiretroviral therapies (ART) and drug transporters and metabolizing enzymes at the blood brain barrier (BBB) are critical to ensure adequate dosing of the brain to achieve HIV suppression. These proteins are modulated by demographic and lifestyle factors, including substance use. While understudied, illicit substances share drug transport and metabolism pathways with ART, increasing the potential for adverse drug:drug interactions. This is particularly important when considering the brain as it is relatively undertreated compared to peripheral organs and is vulnerable to substance use-mediated damage. Methods We used an in vitro model of the human BBB to determine the extravasation of three first-line ART drugs, emtricitabine (FTC), tenofovir (TFV), and dolutegravir (DTG), in the presence and absence of cocaine, which served as our illicit substance model. The impact of cocaine on BBB integrity and permeability, drug transporters, metabolizing enzymes, and their master transcriptional regulators were evaluated to determine the mechanisms by which substance use impacted ART central nervous system (CNS) availability. Results We determined that cocaine had a selective impact on ART extravasation, where it increased FTC's ability to cross the BBB while decreasing TFV. DTG concentrations that passed the BBB were below quantifiable limits. Interestingly, the potent neuroinflammatory modulator, lipopolysaccharide, had no effect on ART transport, suggesting a specificity for cocaine. Unexpectedly, cocaine did not breach the BBB, as permeability to albumin and tight junction proteins and adhesion molecules remained unchanged. Rather, cocaine selectively decreased the pregnane-x receptor (PXR), but not constitutive androstane receptor (CAR). Consequently, drug transporter expression and activity decreased in endothelial cells of the BBB, including p-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 4 (MRP4). Further, cytochrome P450 3A4 (CYP3A4) enzymatic activity increased following cocaine treatment that coincided with decreased expression. Finally, cocaine modulated adenylate kinases are required to facilitate biotransformation of ART prodrugs to their phosphorylated, pharmacologically active counterparts. Conclusion Our findings indicate that additional considerations are needed in CNS HIV treatment strategies for people who use cocaine, as it may limit ART efficacy through regulation of drug transport and metabolizing pathways at the BBB.
Collapse
Affiliation(s)
- Lisa B. Fridman
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Stephen Knerler
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Amira-Storm Price
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Rodnie Colón Ortiz
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Alicia Mercado
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Hannah Wilkins
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Bianca R. Flores
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Benjamin C. Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Dionna W. Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Molecular Microbiology & Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205
| |
Collapse
|
3
|
Wilson S, Steele S, Adeli K. Innovative technological advancements in laboratory medicine: Predicting the lab of the future. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2021.2011413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Affiliation(s)
- Siobhan Wilson
- Clinical Biochemistry, Pediatric Laboratory Medicine and Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shannon Steele
- Clinical Biochemistry, Pediatric Laboratory Medicine and Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Khosrow Adeli
- Clinical Biochemistry, Pediatric Laboratory Medicine and Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Kim H, Huh HJ, Park E, Chung DR, Kang M. Multiplex Molecular Point-of-Care Test for Syndromic Infectious Diseases. BIOCHIP JOURNAL 2021; 15:14-22. [PMID: 33613852 PMCID: PMC7883532 DOI: 10.1007/s13206-021-00004-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
Point-of-care (POC) molecular diagnostics for clinical microbiology and virology has primarily focused on the detection of a single pathogen. More recently, it has transitioned into a comprehensive syndromic approach that employs multiplex capabilities, including the simultaneous detection of two or more pathogens. Multiplex POC tests provide higher accuracy to for actionable decisionmaking in critical care, which leads to pathogen-specific treatment and standardized usages of antibiotics that help prevent unnecessary processes. In addition, these tests can be simple enough to operate at the primary care level and in remote settings where there is no laboratory infrastructure. This review focuses on state-of-the-art multiplexed molecular point-of-care tests (POCT) for infectious diseases and efforts to overcome their limitations, especially related to inadequate throughput for the identification of syndromic diseases. We also discuss promising and imperative clinical POC approaches, as well as the possible hurdles of their practical applications as front-line diagnostic tests.
Collapse
Affiliation(s)
- Hanbi Kim
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, 06351 South Korea.,Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, 06355 South Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351 South Korea
| | - Eunkyoung Park
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, 06351 South Korea.,Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, 06355 South Korea
| | - Doo-Ryeon Chung
- Center for Infection Prevention and Control, Samsung Medical Center, Seoul, 06351 South Korea.,Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06367 South Korea.,Division of Infectious Diseases, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351 South Korea
| | - Minhee Kang
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, 06351 South Korea.,Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, 06355 South Korea
| |
Collapse
|
5
|
Andryukov BG, Besednova NN, Kuznetsova TA, Fedyanina LN. Laboratory-Based Resources for COVID-19 Diagnostics: Traditional Tools and Novel Technologies. A Perspective of Personalized Medicine. J Pers Med 2021; 11:jpm11010042. [PMID: 33451039 PMCID: PMC7828525 DOI: 10.3390/jpm11010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus infection 2019 (COVID-19) pandemic, caused by the highly contagious SARS-CoV-2 virus, has provoked a global healthcare and economic crisis. The control over the spread of the disease requires an efficient and scalable laboratory-based strategy for testing the population based on multiple platforms to provide rapid and accurate diagnosis. With the onset of the pandemic, the reverse transcription polymerase chain reaction (RT-PCR) method has become a standard diagnostic tool, which has received wide clinical use. In large-scale and repeated examinations, these tests can identify infected patients with COVID-19, with their accuracy, however, dependent on many factors, while the entire process takes up to 6–8 h. Here we also describe a number of serological systems for detecting antibodies against SARS-CoV-2. These are used to assess the level of population immunity in various categories of people, as well as for retrospective diagnosis of asymptomatic and mild COVID-19 in patients. However, the widespread use of traditional diagnostic tools in the context of the rapid spread of COVID-19 is hampered by a number of limitations. Therefore, the sharp increase in the number of patients with COVID-19 necessitates creation of new rapid, inexpensive, sensitive, and specific tests. In this regard, we focus on new laboratory technologies such as loop mediated isothermal amplification (LAMP) and lateral flow immunoassay (LFIA), which have proven to work well in the COVID-19 diagnostics and can become a worthy alternative to traditional laboratory-based diagnostics resources. To cope with the COVID-19 pandemic, the healthcare system requires a combination of various types of laboratory diagnostic testing techniques, whodse sensitivity and specificity increases with the progress in the SARS-CoV-2 research. The testing strategy should be designed in such a way to provide, depending on the timing of examination and the severity of the infection in patients, large-scale and repeated examinations based on the principle: screening–monitoring–control. The search and development of new methods for rapid diagnostics of COVID-19 in laboratory, based on new analytical platforms, is still a highly important and urgent healthcare issue. In the final part of the review, special emphasis is made on the relevance of the concept of personalized medicine to combat the COVID-19 pandemic in the light of the recent studies carried out to identify the causes of variation in individual susceptibility to SARS-CoV-2 and increase the efficiency and cost-effectiveness of treatment.
Collapse
Affiliation(s)
- Boris G. Andryukov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (N.N.B.); (T.A.K.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
- Correspondence: ; Tel.: +7-4232-304-647
| | - Natalya N. Besednova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (N.N.B.); (T.A.K.)
| | - Tatyana A. Kuznetsova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (N.N.B.); (T.A.K.)
| | - Ludmila N. Fedyanina
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| |
Collapse
|
6
|
Algorri M, Wong-Beringer A. Differential effects of antibiotics on neutrophils exposed to lipoteichoic acid derived from Staphylococcus aureus. Ann Clin Microbiol Antimicrob 2020; 19:50. [PMID: 33143710 PMCID: PMC7641855 DOI: 10.1186/s12941-020-00392-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Persistent bacteremia occurs in at least 30% of patients with Staphylococcus aureus bloodstream infection (SAB) and may be attributable to a dysregulated host immune response. Neutrophils interact with a variety of S. aureus microbial factors, including lipoteichoic acid (LTA), to activate phagocytic function in a concentration-dependent manner. Antibiotics have been shown to exert both direct antimicrobial action as well as immunomodulatory effects. In this study, we compared the effects of different anti-staphylococcal antibiotics on LTA-mediated immune activation of neutrophils. METHODS Neutrophils obtained from healthy volunteers were exposed to two levels of LTA (1 and 10 μg/ml) with or without addition of antibiotics from different pharmacologic classes (vancomycin, daptomycin, ceftaroline). Neutrophil function was assessed by examining phagocytic response, activation (CD11b, CD62L expression), Toll-like receptor-2 expression, cell survival and apoptosis, and CXCL8 release. RESULTS Differential LTA-mediated antibiotic effects on neutrophil function were observed primarily at the high LTA exposure level. Ceftaroline in the presence of 10 μg/ml LTA had the most prominent effects on phagocytosis and CD11b and CD62L expression, with trends towards increased neutrophil survival and preservation of CXCL8 release when compared to daptomycin and vancomycin with the latter significantly dampening PMN CXCL8 release. CONCLUSIONS Select antimicrobial agents, such as ceftaroline, exert immunostimulatory effects on neutrophils exposed to S. aureus LTA, which when confirmed in vivo, could be leveraged for its dual immunomodulatory and antibacterial actions for the treatment of persistent SAB mediated by a dysregulated host response.
Collapse
Affiliation(s)
- Marquerita Algorri
- University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA
| | - Annie Wong-Beringer
- University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA.
| |
Collapse
|
7
|
Barchitta M, Maugeri A, Favara G, Riela PM, La Mastra C, La Rosa MC, San Lio RM, Gallo G, Mura I, Agodi A. Cluster analysis identifies patients at risk of catheter-associated urinary tract infections in intensive care units: findings from the SPIN-UTI Network. J Hosp Infect 2020; 107:57-63. [PMID: 33017617 DOI: 10.1016/j.jhin.2020.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/01/2020] [Accepted: 09/26/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although preventive strategies have been proposed against catheter-associated urinary tract infections (CAUTIs) in intensive care units (ICUs), more efforts are needed to control the incidence rate. AIM To distinguish patients according to their characteristics at ICU admission, and to identify clusters of patients at higher risk for CAUTIs. METHODS A two-step cluster analysis was conducted on 9656 patients from the Italian Nosocomial Infections Surveillance in Intensive Care Units project. FINDINGS Three clusters of patients were identified. Type of admission, patient origin and administration of antibiotics had the greatest weight on the clustering model. Cluster 1 comprised more patients with a medical type of ICU admission who came from the community. Cluster 2 comprised patients who were more likely to come from other wards/hospitals, and to report administration of antibiotics 48 h before or after ICU admission. Cluster 3 was similar to Cluster 2 but was characterized by a lower percentage of patients with administration of antibiotics 48 h before or after ICU admission. Patients in Clusters 1 and 2 had a longer duration of urinary catheterization [median 7 days, interquartile range (IQR) 12 days for Cluster 1; median 7 days, IQR 11 days for Cluster 2] than patients in Cluster 3 (median 6 days, IQR 8 days; P<0.001). Interestingly, patients in Cluster 1 had a higher incidence of CAUTIs (3.5 per 100 patients) compared with patients in the other two clusters (2.5 per 100 patients in both clusters; P=0.033). CONCLUSION To the authors' knowledge, this is the first study to use cluster analysis to identify patients at higher risk of CAUTIs who could gain greater benefit from preventive strategies.
Collapse
Affiliation(s)
- M Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy; Italian Study Group of Hospital Hygiene, Italian Society of Hygiene, Preventive Medicine and Public Health, Italy
| | - A Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy; Italian Study Group of Hospital Hygiene, Italian Society of Hygiene, Preventive Medicine and Public Health, Italy
| | - G Favara
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy
| | - P M Riela
- Department of Mathematics and Informatics, University of Catania, Catania, Italy
| | - C La Mastra
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy
| | - M C La Rosa
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy
| | - R Magnano San Lio
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy
| | - G Gallo
- Department of Mathematics and Informatics, University of Catania, Catania, Italy
| | - I Mura
- Italian Study Group of Hospital Hygiene, Italian Society of Hygiene, Preventive Medicine and Public Health, Italy; Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - A Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies 'GF Ingrassia', University of Catania, Catania, Italy; Italian Study Group of Hospital Hygiene, Italian Society of Hygiene, Preventive Medicine and Public Health, Italy.
| |
Collapse
|
8
|
Schupmann W, Jamal L, Berkman BE. Re-examining the Ethics of Genetic Counselling in the Genomic Era. JOURNAL OF BIOETHICAL INQUIRY 2020; 17:325-335. [PMID: 32557217 PMCID: PMC10084396 DOI: 10.1007/s11673-020-09983-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 05/17/2020] [Indexed: 05/06/2023]
Abstract
Respect for patient autonomy has served as the dominant ethical principle of genetic counselling, but as we move into a genomic era, it is time to actively re-examine the role that this principle plays in genetic counselling practice. In this paper, we argue that the field of genetic counselling should move away from its emphasis on patient autonomy and toward the incorporation of a more balanced set of principles that allows counsellors to offer clear guidance about how best to obtain or use genetic information. We begin with a brief history of how respect for patient autonomy gained such emphasis in the field and how it has taken on various manifestations over time, including the problematic concept of nondirectiveness. After acknowledging the field's preliminary move away from nondirectiveness, we turn to a series of arguments about why the continued dominance of patient autonomy has become untenable given the arrival of the genomic era. To conclude, we describe how a more complete set of bioethical principles can be adapted and used by genetic counsellors to strengthen their practice without undermining patient autonomy.
Collapse
Affiliation(s)
- Will Schupmann
- Department of Bioethics, Clinical Center, National Institutes of Health, 10 Center Dr., Bldg. 10/Room 1C118, Bethesda, MD, 20892, USA.
| | - Leila Jamal
- Department of Bioethics, Clinical Center, National Institutes of Health; National Institute of Allergy and Infectious Diseases, NIH, 10 Center Dr., Bldg. 10/Room 1C118, Bethesda, MD, 20892, USA
| | - Benjamin E Berkman
- Department of Bioethics, Clinical Center, National Institutes of Health; Bioethics Core, National Human Genome Research Institute, NIH, 10 Center Dr., Bldg. 10/Room 1C118, Bethesda, MD, 20892, USA
| |
Collapse
|
9
|
Vidal OM, Acosta-Reyes J, Padilla J, Navarro-Lechuga E, Bravo E, Viasus D, Arcos-Burgos M, Vélez JI. Chikungunya outbreak (2015) in the Colombian Caribbean: Latent classes and gender differences in virus infection. PLoS Negl Trop Dis 2020; 14:e0008281. [PMID: 32492017 PMCID: PMC7304630 DOI: 10.1371/journal.pntd.0008281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/19/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus of the Togaviridae family, is part of a group of emergent diseases, including arbovirus, constituting an increasing public health problem in tropical areas worldwide. CHIKV causes a severe and debilitating disease with high morbidity. The first Colombian autochthonous case was reported in the Colombian Caribbean region in September 2014. Within the next two to three months, the CHIKV outbreak reached its peak. Although the CHIKV pattern of clinical symptomatology has been documented in different epidemiological studies, understanding of the relationship between clinical symptomatology and variation in phenotypic response to CHIKV infection in humans remains limited. We performed a cross sectional study following 1160 individuals clinically diagnosed with CHIKV at the peak of the Chikungunya outbreak in the Colombian Caribbean region. We examined the relationship between symptomatology and diverse phenotypic responses. Latent Class Cluster Analysis (LCCA) models were used to characterize patients’ symptomatology and further identify subgroups of individuals with differential phenotypic response. We found that most individuals presented fever (94.4%), headache (73.28%) and general discomfort (59.4%), which are distinct clinical symptoms of a viral infection. Furthermore, 11/26 (43.2%) of the categorized symptoms were more frequent in women than in men. LCCA disclosed seven distinctive phenotypic response profiles in this population of CHIKV infected individuals. Interestingly, 282 (24.3%) individuals exhibited a lower symptomatic “extreme” phenotype and 74 (6.4%) patients were within the severe complex “extreme” phenotype. Although clinical symptomatology may be diverse, there are distinct symptoms or group of symptoms that can be correlated with differential phenotypic response and perhaps susceptibility to CHIKV infection, especially in the female population. This suggests that, comparatively to men, women are a CHIKV at-risk population. Further study is needed to validate these results and determine whether the distinct LCCA profiles are a result of the immune response or a mixture of genetic, lifestyle and environmental factors. Our findings could contribute to the development of machine learning approaches to characterizing CHIKV infection in other populations. Preliminary results have shown prediction models achieving up to 92% accuracy overall, with substantial sensitivity, specificity and accuracy values per LCCA-derived cluster. The Chikungunya virus (CHIKV) infection is a mosquito-borne virus of the Togaviridae family, part of the arbovirus group of mosquito-transmitted pathogens. CHIKV causes a severe and debilitating disease with high morbidity. In this study, we comprehensively analysed clinical data from 1160 individuals from the Colombian Caribbean, who were diagnosed with CHIKV infection during the 2014 epidemic peak and before the Zika epidemic (registered back in 2015). Further, the presence of latent classes and predictors of CHIKV susceptibility and severity of the CHIKV infection were analysed. Although it is well known that people respond differently to infection, our results showed that these differences are not arbitrary and may come from the specific orchestration of our immune response and specific genetic makeup. For example, we identified that females infected with CHIKV exhibited significant and heterogeneous phenotypic response patterns compared to men. Overall, these results inform about potential predictors and outlining strategies to study the natural history of CHIKV infection. Future studies assessing the contribution of demographic, immunological and genetic factors to symptom co-occurrence could shed some light on the severity of the clinical symptomatology and, ultimately, lead to more accurate, more efficient and differential diagnosis. These results could contribute to the development of machine learning approaches to characterizing CHIKV infection in other populations and provide more accurate and differential diagnosis.
Collapse
Affiliation(s)
- Oscar M. Vidal
- Universidad del Norte, Barranquilla, Colombia
- * E-mail: (OMV); (JIV)
| | | | | | | | - Elsa Bravo
- Epidemiological Surveillance Team, Health Secretary Program, Barranquilla, Colombia
| | | | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Jorge I. Vélez
- Universidad del Norte, Barranquilla, Colombia
- * E-mail: (OMV); (JIV)
| |
Collapse
|
10
|
Azad AK, Lloyd C, Sadee W, Schlesinger LS. Challenges of Immune Response Diversity in the Human Population Concerning New Tuberculosis Diagnostics, Therapies, and Vaccines. Front Cell Infect Microbiol 2020; 10:139. [PMID: 32322562 PMCID: PMC7156588 DOI: 10.3389/fcimb.2020.00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
Universal approaches to the prevention and treatment of human diseases fail to take into account profound immune diversity resulting from genetic variations across populations. Personalized or precision medicine takes into account individual lifestyle, environment, and biology (genetics and immune status) and is being adopted in several disease intervention strategies such as cancer and heart disease. However, its application in infectious diseases, particularly global diseases such as tuberculosis (TB), is far more complex and in a state of infancy. Here, we discuss the impact of human genetic variations on immune responses and how they relate to failures seen in current TB diagnostic, therapy, and vaccine approaches across populations. We offer our perspective on the challenges and potential for more refined approaches going forward.
Collapse
Affiliation(s)
- Abul K Azad
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Christopher Lloyd
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Wolfgang Sadee
- Department of Cancer Biology and Genetics, Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Larry S Schlesinger
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|