1
|
Xu C, Guo J, Chang B, Zhang Y, Tan Z, Tian Z, Duan X, Ma J, Jiang Z, Hou J. Design of probiotic delivery systems and their therapeutic effects on targeted tissues. J Control Release 2024; 375:20-46. [PMID: 39214316 DOI: 10.1016/j.jconrel.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The microbiota at different sites in the body is closely related to disease. The intake of probiotics is an effective strategy to alleviate diseases and be adjuvant in their treatment. However, probiotics may suffer from harsh environments and colonization resistance, making it difficult to maintain a sufficient number of live probiotics to reach the target sites and exert their original probiotic effects. Encapsulation of probiotics is an effective strategy. Therefore, probiotic delivery systems, as effective methods, have been continuously developed and innovated to ensure that probiotics are effectively delivered to the targeted site. In this review, initially, the design of probiotic delivery systems is reviewed from four aspects: probiotic characteristics, processing technologies, cell-derived wall materials, and interactions between wall materials. Subsequently, the review focuses on the effects of probiotic delivery systems that target four main microbial colonization sites: the oral cavity, skin, intestine, and vagina, as well as disease sites such as tumors. Finally, this review also discusses the safety concerns of probiotic delivery systems in the treatment of disease and the challenges and limitations of implementing this method in clinical studies. It is necessary to conduct more clinical studies to evaluate the effectiveness of different probiotic delivery systems in the treatment of diseases.
Collapse
Affiliation(s)
- Cong Xu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Jiahui Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Baoyue Chang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Yiming Zhang
- Department of Psychiatry and Mental Health, Dalian Medical University, Dalian 116044, China
| | - Zhongmei Tan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Zihao Tian
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Xiaolei Duan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| |
Collapse
|
2
|
Gorczyca K, Kozioł MM, Kimber-Trojnar Ż, Kępa J, Satora M, Rekowska AK, Leszczyńska-Gorzelak B. Premature rupture of membranes and changes in the vaginal microbiome - Probiotics. Reprod Biol 2024; 24:100899. [PMID: 38805904 DOI: 10.1016/j.repbio.2024.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Preterm birth affects approximately 15 million women worldwide, of which 30 % is due to preterm premature rupture of membranes (PPROM). The reasons for shortening the duration of pregnancy are seen in genetic, hormonal, immunological and socio-economic conditions. Recent years have provided a lot of evidence on the impact of the microbiota and whole microbiome on pregnant women, suggesting that the microorganisms inhabiting the vagina significantly affect the risk of preterm delivery. The aim of the study was to review studies evaluating the composition of the vaginal microflora and its role in the occurrence of preterm labor caused by PPROM, and to evaluate the potential beneficial effect of probiotics on preventing the development of preterm labor. Vaginal microbial dysbiosis is observed in PPROM, which, due to its association with a high risk of prematurity and infection, increases neonatal morbidity and mortality. Further research on biomarkers for screening, early prognosis and diagnosis of PPROM seems advisable. Probiotics as a potential intervention can prevent the development of pathological vaginal flora, reducing the risk of infection in women planning pregnancy and pregnant women.
Collapse
Affiliation(s)
- Kamila Gorczyca
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| | - Małgorzata M Kozioł
- Chair and Department of Medical Microbiology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland.
| | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| | - Joanna Kępa
- Students Scientific Association at the Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| | - Małgorzata Satora
- Students Scientific Association at the Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| | - Anna K Rekowska
- Students Scientific Association at the Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| | - Bożena Leszczyńska-Gorzelak
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland
| |
Collapse
|
3
|
Zhang YL, Zhou YY, Ke LJ, Sheng J, Zou DY, Tang TT, Yang ZY, Chen L, Hou XC, Zhu J, Xu JB, Zhu YX, Zhou WL. Lipopolysaccharide Triggers Luminal Acidification to Promote Defense Against Bacterial Infection in Vaginal Epithelium. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00328-6. [PMID: 39222908 DOI: 10.1016/j.ajpath.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The vaginal epithelium plays pivotal roles in host defense against pathogen invasion, contributing to the maintenance of an acidic microenvironment within the vaginal lumen through the activity of acid-base transport proteins. However, the precise defense mechanisms of the vaginal epithelium after a bacterial infection remain incompletely understood. This study showed that bacterial lipopolysaccharide (LPS) potentiated net proton efflux by up-regulating the expression of Na+-H+ exchanger 1 (NHE1) without affecting other acid-base transport proteins in vaginal epithelial cells. Pharmacologic inhibition or genetic knockdown of Toll-like receptor-4 and the extracellular signal-regulated protein kinase signaling pathway effectively counteracted the up-regulation of NHE1 and the enhanced proton efflux triggered by LPS in vaginal epithelial cells. In vivo studies revealed that LPS administration led to luminal acidification through the up-regulation of NHE1 expression in the rat vagina. Moreover, inhibition of NHE exhibited an impaired defense against acute bacterial infection in the rat vagina. These findings collectively indicate the active involvement of vaginal epithelial cells in facilitating luminal acidification during acute bacterial infection, offering potential insights into the treatment of bacterial vaginosis.
Collapse
Affiliation(s)
- Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China.
| | - Yu-Yun Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Jiao Ke
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jie Sheng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan-Yang Zou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ting-Ting Tang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zi-Ying Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jie Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Bang Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Sarpong AK, Odoi H, Boakye YD, Boamah VE, Agyare C. Resistant C. albicans implicated in recurrent vulvovaginal candidiasis (RVVC) among women in a tertiary healthcare facility in Kumasi, Ghana. BMC Womens Health 2024; 24:412. [PMID: 39030542 PMCID: PMC11264716 DOI: 10.1186/s12905-024-03217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Vulvovaginal candidiasis is a common fungal infection that affects the female lower genital tract. This study determined the major risk factors associated with vulvovaginal infection (VVI) in the Ashanti region of Ghana and also determined the antifungal resistance patterns of Candida albicans isolates to some antifungals. METHODS Three hundred and fifty (350) high vaginal swab (HVS) samples were collected from women who presented with signs and symptoms of VVI. A structured questionnaire was administered to one hundred and seventy-two (172) of the women. HVS samples were cultured on Sabouraud dextrose agar with 2% chloramphenicol. The polymerase chain reaction was employed to confirm C. albicans. Antifungal susceptibility testing was performed and the susceptibility of C. albicans isolates to fluconazole, clotrimazole, amphotericin B, nystatin, miconazole and 5-flurocytosine were assessed. RESULTS Vaginal infection was most prevalent amongst females in their reproductive age (21 to 30 years; 63.0%). The study found a significant association between vaginal infections and some risk factors such as sexual practices (p < 0.001), antibiotic misuse (p < 0.05), poor personal hygiene (p < 0.005) and birth control methods (p < 0.049). Out of the 350 HVS samples collected, 112 yielded yeast cells with 65 (58%) identified as C. albicans. The C. albicans isolates were resistant to 5' flucytosine (100%), fluconazole (70%), voriconazole (69.2%), miconazole (58.5%) and nystatin (49.2%). C. albicans isolates were more susceptible to amphotericin B (53.8%) and clotrimazole (45.1%), although an appreciable number of isolates showed resistance (46.1% and 52.3%, respectively). CONCLUSION There should be nationwide education on all associated risk factors of VVI. Also, use of the various antifungal agents in vaginal candidiasis should proceed after antifungal susceptibility testing to ensure efficacious use of these agents.
Collapse
Affiliation(s)
- Abena Kyeraa Sarpong
- Pharmaceutical Microbiology Section, Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Laboratory Technology Department , Kumasi Technical University, Kumasi, Ghana
| | - Hayford Odoi
- Department of Pharmaceutical Microbiology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Yaw Duah Boakye
- Pharmaceutical Microbiology Section, Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Vivian Etsiapa Boamah
- Pharmaceutical Microbiology Section, Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
- Pharmaceutical Microbiology Section, Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Christian Agyare
- Pharmaceutical Microbiology Section, Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
5
|
Wei Y, Xu X, Wang L, Chen Q, Li J, Liu X, Wei Z, Pang J, Peng Y, Guo X, Cheng Z, Wang Z, Zhang Y, Chen K, Lu X, Liang Q. A suitable and efficient optimization system for the culture of Chlamydia trachomatis in adult inclusion conjunctivitis. Pathog Dis 2024; 82:ftae020. [PMID: 39210513 PMCID: PMC11407439 DOI: 10.1093/femspd/ftae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
The prevalence of Chlamydia trachomatis infection in the genitourinary tract is increasing, with an annual rise of 9 million cases. Individuals afflicted with these infections are at a heightened risk of developing adult inclusive conjunctivitis (AIC), which is commonly recognized as the ocular manifestation of this sexually transmitted infection. Despite its significant clinical implications, the lack of distinctive symptoms and the overlap with other ocular conditions often lead to underdiagnosis or misdiagnosis of AIC associated with C. trachomatis infection. Here, we established six distinct C. trachomatis culture cell lines, specifically highlighting the MA104 N*V cell line that exhibited diminished expression of interferon regulatory factor 3 (IRF3) and signal transducer and activator of transcription 1 (STAT1), resulting in reduced interferons. Infected MA104 N*V cells displayed the highest count of intracytoplasmic inclusions detected through immunofluorescence staining, peaking at 48 h postinfection. Subsequently, MA104 N*V cells were employed for clinical screening in adult patients diagnosed with AIC. Among the evaluated cohort of 20 patients, quantitative PCR (qPCR) testing revealed positive results in seven individuals, indicating the presence of C. trachomatis infection. Furthermore, the MA104 N*V cell cultures derived from these infected patients demonstrated successful cultivation and replication of the pathogen, confirming its viability and infectivity. Molecular genotyping identified four distinct urogenital serovars, with serovar D being the most prevalent (4/7), followed by E (1/7), F (1/7), and Ia (1/7). This novel cellular model contributes to studies on C. trachomatis pathogenesis, molecular mechanisms, and host-pathogen interactions both in vitro and in vivo. It also aids in acquiring clinically relevant strains critical for advancing diagnostics, treatments, and vaccines against C. trachomatis.
Collapse
Affiliation(s)
- Yuan Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Jinsong Li
- Diarrhoeal Laboratory, Institute of Viral Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Xiafei Liu
- Diarrhoeal Laboratory, Institute of Viral Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Zhenyu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Jinding Pang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Yan Peng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xiaoyan Guo
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Zhen Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Zhiqun Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Yang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Kexin Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xinxin Lu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| |
Collapse
|
6
|
Zhang Z, Ma Q, Zhang L, Ma L, Wang D, Yang Y, Jia P, Wu Y, Wang F. Human papillomavirus and cervical cancer in the microbial world: exploring the vaginal microecology. Front Cell Infect Microbiol 2024; 14:1325500. [PMID: 38333037 PMCID: PMC10850380 DOI: 10.3389/fcimb.2024.1325500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
The vaginal microbiota plays a crucial role in female reproductive health and is considered a biomarker for predicting disease outcomes and personalized testing. However, its relationship with human papillomavirus (HPV) infection and cervical cancer is not yet clear. Therefore, this article provides a review of the association between the vaginal microbiota, HPV infection, and cervical cancer. We discuss the composition of the vaginal microbiota, its dysbiosis, and its relationship with HPV infection, as well as potential mechanisms in the development of cervical cancer. In addition, we assess the feasibility of treatment strategies such as probiotics and vaginal microbiota transplantation to modulate the vaginal microbiota for the prevention and treatment of diseases related to HPV infection and cervical cancer. In the future, extensive replication studies are still needed to gain a deeper understanding of the complex relationship between the vaginal microbiota, HPV infection, and cervical cancer, and to clarify the role of the vaginal microbiota as a potential biomarker for predicting disease outcomes, thus providing a theoretical basis for personalized testing.
Collapse
Affiliation(s)
- Zhemei Zhang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Qingmei Ma
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Lei Zhang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Li Ma
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Danni Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Yongqing Yang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Pengxia Jia
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Yang Wu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Fang Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Bommana S, Hu YJ, Kama M, Wang R, Kodimerla R, Jijakli K, Read TD, Dean D. Unique microbial diversity, community composition, and networks among Pacific Islander endocervical and vaginal microbiomes with and without Chlamydia trachomatis infection in Fiji. mBio 2024; 15:e0306323. [PMID: 38117091 PMCID: PMC10790706 DOI: 10.1128/mbio.03063-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterium globally. Endocervical and vaginal microbiome interactions are rarely examined within the context of Ct or among vulnerable populations. We evaluated 258 vaginal and 92 paired endocervical samples from Fijian women using metagenomic shotgun sequencing. Over 37% of the microbiomes could not be classified into sub-community state types (subCSTs). We, therefore, developed subCSTs IV-D0, IV-D1, IV-D2, and IV-E-dominated primarily by Gardnerella vaginalis-to improve classification. Among paired microbiomes, the endocervix had a significantly higher alpha diversity and, independently, higher diversity for high-risk human papilloma virus (HPV) genotypes compared to low-risk and no HPV. Ct-infected endocervical networks had smaller clusters without interactions with potentially beneficial Lactobacillus spp. Overall, these data suggest that G. vaginalis may generate polymicrobial biofilms that predispose to and/or promote Ct and possibly HPV persistence and pathogenicity. Our findings expand on the existing repertoire of endocervical and vaginal microbiomes and fill in knowledge gaps regarding Pacific Islanders.
Collapse
Affiliation(s)
- Sankhya Bommana
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - Mike Kama
- Ministry of Health and Medical Services, Suva, Fiji
| | - Ruohong Wang
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
| | - Reshma Kodimerla
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
| | - Kenan Jijakli
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Timothy D. Read
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deborah Dean
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Bioengineering, Joint Graduate Program, University of California San Francisco and University of California Berkeley, San Francisco, California, USA
- Bixby Center for Global Reproductive Health, University of California San Francisco, San Francisco, California, USA
- University of California San Francisco, Benioff Center for Microbiome Medicine, San Francisco, California, USA
| |
Collapse
|
8
|
Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN. Bibliometric analysis and thematic review of Candida pathogenesis: Fundamental omics to applications as potential antifungal drugs and vaccines. Med Mycol 2024; 62:myad126. [PMID: 38061839 DOI: 10.1093/mmy/myad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
Invasive candidiasis caused by the pathogenic Candida yeast species has resulted in elevating global mortality. The pathogenicity of Candida spp. is not only originated from its primary invasive yeast-to-hyphal transition; virulence factors (transcription factors, adhesins, invasins, and enzymes), biofilm, antifungal drug resistance, stress tolerance, and metabolic adaptation have also contributed to a greater clinical burden. However, the current research theme in fungal pathogenicity could hardly be delineated with the increasing research output. Therefore, our study analysed the research trends in Candida pathogenesis over the past 37 years via a bibliometric approach against the Scopus and Web of Science databases. Based on the 3993 unique documents retrieved, significant international collaborations among researchers were observed, especially between Germany (Bernhard Hube) and the UK (Julian Naglik), whose focuses are on Candida proteinases, adhesins, and candidalysin. The prominent researchers (Neils Gow, Alistair Brown, and Frank Odds) at the University of Exeter and the University of Aberdeen (second top performing affiliation) UK contribute significantly to the mechanisms of Candida adaptation, tolerance, and stress response. However, the science mapping of co-citation analysis performed herein could not identify a hub representative of subsequent work since the clusters were semi-redundant. The co-word analysis that was otherwise adopted, revealed three research clusters; the cluster-based thematic analyses indicated the severeness of Candida biofilm and antifungal resistance as well as the elevating trend on molecular mechanism elucidation for drug screening and repurposing. Importantly, the in vivo pathogen adaptation and interactions with hosts are crucial for potential vaccine development.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Onyango S, Mi JD, Koech A, Okiro P, Temmerman M, von Dadelszen P, Tribe RM, Omuse G. Microbiota dynamics, metabolic and immune interactions in the cervicovaginal environment and their role in spontaneous preterm birth. Front Immunol 2023; 14:1306473. [PMID: 38196946 PMCID: PMC10774218 DOI: 10.3389/fimmu.2023.1306473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Differences in the cervicovaginal microbiota are associated with spontaneous preterm birth (sPTB), a significant cause of infant morbidity and mortality. Although establishing a direct causal link between cervicovaginal microbiota and sPTB remains challenging, recent advancements in sequencing technologies have facilitated the identification of microbial markers potentially linked to sPTB. Despite variations in findings, a recurring observation suggests that sPTB is associated with a more diverse and less stable vaginal microbiota across pregnancy trimesters. It is hypothesized that sPTB risk is likely to be modified via an intricate host-microbe interactions rather than due to the presence of a single microbial taxon or broad community state. Nonetheless, lactobacilli dominance is generally associated with term outcomes and contributes to a healthy vaginal environment through the production of lactic acid/maintenance of a low pH that excludes other pathogenic microorganisms. Additionally, the innate immunity of the host and metabolic interactions between cervicovaginal microbiota, such as the production of bacteriocins and the use of proteolytic enzymes, exerts a profound influence on microbial populations, activities, and host immune responses. These interplays collectively impact pregnancy outcomes. This review aims to summarize the complexity of cervicovaginal environment and microbiota dynamics, and associations with bacterial vaginosis and sPTB. There is also consideration on how probiotics may mitigate the risk of sPTB and bacterial vaginosis.
Collapse
Affiliation(s)
- Stanley Onyango
- Department of Pathology, Aga Khan University, Nairobi, Kenya
- Centre of Excellence Women and Child Health, Aga Khan University, Nairobi, Kenya
| | - Jia Dai Mi
- Faculty of Life Sciences and Medicine, Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| | - Angela Koech
- Centre of Excellence Women and Child Health, Aga Khan University, Nairobi, Kenya
| | - Patricia Okiro
- Department of Pathology, Aga Khan University, Nairobi, Kenya
| | - Marleen Temmerman
- Centre of Excellence Women and Child Health, Aga Khan University, Nairobi, Kenya
| | - Peter von Dadelszen
- Faculty of Life Sciences and Medicine, Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| | - Rachel M. Tribe
- Faculty of Life Sciences and Medicine, Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| | - Geoffrey Omuse
- Department of Pathology, Aga Khan University, Nairobi, Kenya
| | | |
Collapse
|
10
|
Dai D, Wang J, Zhang H, Wu S, Qi G. Uterine microbial communities and their potential role in the regulation of epithelium cell cycle and apoptosis in aged hens. MICROBIOME 2023; 11:251. [PMID: 37951950 PMCID: PMC10638742 DOI: 10.1186/s40168-023-01707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Alterations of the uterine microbiome are closely associated with various intrauterine diseases and physiological conditions, which are well-established in mammals. However, as representative oviparous animals, the research on the uterine microbial ecosystem and its functions with physiological homeostasis is limited in chickens. Additionally, continuous egg-laying disrupts the oviducal immune defenses of aged hens, susceptible to pathogen invasion, causing poor egg quality and food-borne infections in humans. Here, we investigated aging-related changes in the oviduct microbial colonization and transmission from the gut to eggs and their roles in a hen model. RESULTS The results of 16S rDNA sequencing showed significant differences in the oviduct microbial composition between young (38 weeks) and aged (77 weeks) laying hens. SourceTracker analysis further revealed differences in the effects of microbial transmission on the oviducal microbiota between young and aged hens. Enhanced barrier defense with cell apoptosis suppression and cell cycle arrest of the uterus were observed in aged hens reducing microbial transmission from the lower to upper reproductive tract. In addition, a total of 361 significantly differential metabolites were identified using metabolomics in the aged uterine microbiota, especially in products of amino acid metabolism and biosynthesis of various secondary metabolites, which might have essential effects on cell apoptosis by regulating immune responses and cell cycle. Notably, antibiotics disrupted uterine microbiota by dietary intervention and direct perfusion did not retard aging-related physiological changes but further aggravated aging processes by disrupting the cell cycle and apoptosis. CONCLUSIONS The microbiota continuum along the reproductive tract in aged birds differs from that in young birds, especially with a significant shift in the uterus. The aged uterine microbiota probably contributes to the regulation of cell cycle and apoptosis by microbial metabolites primarily involved in amino acid metabolism and biosynthesis of various secondary metabolites. These findings provide new insights into the roles of the reproductive tract microbiota in regulating the cell programming of the aged host, contributing to the exploration of the microbiome as a target for diagnosing aging health status and therapy for gynecological diseases in women. Video Abstract.
Collapse
Affiliation(s)
- Dong Dai
- Laboratory of Quality and Safety Risk Assessment for Animal Products On Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081, China
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products On Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081, China.
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products On Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products On Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products On Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081, China
| |
Collapse
|
11
|
Holliday M, Uddipto K, Castillo G, Vera LE, Quinlivan JA, Mendz GL. Insights into the Genital Microbiota of Women Who Experienced Fetal Death in Utero. Microorganisms 2023; 11:1877. [PMID: 37630436 PMCID: PMC10456767 DOI: 10.3390/microorganisms11081877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this work was to achieve a better understanding of the bacterial pathogens associated with stillbirths that would serve to inform clinical interventions directed at reducing this adverse pregnancy outcome. A prospective observational study was conducted with the participation of 22 women from northern Peru, of whom 11 experienced fetal death in utero and 11 delivered preterm births. Swabs were taken from the vagina, placenta, amniotic fluid and axilla of the infant at birth by Caesarean section. The bacterial populations in the vagina and the amniotic space of each participant were determined by employing the amplicon sequencing of the V4 region of the 16S rRNA genes. The sequence data were analysed using bioinformatics tools. The work showed differences in the composition of the genital microbiomes of women who experienced preterm birth or fetal death in utero. There were no differences in the alpha diversity between the genital microbiotas of both groups of women, but there were more different taxa in the vagina and amniotic space of the preterm participants. Lactobacillus spp. was less abundant in the stillbirth cases. E. coli/Shigella, Staphylococcus, Gardnerella, Listeria and Bacteroides taxa were associated with the stillbirths. In each woman, there was a minimal concordance between the bacterial populations in the vagina and amniotic space.
Collapse
Affiliation(s)
- Mira Holliday
- College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia; (M.H.); (J.A.Q.)
| | - Kumar Uddipto
- School of Medicine, Sydney, University of Notre Dame Australia, Darlinghurst, NSW 2010, Australia;
| | - Gerardo Castillo
- Área de Ciencias Biomédicas y Policlínico, University of Piura, San Eduardo, Piura 20009, Peru; (G.C.); (L.E.V.)
| | - Luz Estela Vera
- Área de Ciencias Biomédicas y Policlínico, University of Piura, San Eduardo, Piura 20009, Peru; (G.C.); (L.E.V.)
| | - Julie A. Quinlivan
- College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia; (M.H.); (J.A.Q.)
- Institute for Health Research, University of Notre Dame Australia, Fremantle, WA 6160, Australia
| | - George L. Mendz
- School of Medicine, Sydney, University of Notre Dame Australia, Darlinghurst, NSW 2010, Australia;
| |
Collapse
|
12
|
Sala A, Ardizzoni A, Spaggiari L, Vaidya N, van der Schaaf J, Rizzato C, Cermelli C, Mogavero S, Krüger T, Himmel M, Kniemeyer O, Brakhage AA, King BL, Lupetti A, Comar M, de Seta F, Tavanti A, Blasi E, Wheeler RT, Pericolini E. A New Phenotype in Candida-Epithelial Cell Interaction Distinguishes Colonization- versus Vulvovaginal Candidiasis-Associated Strains. mBio 2023; 14:e0010723. [PMID: 36856418 PMCID: PMC10128025 DOI: 10.1128/mbio.00107-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) affects nearly 3/4 of women during their lifetime, and its symptoms seriously reduce quality of life. Although Candida albicans is a common commensal, it is unknown if VVC results from a switch from a commensal to pathogenic state, if only some strains can cause VVC, and/or if there is displacement of commensal strains with more pathogenic strains. We studied a set of VVC and colonizing C. albicans strains to identify consistent in vitro phenotypes associated with one group or the other. We find that the strains do not differ in overall genetic profile or behavior in culture media (i.e., multilocus sequence type [MLST] profile, rate of growth, and filamentation), but they show strikingly different behaviors during their interactions with vaginal epithelial cells. Epithelial infections with VVC-derived strains yielded stronger fungal proliferation and shedding of fungi and epithelial cells. Transcriptome sequencing (RNA-seq) analysis of representative epithelial cell infections with selected pathogenic or commensal isolates identified several differentially activated epithelial signaling pathways, including the integrin, ferroptosis, and type I interferon pathways; the latter has been implicated in damage protection. Strikingly, inhibition of type I interferon signaling selectively increases fungal shedding of strains in the colonizing cohort, suggesting that increased shedding correlates with lower interferon pathway activation. These data suggest that VVC strains may intrinsically have enhanced pathogenic potential via differential elicitation of epithelial responses, including the type I interferon pathway. Therefore, it may eventually be possible to evaluate pathogenic potential in vitro to refine VVC diagnosis. IMPORTANCE Despite a high incidence of VVC, we still have a poor understanding of this female-specific disease whose negative impact on women's quality of life has become a public health issue. It is not yet possible to determine by genotype or laboratory phenotype if a given Candida albicans strain is more or less likely to cause VVC. Here, we show that Candida strains causing VVC induce more fungal shedding from epithelial cells than strains from healthy women. This effect is also accompanied by increased epithelial cell detachment and differential activation of the type I interferon pathway. These distinguishing phenotypes suggest it may be possible to evaluate the VVC pathogenic potential of fungal isolates. This would permit more targeted antifungal treatments to spare commensals and could allow for displacement of pathogenic strains with nonpathogenic colonizers. We expect these new assays to provide a more targeted tool for identifying fungal virulence factors and epithelial responses that control fungal vaginitis.
Collapse
Affiliation(s)
- Arianna Sala
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Ardizzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Spaggiari
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Nikhil Vaidya
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Jane van der Schaaf
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Cosmeri Rizzato
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Claudio Cermelli
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Maximilian Himmel
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Benjamin L. King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Antonella Lupetti
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Manola Comar
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Francesco de Seta
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Elisabetta Blasi
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Robert T. Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
13
|
Inversetti A, Zambella E, Guarano A, Dell’Avanzo M, Di Simone N. Endometrial Microbiota and Immune Tolerance in Pregnancy. Int J Mol Sci 2023; 24:ijms24032995. [PMID: 36769318 PMCID: PMC9917440 DOI: 10.3390/ijms24032995] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Recent studies have demonstrated that the uterus has its own microbiota. However, there is no consensus on endometrial microbiota composition, thus its role in the healthy uterine environment is still a frontier topic. Endometrial receptivity is key to embryo implantation, and in this specific context immunological tolerance against fetal antigens and the tightly regulated expression of inflammatory mediators are fundamental. According to recent evidence, endometrial microbiota may interact in a very dynamic way with the immune system during the peri-conceptional stage and later during pregnancy. For this reason, a condition of dysbiosis might lead to adverse pregnancy outcomes. The aim of this review is to summarize the evidence on the molecular mechanisms by which the endometrial microbiota may interact with the immune system. For this purpose, the link between dysbiosis and reproductive disorders, such as infertility, recurrent pregnancy loss (RPL), and preterm birth, will be discussed. In conclusion, the most recent findings from molecular analyses will be reported to illustrate and possibly overcome the intrinsic limitations of uterine microbiota detection (low endometrial biomass, high risk of contamination during sampling, and lack of standardization).
Collapse
Affiliation(s)
- Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Enrica Zambella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Alice Guarano
- Humanitas San Pio X, Via Francesco Nava 31, 20159 Milan, Italy
| | | | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Correspondence:
| |
Collapse
|
14
|
Liptáková A, Čurová K, Záhumenský J, Visnyaiová K, Varga I. Microbiota of female genital tract – functional overview of microbial flora from vagina to uterine tubes and placenta. Physiol Res 2022. [DOI: 10.33549/physiolres.934960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microorganisms and eukaryotic human cells coexist in synergistic relationships in nearly every niche of the human body. The female genital tract consisting of the vagina, uterus with its cervix and endometrium, uterine tubes and ovaries – harbors its own typical microbiota, which accounts for 9 % of the total bacterial population in females. To this organ system, we also assigned the microbiome of the placenta, which has not been studied much until now. Among the spectrum of microbial species, the female genital tract is mainly dominated by Lactobacillus species, which are considered to be one of the simplest yet most important microbial communities. However, this relationship between macro- and micro-organisms seems to have a number of physiological functions, e.g., the vaginal and cervical microbiota have unique impact on reproductive health. The aim of this review was to provide current view on female genital tract microbiota and its role in reproductive health. We describe in detail the association of vaginal or tubal epithelium with microbiota or the role of microbiota in normal placental function.
Collapse
Affiliation(s)
| | - K Čurová
- Department of Medical and Clinical Microbiology, Faculty of Medicine, University of P. J. Šafárik, Košice, Slovak Republic.
| | | | | | | |
Collapse
|
15
|
Fang X, Zhou Y, Chen S, Xu X, Ke J, Zhou Y, Wei H, Fu B. Natural killer cells promote intra-cellular-infected trophoblasts survival via APOD-LRP1 axis. Immunology 2022. [PMID: 36562137 DOI: 10.1111/imm.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are known for their potent ability to kill stressed cells, whereas host cells infected with intra-cellular bacteria may also be benefit from the selective killing function of NK cells and survive. The mechanism of how NK cells protect host cells infected with intra-cellular bacteria is still unclear. Here, we discovered that decidual NK (dNK) cells cannot only eliminate intra-cellular bacteria which infected trophoblasts, but can also synthesize more lipids and transport lipids to trophoblasts to avoid their apoptosis. Mechanically, NK cells synthesize more lipids accompanied by increasing expression of apolipoprotein APOD. Lipids in NK cells can be delivered to trophoblast cells through APOD, maintaining adequate lipid droplet content and lipid metabolism homeostasis in trophoblasts. Blocking the APOD receptor LRP1 abolished lipid transport from NK cells to trophoblasts, and the reduction of lipid droplets caused by bacterial infection in trophoblast cells could not be restored, culminating in cell apoptosis. Our study provides new evidence for the immune surveillance and protective effect of NK cells on embryos during early pregnancy.
Collapse
Affiliation(s)
- Xi Fang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yonggang Zhou
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Siao Chen
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xiuxiu Xu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
16
|
Mycoplasma hominis Causes DNA Damage and Cell Death in Primary Human Keratinocytes. Microorganisms 2022; 10:microorganisms10101962. [PMID: 36296238 PMCID: PMC9608843 DOI: 10.3390/microorganisms10101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma hominis can be isolated from the human urogenital tract. However, its interaction with the host remains poorly understood. In this study, we aimed to assess the effects of M. hominis infection on primary human keratinocytes (PHKs). Cells were quantified at different phases of the cell cycle. Proteins involved in cell cycle regulation and apoptosis progression were evaluated. The expression of genes encoding proteins that are associated with the DNA damage response and Toll-like receptor pathways was evaluated, and the cytokines involved in inflammatory responses were quantified. A greater number of keratinocytes were observed in the Sub-G0/G1 phase after infection with M. hominis. In the viable keratinocytes, infection resulted in G2/M-phase arrest; GADD45A expression was increased, as was the expression of proteins such as p53, p27, and p21 and others involved in apoptosis regulation and oxidative stress. In infected PHKs, the expression of genes associated with the Toll-like receptor pathways showed a change, and the production of IFN-γ, interleukin (IL) 1β, IL-18, IL-6, and tumour necrosis factor alpha increased. The infection of PHKs by M. hominis causes cellular damage that can affect the cell cycle by activating the response pathways to cellular damage, oxidative stress, and Toll-like receptors. Overall, this response culminated in the reduction of cell proliferation/viability in vitro.
Collapse
|
17
|
Wang W, Feng D, Ling B. Biologia Futura: endometrial microbiome affects endometrial receptivity from the perspective of the endometrial immune microenvironment. Biol Futur 2022; 73:291-300. [DOI: 10.1007/s42977-022-00134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
AbstractThe existence of Lactobacillus-led colonized bacteria in the endometrium of a healthy human has been reported in recent studies. Unlike the composition of the microbiome in the lower genital tract, that in the endometrium is different and closely associated with the physiological and pathological processes of gynecological diseases. For example, changing the immune microenvironment affects the receptivity of the endometrium, thereby leading to abnormal reproductive outcomes, such as embryo implantation failure and recurrent spontaneous abortion. However, the concrete functions and mechanisms of the endometrial microbiome have not been studied thoroughly. This review elaborates the research progress on the mechanisms by which the endometrial microbiome affects endometrial receptivity from the perspective of endometrial immune microenvironment regulation. Considering the lack of a unified evaluation method for the endometrial microbiome, as well as the lack of an optimal treatment protocol against recurrent spontaneous abortion, we also discussed the application of combining antibiotics with probiotics/prebiotics as precautionary measures.
Collapse
|
18
|
Cervicovaginal Microbiota Composition in Chlamydia trachomatis Infection: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms23179554. [PMID: 36076948 PMCID: PMC9455926 DOI: 10.3390/ijms23179554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
In healthy women, the cervicovaginal microbiota is characterized by the predominance of Lactobacillus spp., whereas the overgrowth of anaerobic bacteria leads to dysbiosis, known to increase the risk of acquiring genital infections like Chlamydia trachomatis. In the last decade, a growing body of research has investigated the composition of the cervicovaginal microbiota associated with chlamydial infection via 16s rDNA sequencing, with contrasting results. A systematic review and a meta-analysis, performed on the alpha-diversity indices, were conducted to summarize the scientific evidence on the cervicovaginal microbiota composition in C. trachomatis infection. Databases PubMed, Scopus and Web of Science were searched with the following strategy: “Chlamydia trachomatis” AND “micro*”. The diversity indices considered for the meta-analysis were Operational Taxonomic Unit (OTU) number, Chao1, phylogenetic diversity whole tree, Shannon’s, Pielou’s and Simpson’s diversity indexes. The search yielded 425 abstracts for initial review, of which 16 met the inclusion criteria. The results suggested that the cervicovaginal microbiota in C. trachomatis-positive women was characterized by Lactobacillus iners dominance, or by a diverse mix of facultative or strict anaerobes. The meta-analysis, instead, did not show any difference in the microbial biodiversity between Chlamydia-positive and healthy women. Additional research is clearly required to deepen our knowledge on the interplay between the resident microflora and C. trachomatis in the genital microenvironment.
Collapse
|
19
|
Margarita V, Bailey NP, Rappelli P, Diaz N, Dessì D, Fettweis JM, Hirt RP, Fiori PL. Two Different Species of Mycoplasma Endosymbionts Can Influence Trichomonas vaginalis Pathophysiology. mBio 2022; 13:e0091822. [PMID: 35608298 PMCID: PMC9239101 DOI: 10.1128/mbio.00918-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Trichomonas vaginalis can host the endosymbiont Mycoplasma hominis, an opportunistic pathogenic bacterium capable of modulating T. vaginalis pathobiology. Recently, a new noncultivable mycoplasma, "Candidatus Mycoplasma girerdii," has been shown to be closely associated with women affected by trichomoniasis, suggesting a biological association. Although several features of "Ca. M. girerdii" have been investigated through genomic analysis, the nature of the potential T. vaginalis-"Ca. M. girerdii" consortium and its impact on the biology and pathogenesis of both microorganisms have not yet been explored. Here, we investigate the association between "Ca. M. girerdii" and T. vaginalis isolated from patients affected by trichomoniasis, demonstrating their intracellular localization. By using an in vitro model system based on single- and double-Mycoplasma infection of Mycoplasma-free isogenic T. vaginalis, we investigated the ability of the protist to establish a relationship with the bacteria and impact T. vaginalis growth. Our data indicate likely competition between M. hominis and "Ca. M. girerdii" while infecting trichomonad cells. Comparative dual-transcriptomics data showed major shifts in parasite gene expression in response to the presence of Mycoplasma, including genes associated with energy metabolism and pathogenesis. Consistent with the transcriptomics data, both parasite-mediated hemolysis and binding to host epithelial cells were significantly upregulated in the presence of either Mycoplasma species. Taken together, these results support a model in which this microbial association could modulate the virulence of T. vaginalis. IMPORTANCE T. vaginalis and M. hominis form a unique case of endosymbiosis that modulates the parasite's pathobiology. Recently, a new nonculturable mycoplasma species ("Candidatus Mycoplasma girerdii") has been described as closely associated with the protozoon. Here, we report the characterization of this endosymbiotic relationship. Clinical isolates of the parasite demonstrate that mycoplasmas are common among trichomoniasis patients. The relationships are studied by devising an in vitro system of single and/or double infections in isogenic protozoan recipients. Comparative growth experiments and transcriptomics data demonstrate that the composition of different microbial consortia influences the growth of the parasite and significantly modulates its transcriptomic profile, including metabolic enzymes and virulence genes such as adhesins and pore-forming proteins. The data on modulation from RNA sequencing (RNA-Seq) correlated closely with those of the cytopathic effect and adhesion to human target cells. We propose the hypothesis that the presence and the quantitative ratios of endosymbionts may contribute to modulating protozoan virulence. Our data highlight the importance of considering pathogenic entities as microbial ecosystems, reinforcing the importance of the development of integrated diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Nicholas P. Bailey
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Disease Control (MCDC), Sassari, Italy
| | - Nicia Diaz
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Daniele Dessì
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Disease Control (MCDC), Sassari, Italy
| | - Jennifer M. Fettweis
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert P. Hirt
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Disease Control (MCDC), Sassari, Italy
| |
Collapse
|
20
|
Mycoplasma genitalium and Chlamydia trachomatis infection among women in Southwest China: a retrospective study. Epidemiol Infect 2022; 150:e129. [PMID: 35734919 PMCID: PMC9306007 DOI: 10.1017/s0950268822001066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mycoplasma genitalium (MG) and Chlamydia trachomatis (CT) are the most common sexually transmitted pathogens, which can cause cervicitis, pelvic inflammation and infertility in female. In the present study, we collected the basic information, clinical results of leucorrhoea and human papillomavirus (HPV) infection of patients, who were involved in both MG and CT RNA detection in West China Second Hospital of Sichuan University from January 2019 to April 2021, ranging from 18 to 50 years old. The results showed that the infection frequencies of MG and CT were 2.6% and 6.5%, respectively. The infection rate of CT in gynaecological patients was significantly higher than that of MG (P < 0.001). Moreover, patients with CT infection often had symptoms of gynaecological diseases, while patients with MG infection remain often asymptomatic. By exploring the connection between MG or CT infection and vaginal secretions, we found that the infection of MG or CT promoted to the increase of vaginal leukocytes, and CT infection exacerbated the decrease of the number of Lactobacillus in the vagina. Further analysis suggested that independent infection and co-infection of MG or CT resulted in abnormal vaginal secretion, affecting the stability of vaginal environment, which may induce vaginal diseases. Unexpectedly, our study found no association between MG or CT infection and high-risk HPV infection. In conclusion, our study explored the infection of MG and CT among women in Southwest China for the first time, and revealed that the infection of MG or CT would affect the homeostasis of vaginal environment, which laid a foundation for the clinical diagnosis and treatment of MG and CT infection.
Collapse
|
21
|
Filardo S, Di Pietro M, Sessa R. Towards a Deeper Understanding of Chlamydia trachomatis Pathogenetic Mechanisms: Editorial to the Special Issue " Chlamydia trachomatis Pathogenicity and Disease". Int J Mol Sci 2022; 23:ijms23073943. [PMID: 35409301 PMCID: PMC8999411 DOI: 10.3390/ijms23073943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Chlamydia trachomatis, an obligate intracellular Gram-negative bacterium, is characterized by a wide range of different serotypes responsible for several local or systemic human diseases, including genital tract manifestations (D-K), trachoma (A-C), and lymphogranuloma venereum (L1-3) [...].
Collapse
|
22
|
Emergence and evolution of virulence in human pathogenic fungi. Trends Microbiol 2022; 30:693-704. [DOI: 10.1016/j.tim.2021.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022]
|
23
|
Abstract
While extremely prevalent, painful, and difficult to treat, vulvovaginal candidiasis remains largely understudied in the field of women's health. In a recent issue of mSystems, McKloud et al. (E. McKloud, C. Delaney, L. Sherry, R. Kean, et al., mSystems 6:e00622-21, 2021, https://doi.org/10.1128/mSystems.00622-21) shed light on a pivotal role of a complex Candida-Lactobacillus interplay that may regulate the pathophysiology of recurrent vulvovaginal candidiasis (RVVC). This advancement not only gives new insight into the molecular mechanisms governing interkingdom interactions modulating RVVC disease, but also provides evidence that probiotic Lactobacillus-based therapeutic approaches could be efficient for fighting these problematical fungal infections.
Collapse
|
24
|
Yue C, Luo X, Ma X, Zhang D, Yan X, Deng Z, Li Y, Liu Y, An J, Fan X, Li L, Su X, Hou R, Cao S, Liu S. Contrasting Vaginal Bacterial Communities Between Estrus and Non-estrus of Giant Pandas ( Ailuropoda melanoleuca). Front Microbiol 2021; 12:707548. [PMID: 34557168 PMCID: PMC8453077 DOI: 10.3389/fmicb.2021.707548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/30/2021] [Indexed: 11/14/2022] Open
Abstract
Bacterial infection and imbalance of bacterial community in the genitourinary system of giant panda could affect the reproductive health. In severe cases, it can also lead to abortion. In this study, 13 of vaginal secretions in the estrue (E) group and seven of vaginal secretions in the non-estrue (NE) group were used to study the composition and diversity of vaginal bacterial communities between estrus and non-estrus by 16S rRNA gene sequencing analysis. The results showed that the vaginal microbiome in giant pandas shared the same top five abundant species between estrus and non-estrus at the phylum level. However, the vaginal microbiome changed significantly during estrus at the genus level. In top 10 genera, the abundance of Escherichia, Streptococcus, and Bacteroides in the E group was significantly higher than that in the NE group (p<0.05); Azomonas, Porphyromonas, Prevotella, Campylobacter, and Peptoniphilus in the NE group was significantly higher than that in the E group (p<0.05). The richness and diversity of vaginal microbiome in giant panda on estrus were significantly lower than those on non-estrus (p<0.05). It is noteworthy that the abundance of Streptococcus, Escherichia, and Bacteroides of vagina in giant pandas maintained low abundance in the daily. Whereas, they increased significantly during estrus period, which may play an important role in female giant pandas during estrus period. It was hypothesized that hormones may be responsible for the changes in the vaginal microbiome of giant pandas between estrus and no-estrus stages.
Collapse
Affiliation(s)
- Chanjuan Yue
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Xue Luo
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China.,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongsheng Zhang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Xia Yan
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Zeshuai Deng
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Yunli Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Yuliang Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Junhui An
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Xueyang Fan
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Lin Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Xiaoyan Su
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Songrui Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| |
Collapse
|
25
|
Last A, Maurer M, S. Mosig A, S. Gresnigt M, Hube B. In vitro infection models to study fungal-host interactions. FEMS Microbiol Rev 2021; 45:fuab005. [PMID: 33524102 PMCID: PMC8498566 DOI: 10.1093/femsre/fuab005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Fungal infections (mycoses) affect over a billion people per year. Approximately, two million of these infections are life-threatening, especially for patients with a compromised immune system. Fungi of the genera Aspergillus, Candida, Histoplasma and Cryptococcus are opportunistic pathogens that contribute to a substantial number of mycoses. To optimize the diagnosis and treatment of mycoses, we need to understand the complex fungal-host interplay during pathogenesis, the fungal attributes causing virulence and how the host resists infection via immunological defenses. In vitro models can be used to mimic fungal infections of various tissues and organs and the corresponding immune responses at near-physiological conditions. Furthermore, models can include fungal interactions with the host-microbiota to mimic the in vivo situation on skin and mucosal surfaces. This article reviews currently used in vitro models of fungal infections ranging from cell monolayers to microfluidic 3D organ-on-chip (OOC) platforms. We also discuss how OOC models can expand the toolbox for investigating interactions of fungi and their human hosts in the future.
Collapse
Affiliation(s)
- Antonia Last
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Michelle Maurer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Alexander S. Mosig
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Nonnenplan 2,07743, Jena, Germany
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 24, 07743, Jena, Germany
| |
Collapse
|
26
|
Chen H, Wang L, Zhao L, Luo L, Min S, Wen Y, Lei W, Shu M, Li Z. Alterations of Vaginal Microbiota in Women With Infertility and Chlamydia trachomatis Infection. Front Cell Infect Microbiol 2021; 11:698840. [PMID: 34414130 PMCID: PMC8370387 DOI: 10.3389/fcimb.2021.698840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/19/2021] [Indexed: 01/16/2023] Open
Abstract
Chlamydia trachomatis (C. trachomatis) is the most common etiological agent of bacterial sexually transmitted infections (STIs) worldwide and causes serious health sequelae such as cervicitis, pelvic inflammatory disease, and even infertility if ascending from the lower to the upper female genital tract. Previous studies have revealed the pivotal role of vaginal microbiota in susceptibility to STIs. However, alterations in the vaginal microbiota in women who are infertile and infected with C. trachomatis remain unknown. This study used metagenomic analysis of sequenced 16S rRNA gene amplicons to examine the vaginal microbial profiles of women with tubal infertility who were C. trachomatis-negative and those who were C. trachomatis-positive pre- and post-antibiotic treatment. Women who were C. trachomatis-negative and deemed healthy were recruited as references of eubiosis and dysbiosis. Women with tubal infertility and C. trachomatis infection presented a unique Lactobacillus iners-dominated vaginal microbiota rather than one dominated by Lactobacillus crispatus and displayed a decrease in Lactobacillus, Bifidobacterium, Enterobacter, Atopobium, and Streptococcus, accompanied by decreased levels of cytokines such as interferon (IFN)-γ and interleukin (IL)-10. This altered vaginal microbiota could be restored with varying degrees after standard treatment for C. trachomatis. This shift could be a predictive vaginal microbiota signature for C. trachomatis infection among females with tubal infertility, while no significant differences in phylum, class, and operational taxonomic unit (OTU) levels were observed between women with tubal infertility who were C. trachomatis-negative and healthy controls. This is the first study to provide data on the association of vaginal microbiota with C. trachomatis infection among women with tubal infertility and highlights unprecedented potential opportunities to predict C. trachomatis infection.
Collapse
Affiliation(s)
- Hongliang Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Chenzhou No.1 People's Hospital, The First School of Clinical Medicine, Southern Medical University, Chenzhou, China
| | - Li Wang
- Chenzhou No.1 People's Hospital, The First School of Clinical Medicine, Southern Medical University, Chenzhou, China
| | - Lanhua Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Lipei Luo
- Chenzhou No.1 People's Hospital, The First School of Clinical Medicine, Southern Medical University, Chenzhou, China
| | - Shuling Min
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Chenzhou No.1 People's Hospital, The First School of Clinical Medicine, Southern Medical University, Chenzhou, China
| | - Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Wenbo Lei
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Mingyi Shu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
27
|
Aitzhanova A, Oleinikova Y, Mounier J, Hymery N, Leyva Salas M, Amangeldi A, Saubenova M, Alimzhanova M, Ashimuly K, Sadanov A. Dairy associations for the targeted control of opportunistic Candida. World J Microbiol Biotechnol 2021; 37:143. [PMID: 34328568 DOI: 10.1007/s11274-021-03096-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/18/2021] [Indexed: 01/15/2023]
Abstract
Antifungal and antibacterial activities of twenty-six combinations of lactic acid bacteria, propionibacteria, acetic acid bacteria and dairy yeasts inoculated in whey and milk were investigated. Associations including acetic acid bacteria were shown to suppress growth of the opportunistic yeast Candida albicans in well-diffusion assays. The protective effect of milk fermented with the two most promising consortia was confirmed in Caco-2 cell culture infected with C. albicans. Indeed, these fermented milks, after heat-treatment or not, suppressed lactate dehydrogenase release after 48 h while significant increase in LDH release was observed in the positive control (C. albicans alone) and with fermented milk obtained using commercial yogurt starter cultures. The analysis of volatile compounds in the cell-free supernatant using solid phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) showed accumulation of significant amount of acetic acid by the consortium composed of Lactobacillus delbrueckii 5, Lactobacillus gallinarum 1, Lentilactobacillus parabuchneri 3, Lacticaseibacillus paracasei 33-4, Acetobacter syzygii 2 and Kluyveromyces marxianus 19, which corresponded to the zone of partial inhibition of C. albicans growth during well-diffusion assays. Interestingly, another part of anti-Candida activity, yielding small and transparent inhibition zones, was linked with the consortium cell fraction. This study showed a correlation between anti-Candida activity and the presence of acetic acid bacteria in dairy associations as well as a significant effect of two dairy associations against C. albicans in a Caco-2 cell model. These two associations may be promising consortia for developing functional dairy products with antagonistic action against candidiasis agents.
Collapse
Affiliation(s)
- Aida Aitzhanova
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040, Almaty, Kazakhstan
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Yelena Oleinikova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Nolwenn Hymery
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Marcia Leyva Salas
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Alma Amangeldi
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Margarita Saubenova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Mereke Alimzhanova
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040, Almaty, Kazakhstan
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Kazhybek Ashimuly
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Amankeldy Sadanov
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| |
Collapse
|
28
|
Pekmezovic M, Hovhannisyan H, Gresnigt MS, Iracane E, Oliveira-Pacheco J, Siscar-Lewin S, Seemann E, Qualmann B, Kalkreuter T, Müller S, Kamradt T, Mogavero S, Brunke S, Butler G, Gabaldón T, Hube B. Candida pathogens induce protective mitochondria-associated type I interferon signalling and a damage-driven response in vaginal epithelial cells. Nat Microbiol 2021; 6:643-657. [PMID: 33753919 DOI: 10.1038/s41564-021-00875-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Vaginal candidiasis is an extremely common disease predominantly caused by four phylogenetically diverse species: Candida albicans; Candida glabrata; Candida parapsilosis; and Candida tropicalis. Using a time course infection model of vaginal epithelial cells and dual RNA sequencing, we show that these species exhibit distinct pathogenicity patterns, which are defined by highly species-specific transcriptional profiles during infection of vaginal epithelial cells. In contrast, host cells exhibit a homogeneous response to all species at the early stages of infection, which is characterized by sublethal mitochondrial signalling inducing a protective type I interferon response. At the later stages, the transcriptional response of the host diverges in a species-dependent manner. This divergence is primarily driven by the extent of epithelial damage elicited by species-specific mechanisms, such as secretion of the toxin candidalysin by C. albicans. Our results uncover a dynamic, biphasic response of vaginal epithelial cells to Candida species, which is characterized by protective mitochondria-associated type I interferon signalling and a species-specific damage-driven response.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Hrant Hovhannisyan
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain.,Mechanisms of Disease Department, Institute for Research in Biomedicine, Barcelona, Spain
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Elise Iracane
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - João Oliveira-Pacheco
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Sofía Siscar-Lewin
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Eric Seemann
- Institute for Biochemistry I, Jena University Hospital-Friedrich Schiller University, Jena, Germany
| | - Britta Qualmann
- Institute for Biochemistry I, Jena University Hospital-Friedrich Schiller University, Jena, Germany
| | - Till Kalkreuter
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sylvia Müller
- Institute of Immunology, Universitätsklinikum Jena, Jena, Germany
| | - Thomas Kamradt
- Institute of Immunology, Universitätsklinikum Jena, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Geraldine Butler
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain. .,Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain. .,Mechanisms of Disease Department, Institute for Research in Biomedicine, Barcelona, Spain.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany. .,Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
29
|
Chen X, Lu Y, Chen T, Li R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front Cell Infect Microbiol 2021; 11:631972. [PMID: 33898328 PMCID: PMC8058480 DOI: 10.3389/fcimb.2021.631972] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The vaginal microbiome is an intricate and dynamic microecosystem that constantly undergoes fluctuations during the female menstrual cycle and the woman's entire life. A healthy vaginal microbiome is dominated by Lactobacillus which produce various antimicrobial compounds. Bacterial vaginosis (BV) is characterized by the loss or sharp decline in the total number of Lactobacillus and a corresponding marked increase in the concentration of anaerobic microbes. BV is a highly prevalent disorder of the vaginal microbiota among women of reproductive age globally. BV is confirmed to be associated with adverse gynecologic and obstetric outcomes, such as sexually transmitted infections, pelvic inflammatory disease, and preterm birth. Gardnerella vaginalis is the most common microorganism identified from BV. It is the predominant microbe in polymicrobial biofilms that could shelter G. vaginalis and other BV-associated microbes from adverse host environments. Many efforts have been made to increase our understanding of the vaginal microbiome in health and BV. Thus, improved novel and accurate diagnosis and therapeutic strategies for BV have been developed. This review covers the features of vaginal microbiome, BV, BV-associated diseases, and various strategies of diagnosis and treatment of BV, with an emphasis on recent research progresses.
Collapse
Affiliation(s)
| | | | | | - Rongguo Li
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
30
|
Microbiota continuum along the chicken oviduct and its association with host genetics and egg formation. Poult Sci 2021; 100:101104. [PMID: 34051407 PMCID: PMC8167817 DOI: 10.1016/j.psj.2021.101104] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022] Open
Abstract
The microbiota of female reproductive tract have attracted considerable attention in recent years due to their effects on host fitness. However, the microbiota throughout the chicken oviduct and its symbiotic relationships with the host have not been well characterized. Here, we characterized the microbial composition of six segments of the reproductive tract, including the infundibulum, magnum, isthmus, uterus, vagina and cloaca, in pedigreed laying hens with phenotypes of egg quality and quantity. We found that the microbial diversity gradually increased along the reproductive tract from the infundibulum to the cloaca, and the microbial communities were distinct among the cloaca, vagina and four other oviductal segments. The magnum exhibited the lowest diversity, given that the lysozyme and other antimicrobial proteins are secreted at this location. The results of correlation estimated showed that the relationship between host genetic kinship and microbial distance was negligible. Additionally, the genetically related pairwise individuals did not exhibit a more similar microbial community than unrelated pairs. Although the egg might be directly contaminated with potential pathogenic bacteria during egg formation and oviposition, some microorganisms provide long-term benefits to the host. Among these, we observed that increased abundance of vaginal Staphylococcus and Ralstonia was significantly associated with darker eggshells. Meanwhile, vaginal Romboutsia could be used as a predictor for egg number. These findings provide insight into the nature of the chicken reproductive tract microbiota and highlight the effect of oviductal bacteria on the process of egg formation.
Collapse
|
31
|
Abstract
Trichomonas vaginalis is an anaerobic/microaerophilic protist parasite which causes trichomoniasis, one of the most prevalent sexually transmitted diseases worldwide. T. vaginalis not only is important as a human pathogen but also is of great biological interest because of its peculiar cell biology and metabolism, in earlier times fostering the erroneous notion that this microorganism is at the root of eukaryotic evolution. This review summarizes the major advances in the last five years in the T. vaginalis field with regard to genetics, molecular biology, ecology, and pathogenicity of the parasite.
Collapse
Affiliation(s)
- David Leitsch
- Department of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Zhang S, Zhang Y, Gan L, Wei F, Chai B, A Aljaafreh AAH, Liu X, Duan X, Jiang J, Wang X, He M, Huang X, Cai H, Chen T, Chen H. Progesterone Suppresses Neisseria gonorrhoeae-Induced Inflammation Through Inhibition of NLRP3 Inflammasome Pathway in THP-1 Cells and Murine Models. Front Microbiol 2021; 12:570093. [PMID: 33633700 PMCID: PMC7900005 DOI: 10.3389/fmicb.2021.570093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 01/15/2021] [Indexed: 01/01/2023] Open
Abstract
Asymptomatic/subclinical gonococcal infections in females continue to be prevalent within the general population, thus emerging as a global health problem. However, the reasons for these clinical manifestations are unknown. Our group had previously found out that in females, asymptomatic gonococcal infections correlate with higher serum progesterone (P4) levels and lower IL-1β levels in cervical secretions. We used murine infection model and THP-1 cells to determine whether P4 exerts anti-inflammatory effects on gonococcal infections. In the murine infection model, P4 (1 mg/day) inhibited the inflammatory effects induced by gonococcal infections which led to decreased neutrophil infiltration, reduced polymorphonuclear neutrophils (PMNs) numbers, IL-1β, TNF-α, and IL-6 levels in vaginal secretions. In addition, P4 down-regulated the mRNA and protein levels of NLRP3, associated with lower mRNA levels of pro-IL-1β, repressed caspase-1 activity in genital tissues and THP-1 cells. Moreover, P4 suppressed the phosphorylation levels of NF-κB and attenuated Neisseria gonorrhoeae (N. gonorrhoeae, gonococci or GC)-induced ROS generation. This is consistent with the two signals required for activation of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome. In conclusion, our result shows that P4 suppresses the gonococci induced-inflammation, especially through the NLRP3 inflammasome pathway, and partially explains the pathogenesis of asymptomatic GC infection in women.
Collapse
Affiliation(s)
- Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingmiao Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.,Department of Clinical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Tchnology, Wuhan, China
| | - Lu Gan
- Department of Dermatology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fen Wei
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bao Chai
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Amaneh Abdel Hafez A Aljaafreh
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoru Duan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Mengwen He
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Huang
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Huahua Cai
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
33
|
Atopobium vaginae and Prevotella bivia Are Able to Incorporate and Influence Gene Expression in a Pre-Formed Gardnerella vaginalis Biofilm. Pathogens 2021; 10:pathogens10020247. [PMID: 33672647 PMCID: PMC7924186 DOI: 10.3390/pathogens10020247] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial vaginosis (BV) is associated with a highly structured polymicrobial biofilm on the vaginal epithelium where Gardnerella species presumably play a pivotal role. Gardnerella vaginalis, Atopobium vaginae, and Prevotella bivia are vaginal pathogens detected during the early stages of incident BV. Herein, we aimed to analyze the impact of A. vaginae and P. bivia on a pre-established G. vaginalis biofilm using a novel in vitro triple-species biofilm model. Total biofilm biomass was determined by the crystal violet method. We also discriminated the bacterial populations in the biofilm and in its planktonic fraction by using PNA FISH. We further analyzed the influence of A. vaginae and P. bivia on the expression of key virulence genes of G. vaginalis by quantitative PCR. In our tested conditions, A. vaginae and P. bivia were able to incorporate into pre-established G. vaginalis biofilms but did not induce an increase in total biofilm biomass, when compared with 48-h G. vaginalis biofilms. However, they were able to significantly influence the expression of HMPREF0424_0821, a gene suggested to be associated with biofilm maintenance in G. vaginalis. This study suggests that microbial relationships between co-infecting bacteria can deeply affect the G. vaginalis biofilm, a crucial marker of BV.
Collapse
|
34
|
Henrich B, Hammerlage S, Scharf S, Haberhausen D, Fürnkranz U, Köhrer K, Peitzmann L, Fiori PL, Spergser J, Pfeffer K, Dilthey AT. Characterisation of mobile genetic elements in Mycoplasma hominis with the description of ICEHo-II, a variant mycoplasma integrative and conjugative element. Mob DNA 2020; 11:30. [PMID: 33292499 PMCID: PMC7648426 DOI: 10.1186/s13100-020-00225-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mobile genetic elements are found in genomes throughout the microbial world, mediating genome plasticity and important prokaryotic phenotypes. Even the cell wall-less mycoplasmas, which are known to harbour a minimal set of genes, seem to accumulate mobile genetic elements. In Mycoplasma hominis, a facultative pathogen of the human urogenital tract and an inherently very heterogeneous species, four different MGE-classes had been detected until now: insertion sequence ISMhom-1, prophage MHoV-1, a tetracycline resistance mediating transposon, and ICEHo, a species-specific variant of a mycoplasma integrative and conjugative element encoding a T4SS secretion system (termed MICE). RESULTS To characterize the prevalence of these MGEs, genomes of 23 M. hominis isolates were assembled using whole genome sequencing and bioinformatically analysed for the presence of mobile genetic elements. In addition to the previously described MGEs, a new ICEHo variant was found, which we designate ICEHo-II. Of 15 ICEHo-II genes, five are common MICE genes; eight are unique to ICEHo-II; and two represent a duplication of a gene also present in ICEHo-I. In 150 M. hominis isolates and based on a screening PCR, prevalence of ICEHo-I was 40.7%; of ICEHo-II, 28.7%; and of both elements, 15.3%. Activity of ICEHo-I and -II was demonstrated by detection of circularized extrachromosomal forms of the elements through PCR and subsequent Sanger sequencing. CONCLUSIONS Nanopore sequencing enabled the identification of mobile genetic elements and of ICEHo-II, a novel MICE element of M. hominis, whose phenotypic impact and potential impact on pathogenicity can now be elucidated.
Collapse
Affiliation(s)
- Birgit Henrich
- Institute of Med. Microbiology and Hospital Hygiene of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.
| | - Stephanie Hammerlage
- Institute of Med. Microbiology and Hospital Hygiene of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Sebastian Scharf
- Institute of Med. Microbiology and Hospital Hygiene of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Department of Haematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| | - Diana Haberhausen
- Institute of Med. Microbiology and Hospital Hygiene of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Ursula Fürnkranz
- Institute for Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Vienna, Austria
| | - Karl Köhrer
- Biological and Medical Research Centre (BMFZ) of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Lena Peitzmann
- Biological and Medical Research Centre (BMFZ) of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Klaus Pfeffer
- Institute of Med. Microbiology and Hospital Hygiene of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Alexander T Dilthey
- Institute of Med. Microbiology and Hospital Hygiene of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
35
|
Lacroix G, Gouyer V, Gottrand F, Desseyn JL. The Cervicovaginal Mucus Barrier. Int J Mol Sci 2020; 21:ijms21218266. [PMID: 33158227 PMCID: PMC7663572 DOI: 10.3390/ijms21218266] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022] Open
Abstract
Preterm births are a global health priority that affects 15 million babies every year worldwide. There are no effective prognostic and therapeutic strategies relating to preterm delivery, but uterine infections appear to be a major cause. The vaginal epithelium is covered by the cervicovaginal mucus, which is essential to health because of its direct involvement in reproduction and functions as a selective barrier by sheltering the beneficial lactobacilli while helping to clear pathogens. During pregnancy, the cervical canal is sealed with a cervical mucus plug that prevents the vaginal flora from ascending toward the uterine compartment, which protects the fetus from pathogens. Abnormalities of the cervical mucus plug and bacterial vaginosis are associated with a higher risk of preterm delivery. This review addresses the current understanding of the cervicovaginal mucus and the cervical mucus plug and their interactions with the microbial communities in both the physiological state and bacterial vaginosis, with a focus on gel-forming mucins. We also review the current state of knowledge of gel-forming mucins contained in mouse cervicovaginal mucus and the mouse models used to study bacterial vaginosis.
Collapse
|
36
|
Tu Y, Zheng G, Ding G, Wu Y, Xi J, Ge Y, Gu H, Wang Y, Sheng J, Liu X, Jin L, Huang H. Comparative Analysis of Lower Genital Tract Microbiome Between PCOS and Healthy Women. Front Physiol 2020; 11:1108. [PMID: 33013474 PMCID: PMC7506141 DOI: 10.3389/fphys.2020.01108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
Women with polycystic ovarian syndrome (PCOS) often have a history of infertility and poor pregnancy outcome. The character of the lower genital tract (LGT) microbiome of these patients is still unknown. We collected both vaginal and cervical canal swabs from 47 PCOS patients (diagnosed by the Rotterdam Criteria) and 50 healthy reproductive-aged controls in this study. Variable regions 3–4 (V3–4) were sequenced and analyzed. Operational taxonomic unit (OTU) abundance was noted for all samples. Taxa that discriminated between PCOS and healthy women was calculated by linear discriminant analysis effect size (LEFSe). Results from 97 paired vaginal and cervical canal samples collected from 97 women [mean age 30 (±4 years)] were available for analysis. Using the Rotterdam Criteria, 47 women were diagnosed with PCOS (PCOS, n = 47; control, n = 50). There was no significant difference between cervical canal microbiome and vaginal microbiome from the same individual, however, Lactobacillus spp. was less abundant in both vaginal and cervical canal microbiome of PCOS patients. Several non-Lactobacillus taxa including Gardnerella_vaginalis_00703mash, Prevotella_9_other, and Mycoplasma hominis, were more abundant in the LGT microbiota of PCOS patients. There is a difference between the microorganism in the LGT of patients with PCOS and healthy reproductive-aged women.
Collapse
Affiliation(s)
- Yaoyao Tu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Guangyong Zheng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guolian Ding
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yanting Wu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Ji Xi
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingzhou Ge
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hangchao Gu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yingyu Wang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Jianzhong Sheng
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China.,Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinmei Liu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Li Jin
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hefeng Huang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|