1
|
He J, Lin X, Zhang D, Hu H, Chen X, Xu F, Zhou M. Wake biofilm up to enhance suicidal uptake of gallium for chronic lung infection treatment. Biomaterials 2024; 310:122619. [PMID: 38805955 DOI: 10.1016/j.biomaterials.2024.122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
The hypometabolic and nutrient-limiting condition of dormant bacteria inside biofilms reduces their susceptibility to antibacterial agents, making the treatment of biofilm-dominating chronic infections difficult. Herein, we demonstrate an intratracheal aerosolized maltohexaose-modified catalase-gallium integrated nanosystem that can 'wake up' dormant Pseudomonas aeruginosa biofilm to increase the metabolism and nutritional iron demand by reconciling the oxygen gradient. The activated bacteria then enhance suicidal gallium uptake since gallium acts as a 'Trojan horse' to mimic iron. The internalized gallium ions disrupt biofilms by interfering with the physiological processes of iron ion acquisition and utilization, biofilm formation, and quorum sensing. Furthermore, aerosol microsprayer administration and bacteria-specific maltohexaose modification enable accumulation at biofilm-infected lung and targeted release of gallium into bacteria to improve the therapeutic effect. This work provides a potential strategy for treating infection by reversing the dormant biofilm's resistance condition.
Collapse
Affiliation(s)
- Jian He
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xiuhui Lin
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Dongxiao Zhang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
| | - Huiqun Hu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou, 310027, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
2
|
Wang L, Wang X, Wu H, Wang H, Lu Z. Interspecies synergistic interactions mediated by cofactor exchange enhance stress tolerance by inducing biofilm formation. mSystems 2024; 9:e0088424. [PMID: 39189769 PMCID: PMC11406921 DOI: 10.1128/msystems.00884-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Metabolic exchange plays a crucial role in shaping microbial community interactions and functions, including the exchange of small molecules such as cofactors. Cofactors are fundamental to enzyme catalytic activities; however, the role of cofactors in microbial stress tolerance is unclear. Here, we constructed a synergistic consortium containing two strains that could efficiently mineralize di-(2-ethylhexyl) phthalate under hyperosmotic stress. Integration of transcriptomic analysis, metabolic profiling, and a genome-scale metabolic model (GEM) facilitated the discovery of the potential mechanism of microbial interactions. Multi-omics analysis revealed that the vitamin B12-dependent methionine-folate cycle could be a key pathway for enhancing the hyperosmotic stress tolerance of synergistic consortium. Further GEM simulations revealed interspecies exchange of S-adenosyl-L-methionine and riboflavin, cofactors needed for vitamin B12 biosynthesis, which was confirmed by in vitro experiments. Overall, we proposed a new mechanism of bacterial hyperosmotic stress tolerance: bacteria might promote the production of vitamin B12 to enhance biofilm formation, and the species collaborate with each other by exchanging cofactors to improve consortium hyperosmotic stress tolerance. These findings offer new insights into the role of cofactors in microbial interactions and stress tolerance and are potentially exploitable for environmental remediation. IMPORTANCE Metabolic interactions (also known as cross-feeding) are thought to be ubiquitous in microbial communities. Cross-feeding is the basis for many positive interactions (e.g., mutualism) and is a primary driver of microbial community assembly. In this study, a combination of multi-omics analysis and metabolic modeling simulation was used to reveal the metabolic interactions of a synthetic consortium under hyperosmotic stress. Interspecies cofactor exchange was found to promote biofilm formation under hyperosmotic stress. This provides a new perspective for understanding the role of metabolic interactions in microbial communities to enhance environmental adaptation, which is significant for improving the efficiency of production activities and environmental bioremediation.
Collapse
Affiliation(s)
- Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Jotta VFM, García GJY, Fonseca PLC, de Mello Ferreira A, Azevedo V, Brenig B, Góes-Neto A, Badotti F. Taxonomic and functional characterization of biofilms from a photovoltaic panel reveals high genetic and metabolic complexity of the communities. J Appl Microbiol 2024; 135:lxae231. [PMID: 39257028 DOI: 10.1093/jambio/lxae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 09/12/2024]
Abstract
AIMS Biofilms are complex microbial cell aggregates that attach to different surfaces in nature, industrial environments, or hospital settings. In photovoltaic panels (PVs), biofilms are related to significant energy conversion losses. In this study, our aim was to characterize the communities of microorganisms and the genes involved in biofilm formation. METHODS AND RESULTS In this study, biofilm samples collected from a PV system installed in southeastern Brazil were analyzed through shotgun metagenomics, and the microbial communities and genes involved in biofilm formation were investigated. A total of 2030 different genera were identified in the samples, many of which were classified as extremophiles or producers of exopolysaccharides. Bacteria prevailed in the samples (89%), mainly the genera Mucilaginibacter, Microbacterium, Pedobacter, Massilia, and Hymenobacter. The functional annotation revealed >12 000 genes related to biofilm formation and stress response. Genes involved in the iron transport and synthesis of c-di-GMP and c-AMP second messengers were abundant in the samples. The pathways related to these components play a crucial role in biofilm formation and could be promising targets for preventing biofilm formation in the PV. In addition, Raman spectroscopy analysis indicated the presence of hematite, goethite, and ferrite, consistent with the mineralogical composition of the regional soil and metal-resistant bacteria. CONCLUSIONS Taken together, our findings reveal that PV biofilms are a promising source of microorganisms of industrial interest and genes of central importance in regulating biofilm formation and persistence.
Collapse
Affiliation(s)
- Viviane Faria Morais Jotta
- Programa de Pós-Graduação em Tecnologia de Produtos e Processos, Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), 30510-000, Belo Horizonte, MG, Brazil
| | - Glen Jasper Yupanqui García
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, MG, Brazil
| | - Paula Luize Camargos Fonseca
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, MG, Brazil
| | - Angela de Mello Ferreira
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), 30421-169, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Department of Genetics, Evolution and Ecology, Institute of Biological Science, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, MG, Brazil
| | - Bertram Brenig
- Georg-August-University Goettingen, Institute of Veterinary Medicine, Burckhardtweg 2, 37077 Göttingen, Germany
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, MG, Brazil
| | - Fernanda Badotti
- Programa de Pós-Graduação em Tecnologia de Produtos e Processos, Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), 30510-000, Belo Horizonte, MG, Brazil
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), 30421-169, Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Tewari N, Dey P. Navigating commensal dysbiosis: Gastrointestinal host-pathogen interplay orchestrating opportunistic infections. Microbiol Res 2024; 286:127832. [PMID: 39013300 DOI: 10.1016/j.micres.2024.127832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
The gut commensals, which are usually symbiotic or non-harmful bacteria that live in the gastrointestinal tract, have a positive impact on the health of the host. This review, however, specifically discuss distinct conditions where commensals aid in the development of pathogenic opportunistic infections. We discuss that the categorization of gut bacteria as either pathogens or non-pathogens depends on certain circumstances, which are significantly affected by the tissue microenvironment and the dynamic host-microbe interaction. Under favorable circumstances, commensals have the ability to transform into opportunistic pathobionts by undergoing overgrowth. These conditions include changes in the host's physiology, simultaneous infection with other pathogens, effective utilization of nutrients, interactions between different species of bacteria, the formation of protective biofilms, genetic mutations that enhance pathogenicity, acquisition of genes associated with virulence, and the ability to avoid the host's immune response. These processes allow commensals to both initiate infections themselves and aid other pathogens in populating the host. This review highlights the need of having a detailed and sophisticated knowledge of the two-sided nature of gut commensals. Although commensals mostly promote health, they may also become harmful in certain changes in the environment or the body's functioning. This highlights the need of acknowledging the intricate equilibrium in interactions between hosts and microbes, which is crucial for preserving intestinal homeostasis and averting diseases. Finally, we also emphasize the further need of research to better understand and anticipate the behavior of gut commensals in different situations, since they play a crucial and varied role in human health and disease.
Collapse
Affiliation(s)
- Nisha Tewari
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.
| |
Collapse
|
5
|
Dong X, Zhao W, Ma S, Li X, Li G, Zhang S. Oral microbial profiles of extrinsic black tooth stain in primary dentition: A literature review. J Dent Sci 2024; 19:1369-1379. [PMID: 39035270 PMCID: PMC11259676 DOI: 10.1016/j.jds.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 02/28/2024] [Indexed: 07/23/2024] Open
Abstract
The extrinsic black tooth stain (EBS) is commonly found in primary dentition. Patients cannot clean the EBS; this can only be done by professional scaling and debridement. It also has a tendency to reform, which significantly compromises children's aesthetics and even affects their quality of life. However, there is no conclusive evidence on the etiology of the EBS. The associations between the EBS and related oral microbial features is one of the research hot topics. No literature review summarized these research progresses in this area. Therefore, we reviewed the literature on the microbiology of the EBS since 1931 and reported as the following 5 aspects: molecular biotechnology, morphological structure and physiochemical characteristics, microbial etiology hypothesis and core microbial characteristics. The EBS is a special dental plaque mainly composed of Gram-positive bacilli and cocci with scattered calcium deposits that acquired salivary pellicle activates. Early studies showed that the Actinomyces was the main pathogenic bacteria. With advances in biological research techniques, the 'core microbiome' was proposed. The potential pathogenic genera were Actinomyces, Prevotella nigrescens, Pseudotropinibacterium, Leptotrichia, Neisseria and Rothia. However, the pathogenic species of the above genera were still unclear. Currently, it is believed that the EBS consists of iron compounds or black substances that oral bacterial metabolism produces or that the bacterial metabolites formed after chemical reactions in the micro-ecological environment.
Collapse
Affiliation(s)
- Xue Dong
- Department of Preventive Dentistry, Kunming Medical University, School and Hospital of Stomatology, Kunming, China
| | - Weijin Zhao
- Department of Preventive Dentistry, Kunming Medical University, School and Hospital of Stomatology, Kunming, China
| | - Sha Ma
- Department of Preventive Dentistry, Kunming Medical University, School and Hospital of Stomatology, Kunming, China
| | - Ximeng Li
- Department of Preventive Dentistry, Kunming Medical University, School and Hospital of Stomatology, Kunming, China
| | - Guiding Li
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, China
| | - Shinan Zhang
- Department of Preventive Dentistry, Kunming Medical University, School and Hospital of Stomatology, Kunming, China
| |
Collapse
|
6
|
Dey P. Good girl goes bad: Understanding how gut commensals cause disease. Microb Pathog 2024; 190:106617. [PMID: 38492827 DOI: 10.1016/j.micpath.2024.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
This review examines the complex connection between commensal microbiota and the development of opportunistic infections. Several underlying conditions, such as metabolic diseases and weakened immune systems, increase the vulnerability of patients to opportunistic infections. The increasing antibiotic resistance adds significant complexity to the management of infectious diseases. Although commensals have long been considered beneficial, recent research contradicts this notion by uncovering chronic illnesses linked to atypical pathogens or commensal bacteria. This review examines conditions in which commensal bacteria, which are usually beneficial, contribute to developing diseases. Commensals' support for opportunistic infections can be categorized based on factors such as colonization fitness, pathoadaptive mutation, and evasion of host immune response. Individuals with weakened immune systems are especially susceptible, highlighting the importance of mucosal host-microbiota interaction in promoting infection when conditions are inappropriate. Dysregulation of gut microbial homeostasis, immunological modulation, and microbial interactions are caused by several factors that contribute to the development of chronic illnesses. Knowledge about these mechanisms is essential for developing preventive measures, particularly for susceptible populations, and emphasizes the importance of maintaining a balanced gut microbiota in reducing the impact of opportunistic infections.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
| |
Collapse
|
7
|
Ding J, Wang X, Liu W, Ding C, Wu J, He R, Zhang X. Biofilm Microenvironment Activated Antibiotic Adjuvant for Implant-Associated Infections by Systematic Iron Metabolism Interference. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400862. [PMID: 38408138 PMCID: PMC11077648 DOI: 10.1002/advs.202400862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Hematoma, a risk factor of implant-associated infections (IAIs), creates a Fe-rich environment following implantation, which proliferates the growth of pathogenic bacteria. Fe metabolism is a major vulnerability for pathogens and is crucial for several fundamental physiological processes. Herein, a deferiprone (DFP)-loaded layered double hydroxide (LDH)-based nanomedicine (DFP@Ga-LDH) that targets the Fe-rich environments of IAIs is reported. In response to acidic changes at the infection site, DFP@Ga-LDH systematically interferes with bacterial Fe metabolism via the substitution of Ga3+ and Fe scavenging by DFP. DFP@Ga-LDH effectively reverses the Fe/Ga ratio in Pseudomonas aeruginosa, causing comprehensive interference in various Fe-associated targets, including transcription and substance metabolism. In addition to its favorable antibacterial properties, DFP@Ga-LDH functions as a nano-adjuvant capable of delaying the emergence of antibiotic resistance. Accordingly, DFP@Ga-LDH is loaded with a siderophore antibiotic (cefiderocol, Cefi) to achieve the antibacterial nanodrug DFP@Ga-LDH-Cefi. Antimicrobial and biosafety efficacies of DFP@Ga-LDH-Cefi are validated using ex vivo human skin and mouse IAI models. The pivotal role of the hematoma-created Fe-rich environment of IAIs is highlighted, and a nanoplatform that efficiently interferes with bacterial Fe metabolism is developed. The findings of the study provide promising guidance for future research on the exploration of nano-adjuvants as antibacterial agents.
Collapse
Affiliation(s)
- Jianing Ding
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Xin Wang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Wei Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Cheng Ding
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Jianrong Wu
- Shanghai Institute of Ultrasound in MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Renke He
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Xianlong Zhang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| |
Collapse
|
8
|
Rayi S, Cai Y, Greenwich JL, Fuqua C, Gerdt JP. Interbacterial Biofilm Competition through a Suite of Secreted Metabolites. ACS Chem Biol 2024; 19:462-470. [PMID: 38261537 PMCID: PMC10951839 DOI: 10.1021/acschembio.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Polymicrobial biofilms are ubiquitous, and the complex interspecies interactions within them are cryptic. We discovered the chemical foundation of antagonistic interactions in a model dual-species biofilm in which Pseudomonas aeruginosa inhibits the biofilm formation of Agrobacterium tumefaciens. Three known siderophores produced by P. aeruginosa (pyoverdine, pyochelin, and dihydroaeruginoic acid) were each capable of inhibiting biofilm formation. Surprisingly, a mutant that was incapable of producing these siderophores still secreted an antibiofilm metabolite. We discovered that this inhibitor was N5-formyl-N5-hydroxy-l-ornithine (fOHOrn)─a precursor in pyoverdine biosynthesis. Unlike the siderophores, this inhibitor did not appear to function via extracellular metal sequestration. In addition to this discovery, the compensatory overproduction of a new biofilm inhibitor illustrates the risk of pleiotropy in genetic knockout experiments. In total, this work lends new insight into the chemical nature of dual-species biofilm regulation and reveals a new naturally produced inhibitor of A. tumefaciens biofilm formation.
Collapse
Affiliation(s)
- Soniya Rayi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yanyao Cai
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jennifer L Greenwich
- Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Joseph P Gerdt
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Lyng M, Jørgensen JPB, Schostag MD, Jarmusch SA, Aguilar DKC, Lozano-Andrade CN, Kovács ÁT. Competition for iron shapes metabolic antagonism between Bacillus subtilis and Pseudomonas marginalis. THE ISME JOURNAL 2024; 18:wrad001. [PMID: 38365234 PMCID: PMC10811728 DOI: 10.1093/ismejo/wrad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 02/18/2024]
Abstract
Siderophores have long been implicated in sociomicrobiology as determinants of bacterial interrelations. For plant-associated genera, like Bacillus and Pseudomonas, siderophores are well known for their biocontrol functions. Here, we explored the functional role of the Bacillus subtilis siderophore bacillibactin (BB) in an antagonistic interaction with Pseudomonas marginalis. The presence of BB strongly influenced the outcome of the interaction in an iron-dependent manner. The BB producer B. subtilis restricts colony spreading of P. marginalis by repressing the transcription of histidine kinase-encoding gene gacS, thereby abolishing production of secondary metabolites such as pyoverdine and viscosin. By contrast, lack of BB restricted B. subtilis colony growth. To explore the specificity of the antagonism, we cocultured B. subtilis with a collection of fluorescent Pseudomonas spp. and found that the Bacillus-Pseudomonas interaction is conserved, expanding our understanding of the interplay between two of the most well-studied genera of soil bacteria.
Collapse
Affiliation(s)
- Mark Lyng
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Johan P B Jørgensen
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Morten D Schostag
- Bacterial Ecophysiology & Biotechnology, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Scott A Jarmusch
- Natural Product Discovery, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Diana K C Aguilar
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Carlos N Lozano-Andrade
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| |
Collapse
|
10
|
Kang X, Yang X, He Y, Guo C, Li Y, Ji H, Qin Y, Wu L. Strategies and materials for the prevention and treatment of biofilms. Mater Today Bio 2023; 23:100827. [PMID: 37859998 PMCID: PMC10582481 DOI: 10.1016/j.mtbio.2023.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Biofilms are aggregates of organized microbial growth that function as barriers and create a stable internal environment for cell survival. The bacteria in the biofilms exhibit characteristics that are quite different from the planktonic bacteria, such as strong resistance to antibiotics and other bactericides, getting out of host immunity, and developing in harsh environments, which all contribute to the persistent and intractable treatment. Hence, there is an urgent need to develop novel materials and strategies to combat biofilms. However, most of the reviews on anti-biofilms published in recent years are based on specific fields or materials. Microorganisms are ubiquitous, except in the context of medical and health issues; however, biofilms exert detrimental effects on the advancement and progress of various fields. Therefore, this review aims to provide a comprehensive summary of effective strategies and methodologies applicable across all industries. Firstly, the process of biofilms formation was introduced to enhance our comprehension of the "enemy". Secondly, strategies to intervene in the important links of biofilms formation were discussed, taking timely action during the early weak stages of the "enemy". Thirdly, treatment strategies for mature biofilms were summarized to deal with biofilms that break through the defense line. Finally, several substances with antibacterial properties were presented. The review concludes with the standpoint of the author about potential developments of anti-biofilms strategies. This review may help researchers quickly understand the research progress and challenges in the field of anti-biofilms to design more efficient methods and strategies to combat biofilms.
Collapse
Affiliation(s)
- Xiaoxia Kang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Xiaoxiao Yang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Yue He
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Conglin Guo
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Yuechen Li
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Haiwei Ji
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Yuling Qin
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| | - Li Wu
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong, 226019, China
| |
Collapse
|
11
|
Bhattacharyya S, Bhattarai N, Pfannenstiel DM, Wilkins B, Singh A, Harshey RM. A heritable iron memory enables decision-making in Escherichia coli. Proc Natl Acad Sci U S A 2023; 120:e2309082120. [PMID: 37988472 PMCID: PMC10691332 DOI: 10.1073/pnas.2309082120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/12/2023] [Indexed: 11/23/2023] Open
Abstract
The importance of memory in bacterial decision-making is relatively unexplored. We show here that a prior experience of swarming is remembered when Escherichia coli encounters a new surface, improving its future swarming efficiency. We conducted >10,000 single-cell swarm assays to discover that cells store memory in the form of cellular iron levels. This "iron" memory preexists in planktonic cells, but the act of swarming reinforces it. A cell with low iron initiates swarming early and is a better swarmer, while the opposite is true for a cell with high iron. The swarming potential of a mother cell, which tracks with its iron memory, is passed down to its fourth-generation daughter cells. This memory is naturally lost by the seventh generation, but artificially manipulating iron levels allows it to persist much longer. A mathematical model with a time-delay component faithfully recreates the observed dynamic interconversions between different swarming potentials. We demonstrate that cellular iron levels also track with biofilm formation and antibiotic tolerance, suggesting that iron memory may impact other physiologies.
Collapse
Affiliation(s)
- Souvik Bhattacharyya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX78712
| | - Nabin Bhattarai
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX78712
| | - Dylan M. Pfannenstiel
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX78712
| | - Brady Wilkins
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX78712
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE19716
| | - Rasika M. Harshey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX78712
| |
Collapse
|
12
|
Han H, Xing L, Chen BT, Liu Y, Zhou TJ, Wang Y, Zhang LF, Li L, Cho CS, Jiang HL. Progress on the pathological tissue microenvironment barrier-modulated nanomedicine. Adv Drug Deliv Rev 2023; 200:115051. [PMID: 37549848 DOI: 10.1016/j.addr.2023.115051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Imbalance in the tissue microenvironment is the main obstacle to drug delivery and distribution in the human body. Before penetrating the pathological tissue microenvironment to the target site, therapeutic agents are usually accompanied by three consumption steps: the first step is tissue physical barriers for prevention of their penetration, the second step is inactivation of them by biological molecules, and the third step is a cytoprotective mechanism for preventing them from functioning on specific subcellular organelles. However, recent studies in drug-hindering mainly focus on normal physiological rather than pathological microenvironment, and the repair of damaged physiological barriers is also rarely discussed. Actually, both the modulation of pathological barriers and the repair of damaged physiological barriers are essential in the disease treatment and the homeostasis maintenance. In this review, we present an overview describing the latest advances in the generality of these pathological barriers and barrier-modulated nanomedicine. Overall, this review holds considerable significance for guiding the design of nanomedicine to increase drug efficacy in the future.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
13
|
Lopez AE, Grigoryeva LS, Barajas A, Cianciotto NP. Legionella pneumophila Rhizoferrin Promotes Bacterial Biofilm Formation and Growth within Amoebae and Macrophages. Infect Immun 2023; 91:e0007223. [PMID: 37428036 PMCID: PMC10429650 DOI: 10.1128/iai.00072-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Previously, we showed that Legionella pneumophila secretes rhizoferrin, a polycarboxylate siderophore that promotes bacterial growth in iron-deplete media and the murine lung. Yet, past studies failed to identify a role for the rhizoferrin biosynthetic gene (lbtA) in L. pneumophila infection of host cells, suggesting the siderophore's importance was solely linked to extracellular survival. To test the possibility that rhizoferrin's relevance to intracellular infection was missed due to functional redundancy with the ferrous iron transport (FeoB) pathway, we characterized a new mutant lacking both lbtA and feoB. This mutant was highly impaired for growth on bacteriological media that were only modestly depleted of iron, confirming that rhizoferrin-mediated ferric iron uptake and FeoB-mediated ferrous iron uptake are critical for iron acquisition. The lbtA feoB mutant, but not its lbtA-containing complement, was also highly defective for biofilm formation on plastic surfaces, demonstrating a new role for the L. pneumophila siderophore in extracellular survival. Finally, the lbtA feoB mutant, but not its complement containing lbtA, proved to be greatly impaired for growth in Acanthamoeba castellanii, Vermamoeba vermiformis, and human U937 cell macrophages, revealing that rhizoferrin does promote intracellular infection by L. pneumophila. Moreover, the application of purified rhizoferrin triggered cytokine production from the U937 cells. Rhizoferrin-associated genes were fully conserved across the many sequenced strains of L. pneumophila examined but were variably present among strains from the other species of Legionella. Outside of Legionella, the closest match to the L. pneumophila rhizoferrin genes was in Aquicella siphonis, another facultative intracellular parasite of amoebae.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Lubov S. Grigoryeva
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Armando Barajas
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
14
|
Fu J, Nisbett LM, Guo Y, Boon EM. NosP Detection of Heme Modulates Burkholderia thailandensis Biofilm Formation. Biochemistry 2023; 62:2426-2441. [PMID: 37498555 PMCID: PMC10478957 DOI: 10.1021/acs.biochem.3c00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Aggregated bacteria embedded within self-secreted extracellular polymeric substances, or biofilms, are resistant to antibiotics and cause chronic infections. As such, they are a significant public health threat. Heme is an abundant iron source for pathogenic bacteria during infection; many bacteria have systems to detect heme assimilated from host cells, which is correlated with the transition between acute and chronic infection states. Here, we investigate the heme-sensing function of a newly discovered multifactorial sensory hemoprotein called NosP and its role in biofilm regulation in the soil-dwelling bacterium Burkholderia thailandensis, the close surrogate of Bio-Safety-Level-3 pathogen Burkholderia pseudomallei. The NosP family protein has previously been shown to exhibit both nitric oxide (NO)- and heme-sensing functions and to regulate biofilms through NosP-associated histidine kinases and two-component systems. Our in vitro studies suggest that BtNosP exhibits heme-binding kinetics and thermodynamics consistent with a labile heme-responsive protein and that the holo-form of BtNosP acts as an inhibitor of its associated histidine kinase BtNahK. Furthermore, our in vivo studies suggest that increasing the concentration of extracellular heme decreases B. thailandensis biofilm formation, and deletion of nosP and nahK abolishes this phenotype, consistent with a model that BtNosP detects heme and exerts an inhibitory effect on BtNahK to decrease the biofilm.
Collapse
Affiliation(s)
- Jiayuan Fu
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Lisa-Marie Nisbett
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Yulong Guo
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Elizabeth M Boon
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
15
|
Bhattacharyya S, Bhattarai N, Pfannenstiel DM, Wilkins B, Singh A, Harshey RM. Iron Memory in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541523. [PMID: 37609133 PMCID: PMC10441380 DOI: 10.1101/2023.05.19.541523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The importance of memory in bacterial decision-making is relatively unexplored. We show here that a prior experience of swarming is remembered when E. coli encounters a new surface, improving its future swarming efficiency. We conducted >10,000 single-cell swarm assays to discover that cells store memory in the form of cellular iron levels. This memory pre-exists in planktonic cells, but the act of swarming reinforces it. A cell with low iron initiates swarming early and is a better swarmer, while the opposite is true for a cell with high iron. The swarming potential of a mother cell, whether low or high, is passed down to its fourth-generation daughter cells. This memory is naturally lost by the seventh generation, but artificially manipulating iron levels allows it to persist much longer. A mathematical model with a time-delay component faithfully recreates the observed dynamic interconversions between different swarming potentials. We also demonstrate that iron memory can integrate multiple stimuli, impacting other bacterial behaviors such as biofilm formation and antibiotic tolerance.
Collapse
Affiliation(s)
- Souvik Bhattacharyya
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin; Austin, TX 78712
| | - Nabin Bhattarai
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin; Austin, TX 78712
| | - Dylan M. Pfannenstiel
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin; Austin, TX 78712
| | - Brady Wilkins
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin; Austin, TX 78712
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, DE 19716
| | - Rasika M. Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin; Austin, TX 78712
| |
Collapse
|
16
|
Zhu W, Mei J, Zhang X, Zhou J, Xu D, Su Z, Fang S, Wang J, Zhang X, Zhu C. Photothermal Nanozyme-Based Microneedle Patch against Refractory Bacterial Biofilm Infection via Iron-Actuated Janus Ion Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207961. [PMID: 36239263 DOI: 10.1002/adma.202207961] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Owing to high antibiotic resistance and thermotolerance, bacterial biofilm infections (BBIs) are refractory to elimination. Iron is essential for bacterial growth and metabolism, and bacteria can thus accumulate iron from surrounding cells to maintain biofilm formation and survival. Consequently, iron deficiency in the biofilm microenvironment (BME) leads to the functional failure of innate immune cells. Herein, a novel antibiofilm strategy of iron-actuated Janus ion therapy (IJIT) is proposed to regulate iron metabolism in both bacterial biofilm and immune cells. A BME-responsive photothermal microneedle patch (FGO@MN) is synthesized by the growth of Fe3 O4 nanoparticles on graphene oxide nanosheets and then encapsulated in methacrylated hyaluronic acid needle tips. The catalytic product of ·OH by FGO@MN in BME disrupts the bacterial heat-shock proteins, coercing biofilm thermal sensitization. As synergistic mild photothermal treatment triggers iron uptake, the intracellular iron overload further induces ferroptosis-like death. Moreover, iron-nourished neutrophils around BME can be rejuvenated for reactivating the suppressed antibiofilm function. Thus, more than 95% BBIs elimination can be achieved by combining heat stress-triggered iron interference with iron-nutrient immune reactivation. Furthermore, in vivo experiments validate the scavenging of refractory BBI after 15 days, suggesting the promising perspective of IJIT in future clinical application.
Collapse
Affiliation(s)
- Wanbo Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Jun Zhou
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Dongdong Xu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Zheng Su
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Shiyuan Fang
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Jiaxing Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Xianlong Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| |
Collapse
|
17
|
Oliveira F, Lima T, Correia A, Silva AM, Soares C, Morais S, Weißelberg S, Vilanova M, Rohde H, Cerca N. Involvement of the Iron-Regulated Loci hts and fhuC in Biofilm Formation and Survival of Staphylococcus epidermidis within the Host. Microbiol Spectr 2022; 10:e0216821. [PMID: 35019768 PMCID: PMC8754135 DOI: 10.1128/spectrum.02168-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus epidermidis is a major nosocomial pathogen with a remarkable ability to persist on indwelling medical devices through biofilm formation. Nevertheless, it remains intriguing how this process is efficiently achieved under the host's harsh conditions, where the availability of nutrients, such as essential metals, is scarce. Following our previous identification of two iron-regulated loci putatively involved in iron transport, hts and fhuC, we assessed here their individual contribution to both bacterial physiology and interaction with host immune cells. Single deletions of the hts and fhuC loci led to marked changes in the cell iron content, which were partly detrimental for planktonic growth and strongly affected biofilm formation under iron-restricted conditions. Deletion of each of these two loci did not lead to major changes in S. epidermidis survival within human macrophages or in an ex vivo human blood model of bloodstream infection. However, the lack of either hts or fhuC loci significantly impaired bacterial survival in vivo in a murine model of bacteremia. Collectively, this study establishes, for the first time, the pivotal role of the iron-regulated loci hts and fhuC in S. epidermidis biofilm formation and survival within the host, providing relevant information for the development of new targeted therapeutics against this pathogen. IMPORTANCE Staphylococcus epidermidis is one of the most important nosocomial pathogens and a major cause of central line-associated bloodstream infections. Once in the bloodstream, this bacterium must surpass severe iron restriction in order to survive and establish infection. Surprisingly, very little is known about the iron acquisition mechanisms in this species. This study represents the first report on the involvement of the S. epidermidis iron-regulated loci hts and fhuC in biofilm formation under host relevant conditions and, most importantly, in survival within the host. Ultimately, these findings highlight iron acquisition and these loci in particular, as potential targets for future therapeutic strategies against biofilm-associated S. epidermidis infections.
Collapse
Affiliation(s)
- Fernando Oliveira
- Centre of Biological Engineering, LIBRO – Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Tânia Lima
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Alexandra Correia
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Margarida Silva
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Cristina Soares
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Samira Weißelberg
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel Vilanova
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS-UP, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Nuno Cerca
- Centre of Biological Engineering, LIBRO – Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
18
|
Oliveira F, Lima T, Correia A, Silva AM, Soares C, Morais S, Weißelberg S, Vilanova M, Rohde H, Cerca N. Siderophore-Mediated Iron Acquisition Plays a Critical Role in Biofilm Formation and Survival of Staphylococcus epidermidis Within the Host. Front Med (Lausanne) 2021; 8:799227. [PMID: 35004774 PMCID: PMC8738164 DOI: 10.3389/fmed.2021.799227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Iron acquisition through siderophores, a class of small, potent iron-chelating organic molecules, is a widely spread strategy among pathogens to survive in the iron-restricted environment found in the host. Although these molecules have been implicated in the pathogenesis of several species, there is currently no comprehensive study addressing siderophore production in Staphylococcus epidermidis. Staphylococcus epidermidis is an innocuous skin commensal bacterium. The species, though, has emerged as a leading cause of implant-associated infections, significantly supported by an inherent ability to form biofilms. The process of adaptation from skin niche environments to the hostile conditions during invasion is yet not fully understood. Herein, we addressed the possible role of siderophore production in S. epidermidis virulence. We first identified and deleted a siderophore homolog locus, sfaABCD, and provided evidence for its involvement in iron acquisition. Our findings further suggested the involvement of siderophores in the protection against oxidative stress-induced damage and demonstrated the in vivo relevance of a siderophore-mediated iron acquisition during S. epidermidis infections. Conclusively, this study addressed, for the first time in this species, the underlying mechanisms of siderophore production, highlighting the importance of a siderophore-mediated iron acquisition under host relevant conditions and, most importantly, its contribution to survival within the host.
Collapse
Affiliation(s)
- Fernando Oliveira
- LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Tânia Lima
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Alexandra Correia
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Margarida Silva
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Cristina Soares
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Samira Weißelberg
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel Vilanova
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS-UP, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Nuno Cerca
- LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
19
|
Oliveira F, Rohde H, Vilanova M, Cerca N. Fighting Staphylococcus epidermidis Biofilm-Associated Infections: Can Iron Be the Key to Success? Front Cell Infect Microbiol 2021; 11:798563. [PMID: 34917520 PMCID: PMC8670311 DOI: 10.3389/fcimb.2021.798563] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus epidermidis is one of the most important commensal microorganisms of human skin and mucosae. However, this bacterial species is also the cause of severe infections in immunocompromised patients, specially associated with the utilization of indwelling medical devices, that often serve as a scaffold for biofilm formation. S. epidermidis strains are often multidrug resistant and its association with biofilm formation makes these infections hard to treat. Their remarkable ability to form biofilms is widely regarded as its major pathogenic determinant. Although a significant amount of knowledge on its biofilm formation mechanisms has been achieved, we still do not understand how the species survives when exposed to the host harsh environment during invasion. A previous RNA-seq study highlighted that iron-metabolism associated genes were the most up-regulated bacterial genes upon contact with human blood, which suggested that iron acquisition plays an important role in S. epidermidis biofilm development and escape from the host innate immune system. In this perspective article, we review the available literature on the role of iron metabolism on S. epidermidis pathogenesis and propose that exploiting its dependence on iron could be pursued as a viable therapeutic alternative.
Collapse
Affiliation(s)
- Fernando Oliveira
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel Vilanova
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| |
Collapse
|
20
|
Soon ZY, Jung JH, Loh A, Yoon C, Shin D, Kim M. Seawater contamination associated with in-water cleaning of ship hulls and the potential risk to the marine environment. MARINE POLLUTION BULLETIN 2021; 171:112694. [PMID: 34242954 DOI: 10.1016/j.marpolbul.2021.112694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In-water cleaning can clear-off foulants from ship hulls to prevent transportation of non-indigenous species and reduce hull friction and consequent fuel use. However, during cleaning, antifouling paint residues containing toxic substances can be released into the environment. To understand the potential risks of in-water hull cleaning, cleaning effluents were collected and analyzed for total suspended solid (TSS), particle size distribution, and metal concentrations. TSS concentrations were 97.3-249 mg/L, corresponding to release rates of 12.9-37.5 g/m2 from the hull surface. Particles with sizes of ≥8 μm contributed 75-94% of the TSS. Average Cu and Zn concentrations in the effluents were 209 μg/L and 1510 μg/L, respectively, which were used for risk assessment in two port scenarios. Although the risks vary with the scale of the hull cleaning and the ports, in-water cleaning poses clear risks to marine environments, unless the effluents are recovered or treated before being released.
Collapse
Affiliation(s)
- Zhi Yang Soon
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, 41 Jangmok 1-gil, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, 41 Jangmok 1-gil, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Andrew Loh
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, 41 Jangmok 1-gil, Geoje 53201, Republic of Korea
| | - Cheolho Yoon
- Ochang Center, Korea Basic Science Institute, 162 Yeongudanji-ro, Cheongju 28119, Republic of Korea
| | - Dongju Shin
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, 41 Jangmok 1-gil, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Moonkoo Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, 41 Jangmok 1-gil, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Daejeon 34113, Republic of Korea.
| |
Collapse
|