1
|
Zhang C, Zhu T, Nielsen UN, Wright IJ, Li N, Chen X, Liu M. An integrated fast-slow plant and nematode economics spectrum predicts soil organic carbon dynamics during natural restoration. THE NEW PHYTOLOGIST 2024. [PMID: 39364765 DOI: 10.1111/nph.20166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/14/2024] [Indexed: 10/05/2024]
Abstract
Aboveground and belowground attributes of terrestrial ecosystems interact to shape carbon (C) cycling. However, plants and soil organisms are usually studied separately, leading to a knowledge gap regarding their coordinated contributions to ecosystem C cycling. We explored whether integrated consideration of plant and nematode traits better explained soil organic C (SOC) dynamics than plant or nematode traits considered separately. Our study system was a space-for-time natural restoration chronosequence following agricultural abandonment in a subtropical region, with pioneer, early, mid and climax stages. We identified an integrated fast-slow trait spectrum encompassing plants and nematodes, demonstrating coordinated shifts from fast strategies in the pioneer stage to slow strategies in the climax stage, corresponding to enhanced SOC dynamics. Joint consideration of plant and nematode traits explained more variation in SOC than by either group alone. Structural equation modeling revealed that the integrated fast-slow trait spectrum influenced SOC through its regulation of microbial traits, including microbial C use efficiency and microbial biomass. Our findings confirm the pivotal role of plant-nematode trait coordination in modulating ecosystem C cycling and highlight the value of incorporating belowground traits into biogeochemical cycling under global change scenarios.
Collapse
Affiliation(s)
- Chongzhe Zhang
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tongbin Zhu
- Key Laboratory of Karst Dynamics, MLR & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, China
| | - Uffe N Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Ian J Wright
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Australian Research Council Centre for Plant Success in Nature & Agriculture, Western Sydney University, Richmond, NSW, 2753, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Na Li
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyun Chen
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Manqiang Liu
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
2
|
Hesse E, Luján AM, O'Brien S, Newbury A, McAvoy T, Soria Pascual J, Bayer F, Hodgson DJ, Buckling A. Parallel ecological and evolutionary responses to selection in a natural bacterial community. Proc Natl Acad Sci U S A 2024; 121:e2403577121. [PMID: 39190353 PMCID: PMC11388356 DOI: 10.1073/pnas.2403577121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Evolution can occur over ecological timescales, suggesting a potentially important role for rapid evolution in shaping community trait distributions. However, evidence of concordant eco-evolutionary dynamics often comes from in vitro studies of highly simplified communities, and measures of ecological and evolutionary dynamics are rarely directly comparable. Here, we quantified how ecological species sorting and rapid evolution simultaneously shape community trait distributions by tracking within- and between-species changes in a key trait in a complex bacterial community. We focused on the production of siderophores; bacteria use these costly secreted metabolites to scavenge poorly soluble iron and to detoxify environments polluted with toxic nonferrous metals. We found that responses to copper-imposed selection within and between species were ultimately the same-intermediate siderophore levels were favored-and occurred over similar timescales. Despite being a social trait, this level of siderophore production was selected regardless of whether species evolved in isolation or in a community context. Our study suggests that evolutionary selection can play a pivotal role in shaping community trait distributions within natural, highly complex, bacterial communities. Furthermore, trait evolution may not always be qualitatively affected by interactions with other community members.
Collapse
Affiliation(s)
- Elze Hesse
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Adela M Luján
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Católica de Córdoba, Córdoba X5016DHK, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba (UCC), Córdoba X5004ASK, Argentina
| | - Siobhan O'Brien
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Arthur Newbury
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Terence McAvoy
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Jesica Soria Pascual
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Florian Bayer
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - David J Hodgson
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Angus Buckling
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
3
|
Han H, Song P, Jiang Y, Fan J, Khan A, Liu P, Mašek O, Li X. Biochar immobilized hydrolase degrades PET microplastics and alleviates the disturbance of soil microbial function via modulating nitrogen and phosphorus cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134838. [PMID: 38850944 DOI: 10.1016/j.jhazmat.2024.134838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Microplastics (MPs) pose an emerging threat to soil ecological function, yet effective solutions remain limited. This study introduces a novel approach using magnetic biochar immobilized PET hydrolase (MB-LCC-FDS) to degrade soil polyethylene terephthalate microplastics (PET-MPs). MB-LCC-FDS exhibited a 1.68-fold increase in relative activity in aquatic solutions and maintained 58.5 % residual activity after five consecutive cycles. Soil microcosm experiment amended with MB-LCC-FDS observed a 29.6 % weight loss of PET-MPs, converting PET into mono(2-hydroxyethyl) terephthalate (MHET). The generated MHET can subsequently be metabolized by soil microbiota to release terephthalic acid. The introduction of MB-LCC-FDS shifted the functional composition of soil microbiota, increasing the relative abundances of Microbacteriaceae and Skermanella while reducing Arthobacter and Vicinamibacteraceae. Metagenomic analysis revealed that MB-LCC-FDS enhanced nitrogen fixation, P-uptake and transport, and organic-P mineralization in PET-MPs contaminated soil, while weakening the denitrification and nitrification. Structural equation model indicated that changes in soil total carbon and Simpson index, induced by MB-LCC-FDS, were the driving factors for soil carbon and nitrogen transformation. Overall, this study highlights the synergistic role of magnetic biochar-immobilized PET hydrolase and soil microbiota in degrading soil PET-MPs, and enhances our understanding of the microbiome and functional gene responses to PET-MPs and MB-LCC-FDS in soil systems.
Collapse
Affiliation(s)
- Huawen Han
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Peizhi Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchao Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Jingwen Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, Edinburgh EH9 3FF, United Kingdom.
| | - Xiangkai Li
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
4
|
Zheng P, Mao A, Meng S, Yu F, Zhang S, Lun J, Li J, Hu Z. Assembly mechanism of microbial community under different seasons in Shantou sea area. MARINE POLLUTION BULLETIN 2024; 205:116550. [PMID: 38878412 DOI: 10.1016/j.marpolbul.2024.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 07/24/2024]
Abstract
Coastal areas are often affected by a variety of climates, and microbial composition patterns are conducive to adaptation to these environments. In this study, the composition and pattern of microbial communities in the Shantou sea from four seasons were analyzed. The diversity of microbial community was significant differences under different seasons (p < 0.01). Meanwhile, dissolved oxygen levels, temperature were key factors to shift microbial communities. The assembly mechanism of microbial communities was constructed by the iCAMP (Infer community assembly mechanism by the phylogenetic bin-based null). Interestingly, the analyses revealed that drift was the predominant driver of this process (44.5 %), suggesting that microbial community assembly in this setting was dominated by stochastic processes. For example, Vibrio was found to be particularly susceptible to stochastic processes, indicating that the pattern of bacterial community was governed by stochastic processes. Thus, these results offering novel insight into the regulation of microbial ecology in marine environments.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Aihua Mao
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Fei Yu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Jingsheng Lun
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Jin Li
- College of Life Sciences, China West Normal University, Nanchong 637002, PR China.
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
5
|
Zhang C, Wright IJ, Nielsen UN, Geisen S, Liu M. Linking nematodes and ecosystem function: a trait-based framework. Trends Ecol Evol 2024; 39:644-653. [PMID: 38423842 DOI: 10.1016/j.tree.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Trait-based approaches are being increasingly adopted to understand species' ecological strategies and how organisms influence ecosystem function. Trait-based research on soil organisms, however, remains poorly developed compared with that for plants. The abundant and diverse soil nematodes are prime candidates to advance trait-based approaches belowground, but a unified trait framework to describe nematode ecological strategies and assess their linkages with ecosystem function is lacking. We categorized nematode traits as morphological, physiological, life history, and community clusters, and proposed the nematode economics spectrum (NES) to better understand nematode ecological strategies and their association with ecosystem function. We argue that bridging the NES and the plant economics spectrum will facilitate a more holistic understanding of ecosystem carbon and nutrient cycling under global change.
Collapse
Affiliation(s)
- Chongzhe Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia; Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China
| | - Ian J Wright
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia; Australian Research Council Centre for Plant Success in Nature & Agriculture, Western Sydney University, Richmond, NSW 2753, Australia; School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Uffe N Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University and Research, Wageningen 6708PB, The Netherlands
| | - Manqiang Liu
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China.
| |
Collapse
|
6
|
Zhao Y, Zhu-Barker X, Cai K, Wang S, Wright AL, Jiang X. Quest for the Nitrogen-Metabolic Versatility of Microorganisms in Soil and Marine Ecosystems. Microorganisms 2024; 12:1283. [PMID: 39065052 PMCID: PMC11278940 DOI: 10.3390/microorganisms12071283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024] Open
Abstract
Whether nitrogen (N)-metabolic versatility is a common trait of N-transforming microbes or if it only occurs in a few species is still unknown. We collected 83 soil samples from six soil types across China, retrieved 19 publicly available metagenomic marine sample data, and analyzed the functional traits of N-transforming microorganisms using metagenomic sequencing. More than 38% and 35% of N-transforming species in soil and marine ecosystems, respectively, encoded two or more N-pathways, although N-transforming species differed greatly between them. Furthermore, in both soil and marine ecosystems, more than 80% of nitrifying and N-fixing microorganisms at the species level were N-metabolic versatile. This study reveals that N-metabolic versatility is a common trait of N-transforming microbes, which could expand our understanding of the functional traits of drivers of nitrogen biogeochemistry.
Collapse
Affiliation(s)
- Yongpeng Zhao
- College of Resources and Environment, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xia Zhu-Barker
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53709, USA
| | - Kai Cai
- College of Resources and Environment, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Shuling Wang
- College of Resources and Environment, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Alan L. Wright
- Indian River Research & Education Center, University of Florida-IFAS, Fort Pierce, FL 34945, USA
| | - Xianjun Jiang
- College of Resources and Environment, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
7
|
Zeng Y, Guo X, Lei J, Shi Y, Liu X, Dai T, Zhang Q, Gao Q, Chu H, Liu Y, Zhou J, Yang Y. Regional microbial biogeography linked to soil respiration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172263. [PMID: 38583623 DOI: 10.1016/j.scitotenv.2024.172263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The relationships between α-diversity and ecosystem functioning (BEF) have been extensively examined. However, it remains unknown how spatial heterogeneity of microbial community, i.e., microbial β-diversity within a region, shapes ecosystem functioning. Here, we examined microbial community compositions and soil respiration (Rs) along an elevation gradient of 853-4420 m a.s.l. in the southeastern Tibetan Plateau, which is renowned as one of the world's biodiversity hotspots. There were significant distance-decay relationships for both bacterial and fungal communities. Stochastic processes played a dominant role in shaping bacterial and fungal community compositions, while soil temperature was the most important environmental factor that affected microbial communities. We evaluated BEF relationships based on α-diversity measured by species richness and β-diversity measured by community dispersions, revealing significantly positive correlations between microbial β-diversities and Rs. These correlations became stronger with increasing sample size, differing from those between microbial α-diversities and Rs. Using Structural Equation Modeling (SEM), we found that soil temperature, soil moisture, and total nitrogen were the most important edaphic properties in explaining Rs. Meanwhile, stochastic processes (e.g., homogenous dispersal and dispersal limitation) significantly mediated effects between microbial β-diversities and Rs. Microbial α-diversity poorly explained Rs, directly or indirectly. In a nutshell, we identified a previously unknown BEF relationship between microbial β-diversity and Rs. By complementing common practices to examine BEF with α-diversity, we demonstrate that a focus on β-diversity could be leveraged to explain Rs.
Collapse
Affiliation(s)
- Yufei Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiesi Lei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tianjiao Dai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Qiuting Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongqin Liu
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA; School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK 73019, USA; Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Wang Y, Zou Q. Deciphering Microbial Adaptation in the Rhizosphere: Insights into Niche Preference, Functional Profiles, and Cross-Kingdom Co-occurrences. MICROBIAL ECOLOGY 2024; 87:74. [PMID: 38771320 PMCID: PMC11108897 DOI: 10.1007/s00248-024-02390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Rhizosphere microbial communities are to be as critical factors for plant growth and vitality, and their adaptive differentiation strategies have received increasing amounts of attention but are poorly understood. In this study, we obtained bacterial and fungal amplicon sequences from the rhizosphere and bulk soils of various ecosystems to investigate the potential mechanisms of microbial adaptation to the rhizosphere environment. Our focus encompasses three aspects: niche preference, functional profiles, and cross-kingdom co-occurrence patterns. Our findings revealed a correlation between niche similarity and nucleotide distance, suggesting that niche adaptation explains nucleotide variation among some closely related amplicon sequence variants (ASVs). Furthermore, biological macromolecule metabolism and communication among abundant bacteria increase in the rhizosphere conditions, suggesting that bacterial function is trait-mediated in terms of fitness in new habitats. Additionally, our analysis of cross-kingdom networks revealed that fungi act as intermediaries that facilitate connections between bacteria, indicating that microbes can modify their cooperative relationships to adapt. Overall, the evidence for rhizosphere microbial community adaptation, via differences in gene and functional and co-occurrence patterns, elucidates the adaptive benefits of genetic and functional flexibility of the rhizosphere microbiota through niche shifts.
Collapse
Affiliation(s)
- Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
9
|
Wang T, Weiss A, You L. A generic approach to infer community-level fitness of microbial genes. Proc Natl Acad Sci U S A 2024; 121:e2318380121. [PMID: 38635629 PMCID: PMC11047084 DOI: 10.1073/pnas.2318380121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
The gene content in a metagenomic pool defines the function potential of a microbial community. Natural selection, operating on the level of genomes or genes, shapes the evolution of community functions by enriching some genes while depriving the others. Despite the importance of microbiomes in the environment and health, a general metric to evaluate the community-wide fitness of microbial genes remains lacking. In this work, we adapt the classic neutral model of species and use it to predict how the abundances of different genes will be shaped by selection, regardless of at which level the selection acts. We establish a simple metric that quantitatively infers the average survival capability of each gene in a microbiome. We then experimentally validate the predictions using synthetic communities of barcoded Escherichia coli strains undergoing neutral assembly and competition. We further show that this approach can be applied to publicly available metagenomic datasets to gain insights into the environment-function interplay of natural microbiomes.
Collapse
Affiliation(s)
- Teng Wang
- Department of Biomedical Engineering, Duke University, Durham, NC27705
| | - Andrea Weiss
- Department of Biomedical Engineering, Duke University, Durham, NC27705
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC27705
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC27710
- Center for Quantitative Biodesign, Duke University, Durham, NC27705
| |
Collapse
|
10
|
Camenzind T, Aguilar-Trigueros CA, Hempel S, Lehmann A, Bielcik M, Andrade-Linares DR, Bergmann J, Dela Cruz J, Gawronski J, Golubeva P, Haslwimmer H, Lartey L, Leifheit E, Maaß S, Marhan S, Pinek L, Powell JR, Roy J, Veresoglou SD, Wang D, Wulf A, Zheng W, Rillig MC. Towards establishing a fungal economics spectrum in soil saprobic fungi. Nat Commun 2024; 15:3321. [PMID: 38637578 PMCID: PMC11026409 DOI: 10.1038/s41467-024-47705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Trait-based frameworks are promising tools to understand the functional consequences of community shifts in response to environmental change. The applicability of these tools to soil microbes is limited by a lack of functional trait data and a focus on categorical traits. To address this gap for an important group of soil microorganisms, we identify trade-offs underlying a fungal economics spectrum based on a large trait collection in 28 saprobic fungal isolates, derived from a common grassland soil and grown in culture plates. In this dataset, ecologically relevant trait variation is best captured by a three-dimensional fungal economics space. The primary explanatory axis represents a dense-fast continuum, resembling dominant life-history trade-offs in other taxa. A second significant axis reflects mycelial flexibility, and a third one carbon acquisition traits. All three axes correlate with traits involved in soil carbon cycling. Since stress tolerance and fundamental niche gradients are primarily related to the dense-fast continuum, traits of the 2nd (carbon-use efficiency) and especially the 3rd (decomposition) orthogonal axes are independent of tested environmental stressors. These findings suggest a fungal economics space which can now be tested at broader scales.
Collapse
Affiliation(s)
- Tessa Camenzind
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| | - Carlos A Aguilar-Trigueros
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Stefan Hempel
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Anika Lehmann
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Milos Bielcik
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Diana R Andrade-Linares
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
| | - Joana Bergmann
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| | - Jeane Dela Cruz
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jessie Gawronski
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Polina Golubeva
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Heike Haslwimmer
- Institute of Soil Science and Land Evaluation, Soil Biology department, University of Hohenheim, Emil-Wolff-Str. 27, 70599, Stuttgart, Germany
| | - Linda Lartey
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Eva Leifheit
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Stefanie Maaß
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Sven Marhan
- Institute of Soil Science and Land Evaluation, Soil Biology department, University of Hohenheim, Emil-Wolff-Str. 27, 70599, Stuttgart, Germany
| | - Liliana Pinek
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Julien Roy
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Stavros D Veresoglou
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dongwei Wang
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Anja Wulf
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Weishuang Zheng
- Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, 518057, China
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
11
|
Sweeney CJ, Kaushik R, Bottoms M. Considerations for the inclusion of metabarcoding data in the plant protection product risk assessment of the soil microbiome. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:337-358. [PMID: 37452668 DOI: 10.1002/ieam.4812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
There is increasing interest in further developing the plant protection product (PPP) environmental risk assessment, particularly within the European Union, to include the assessment of soil microbial community composition, as measured by metabarcoding approaches. However, to date, there has been little discussion as to how this could be implemented in a standardized, reliable, and robust manner suitable for regulatory decision-making. Introduction of metabarcoding-based assessments of the soil microbiome into the PPP risk assessment would represent a significant increase in the degree of complexity of the data that needs to be processed and analyzed in comparison to the existing risk assessment on in-soil organisms. The bioinformatics procedures to process DNA sequences into community compositional data sets currently lack standardization, while little information exists on how these data should be used to generate regulatory endpoints and the ways in which these endpoints should be interpreted. Through a thorough and critical review, we explore these challenges. We conclude that currently, we do not have a sufficient degree of standardization or understanding of the required bioinformatics and data analysis procedures to consider their use in an environmental risk assessment context. However, we highlight critical knowledge gaps and the further research required to understand whether metabarcoding-based assessments of the soil microbiome can be utilized in a statistically and ecologically relevant manner within a PPP risk assessment. Only once these challenges are addressed can we consider if and how we should use metabarcoding as a tool for regulatory decision-making to assess and monitor ecotoxicological effects on soil microorganisms within an environmental risk assessment of PPPs. Integr Environ Assess Manag 2024;20:337-358. © 2023 SETAC.
Collapse
Affiliation(s)
- Christopher J Sweeney
- Syngenta, Jealott's Hill International Research Centre Bracknell, Bracknell, Berkshire, UK
| | - Rishabh Kaushik
- Syngenta, Jealott's Hill International Research Centre Bracknell, Bracknell, Berkshire, UK
| | - Melanie Bottoms
- Syngenta, Jealott's Hill International Research Centre Bracknell, Bracknell, Berkshire, UK
| |
Collapse
|
12
|
Wang D, Zhang Y, Jiang R, Wang W, Li J, Huang K, Zhang XX. Distinct microbial characteristics of the robust single-stage coupling system during the conversion from anammox-denitritation to anammox-denitratation patterns. CHEMOSPHERE 2024; 351:141231. [PMID: 38237781 DOI: 10.1016/j.chemosphere.2024.141231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/18/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Simultaneous anammox-denitrification is effectively operated in two types, i.e., the anammox-denitritation (SAD pattern) and the anammox-denitratation (PDA pattern). The nitrate derived from inevitable nitrite oxidization likely determines the practical operational pattern of the coupling system, while little information is available regarding the microbial characteristics during the pattern conversion. Here, the single-stage bioreactor coupling anammox with denitrification was operated under conditions with a changed ratio of influent nitrite and nitrate. Results showed that the bioreactor exhibited a robust performance during the conversion from SAD to PDA patterns, corresponding with the total nitrogen removal efficiency ranging from 89.5% to 92.4%. Distinct community structures were observed in two patterns, while functional bacteria including the genera Denitratisoma, Thauera, Candidatus Brocadia, and Ca. Jettenia steadily co-existed. Meanwhile, the high transcription of hydrazine synthase genes demonstrated a stable anammox process, while the up-regulated transcription of nitrite and nitrous oxide reductase genes indicated that the complete denitrification process was enhanced for total nitrogen removal during the PDA pattern. Ecologically, stochastic processes dominantly governed the community assembly in two patterns. The PDA pattern improved the interconnectivity of communities, especially for the cooperative behaviors between dominant denitrifying bacteria and low-abundant species. These findings deepen our understanding of the microbial mechanism underlying the different patterns of the coupling system and potentially expand its engineering application.
Collapse
Affiliation(s)
- Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yujie Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Ruiming Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Wuqiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; LingChao Supply Chain Management Co., Ltd., Shenzhen, 518000, China
| | - Jialei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Institute of Environmental Research at Greater Bay/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; Nanjing Jiangdao Institute of Environmental Research Co., Ltd., Nanjing, 210019, China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
13
|
Bao Y, Ruan Y, Wu J, Wang WX, Leung KMY, Lee PKH. Metagenomics-Based Microbial Ecological Community Threshold and Indicators of Anthropogenic Disturbances in Estuarine Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:780-794. [PMID: 38118133 DOI: 10.1021/acs.est.3c08076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Assessing the impacts of cumulative anthropogenic disturbances on estuarine ecosystem health is challenging. Using spatially distributed sediments from the Pearl River Estuary (PRE) in southern China, which are significantly influenced by anthropogenic activities, we demonstrated that metagenomics-based surveillance of benthic microbial communities is a robust approach to assess anthropogenic impacts on estuarine benthic ecosystems. Correlational and threshold analyses between microbial compositions and environmental conditions indicated that anthropogenic disturbances in the PRE sediments drove the taxonomic and functional variations in the benthic microbial communities. An ecological community threshold of anthropogenic disturbances was identified, which delineated the PRE sediments into two groups (H and L) with distinct taxa and functional traits. Group H, located nearshore and subjected to a higher level of anthropogenic disturbances, was enriched with pollutant degraders, putative human pathogens, fecal pollution indicators, and functional traits related to stress tolerance. In contrast, Group L, located offshore and subjected to a lower level of anthropogenic disturbances, was enriched with halotolerant and oligotrophic taxa and functional traits related to growth and resource acquisition. The machine learning random forest model identified a number of taxonomic and functional indicators that could differentiate PRE sediments between Groups H and L. The identified ecological community threshold and microbial indicators highlight the utility of metagenomics-based microbial surveillance in assessing the adverse impacts of anthropogenic disturbances in estuarine sediments, which can assist environmental management to better protect ecosystem health.
Collapse
Affiliation(s)
- Yingyu Bao
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Jiaxue Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Lei J, Su Y, Jian S, Guo X, Yuan M, Bates CT, Shi ZJ, Li J, Su Y, Ning D, Wu L, Zhou J, Yang Y. Warming effects on grassland soil microbial communities are amplified in cool months. THE ISME JOURNAL 2024; 18:wrae088. [PMID: 38747385 PMCID: PMC11170927 DOI: 10.1093/ismejo/wrae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Global warming modulates soil respiration (RS) via microbial decomposition, which is seasonally dependent. Yet, the magnitude and direction of this modulation remain unclear, partly owing to the lack of knowledge on how microorganisms respond to seasonal changes. Here, we investigated the temporal dynamics of soil microbial communities over 12 consecutive months under experimental warming in a tallgrass prairie ecosystem. The interplay between warming and time altered (P < 0.05) the taxonomic and functional compositions of microbial communities. During the cool months (January to February and October to December), warming induced a soil microbiome with a higher genomic potential for carbon decomposition, community-level ribosomal RNA operon (rrn) copy numbers, and microbial metabolic quotients, suggesting that warming stimulated fast-growing microorganisms that enhanced carbon decomposition. Modeling analyses further showed that warming reduced the temperature sensitivity of microbial carbon use efficiency (CUE) by 28.7% when monthly average temperature was low, resulting in lower microbial CUE and higher heterotrophic respiration (Rh) potentials. Structural equation modeling showed that warming modulated both Rh and RS directly by altering soil temperature and indirectly by influencing microbial community traits, soil moisture, nitrate content, soil pH, and gross primary productivity. The modulation of Rh by warming was more pronounced in cooler months compared to warmer ones. Together, our findings reveal distinct warming-induced effects on microbial functional traits in cool months, challenging the norm of soil sampling only in the peak growing season, and advancing our mechanistic understanding of the seasonal pattern of RS and Rh sensitivity to warming.
Collapse
Affiliation(s)
- Jiesi Lei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuanlong Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Siyang Jian
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mengting Yuan
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94704, United States
| | - Colin T Bates
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Zhou Jason Shi
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Jiabao Li
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences and Environmental Microbiology & Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Yifan Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Daliang Ning
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Liyou Wu
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK 73019, United States
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
15
|
Yu J, Lee JYY, Tang SN, Lee PKH. Niche differentiation in microbial communities with stable genomic traits over time in engineered systems. THE ISME JOURNAL 2024; 18:wrae042. [PMID: 38470313 PMCID: PMC10987969 DOI: 10.1093/ismejo/wrae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Microbial communities in full-scale engineered systems undergo dynamic compositional changes. However, mechanisms governing assembly of such microbes and succession of their functioning and genomic traits under various environmental conditions are unclear. In this study, we used the activated sludge and anaerobic treatment systems of four full-scale industrial wastewater treatment plants as models to investigate the niches of microbes in communities and the temporal succession patterns of community compositions. High-quality representative metagenome-assembled genomes revealed that taxonomic, functional, and trait-based compositions were strongly shaped by environmental selection, with replacement processes primarily driving variations in taxonomic and functional compositions. Plant-specific indicators were associated with system environmental conditions and exhibited strong determinism and trajectory directionality over time. The partitioning of microbes in a co-abundance network according to groups of plant-specific indicators, together with significant between-group differences in genomic traits, indicated the occurrence of niche differentiation. The indicators of the treatment plant with rich nutrient input and high substrate removal efficiency exhibited a faster predicted growth rate, lower guanine-cytosine content, smaller genome size, and higher codon usage bias than the indicators of the other plants. In individual plants, taxonomic composition displayed a more rapid temporal succession than functional and trait-based compositions. The succession of taxonomic, functional, and trait-based compositions was correlated with the kinetics of treatment processes in the activated sludge systems. This study provides insights into ecological niches of microbes in engineered systems and succession patterns of their functions and traits, which will aid microbial community management to improve treatment performance.
Collapse
Affiliation(s)
- Jinjin Yu
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Justin Y Y Lee
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Siang Nee Tang
- Facility Management and Environmental Engineering, TAL Group, Kowloon, Hong Kong SAR, China
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
16
|
Barua N, Herken AM, Melendez-Velador N, Platt TG, Hansen RR. Photo-addressable microwell devices for rapid functional screening and isolation of pathogen inhibitors from bacterial strain libraries. BIOMICROFLUIDICS 2024; 18:014107. [PMID: 38434239 PMCID: PMC10907074 DOI: 10.1063/5.0188270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Discovery of new strains of bacteria that inhibit pathogen growth can facilitate improvements in biocontrol and probiotic strategies. Traditional, plate-based co-culture approaches that probe microbial interactions can impede this discovery as these methods are inherently low-throughput, labor-intensive, and qualitative. We report a second-generation, photo-addressable microwell device, developed to iteratively screen interactions between candidate biocontrol agents existing in bacterial strain libraries and pathogens under increasing pathogen pressure. Microwells (0.6 pl volume) provide unique co-culture sites between library strains and pathogens at controlled cellular ratios. During sequential screening iterations, library strains are challenged against increasing numbers of pathogens to quantitatively identify microwells containing strains inhibiting the highest numbers of pathogens. Ring-patterned 365 nm light is then used to ablate a photodegradable hydrogel membrane and sequentially release inhibitory strains from the device for recovery. Pathogen inhibition with each recovered strain is validated, followed by whole genome sequencing. To demonstrate the rapid nature of this approach, the device was used to screen a 293-membered biovar 1 agrobacterial strain library for strains inhibitory to the plant pathogen Agrobacterium tumefaciens sp. 15955. One iterative screen revealed nine new inhibitory strains. For comparison, plate-based methods did not uncover any inhibitory strains from the library (n = 30 plates). The novel pathogen-challenge screening mode developed here enables rapid selection and recovery of strains that effectively suppress pathogen growth from bacterial strain libraries, expanding this microwell technology platform toward rapid, cost-effective, and scalable screening for probiotics, biocontrol agents, and inhibitory molecules that can protect against known or emerging pathogens.
Collapse
Affiliation(s)
- Niloy Barua
- Tim Taylor Department of Chemical Engineering, Kansas State University, 1701A Platt Street, Manhattan, Kansas 66506, USA
| | - Ashlee M. Herken
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, Kansas 66506, USA
| | | | - Thomas G. Platt
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, Kansas 66506, USA
| | - Ryan R. Hansen
- Tim Taylor Department of Chemical Engineering, Kansas State University, 1701A Platt Street, Manhattan, Kansas 66506, USA
| |
Collapse
|
17
|
Ranheim Sveen T, Hannula SE, Bahram M. Microbial regulation of feedbacks to ecosystem change. Trends Microbiol 2024; 32:68-78. [PMID: 37500365 DOI: 10.1016/j.tim.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023]
Abstract
Microbes are key biodiversity components of all ecosystems and control vital ecosystem functions. Although we have just begun to unravel the scales and factors that regulate microbial communities, their role in mediating ecosystem stability in response to disturbances remains underexplored. Here, we review evidence of how, when, and where microbes regulate or drive disturbance feedbacks. Negative feedbacks dampen the impacts of disturbance, which maintain ecosystem stability, whereas positive feedbacks instead erode stability by amplifying the disturbance. Here we describe the processes underlying the responses to disturbance using a hierarchy of functional traits, and we exemplify how these may drive biogeochemical feedbacks. We suggest that the feedback potential of functional traits at different hierarchical levels is contingent on the complexity and heterogeneity of the environment.
Collapse
Affiliation(s)
- T Ranheim Sveen
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51 Uppsala, Sweden.
| | - S E Hannula
- Institute of Environmental Sciences, Leiden University, Leiden 2333, The Netherlands
| | - M Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51 Uppsala, Sweden; Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
18
|
Egidi E, Coleine C, Delgado-Baquerizo M, Singh BK. Assessing critical thresholds in terrestrial microbiomes. Nat Microbiol 2023; 8:2230-2233. [PMID: 38030908 DOI: 10.1038/s41564-023-01536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Affiliation(s)
- Eleonora Egidi
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia.
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
19
|
Taniguchi T, Isobe K, Imada S, Eltayeb MM, Akaji Y, Nakayama M, Allen MF, Aronson EL. Root endophytic bacterial and fungal communities in a natural hot desert are differentially regulated in dry and wet seasons by stochastic processes and functional traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165524. [PMID: 37467971 DOI: 10.1016/j.scitotenv.2023.165524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Dryland ecosystems experience seasonal cycles of severe drought and moderate precipitation. Desert plants may develop symbiotic relationships with root endophytic microbes to survive under the repeated wet and extremely dry conditions. Although community coalescence has been found in many systems, the colonization by functional microbes and its relationship to seasonal transitions in arid regions are not well understood. Here we examined root endophytic microbial taxa, and their traits in relation to their root colonization, during the dry and wet seasons in a hot desert of the southwestern United States. We used high-throughput DNA sequencing of 16S rRNA and internal transcribed spacer gene profiling of five desert shrubs, and analyzed the seasonal change in endophytic microbial lineages. Goodness of fit to the neutral community model in relationship to microbial traits was evaluated. In summer, Actinobacteria and Bacteroidia increased, although this was not genus-specific. For fungi, Glomeraceae selectively increased in summer. In winter, Gram-negative bacterial genera, including those capable of nitrogen fixation and plant growth promotion, increased. Neutral model analysis revealed a strong stochastic influence on endophytic bacteria but a weak effect for fungi, especially in summer. The taxa with higher frequency than that predicted by neutral model shared environmental adaptability and symbiotic traits, whereas the frequency of pathogenic fungi was at or under the predicted value. These results suggest that community assembly of bacteria and fungi is regulated differently. The bacterial community was affected by stochastic and deterministic processes via bacterial response to drought (response trait), beneficial effect on plants (effect trait), and likely stable mutualistic interactions with plants suggested by the frequency of nodule bacteria. For fungi, mycorrhizal fungi were selected by plants in summer. The regulation of beneficial microbes by plants in both dry and wet seasons suggests the presence of plant-soil positive feedback in this natural desert ecosystem.
Collapse
Affiliation(s)
- Takeshi Taniguchi
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan.
| | - Kazuo Isobe
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shogo Imada
- Department of Radioecology, Institute for Environmental Sciences, Aomori 039-3212, Japan
| | - Mohamed M Eltayeb
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Shambat 13314, Sudan
| | - Yasuaki Akaji
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki 305-8506, Japan
| | - Masataka Nakayama
- Research Group for Environmental Science, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
| | - Michael F Allen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Emma L Aronson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
20
|
Deng T, He Z, Xu M, Dong M, Guo J, Sun G, Huang H. Species' functional traits and interactions drive nitrate-mediated sulfur-oxidizing community structure and functioning. mBio 2023; 14:e0156723. [PMID: 37702500 PMCID: PMC10653917 DOI: 10.1128/mbio.01567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE Understanding the processes and mechanisms governing microbial community assembly and their linkages to ecosystem functioning has long been a core issue in microbial ecology. An in-depth insight still requires combining with analyses of species' functional traits and microbial interactions. Our study showed how species' functional traits and interactions determined microbial community structure and functions by a well-controlled laboratory experiment with nitrate-mediated sulfur oxidation systems using high-throughput sequencing and culture-dependent technologies. The results provided solid evidences that species' functional traits and interactions were the intrinsic factors determining community structure and function. More importantly, our study established quantitative links between community structure and function based on species' functional traits and interactions, which would have important implications for the design and synthesis of microbiomes with expected functions.
Collapse
Affiliation(s)
- Tongchu Deng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou, Guangdong, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou, Guangdong, China
| | - Meijun Dong
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou, Guangdong, China
| | - Jun Guo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou, Guangdong, China
| | - Guoping Sun
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou, Guangdong, China
| | - Haobin Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Jiang X, Liu Y, Zhou R, Sun T, Cao J, An S, Shen J, Leng X. Cascade dams altered taxonomic and functional composition of bacterioplankton community at the regional scale. Front Microbiol 2023; 14:1291464. [PMID: 37954247 PMCID: PMC10634544 DOI: 10.3389/fmicb.2023.1291464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Dams are increasingly disrupting natural river systems, yet studies investigating their impact on microbial communities at regional scale are limited. Given the indispensable role of bacterioplankton in aquatic ecosystems, 16S rRNA gene sequencing was performed to explore how these communities respond to dam-influenced environmental changes at the regional scale in the Shaying River Basin. Our findings revealed that cascade dams create distinct environments, shaping bacterioplankton communities near the dams differently from those in natural rivers. In the upstream of the cascade dams, water quality was superior, while bacterioplankton community structure was simple with weak community interactions. In the midstream, nutrient and heavy metal content were increased, making bacterioplankton structures more susceptible to environmental changes. In the downstream of the cascade dams, water quality had a significant impact on the community and the bacterioplankton structures were highly complex. Additionally, environmental variables significantly influenced bacterioplankton functional groups. However, the response to these factors, as well as the interplay between functional and taxonomic diversity, varied markedly depending on the specific region of the cascade dams. We here delved into the effects of cascade dams on the taxonomic diversity and functional groups of bacterioplankton to provide a theoretical basis for segmentally regulating these dams.
Collapse
Affiliation(s)
- Xufei Jiang
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, China
| | - Yan Liu
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, China
| | - Rixiu Zhou
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, China
| | - Tianyi Sun
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, China
| | - Jingdan Cao
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, China
| | - Shuqing An
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, China
| | - Jiachen Shen
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, China
| | - Xin Leng
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Stromberg ZR, Phillips SMB, Omberg KM, Hess BM. High-throughput functional trait testing for bacterial pathogens. mSphere 2023; 8:e0031523. [PMID: 37702517 PMCID: PMC10597404 DOI: 10.1128/msphere.00315-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Functional traits are characteristics that affect the fitness and metabolic function of a microorganism. There is growing interest in using high-throughput methods to characterize bacterial pathogens based on functional virulence traits. Traditional methods that phenotype a single organism for a single virulence trait can be time consuming and labor intensive. Alternatively, machine learning of whole-genome sequences (WGS) has shown some success in predicting virulence. However, relying solely on WGS can miss functional traits, particularly for organisms lacking classical virulence factors. We propose that high-throughput assays for functional virulence trait identification should become a prominent method of characterizing bacterial pathogens on a population scale. This work is critical as we move from compiling lists of bacterial species associated with disease to pathogen-agnostic approaches capable of detecting novel microbes. We discuss six key areas of functional trait testing and how advancing high-throughput methods could provide a greater understanding of pathogens.
Collapse
Affiliation(s)
- Zachary R. Stromberg
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Shelby M. B. Phillips
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kristin M. Omberg
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Becky M. Hess
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
23
|
Qi L, Li R, Wu Y, Ibeanusi V, Chen G. Spatial distribution and assembly processes of bacterial communities in northern Florida freshwater springs. ENVIRONMENTAL RESEARCH 2023; 235:116584. [PMID: 37454793 DOI: 10.1016/j.envres.2023.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Freshwater microorganisms are an essential component of the global biogeochemical cycle and a significant contributory factor in water quality. Unraveling the mechanisms controlling microbial community spatial distribution is crucial for the assessment of water quality and health of aquatic ecosystems. This research provided a comprehensive analysis of microbial communities in Florida freshwater springs. The 16S rRNA gene sequencing and bioinformatics analyses revealed the bacterial compositional heterogeneity as well as numerous unique ASVs and biomarkers in different springs. Statistical analysis showed both geographic distance and environmental variables contributed to regional bacterial community variation, while nitrate was the dominant environmental stressor that shaped the bacterial communities. The phylogenetic bin-based null model characterized both deterministic and stochastic factors contributing to community assembly in Florida springs, with the majority of bins dominated by ecological drift. Mapping of predicted pathways to the MetaCyc database revealed the inconsistency between microbial taxonomic and functional profiles, implying the functional redundancy pattern. Collectively, our work sheds insights into the microbial spatial distribution, community assembly, and function traits in one of the world's most productive aquifers. Therefore, this work provides a unique view of the health of Florida's artesian springs and offers new perspectives for freshwater quality assessment and sustainable management.
Collapse
Affiliation(s)
- Lin Qi
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA.
| | - Runwei Li
- Department of Civil Engineering, College of Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Yudi Wu
- College of Engineering and Applied Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Victor Ibeanusi
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, FL, 32307, USA
| | - Gang Chen
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| |
Collapse
|
24
|
M Venturini A, B Gontijo J, A Mandro J, Berenguer E, Peay KG, M Tsai S, Bohannan BJM. Soil microbes under threat in the Amazon Rainforest. Trends Ecol Evol 2023:S0169-5347(23)00111-8. [PMID: 37270320 DOI: 10.1016/j.tree.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 06/05/2023]
Abstract
Soil microorganisms are sensitive indicators of land-use and climate change in the Amazon, revealing shifts in important processes such as greenhouse gas (GHG) production, but they have been overlooked in conservation and management initiatives. Integrating soil biodiversity with other disciplines while expanding sampling efforts and targeted microbial groups is crucially needed.
Collapse
Affiliation(s)
- Andressa M Venturini
- Princeton Institute for International and Regional Studies, Princeton University, Princeton, NJ 08544, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Júlia B Gontijo
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP 13416-000, Brazil
| | - Jéssica A Mandro
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP 13416-000, Brazil
| | - Erika Berenguer
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; Environmental Change Institute, University of Oxford, Oxford OX1 3QY, UK
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| | - Siu M Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP 13416-000, Brazil
| | | |
Collapse
|
25
|
Lu J, Sha H, Chen J, Yi X, Xiong J. Characterizing sediment functional traits and ecological consequences respond to increasing antibiotic pollution. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12572-7. [PMID: 37191684 DOI: 10.1007/s00253-023-12572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Current studies have shown that the taxonomic structures of ecologically important microbial communities are altered by antibiotic exposure, but the resulting effects on functional potentials and subsequent biogeochemical processes are poorly understood. However, this knowledge is indispensable for developing an accurate projection of nutrient dynamics in the future. Using metagenomic analyses, here we explored the responses of taxonomical and functional structures of a sediment microbial community, and their links with key biogeochemical processes to increasing antibiotic pollution from the pristine inlet to the outfall sites along an aquaculture discharge channel. We identified sharply contrasting sedimentary microbial communities and functional traits along increasing antibiotic pollution. Functional structures exhibited steeper distance-decay relationships than taxonomical structures along both the antibiotic distance and physicochemical distance, revealing higher functional sensitivity. Sediment enzyme activities were significantly and positively coupled with the relative abundances of their coding genes, thus the abundances of genes were indicative of functional potentials. The nitrogen cycling pathways were commonly inhibited by antibiotics, but not for the first step of nitrification, which could synergistically mitigate nitrous oxide emission. However, antibiotic pollution stimulated methanogens and inhibited methanotrophs, thereby promoting methane efflux. Furthermore, microbes could adapt to antibiotic pollution through enriched potential of sulfate uptake. Antibiotics indirectly affected taxonomic structures through alterations in network topological features, which in turn affected sediment functional structures and biogeochemical processes. Notably, only 13 antibiotics concentration-discriminatory genes contributed an overall 95.9% accuracy in diagnosing in situ antibiotic concentrations, in which just two indicators were antibiotic resistance genes. Our study comprehensively integrates sediment compositional and functional traits, biotic interactions, and enzymatic activities, thus generating a better understanding about ecological consequences of increasing antibiotics pollution. KEY POINTS: • Contrasting functional traits respond to increasing antibiotic pollution. • Antibiotics pollution stimulates CH4 efflux, while mitigating N2O emission and may drive an adaptive response of enriched sulfate uptake. • Indicator genes contribute 95.9% accuracy in diagnosing antibiotic concentrations.
Collapse
Affiliation(s)
- Jiaqi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Haonan Sha
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xianghua Yi
- Lanshion Marine Science and Technology Co., Ltd, Ningbo, 315715, China
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211, Ningbo, China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
26
|
Zhu Y, Xu Y, Xu J, Meidl P, He Y. Contrasting response strategies of microbial functional traits to polycyclic aromatic hydrocarbons contamination under aerobic and anaerobic conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131548. [PMID: 37141779 DOI: 10.1016/j.jhazmat.2023.131548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
PAHs (Polycyclic aromatic hydrocarbons) are widely distributed in soil ecosystems, but our knowledge regarding the impacts of PAHs effects on soil microbial functional traits is limited. In this study, we evaluated the response and regulating strategies of microbial functional traits that are associated with the typical C, N, P, S cycling processes in a pristine soil under aerobic and anaerobic conditions after the addition of PAHs. Results revealed that indigenous microorganisms had strong degradation potential and adaptability to PAHs especially under aerobic conditions, while anaerobic conditions favored the degradation of high molecular weight PAHs. PAHs exhibited contrasting effects on soil microbial functional traits under different aeration conditions. It would probably change microbial carbon source utilization preference, stimulate inorganic P solubilization and strengthen the functional interactions between soil microorganisms under aerobic conditions, while might cause the increase of H2S and CH4 emissions under anaerobic conditions. This research provides an effective theoretical support for the ecological risk assessment of soil PAHs pollution.
Collapse
Affiliation(s)
- Yanjie Zhu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China; College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peter Meidl
- Institute of Biology, Freie Universität Berlin, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
| |
Collapse
|
27
|
Hou Z, Zhou Q, Mo F, Kang W, Ouyang S. Enhanced carbon emission driven by the interaction between functional microbial community and hydrocarbons: An enlightenment for carbon cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161402. [PMID: 36638996 DOI: 10.1016/j.scitotenv.2023.161402] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Soil microbial communities are usually regarded as one of the key players in the global element cycling. Moreover, an important consequence of oil contamination altering the structure of microbial communities is likely to result in an increased carbon emission. However, understanding of the complex interactions between environmental factors and biological communities is clearly lagging behind. Here it showed that the flux of carbon emissions increased in oil-contaminated soils, up to 13.64 g C·(kg soil)-1·h-1. This phenomenon was mainly driven by the enrichment of rare degrading microorganisms (e.g., Methylosinus, Marinobacter, Pseudomonas, Alcanivorax, Yeosuana, Halomonas and Microbulbifer) in the aerobic layer, rather than the anaerobic layer, which is more conducive to methane formation. In addition, petroleum hydrocarbons and environmental factors are equally important in shaping the structure of microbial communities (the ecological stability) and functional traits (e.g., fatty acid metabolism, lipid metabolism and amino acid metabolism) due to the different ecological sensitivities of microorganisms. Thus, it can be believed that the variability of rare hydrocarbon degrading microorganisms is of greater concern than changes in dominant microorganisms in oil-contaminated soil. Undoubtedly, this study could reveal the unique characterization of bacterial communities that mediate carbon emission and provide evidence for understanding the conversion from carbon stores to carbon gas release in oil-contaminated soils.
Collapse
Affiliation(s)
- Zelin Hou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weilu Kang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
28
|
Mao Z, Zhao Z, Da J, Tao Y, Li H, Zhao B, Xing P, Wu Q. The selection of copiotrophs may complicate biodiversity-ecosystem functioning relationships in microbial dilution-to-extinction experiments. ENVIRONMENTAL MICROBIOME 2023; 18:19. [PMID: 36932455 PMCID: PMC10024408 DOI: 10.1186/s40793-023-00478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The relationships between biodiversity-ecosystem functioning (BEF) for microbial communities are poorly understood despite the important roles of microbes acting in natural ecosystems. Dilution-to-extinction (DTE), a method to manipulate microbial diversity, helps to fill the knowledge gap of microbial BEF relationships and has recently become more popular with the development of high-throughput sequencing techniques. However, the pattern of community assembly processes in DTE experiments is less explored and blocks our further understanding of BEF relationships in DTE studies. Here, a microcosm study and a meta-analysis of DTE studies were carried out to explore the dominant community assembly processes and their potential effect on exploring BEF relationships. While stochastic processes were dominant at low dilution levels due to the high number of rare species, the deterministic processes became stronger at a higher dilution level because the microbial copiotrophs were selected during the regrowth phase and rare species were lost. From the view of microbial functional performances, specialized functions, commonly carried by rare species, are more likely to be impaired in DTE experiments while the broad functions seem to be less impacted due to the good performance of copiotrophs. Our study indicated that shifts in the prokaryotic community and its assembly processes induced by dilutions result in more complex BEF relationships in DTE experiments. Specialized microbial functions could be better used for defining BEF. Our findings may be helpful for future studies to design, explore, and interpret microbial BEF relationships using DTE.
Collapse
Affiliation(s)
- Zhendu Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zifan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jun Da
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- College of Life Science, Anhui Normal University, Wuhu, 241002, China
| | - Ye Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huabing Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qinglong Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
29
|
Jiang X, Xue Z, Chen W, Xu M, Liu H, Liang J, Zhang L, Sun Y, Liu C, Yang X. Biotransformation kinetics and pathways of typical synthetic progestins in soil microcosms. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130684. [PMID: 36586332 DOI: 10.1016/j.jhazmat.2022.130684] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Gestodene (GES), altrenogest (ALT), and medroxyprogesterone acetate (MPA) are three potent synthetic progestins detected in agricultural soils; however, their biotransformation outcomes in soils remain unclear. This study explored the biotransformation of these progestins in five agricultural soils with different physicochemical properties. The biotransformation data were well-described by a first-order decay model (R2 = 0.83-0.99), with estimated half-lives ranging between 12.1 and 188 h. Amplicon sequencing indicated that the presence of progestins changed the bacterial richness and community structure in the soils. Linear correlation, canonical correlation, and two-way correlation network analysis revealed that soil properties can affect biotransformation rates by interfering with progestin-soil interactions or with keystone taxa in soils. The clustermap demonstrated the formation of abundant transformation products (TPs). Isomerization and C4(5) hydrogenation were the major transformation pathways for GES (yields of ∼ 13.7 % and ∼ 10.6 %, respectively). Aromatic dehydrogenation was the major transformation pathway for ALT (yield of ∼ 17.4 %). The C17 hydrolysis with subsequent dehydration and hydrogenation was the major transformation pathway for MPA (yield of ∼ 196 %). In particular, some TPs exhibited progestagenic, androgenic, or estrogenic activity. This study highlights the importance of evaluating the ecotoxicity of progestin and TP mixtures for better understanding their risks in the environment.
Collapse
Affiliation(s)
- Xiuping Jiang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhongye Xue
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Weisong Chen
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Manxin Xu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - He Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jiahao Liang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Lu Zhang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yan Sun
- Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, Guangdong 510650, PR China
| | - Churong Liu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
30
|
Wang L, Liang X, Chen H, Cao L, Liu L, Zhu F, Ding Y, Tang J, Xie Y. CDEMI: characterizing differences in microbial composition and function in microbiome data. Comput Struct Biotechnol J 2023; 21:2502-2513. [PMID: 37090432 PMCID: PMC10113763 DOI: 10.1016/j.csbj.2023.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023] Open
Abstract
Microbial communities influence host phenotypes through microbiota-derived metabolites and interactions between exogenous active substances (EASs) and the microbiota. Owing to the high dynamics of microbial community composition and difficulty in microbial functional analysis, the identification of mechanistic links between individual microbes and host phenotypes is complex. Thus, it is important to characterize variations in microbial composition across various conditions (for example, topographical locations, times, physiological and pathological conditions, and populations of different ethnicities) in microbiome studies. However, no web server is currently available to facilitate such characterization. Moreover, accurately annotating the functions of microbes and investigating the possible factors that shape microbial function are critical for discovering links between microbes and host phenotypes. Herein, an online tool, CDEMI, is introduced to discover microbial composition variations across different conditions, and five types of microbe libraries are provided to comprehensively characterize the functionality of microbes from different perspectives. These collective microbe libraries include (1) microbial functional pathways, (2) disease associations with microbes, (3) EASs associations with microbes, (4) bioactive microbial metabolites, and (5) human body habitats. In summary, CDEMI is unique in that it can reveal microbial patterns in distributions/compositions across different conditions and facilitate biological interpretations based on diverse microbe libraries. CDEMI is accessible at http://rdblab.cn/cdemi/.
Collapse
Affiliation(s)
- Lidan Wang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Xiao Liang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hao Chen
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lijie Cao
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lan Liu
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yubin Ding
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
- Corresponding authors.
| | - Jing Tang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproductive and Development, Department Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Corresponding author at: School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Youlong Xie
- Joint International Research Laboratory of Reproductive and Development, Department Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Corresponding authors.
| |
Collapse
|
31
|
Ye J, Wu J, Deng W, Li Y, Jiang C, Wang Y, Hong Y. Novel database and cut-off value for bacterial amoA gene revealed a spatial variability pattern of the ammonia-oxidizing bacteria community from river to sea. MARINE POLLUTION BULLETIN 2022; 185:114351. [PMID: 36401947 DOI: 10.1016/j.marpolbul.2022.114351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Ammonia-oxidizing bacteria (AOB) catalyze the first step of nitrification, oxidizing ammonia to nitrite, and are characterized by amoA gene encoding ammonia monooxygenase. To analyze the AOB community effectively, an integral taxonomy database containing 14,058 amoA sequences and the optimal cut-off value at 95 % for OTU clustering were determined. This method was evaluated to be efficient by the analysis of environmental samples from the river, estuary, and sea. Using this method, a significant spatial variance of the AOB community was found. The diversity of AOB was highest in the estuary and lowest in the ocean. Nitrosomonas were the predominant AOB in the sediments of the freshwater river and estuary. Nearly all the AOB-amoA sequences belonged to uncultured bacterium in the sediments of deep sea. In general, an integral AOB taxonomic database and a suitable cut-off value were constructed for the comprehensive exploration of the diversity of AOB from river to sea.
Collapse
Affiliation(s)
- Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenfang Deng
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yiben Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Cuihong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
32
|
Streit RP, Bellwood DR. To harness traits for ecology, let’s abandon ‘functionality’. Trends Ecol Evol 2022; 38:402-411. [PMID: 36522192 DOI: 10.1016/j.tree.2022.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
Traits are measurable features of organisms. Functional traits aspire to more. They quantify an organism's ecology and, ultimately, predict ecosystem functions based on local communities. Such predictions are useful, but only if 'functional' really means 'ecologically relevant'. Unfortunately, many 'functional' traits seem to be characterized primarily by availability and implied importance - not by their ecological information content. Better traits are needed, but a prevailing trend is to 'functionalize' existing traits. The key may be to invert the process, that is, to identify functions of interest first and then identify traits as quantifiable proxies. We propose two distinct, yet complementary, perspectives on traits and provide a 'taxonomy of traits', a conceptual compass to navigate the diverse applications of traits in ecology.
Collapse
|
33
|
Li W, Wang B, Liu N, Yang M, Liu CQ, Xu S. River damming enhances ecological functional stability of planktonic microorganisms. Front Microbiol 2022; 13:1049120. [PMID: 36532475 PMCID: PMC9749135 DOI: 10.3389/fmicb.2022.1049120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2023] Open
Abstract
Planktonic microorganisms play an important role in maintaining the ecological functions in aquatic ecosystems, but how their structure and function interrelate and respond to environmental changes is still not very clear. Damming interrupts the river continuum and alters river nutrient biogeochemical cycling and biological succession. Considering that river damming decreases the irregular hydrological fluctuation, we hypothesized that it can enhance the ecological functional stability (EFS) of planktonic microorganisms. Therefore, the community composition of planktonic bacteria and archaea, functional genes related to carbon, nitrogen, sulfur, and phosphorus cycling, and relevant environmental factors of four cascade reservoirs in the Pearl River, Southern China, were investigated to understand the impact of damming on microbial community structure and function and verify the above hypothesis. Here, the ratio of function to taxa (F:T) based on Euclidean distance matrix analysis was first proposed to characterize the microbial EFS; the smaller the ratio, the more stable the ecological functions. The results showed that the reservoirs created by river damming had seasonal thermal and chemical stratifications with an increasing hydraulic retention time, which significantly changed the microbial structure and function. The river microbial F:T was significantly higher than that of the reservoirs, indicating that river damming enhances the EFS of the planktonic microorganisms. Structural equation modeling demonstrated that water temperature was an important factor influencing the relationship between the microbial structure and function and thus affected their EFS. In addition, reservoir hydraulic load was found a main factor regulating the seasonal difference in microbial EFS among the reservoirs. This study will help to deepen the understanding of the relationship between microbial structure and function and provide a theoretical basis of assessing the ecological function change after the construction of river damming.
Collapse
Affiliation(s)
- Wanzhu Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Baoli Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin, China
| | - Na Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Meiling Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin, China
| | - Sheng Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| |
Collapse
|
34
|
Wang D, Meng Y, Meng F. Genome-centric metagenomics insights into functional divergence and horizontal gene transfer of denitrifying bacteria in anammox consortia. WATER RESEARCH 2022; 224:119062. [PMID: 36116192 DOI: 10.1016/j.watres.2022.119062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/21/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Denitrifying bacteria with high abundances in anammox communities play crucial roles in achieving stable anammox-based systems. Despite the relative constant composition of denitrifying bacteria, their functional diversity remains to be explored in anammox communities. Herein, a total of 77 high-quality metagenome-assembled genomes (MAGs) of denitrifying bacteria were recovered from the anammox community in a full-scale swine wastewater treatment plant. Among these microbes, a total of 26 MAGs were affiliated with the seven dominant denitrifying genera that have total abundances higher than 1%. A meta-analysis of these species suggested that external organics reduced the abundances of genus Ignavibacterium and species MAG.305 of UTPRO2 in anammox communities. Comparative genome analysis revealed functional divergence across different denitrifying bacteria, largely owing to their distinct capabilities for carbohydrate (including endogenous and exogenous) utilization and vitamin (e.g., pantothenate and thiamine) biosynthesis. Serval microbes in this system contained fewer genes encoding biotin, pantothenate and methionine biosynthesis compared with their related species from other habitats. In addition, the genes encoding energy production and conversion (73 genes) and inorganic ion transport (53 genes) putatively transferred from other species to denitrifying bacteria, while these denitrifying bacteria (especially genera UTPRO2 and SCN-69-89) likely donated the genes encoding nutrients (e.g., inorganic ion and amino acid) transporter (64 genes) for other members to utilize new metabolites. Collectively, these findings highlighted the functional divergence of these denitrifying bacteria and speculated that the genetic interactions within anammox communities through horizontal gene transfer may be one of the reasons for their functional divergence.
Collapse
Affiliation(s)
- Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Yabing Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China.
| |
Collapse
|
35
|
Su Y, Liu S, Dong Q, Zeng Y, Yang Y, Gao Q. Tracking virulence genes and their interaction with antibiotic resistome during manure fertilization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119736. [PMID: 35810986 DOI: 10.1016/j.envpol.2022.119736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance genes, collectively termed as antibiotic resistome, are regarded as emerging contaminants. Antibiotics resistome can be highly variable in different environments, imposing environmental safety concern and public health risk when it is in conjunction with pathogenic bacteria. However, it remains elusive how pathogenic bacteria interact with antibiotic resistome, making it challenging to assess microbial risk. Here, we examined the presence and relative abundance of bacterial virulence genes representing potential pathogens in swine manure, compost, compost-amended soil, and unamended agricultural soil in five suburban areas of Beijing, China. The absolute abundances of virulence genes were marginally significantly (p < 0.100) increased in compost-amended soils than unamended soil, revealing potential health risks in manure fertilization. The composition of potential pathogens differed by sample types and was linked to temperature, antibiotics, and heavy metals. As antibiotics can confer pathogens the resistance to clinic treatment, it was alarming to note that virulence genes tended to co-exist with antibiotic resistance genes, as shown by prevalently positive links among them. Collectively, our results demonstrate that manure fertilization in agriculture might give rise to the development of potentially antibiotic-resistant pathogens, unveiling an environmental health risk that has been frequently overlooked.
Collapse
Affiliation(s)
- Yifan Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Suo Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qiang Dong
- Institute of Chemical Defense, Beijing, 102205, China
| | - Yufei Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
36
|
Zhang W, Jiang C, Chen L, Bhagwat G, Thava P, Yang Y. Spatial turnover of core and occasional bacterial taxa in the plastisphere from a plateau river, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156179. [PMID: 35618135 DOI: 10.1016/j.scitotenv.2022.156179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Plastic surfaces in the environment are a comparatively new niche for microbial colonization, also known as the "plastisphere". However, our understanding of the core and occasional bacterial taxa in the plastisphere is limited. Here, environmental plastic, water, and sediment samples were collected from 10 sites in a plateau river (Lhasa River, China) in September of 2019. The composition and spatial turnover of core and occasional bacterial taxa in the plastisphere were revealed via 16S rRNA gene sequencing and compared with water and sediment. The results indicated that deterministic processes dominated the habitat specialization that shaped the formation of core and occasional taxa in the plastisphere, water, and sediment of the Lhasa River because the decline in zeta diversity in the plastisphere, water, and sediment was more fitted to a power-law form rather than an exponential form. Proteobacteria (65.9%), Bacteroidetes (16.0%), and Cyanobacteria (11.7%) dominated the plastic core taxa. Core taxa rather than occasional taxa in the plastisphere had a lower (21.7%) proportion of OTUs and a higher (81.7%) proportion of average relative abundance than water and sediment, which were dominant in plastic bacterial communities. The spatial turnover of core and occasional bacterial taxa in the plastisphere was governed by abiotic as well as biotic factors. Specifically, the spatial turnover of core taxa in the plastisphere with high connectivity but low functional redundancy was easily affected by geographical distance, altitude, and heavy metals. Furthermore, strong drug resistance was found in the spatially persistent core taxa in the plastisphere. This study provides empirical support for the spatial turnover (species variation) and potential ecological mechanisms of bacterial communities in the plastisphere from river ecosystems.
Collapse
Affiliation(s)
- Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxia Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Research Center for Ecology and Environment of Qinghai-Tibetan Plateau, Tibet University, Lhasa 850000, China; College of Science, Tibet University, Lhasa 850000, China
| | - Geetika Bhagwat
- Environmental Plastic and Innovation Cluster, Global Innovation Centre for Advanced Nanomaterials, The University of Newcastle, 2308, NSW, Australia
| | - Palanisami Thava
- Environmental Plastic and Innovation Cluster, Global Innovation Centre for Advanced Nanomaterials, The University of Newcastle, 2308, NSW, Australia
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Ecology and Environment of Qinghai-Tibetan Plateau, Tibet University, Lhasa 850000, China; College of Science, Tibet University, Lhasa 850000, China.
| |
Collapse
|
37
|
Tian J, Huang X, Chen H, Kang X, Wang Y. Homogeneous selection is stronger for fungi in deeper peat than in shallow peat in the low-temperature fens of China. ENVIRONMENTAL RESEARCH 2022; 212:113312. [PMID: 35513061 DOI: 10.1016/j.envres.2022.113312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Peatlands have accumulated enormous amounts of carbon over millennia, and climate changes threatens the release of this carbon into the atmosphere. Fungi are crucial drivers of global carbon cycling because they are the principal decomposer of organic matter in peatlands. However, the fungal community composition and ecological preferences in peat remain unclear, which restricts our ability to evaluate the role of the fungal community in peat biogeochemical functions. We investigated 54 soils from 6 low-temperature peatlands across China to fill this knowledge gap. The peat was divided into above-water table (AWT) and below-water table (BWT) layers based on the water table fluctuation. We investigated fungal community assembly processes and drivers for each peat layer. The results showed that fungal communities differed significantly among peat layers. The relative abundance of symbiotrophs was significantly higher in the AWT (17.4%) than in the BWT (9.0%), while the abundances of yeast and litter saprotrophs were obviously lower in the AWT than in the BWT. Our results revealed that the assemblage of both fungal taxonomic and phylogenetic communities was mainly governed by stochastic processes in both AWT (87.8%) and BWT (58.6%) layers. However, in the BWT, the relative importance of deterministic processes (28.4%) significantly increased, indicating a potential deterministic environmental selection induced by permanently anaerobic condition. Mean annual precipitation and mean annual temperature were the most critical drives for the assemblage of the fungal community in the BWT. These observations collectively indicate that fungal community assembly is depth-dependent, implying different community assembly mechanisms and ecological functions along the peat profile. These findings highlight the importance of climate driven deep peat fungal community composition assemblages and suggest the potential to project the changes in fungal diversity with ongoing climate change.
Collapse
Affiliation(s)
- Jianqing Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xinya Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xiaoming Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanfen Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
38
|
Wang R, Wu J, Jiang N, Lin H, An F, Wu C, Yue X, Shi H, Wu R. Recent developments in horizontal gene transfer with the adaptive innovation of fermented foods. Crit Rev Food Sci Nutr 2022; 63:569-584. [PMID: 35647734 DOI: 10.1080/10408398.2022.2081127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Horizontal gene transfer (HGT) has contributed significantly to the adaptability of bacteria, yeast and mold in fermented foods, whose evidence has been found in several fermented foods. Although not every HGT has biological significance, it plays an important role in improving the quality of fermented foods. In this review, how HGT facilitated microbial domestication and adaptive evolution in fermented foods was discussed. HGT can assist in the industrial innovation of fermented foods, and this adaptive evolution strategy can improve the quality of fermented foods. Additionally, the mechanism underlying HGT in fermented foods were analyzed. Furthermore, the critical bottlenecks involved in optimizing HGT during the production of fermented foods and strategies for optimizing HGT were proposed. Finally, the prospect of HGT for promoting the industrial innovation of fermented foods was highlighted. The comprehensive report on HGT in fermented foods provides a new trend for domesticating preferable starters for food fermentation, thus optimizing the quality and improving the industrial production of fermented foods.
Collapse
Affiliation(s)
- Ruhong Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P.R. China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P.R. China
| | - Nan Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Hao Lin
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Chen Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P.R. China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P.R. China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P.R. China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P.R. China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P.R. China
| |
Collapse
|
39
|
Wang J, Hu A, Meng F, Zhao W, Yang Y, Soininen J, Shen J, Zhou J. Embracing mountain microbiome and ecosystem functions under global change. THE NEW PHYTOLOGIST 2022; 234:1987-2002. [PMID: 35211983 DOI: 10.1111/nph.18051] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Mountains are pivotal to maintaining habitat heterogeneity, global biodiversity, ecosystem functions and services to humans. They have provided classic model natural systems for plant and animal diversity gradient studies for over 250 years. In the recent decade, the exploration of microorganisms on mountainsides has also achieved substantial progress. Here, we review the literature on microbial diversity across taxonomic groups and ecosystem types on global mountains. Microbial community shows climatic zonation with orderly successions along elevational gradients, which are largely consistent with traditional climatic hypotheses. However, elevational patterns are complicated for species richness without general rules in terrestrial and aquatic environments and are driven mainly by deterministic processes caused by abiotic and biotic factors. We see a major shift from documenting patterns of biodiversity towards identifying the mechanisms that shape microbial biogeographical patterns and how these patterns vary under global change by the inclusion of novel ecological theories, frameworks and approaches. We thus propose key questions and cutting-edge perspectives to advance future research in mountain microbial biogeography by focusing on biodiversity hypotheses, incorporating meta-ecosystem framework and novel key drivers, adapting recently developed approaches in trait-based ecology and manipulative field experiments, disentangling biodiversity-ecosystem functioning relationships and finally modelling and predicting their global change responses.
Collapse
Affiliation(s)
- Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing, 210008, China
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Fanfan Meng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqian Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Ji Shen
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
40
|
Shi Y, Zhang K, Ma T, Zhang Z, Li P, Xing Z, Ding J. Foliar Herbivory Reduces Rhizosphere Fungal Diversity and Destabilizes the Co-occurrence Network. Front Microbiol 2022; 13:846332. [PMID: 35350618 PMCID: PMC8957981 DOI: 10.3389/fmicb.2022.846332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
Insect herbivores can adversely impact terrestrial plants throughout ontogeny and across various ecosystems. Simultaneously, the effects of foliar herbivory may extend belowground, to the soil microbial community. However, the responses in terms of the diversity, assembly, and stability of rhizosphere fungi to aboveground herbivory remain understudied. Here, using high-throughput sequencing, the effects of foliar insect herbivory on rhizosphere fungal microbes were investigated in a common garden experiment that manipulated herbivory intensity and time from herbivore removal. The number of observed fungal species was reduced by a greater herbivory intensity, with some species evidently sensitive to herbivory intensity and time since herbivore removal. Rhizofungal assembly processes were altered by both herbivory intensity and time since herbivore removal. Further, we found evidence that both factors strongly influenced fungal community stability: a high intensity of herbivory coupled with a shorter time since herbivore removal resulted in low stability. These results suggest that foliar herbivory can adversely alter fungal diversity and stability, which would in turn be harmful for plant health. Fortunately, the effect seems to gradually diminish with time elapsed after herbivore removal. Our findings provide a fresh, in-depth view into the roles of rhizofungi in enhancing the adaption ability of plants under environmental stress.
Collapse
Affiliation(s)
- Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Kaoping Zhang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Tiantian Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhongyue Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhenlong Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
41
|
Wang D, Huang K, He X, Zhang XX, Meng Y. Varied interspecies interactions between anammox and denitrifying bacteria enhanced nitrogen removal in a single-stage simultaneous anammox and denitrification system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152519. [PMID: 34968587 DOI: 10.1016/j.scitotenv.2021.152519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 05/05/2023]
Abstract
The simultaneous anammox and denitrification (SAD) system has received growing interest for the enhanced nitrogen removal, while the ecological traits of microbial community including spatial distribution characteristics, assembly processes and interspecies interactions have not been fully unraveled. The present study applied metagenomics and ecological analysis methods to gain the ecological traits of microbial communities in the SAD system across different organic substrate loadings. Results showed that organic matter significantly affected the bioreactor performance, and the optimal total nitrogen removal efficiency reached 93.4 ± 0.7% under the COD concentrations of 180 ± 18.2 mg/L. Functional organisms including Candidatus Brocadia (3.9%), Denitratisoma (1.6%), Dokdonella (4.4%) and Thauera (4.6%) obviously enriched under the optimal organic loading conditions. Moreover, microbial communities were significantly governed by deterministic process under high organic concentrations, and the denitrifying organisms displayed important ecological roles in the communities. Although anammox bacteria obviously enriched at the middle of bioreactor, it possessed the highest expression activities at both bottom and middle sites. Denitrifying bacteria that enriched at the bottom sites strongly achieved nitrate reduction and provided nitrite for anammox bacteria, while these organisms trended to compete nitrite with anammox bacteria at the middle site. These findings highlight the importance of microbial ecology in the SAD systems, which may expand our understanding of the synergistic patterns between anammox and denitrifying bacteria.
Collapse
Affiliation(s)
- Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Nanjing Jiangdao Institute of Environmental Research Co., Ltd., Nanjing 210019, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yabing Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
42
|
Gut Microbial Characterization of Melon-Headed Whales (Peponocephala electra) Stranded in China. Microorganisms 2022; 10:microorganisms10030572. [PMID: 35336147 PMCID: PMC8950688 DOI: 10.3390/microorganisms10030572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/27/2022] [Accepted: 03/05/2022] [Indexed: 12/04/2022] Open
Abstract
Although gut microbes are regarded as a significant component of many mammals and play a very important role, there is a paucity of knowledge around marine mammal gut microbes, which may be due to sampling difficulties. Moreover, to date, there are very few, if any, reports on the gut microbes of melon-headed whales. In this study, we opportunistically collected fecal samples from eight stranded melon-headed whales (Peponocephala electra) in China. Using high-throughput sequencing technology of partial 16S rRNA gene sequences, we demonstrate that the main taxa of melon-headed whale gut microbes are Firmicutes, Fusobacteriota, Bacteroidota, and Proteobacteria (Gamma) at the phylum taxonomic level, and Cetobacterium, Bacteroides, Clostridium sensu stricto, and Enterococcus at the genus taxonomic level. Meanwhile, molecular ecological network analysis (MENA) shows that two modules (a set of nodes that have strong interactions) constitute the gut microbial community network of melon-headed whales. Module 1 is mainly composed of Bacteroides, while Module 2 comprises Cetobacterium and Enterococcus, and the network keystone genera are Corynebacterium, Alcaligenes, Acinetobacter, and Flavobacterium. Furthermore, by predicting the functions of the gut microbial community through PICRUSt2, we found that although there are differences in the composition of the gut microbial community in different individuals, the predicted functional profiles are similar. Our study gives a preliminary inside look into the composition of the gut microbiota of stranded melon-headed whales.
Collapse
|
43
|
Liu X, Shi Y, Yang T, Gao GF, Zhang L, Xu R, Li C, Liu R, Liu J, Chu H. Distinct Co-occurrence Relationships and Assembly Processes of Active Methane-Oxidizing Bacterial Communities Between Paddy and Natural Wetlands of Northeast China. Front Microbiol 2022; 13:809074. [PMID: 35154054 PMCID: PMC8826055 DOI: 10.3389/fmicb.2022.809074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022] Open
Abstract
Studies of methane-oxidizing bacteria are updating our views of their composition and function in paddy and natural wetlands. However, few studies have characterized differences in the methane-oxidizing bacterial communities between paddy and natural wetlands. Here, we conducted a 13C stable isotope-probing experiment and high-throughput sequencing to determine the structure profiling, co-occurrence relationships, and assembly processes of methanotrophic communities in four wetlands of Northeast China. There was a clear difference in community structure between paddy and natural wetlands. LEfSe analyses revealed that Methylobacter, FWs, and Methylosinus were enriched in natural wetlands, while Methylosarcina were prevailing in paddy, all identified as indicative methanotrophs. We observed distinct co-occurrence relationships between paddy and natural wetlands: more robust and complex connections in natural wetlands than paddy wetlands. Furthermore, the relative importance of stochastic processes was greater than that of deterministic processes, as stochastic processes explained >50% of the variation in communities. These results demonstrated that the co-occurrence relationships and assembly processes of active methanotrophic communities in paddy and natural wetlands were distinct. Overall, the results of this study enhance our understanding of the communities of methane-oxidizing bacteria in paddy and natural wetlands of Northeast China.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liyan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Ruoyu Xu
- High School Affiliated to Nanjing Normal University, Nanjing, China
| | - Chenxin Li
- High School Affiliated to Nanjing Normal University, Nanjing, China
| | - Ruiyang Liu
- High School Affiliated to Nanjing Normal University, Nanjing, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Wu L, Yang F, Feng J, Tao X, Qi Q, Wang C, Schuur EAG, Bracho R, Huang Y, Cole JR, Tiedje JM, Zhou J. Permafrost thaw with warming reduces microbial metabolic capacities in subsurface soils. Mol Ecol 2021; 31:1403-1415. [PMID: 34878672 DOI: 10.1111/mec.16319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/04/2021] [Accepted: 12/01/2021] [Indexed: 01/27/2023]
Abstract
Microorganisms are major constituents of the total biomass in permafrost regions, whose underlain soils are frozen for at least two consecutive years. To understand potential microbial responses to climate change, here we examined microbial community compositions and functional capacities across four soil depths in an Alaska tundra site. We showed that a 5-year warming treatment increased soil thaw depth by 25.7% (p = .011) within the deep organic layer (15-25 cm). Concurrently, warming reduced 37% of bacterial abundance and 64% of fungal abundances in the deep organic layer, while it did not affect microbial abundance in other soil layers (i.e., 0-5, 5-15, and 45-55 cm). Warming treatment altered fungal community composition and microbial functional structure (p < .050), but not bacterial community composition. Using a functional gene array, we found that the relative abundances of a variety of carbon (C)-decomposing, iron-reducing, and sulphate-reducing genes in the deep organic layer were decreased, which was not observed by the shotgun sequencing-based metagenomics analysis of those samples. To explain the reduced metabolic capacities, we found that warming treatment elicited higher deterministic environmental filtering, which could be linked to water-saturated time, soil moisture, and soil thaw duration. In contrast, plant factors showed little influence on microbial communities in subsurface soils below 15 cm, despite a 25.2% higher (p < .05) aboveground plant biomass by warming treatment. Collectively, we demonstrate that microbial metabolic capacities in subsurface soils are reduced, probably arising from enhanced thaw by warming.
Collapse
Affiliation(s)
- Linwei Wu
- Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Felix Yang
- Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Jiajie Feng
- Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Xuanyu Tao
- Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Qi Qi
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Cong Wang
- Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Edward A G Schuur
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Rosvel Bracho
- Department of Biology, School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, USA
| | - Yi Huang
- College of Environmental Science and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing, China
| | - James R Cole
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA.,Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
45
|
Yang S, Pan X, Yuan D, Zeng P, Jia P. Cross-disciplinary approaches to assist with nucleic acid testing for SARS-CoV-2. Appl Microbiol Biotechnol 2021; 105:6291-6299. [PMID: 34423408 PMCID: PMC8380513 DOI: 10.1007/s00253-021-11498-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022]
Abstract
Improving the capacity of detecting positive severe acute respiratory syndrome coronavirus 2 is critical for identifying the infection of coronavirus disease 2019 (COVID-19) precisely and thereby curbing the pandemic. Cross-disciplinary approaches may improve the efficiency of COVID-19 diagnosis by compensating to some extent the limitations encountered by traditional test methods during the COVID-19 pandemic. Combining computed tomography (CT), serum-specific antibody detection, and nanopore sequencing with nucleic acid testing for individual testing may improve the accuracy of identifying COVID-19 patients. At community or even regional/national levels, the combination of pooled screening and spatial epidemiological strategies may enable the detection of early transmission of epidemics in a cost-effective way, which is also less affected by restricted access to diagnostic tests and kit supplies. This would significantly advance our capacity of curbing epidemics as soon as possible, and better prepare us for entering a new era of high-impact and high-frequency epidemics.
Collapse
Affiliation(s)
- Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- International Institute of Spatial Lifecourse Epidemiology (ISLE), Wuhan University, Wuhan, China
| | - Xiongfeng Pan
- International Institute of Spatial Lifecourse Epidemiology (ISLE), Wuhan University, Wuhan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Dan Yuan
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Peng Jia
- International Institute of Spatial Lifecourse Epidemiology (ISLE), Wuhan University, Wuhan, China.
- School of Resources and Environmental Science, Wuhan University, Wuhan, China.
| |
Collapse
|