1
|
Cloud C, Georgen-Schwartz K, Hilger A. The Contributions of Pitch, Loudness, and Rate Control to Speech Naturalness in Cerebellar Ataxia. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2024; 33:2536-2555. [PMID: 39240811 PMCID: PMC11427746 DOI: 10.1044/2024_ajslp-24-00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
PURPOSE The goal of this study was to determine the relationship between the perceptual measure of speech naturalness and objective measures of pitch, loudness, and rate control as a potential tool for assessment of ataxic dysarthria. METHOD Twenty-seven participants with ataxia and 29 age- and sex-matched control participants completed the pitch glide and loudness step tasks drawn from the Frenchay Dysarthria Assessment-Second Edition (FDA-2) in addition to speech diadochokinetic (DDK) tasks. First, group differences were compared for pitch variability in the pitch glide task, loudness variability in the loudness step task, and syllable duration and speech rate in the DDK task. Then, these acoustic measures were compared with previously collected ratings of speech naturalness by speech-language pathology graduate students. RESULTS Robust group differences were measured for pitch variability and both DDK syllable duration and speech rate, indicating that the ataxia group had greater pitch variability, longer DDK syllable duration, and slower DDK speech rate than the control group. No group differences were measured for loudness variability. There were robust relationships between speech naturalness and pitch variability, DDK syllable duration, and DDK speech rate, but not for loudness variability. CONCLUSIONS Objective acoustic measures of pitch variability in the FDA-2 pitch glide task and syllable duration and speech rate in the DDK task can be used to validate perceptual measures of speech naturalness. Overall, speech-language pathologists can incorporate both perceptual measures of speech naturalness and acoustic measures of pitch variability and DDK performance for a comprehensive evaluation of ataxic dysarthria.
Collapse
Affiliation(s)
- Caitlin Cloud
- University of Colorado Boulder
- Skagit Regional Health, Mount Vernon, WA
| | | | | |
Collapse
|
2
|
Maltman N, Sterling A, Santos E, Hagerman R. Language use predicts symptoms of fragile X-associated tremor/ataxia syndrome in men and women with the FMR1 premutation. Sci Rep 2024; 14:20707. [PMID: 39237554 PMCID: PMC11377817 DOI: 10.1038/s41598-024-70810-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an age-related neurodegenerative disorder caused by a premutation of the FMR1 gene on the X chromosome. Despite the pervasive physical and cognitive effects of FXTAS, no studies have examined language in symptomatic males and females, limiting utility as an outcome measure in clinical trials of FXTAS. The goal of this work is to determine (a) the extent to which male and female FMR1 premutation carriers with FXTAS symptoms differ in their language use and (b) whether language production predicts FXTAS symptoms. Thirty-one individuals with the FMR1 premutation (21M, 10F), ages 58-85 years with some symptoms of FXTAS, were recruited from a larger cross-sectional study. Participants completed a five-minute monologic language sample. Language transcripts were assessed for rate of dysfluencies, lexical-semantics, syntax, and speech rate. Multivariable linear and ordinal regressions were used to predict FXTAS-associated symptoms, cognitive functioning, and executive functioning. Males and females did not differ in their language use. Language production predicted FXTAS symptom severity, cognitive functioning, and executive functioning. Language production difficulties may co-occur with FXTAS-associated symptoms and may be a viable outcome measure in future clinical trials, with future research needed.
Collapse
Affiliation(s)
- Nell Maltman
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA.
- Department of Speech, Language, and Hearing Sciences, University of Arizona, 1131 2nd St , Tucson, AZ, 85721, USA.
| | - Audra Sterling
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Dr, Madison, WI, 53706, USA
| | - Ellery Santos
- MIND Institute, University of California-Davis, 2825 50th St., Sacramento, CA, 95817, USA
| | - Randi Hagerman
- MIND Institute, University of California-Davis, 2825 50th St., Sacramento, CA, 95817, USA
| |
Collapse
|
3
|
Barbieri E, Salvo JJ, Anderson NL, Simon S, Ables-Torres L, Los MA, Behn J, Bonakdarpour B, Holubecki AM, Braga RM, Mesulam MM. Progressive verbal apraxia of reading. Cortex 2024; 178:223-234. [PMID: 39024940 PMCID: PMC11375791 DOI: 10.1016/j.cortex.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
We identified a syndrome characterized by a relatively isolated progressive impairment of reading words that the patient was able to understand and repeat but without other components of speech apraxia. This cluster of symptoms fits a new syndrome designated Progressive Verbal Apraxia of Reading. A right-handed man (AB) came with a 2.5-year history of increasing difficulties in reading aloud. He was evaluated twice, 2 years apart, using multimodal neuroimaging techniques and quantitative neurolinguistic assessment. In the laboratory, reading difficulties arose in the context of intact visual and auditory word recognition as well as intact ability to understand and repeat words he was unable to read aloud. The unique feature was the absence of dysarthria or speech apraxia in tasks other than reading. Initial imaging did not reveal statistically significant atrophy. Structural magnetic resonance and FDG-PET imaging at the second assessment revealed atrophy and hypometabolism in the right posterior cerebellum, in areas shown to be part of his language network by task-based functional neuroimaging at initial assessment. This syndromic cluster can be designated Progressive Verbal Apraxia of Reading, an entity that has not been reported previously to the best of our knowledge. We hypothesize a selective disconnection of the visual word recognition system from the otherwise intact articulatory apparatus, a disconnection that appears to reflect the disruption of multisynaptic cerebello-cortical circuits.
Collapse
Affiliation(s)
- Elena Barbieri
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, USA.
| | - Joseph J Salvo
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, USA
| | - Nathan L Anderson
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, USA
| | - Sarah Simon
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, USA
| | - Lauren Ables-Torres
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, USA
| | - Michelle A Los
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, USA
| | - Jordan Behn
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, USA
| | - Borna Bonakdarpour
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, USA; Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, USA
| | - Ania M Holubecki
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, USA
| | - Rodrigo M Braga
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, USA
| | - Marek-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, USA; Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, USA
| |
Collapse
|
4
|
Curtis M, Bayat M, Garic D, Alfano AR, Hernandez M, Curzon M, Bejarano A, Tremblay P, Graziano P, Dick AS. Structural Development of Speech Networks in Young Children at Risk for Speech Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609470. [PMID: 39229017 PMCID: PMC11370569 DOI: 10.1101/2024.08.23.609470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Characterizing the structural development of the neural speech network in early childhood is important for understanding speech acquisition. To investigate speech in the developing brain, 94 children aged 4-7-years-old at risk for early speech disorder were scanned using diffusion weighted imaging (DWI) magnetic resonance imaging (MRI). Additionally, each child completed the Syllable Repetition Task (SRT), a validated measure of phoneme articulation. The DWI data were modeled using multi-compartment restriction spectrum imaging (RSI) to measure restricted and hindered diffusion properties in both grey and white matter. Consequently, we analyzed the diffusion data using both whole brain analysis, and automated fiber quantification (AFQ) analysis to establish tract profiles for each of six fiber pathways thought to be important for supporting speech development. In the whole brain analysis, we found that SRT performance was associated with restricted diffusion in bilateral inferior frontal gyrus ( pars opercularis ), right pre-supplementary/ supplementary motor area (pre-SMA/SMA), and bilateral cerebellar grey matter ( p < .005). Age moderated these associations in left pars opercularis and frontal aslant tract (FAT). However, in both cases only the cerebellar findings survived a cluster correction. We also found associations between SRT performance and restricted diffusion in cortical association fiber pathways, especially left FAT, and in the cerebellar peduncles. Analyses using automatic fiber quantification (AFQ) highlighted differences in high and low performing children along specific tract profiles, most notably in left but not right FAT. These findings suggest that individual differences in speech performance are reflected in structural gray and white matter differences as measured by restricted and hindered diffusion metrics, and offer important insights into developing brain networks supporting speech in very young children.
Collapse
|
5
|
Eguchi K, Yaguchi H, Kudo I, Kimura I, Nabekura T, Kumagai R, Fujita K, Nakashiro Y, Iida Y, Hamada S, Honma S, Takei A, Moriwaka F, Yabe I. Differentiation of speech in Parkinson's disease and spinocerebellar degeneration using deep neural networks. J Neurol 2024; 271:1004-1012. [PMID: 37989963 DOI: 10.1007/s00415-023-12091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
INTRODUCTION Assessing dysarthria features in patients with neurodegenerative diseases helps diagnose underlying pathologies. Although deep neural network (DNN) techniques have been widely adopted in various audio processing tasks, few studies have tested whether DNNs can help differentiate neurodegenerative diseases using patients' speech data. This study evaluated whether a DNN model using a transformer architecture could differentiate patients with Parkinson's disease (PD) from patients with spinocerebellar degeneration (SCD) using speech data. METHODS Speech data were obtained from 251 and 101 patients with PD and SCD, respectively, while they read a passage. We fine-tuned a pre-trained DNN model using log-mel spectrograms generated from speech data. The DNN model was trained to predict whether the input spectrogram was generated from patients with PD or SCD. We used fivefold cross-validation to evaluate the predictive performance using the area under the receiver operating characteristic curve (AUC) and accuracy, sensitivity, and specificity. RESULTS Average ± standard deviation of the AUC, accuracy, sensitivity, and specificity of the trained model for the fivefold cross-validation were 0.93 ± 0.04, 0.87 ± 0.03, 0.83 ± 0.05, and 0.89 ± 0.05, respectively. CONCLUSION The DNN model can differentiate speech data of patients with PD from that of patients with SCD with relatively high accuracy and AUC. The proposed method can be used as a non-invasive, easy-to-perform screening method to differentiate PD from SCD using patient speech and is expected to be applied to telemedicine.
Collapse
Affiliation(s)
- Katsuki Eguchi
- Hokuyukai Neurological Hospital, 4-30, 2jo, 2cho-me, Nijuyonken, Nishi-ku, Sapporo, 063-0802, Japan.
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Hiroaki Yaguchi
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ikue Kudo
- Hokuyukai Neurological Hospital, 4-30, 2jo, 2cho-me, Nijuyonken, Nishi-ku, Sapporo, 063-0802, Japan
| | - Ibuki Kimura
- Hokuyukai Neurological Hospital, 4-30, 2jo, 2cho-me, Nijuyonken, Nishi-ku, Sapporo, 063-0802, Japan
| | - Tomoko Nabekura
- Hokuyukai Neurological Hospital, 4-30, 2jo, 2cho-me, Nijuyonken, Nishi-ku, Sapporo, 063-0802, Japan
| | - Ryuto Kumagai
- Sapporo Parkinson MS Neurological Clinic, Sapporo Kita Sky Building F12, 7-6, Kita 7-Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-0807, Japan
| | - Kenichi Fujita
- Hokuyukai Neurological Hospital, 4-30, 2jo, 2cho-me, Nijuyonken, Nishi-ku, Sapporo, 063-0802, Japan
| | - Yuichi Nakashiro
- Hokuyukai Neurological Hospital, 4-30, 2jo, 2cho-me, Nijuyonken, Nishi-ku, Sapporo, 063-0802, Japan
| | - Yuki Iida
- Hokuyukai Neurological Hospital, 4-30, 2jo, 2cho-me, Nijuyonken, Nishi-ku, Sapporo, 063-0802, Japan
| | - Shinsuke Hamada
- Hokuyukai Neurological Hospital, 4-30, 2jo, 2cho-me, Nijuyonken, Nishi-ku, Sapporo, 063-0802, Japan
| | - Sanae Honma
- Hokuyukai Neurological Hospital, 4-30, 2jo, 2cho-me, Nijuyonken, Nishi-ku, Sapporo, 063-0802, Japan
| | - Asako Takei
- Hokuyukai Neurological Hospital, 4-30, 2jo, 2cho-me, Nijuyonken, Nishi-ku, Sapporo, 063-0802, Japan
| | - Fumio Moriwaka
- Hokuyukai Neurological Hospital, 4-30, 2jo, 2cho-me, Nijuyonken, Nishi-ku, Sapporo, 063-0802, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
6
|
Ye ZX, Bi J, Qiu LL, Chen XY, Li MC, Chen XY, Qiu YS, Yuan RY, Yu XT, Huang CY, Cheng B, Lin W, Chen WJ, Hu JP, Fu Y, Wang N, Gan SR. Cognitive impairment associated with cerebellar volume loss in spinocerebellar ataxia type 3. J Neurol 2024; 271:918-928. [PMID: 37848650 DOI: 10.1007/s00415-023-12042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Many neuroscience and neurology studies have forced a reconsideration of the traditional motor-related scope of cerebellar function, which has now expanded to include various cognitive functions. Spinocerebellar ataxia type 3 (SCA3; the most common hereditary ataxia) is neuropathologically characterized by cerebellar atrophy and frequently presents with cognitive impairment. OBJECTIVE To characterize cognitive impairment in SCA3 and investigate the cerebellum-cognition associations. METHODS This prospective, cross-sectional cohort study recruited 126 SCA3 patients and 41 healthy control individuals (HCs). Participants underwent a brain 3D T1-weighted images as well as neuropsychological tests. Voxel-based morphometry (VBM) and region of interest (ROI) approaches were performed on the 3D T1-weighted images. CERES was used to automatically segment cerebellums. Patients were grouped into cognitively impaired (CI) and cognitively preserved (CP), and clinical and MRI parameters were compared. Multivariable regression models were fitted to examine associations between cerebellar microstructural alterations and cognitive domain impairments. RESULTS Compared to HCs, SCA3 patients showed cognitive domain impairments in information processing speed, verbal memory, executive function, and visuospatial perception. Between CI and CP subgroups, the CI subgroup was older and had lower education, as well as higher severity scores. VBM and ROI analyses revealed volume loss in cerebellar bilateral lobule VI, right lobule Crus I, and right lobule IV of the CI subgroup, and all these cerebellar lobules were associated with the above cognitive domain impairments. CONCLUSIONS Our findings demonstrate the multiple cognitive domain impairments in SCA3 patients and indicate the responsible cerebellar lobules for the impaired cognitive domain(s).
Collapse
Affiliation(s)
- Zhi-Xian Ye
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Jin Bi
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Liang-Liang Qiu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xuan-Yu Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350005, China
| | - Meng-Cheng Li
- Department of Radiology of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xin-Yuan Chen
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Sen Qiu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Ru-Ying Yuan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Xin-Tong Yu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Chun-Yu Huang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Bi Cheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wei Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jian-Ping Hu
- Department of Radiology of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Ying Fu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350005, China.
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Shi-Rui Gan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
7
|
Ivanova O, Martínez-Nicolás I, Meilán JJG. Speech changes in old age: Methodological considerations for speech-based discrimination of healthy ageing and Alzheimer's disease. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2024; 59:13-37. [PMID: 37140204 DOI: 10.1111/1460-6984.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Recent evidence suggests that speech substantially changes in ageing. As a complex neurophysiological process, it can accurately reflect changes in the motor and cognitive systems underpinning human speech. Since healthy ageing is not always easily discriminable from early stages of dementia based on cognitive and behavioural hallmarks, speech is explored as a preclinical biomarker of pathological itineraries in old age. A greater and more specific impairment of neuromuscular activation, as well as a specific cognitive and linguistic impairment in dementia, unchain discriminating changes in speech. Yet, there is no consensus on such discriminatory speech parameters, neither on how they should be elicited and assessed. AIMS To provide a state-of-the-art on speech parameters that allow for early discrimination between healthy and pathological ageing; the aetiology of these parameters; the effect of the type of experimental stimuli on speech elicitation and the predictive power of different speech parameters; and the most promising methods for speech analysis and their clinical implications. METHODS & PROCEDURES A scoping review methodology is used in accordance with the PRISMA model. Following a systematic search of PubMed, PsycINFO and CINAHL, 24 studies are included and analysed in the review. MAIN CONTRIBUTION The results of this review yield three key questions for the clinical assessment of speech in ageing. First, acoustic and temporal parameters are more sensitive to changes in pathological ageing and, of these two, temporal variables are more affected by cognitive impairment. Second, different types of stimuli can trigger speech parameters with different degree of accuracy for the discrimination of clinical groups. Tasks with higher cognitive load are more precise in eliciting higher levels of accuracy. Finally, automatic speech analysis for the discrimination of healthy and pathological ageing should be improved for both research and clinical practice. CONCLUSIONS & IMPLICATIONS Speech analysis is a promising non-invasive tool for the preclinical screening of healthy and pathological ageing. The main current challenges of speech analysis in ageing are the automatization of its clinical assessment and the consideration of the speaker's cognitive background during evaluation. WHAT THIS PAPER ADDS What is already known on the subject Societal aging goes hand in hand with the rising incidence of ageing-related neurodegenerations, mainly Alzheimer's disease (AD). This is particularly noteworthy in countries with longer life expectancies. Healthy ageing and early stages of AD share a set of cognitive and behavioural characteristics. Since there is no cure for dementias, developing methods for accurate discrimination of healthy ageing and early AD is currently a priority. Speech has been described as one of the most significantly impaired features in AD. Neuropathological alterations in motor and cognitive systems would underlie specific speech impairment in dementia. Since speech can be evaluated quickly, non-invasively and inexpensively, its value for the clinical assessment of ageing itineraries may be particularly high. What this paper adds to existing knowledge Theoretical and experimental advances in the assessment of speech as a marker of AD have developed rapidly over the last decade. Yet, they are not always known to clinicians. Furthermore, there is a need to provide an updated state-of-the-art on which speech features are discriminatory to AD, how they can be assessed, what kind of results they can yield, and how such results should be interpreted. This article provides an updated overview of speech profiling, methods of speech measurement and analysis, and the clinical power of speech assessment for early discrimination of AD as the most common cause of dementia. What are the potential or actual clinical implications of this work? This article provides an overview of the predictive potential of different speech parameters in relation to AD cognitive impairment. In addition, it discusses the effect that the cognitive state, the type of elicitation task and the type of assessment method may have on the results of the speech-based analysis in ageing.
Collapse
Affiliation(s)
- Olga Ivanova
- Spanish Language Department, Faculty of Philology, University of Salamanca, Salamanca, Spain
- Institute of Neuroscience of Castilla y León, Salamanca, Spain
| | - Israel Martínez-Nicolás
- Department of Basic Psychology, Psychobiology and Behavioral Science Methodology, Faculty of Psychology, University of Salamanca, Salamanca, Spain
- Institute of Neuroscience of Castilla y León, Salamanca, Spain
| | - Juan José García Meilán
- Department of Basic Psychology, Psychobiology and Behavioral Science Methodology, Faculty of Psychology, University of Salamanca, Salamanca, Spain
- Institute of Neuroscience of Castilla y León, Salamanca, Spain
| |
Collapse
|
8
|
Matsuhashi K, Itahashi T, Aoki R, Hashimoto RI. Meta-analysis of structural integrity of white matter and functional connectivity in developmental stuttering. Brain Res Bull 2023; 205:110827. [PMID: 38013029 DOI: 10.1016/j.brainresbull.2023.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Developmental stuttering is a speech disfluency disorder characterized by repetitions, prolongations, and blocks of speech. While a number of neuroimaging studies have identified alterations in localized brain activation during speaking in persons with stuttering (PWS), it is unclear whether neuroimaging evidence converges on alterations in structural integrity of white matter and functional connectivity (FC) among multiple regions involved in supporting fluent speech. In the present study, we conducted coordinate-based meta-analyses according to the PRISMA guidelines for available publications that studied fractional anisotropy (FA) using tract-based spatial statistics (TBSS) for structural integrity and the seed-based voxel-wise FC analyses. The search retrieved 11 publications for the TBSS FA studies, 29 seed-based FC datasets from 6 publications for the resting-state, and 29 datasets from 6 publications for the task-based studies. The meta-analysis of TBSS FA revealed that PWS exhibited FA reductions in the middle and posterior segments of the left superior longitudinal fasciculus. Furthermore, the analysis of resting-state FC demonstrated that PWS had reduced FC in the right supplementary motor area and inferior parietal cortex, whereas an increase in FC was observed in the left cerebellum crus I. Conversely, we observed increased FC for task-based FC in regions implicated in speech production or sequential movements, including the anterior cingulate cortex, posterior insula, and bilateral cerebellum crus I in PWS. Functional network characterization of the altered FCs revealed that the sets of reduced resting-state and increased task-based FCs were largely distinct, but the somatomotor and striatum/thalamus networks were foci of alterations in both conditions. These observations indicate that developmental stuttering is characterized by structural and functional alterations in multiple brain networks that support speech fluency or sequential motor processes, including cortico-cortical and subcortical connections.
Collapse
Affiliation(s)
- Kengo Matsuhashi
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuta Aoki
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan; Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | | |
Collapse
|
9
|
Granrud OE, Rodriguez Z, Cowan T, Masucci MD, Cohen AS. Alogia and pressured speech do not fall on a continuum of speech production using objective speech technologies. Schizophr Res 2023; 259:121-126. [PMID: 35864001 DOI: 10.1016/j.schres.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
Speech production is affected in a variety of serious mental illnesses (SMI; e.g., schizophrenia, unipolar depression, bipolar disorders) and at its extremes can be observed in the gross reduction of speech (e.g., alogia) or increase of speech (e.g., pressured speech). The present study evaluated whether clinically-rated alogia and pressured speech represent antithetical constructs when analyzed using objective metrics of speech production. We examined natural speech using acoustic and natural language processing features from two archival studies using several different speaking tasks and a combined 107 patients meeting criteria for SMI. Contrary to expectations, we did not find that alogia and pressured speech presented as opposing ends of a speech production continuum. Objective speech markers were associated with clinically rated alogia but not pressured speech, and these results were consistent across speaking tasks and studies. Implications for our understanding of speech production symptoms in SMI are discussed, as well as implications for Natural Language Processing and digital phenotyping efforts more generally.
Collapse
Affiliation(s)
- Ole Edvard Granrud
- Louisiana State University, Department of Psychology, United States of America
| | - Zachary Rodriguez
- Louisiana State University, Department of Psychology, United States of America; Louisiana State University, Center for Computation and Technology, United States of America
| | - Tovah Cowan
- Louisiana State University, Department of Psychology, United States of America
| | - Michael D Masucci
- Louisiana State University, Department of Psychology, United States of America
| | - Alex S Cohen
- Louisiana State University, Department of Psychology, United States of America; Louisiana State University, Center for Computation and Technology, United States of America.
| |
Collapse
|
10
|
Rowe HP, Shellikeri S, Yunusova Y, Chenausky KV, Green JR. Quantifying articulatory impairments in neurodegenerative motor diseases: A scoping review and meta-analysis of interpretable acoustic features. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 25:486-499. [PMID: 36001500 PMCID: PMC9950294 DOI: 10.1080/17549507.2022.2089234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
PURPOSE Neurodegenerative motor diseases (NMDs) have devastating effects on the lives of patients and their loved ones, in part due to the impact of neurologic abnormalities on speech, which significantly limits functional communication. Clinical speech researchers have thus spent decades investigating speech features in populations suffering from NMDs. Features of impaired articulatory function are of particular interest given their detrimental impact on intelligibility, their ability to encode a variety of distinct movement disorders, and their potential as diagnostic indicators of neurodegenerative diseases. The objectives of this scoping review were to identify (1) which components of articulation (i.e. coordination, consistency, speed, precision, and repetition rate) are the most represented in the acoustic literature on NMDs; (2) which acoustic articulatory features demonstrate the most potential for detecting speech motor dysfunction in NMDs; and (3) which articulatory components are the most impaired within each NMD. METHOD This review examined literature published between 1976 and 2020. Studies were identified from six electronic databases using predefined key search terms. The first research objective was addressed using a frequency count of studies investigating each articulatory component, while the second and third objectives were addressed using meta-analyses. RESULT Findings from 126 studies revealed a considerable emphasis on articulatory precision. Of the 24 features included in the meta-analyses, vowel dispersion/distance and stop gap duration exhibited the largest effects when comparing the NMD population to controls. The meta-analyses also revealed divergent patterns of articulatory performance across disease types, providing evidence of unique profiles of articulatory impairment. CONCLUSION This review illustrates the current state of the literature on acoustic articulatory features in NMDs. By highlighting the areas of need within each articulatory component and disease group, this work provides a foundation on which clinical researchers, speech scientists, neurologists, and computer science engineers can develop research questions that will both broaden and deepen the understanding of articulatory impairments in NMDs.
Collapse
Affiliation(s)
- Hannah P Rowe
- MGH Institute of Health Professions, Boston, MA, USA
| | - Sanjana Shellikeri
- Department of Speech-Language Pathology & Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yana Yunusova
- Department of Speech-Language Pathology & Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Karen V Chenausky
- MGH Institute of Health Professions, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA, and
| | - Jordan R Green
- MGH Institute of Health Professions, Boston, MA, USA
- Speech and Hearing Biosciences and Technology Program, Harvard University, Cambridge, MA, USA
| |
Collapse
|
11
|
Ekström AG, Edlund J. Evolution of the human tongue and emergence of speech biomechanics. Front Psychol 2023; 14:1150778. [PMID: 37325743 PMCID: PMC10266234 DOI: 10.3389/fpsyg.2023.1150778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The tongue is one of the organs most central to human speech. Here, the evolution and species-unique properties of the human tongue is traced, via reference to the apparent articulatory behavior of extant non-human great apes, and fossil findings from early hominids - from a point of view of articulatory phonetics, the science of human speech production. Increased lingual flexibility provided the possibility of mapping of articulatory targets, possibly via exaptation of manual-gestural mapping capacities evident in extant great apes. The emergence of the human-specific tongue, its properties, and morphology were crucial to the evolution of human articulate speech.
Collapse
|
12
|
Zamorano AM, Zatorre RJ, Vuust P, Friberg A, Birbaumer N, Kleber B. Singing training predicts increased insula connectivity with speech and respiratory sensorimotor areas at rest. Brain Res 2023:148418. [PMID: 37217111 DOI: 10.1016/j.brainres.2023.148418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/28/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
The insula contributes to the detection of salient events during goal-directed behavior and participates in the coordination of motor, multisensory, and cognitive systems. Recent task-fMRI studies with trained singers suggest that singing experience can enhance the access to these resources. However, the long-term effects of vocal training on insula-based networks are still unknown. In this study, we employed resting-state fMRI to assess experience-dependent differences in insula co-activation patterns between conservatory-trained singers and non-singers. Results indicate enhanced bilateral anterior insula connectivity in singers relative to non-singers with constituents of the speech sensorimotor network. Specifically, with the cerebellum (lobule V-VI) and the superior parietal lobes. The reversed comparison showed no effects. The amount of accumulated singing training predicted enhanced bilateral insula co-activation with primary sensorimotor areas representing the diaphragm and the larynx/phonation area-crucial regions for cortico-motor control of complex vocalizations-as well as the bilateral thalamus and the left putamen. Together, these findings highlight the neuroplastic effect of expert singing training on insula-based networks, as evidenced by the association between enhanced insula co-activation profiles in singers and the brain's speech motor system components.
Collapse
Affiliation(s)
- A M Zamorano
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - R J Zatorre
- McGill University-Montreal Neurological Institute, Neuropsychology and Cognitive Neuroscience, Montreal, Canada; International Laboratory for Brain, Music and Sound research (BRAMS), Montreal, Canada
| | - P Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - A Friberg
- Speech, Music and Hearing, KTH Royal Institute of Technology, Stockholm, Sweden
| | - N Birbaumer
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany
| | - B Kleber
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, & The Royal Academy of Music Aarhus/Aalborg, Denmark.
| |
Collapse
|
13
|
Moinuddin KA, Havugimana F, Al-Fahad R, Bidelman GM, Yeasin M. Unraveling Spatial-Spectral Dynamics of Speech Categorization Speed Using Convolutional Neural Networks. Brain Sci 2022; 13:brainsci13010075. [PMID: 36672055 PMCID: PMC9856675 DOI: 10.3390/brainsci13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
The process of categorizing sounds into distinct phonetic categories is known as categorical perception (CP). Response times (RTs) provide a measure of perceptual difficulty during labeling decisions (i.e., categorization). The RT is quasi-stochastic in nature due to individuality and variations in perceptual tasks. To identify the source of RT variation in CP, we have built models to decode the brain regions and frequency bands driving fast, medium and slow response decision speeds. In particular, we implemented a parameter optimized convolutional neural network (CNN) to classify listeners' behavioral RTs from their neural EEG data. We adopted visual interpretation of model response using Guided-GradCAM to identify spatial-spectral correlates of RT. Our framework includes (but is not limited to): (i) a data augmentation technique designed to reduce noise and control the overall variance of EEG dataset; (ii) bandpower topomaps to learn the spatial-spectral representation using CNN; (iii) large-scale Bayesian hyper-parameter optimization to find best performing CNN model; (iv) ANOVA and posthoc analysis on Guided-GradCAM activation values to measure the effect of neural regions and frequency bands on behavioral responses. Using this framework, we observe that α-β (10-20 Hz) activity over left frontal, right prefrontal/frontal, and right cerebellar regions are correlated with RT variation. Our results indicate that attention, template matching, temporal prediction of acoustics, motor control, and decision uncertainty are the most probable factors in RT variation.
Collapse
Affiliation(s)
| | - Felix Havugimana
- Department of EECE, University of Memphis, Memphis, TN 38152, USA
| | - Rakib Al-Fahad
- Department of EECE, University of Memphis, Memphis, TN 38152, USA
| | - Gavin M. Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN 47408, USA
| | - Mohammed Yeasin
- Department of EECE, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
14
|
Rowe HP, Gochyyev P, Lammert AC, Lowit A, Spencer KA, Dickerson BC, Berry JD, Green JR. The efficacy of acoustic-based articulatory phenotyping for characterizing and classifying four divergent neurodegenerative diseases using sequential motion rates. J Neural Transm (Vienna) 2022; 129:1487-1511. [PMID: 36305960 PMCID: PMC9859630 DOI: 10.1007/s00702-022-02550-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/13/2022] [Indexed: 01/25/2023]
Abstract
Despite the impacts of neurodegeneration on speech function, little is known about how to comprehensively characterize the resulting speech abnormalities using a set of objective measures. Quantitative phenotyping of speech motor impairments may have important implications for identifying clinical syndromes and their underlying etiologies, monitoring disease progression over time, and improving treatment efficacy. The goal of this research was to investigate the validity and classification accuracy of comprehensive acoustic-based articulatory phenotypes in speakers with distinct neurodegenerative diseases. Articulatory phenotypes were characterized based on acoustic features that were selected to represent five components of motor performance: Coordination, Consistency, Speed, Precision, and Rate. The phenotypes were first used to characterize the articulatory abnormalities across four progressive neurologic diseases known to have divergent speech motor deficits: amyotrophic lateral sclerosis (ALS), progressive ataxia (PA), Parkinson's disease (PD), and the nonfluent variant of primary progressive aphasia and progressive apraxia of speech (nfPPA + PAOS). We then examined the efficacy of articulatory phenotyping for disease classification. Acoustic analyses were conducted on audio recordings of 217 participants (i.e., 46 ALS, 52 PA, 60 PD, 20 nfPPA + PAOS, and 39 controls) during a sequential speech task. Results revealed evidence of distinct articulatory phenotypes for the four clinical groups and that the phenotypes demonstrated strong classification accuracy for all groups except ALS. Our results highlight the phenotypic variability present across neurodegenerative diseases, which, in turn, may inform (1) the differential diagnosis of neurological diseases and (2) the development of sensitive outcome measures for monitoring disease progression or assessing treatment efficacy.
Collapse
Affiliation(s)
- Hannah P Rowe
- Department of Rehabilitation Sciences, MGH Institute of Health Professions, Charlestown, Boston, MA, USA
| | - Perman Gochyyev
- School of Healthcare Leadership, MGH Institute of Health Professions, Boston, MA, USA
- Berkeley Evaluation and Assessment Research Center, University of California at Berkeley, Berkeley, CA, USA
| | - Adam C Lammert
- Department of Biomedical Engineering, Worchester Polytechnic Institute, Worcester, MA, USA
| | - Anja Lowit
- Department of Speech and Language Therapy, University of Strathclyde, Glasgow, Scotland, UK
| | - Kristie A Spencer
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Bradford C Dickerson
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - James D Berry
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Jordan R Green
- Department of Rehabilitation Sciences, MGH Institute of Health Professions, Charlestown, Boston, MA, USA.
| |
Collapse
|
15
|
Ekström AG. Motor constellation theory: A model of infants' phonological development. Front Psychol 2022; 13:996894. [PMID: 36405212 PMCID: PMC9669916 DOI: 10.3389/fpsyg.2022.996894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/17/2022] [Indexed: 04/24/2024] Open
Abstract
Every normally developing human infant solves the difficult problem of mapping their native-language phonology, but the neural mechanisms underpinning this behavior remain poorly understood. Here, motor constellation theory, an integrative neurophonological model, is presented, with the goal of explicating this issue. It is assumed that infants' motor-auditory phonological mapping takes place through infants' orosensory "reaching" for phonological elements observed in the language-specific ambient phonology, via reference to kinesthetic feedback from motor systems (e.g., articulators), and auditory feedback from resulting speech and speech-like sounds. Attempts are regulated by basal ganglion-cerebellar speech neural circuitry, and successful attempts at reproduction are enforced through dopaminergic signaling. Early in life, the pace of anatomical development constrains mapping such that complete language-specific phonological mapping is prohibited by infants' undeveloped supralaryngeal vocal tract and undescended larynx; constraints gradually dissolve with age, enabling adult phonology. Where appropriate, reference is made to findings from animal and clinical models. Some implications for future modeling and simulation efforts, as well as clinical settings, are also discussed.
Collapse
Affiliation(s)
- Axel G. Ekström
- Speech, Music and Hearing, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
16
|
Weerathunge HR, Tomassi NE, Stepp CE. What Can Altered Auditory Feedback Paradigms Tell Us About Vocal Motor Control in Individuals With Voice Disorders? PERSPECTIVES OF THE ASHA SPECIAL INTEREST GROUPS 2022; 7:959-976. [PMID: 37397620 PMCID: PMC10312128 DOI: 10.1044/2022_persp-21-00195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Purpose The goal of this review article is to provide a summary of the progression of altered auditory feedback (AAF) as a method to understand the pathophysiology of voice disorders. This review article focuses on populations with voice disorders that have thus far been studied using AAF, including individuals with Parkinson's disease, cerebellar degeneration, hyperfunctional voice disorders, vocal fold paralysis, and laryngeal dystonia. Studies using AAF have found that individuals with Parkinson's disease, cerebellar degeneration, and laryngeal dystonia have hyperactive auditory feedback responses due to differing underlying causes. In persons with PD, the hyperactivity may be a compensatory mechanism for atypically weak feedforward motor control. In individuals with cerebellar degeneration and laryngeal dystonia, the reasons for hyperactivity remain unknown. Individuals with hyperfunctional voice disorders may have auditory-motor integration deficits, suggesting atypical updating of feedforward motor control. Conclusions These findings have the potential to provide critical insights to clinicians in selecting the most effective therapy techniques for individuals with voice disorders. Future collaboration between clinicians and researchers with the shared objective of improving AAF as an ecologically feasible and valid tool for clinical assessment may provide more personalized therapy targets for individuals with voice disorders.
Collapse
Affiliation(s)
- Hasini R. Weerathunge
- Department of Biomedical Engineering, Boston University, MA
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
| | - Nicole E. Tomassi
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
- Graduate Program for Neuroscience, Boston University, MA
| | - Cara E. Stepp
- Department of Biomedical Engineering, Boston University, MA
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
- Department of Otolaryngology—Head and Neck Surgery, Boston University School of Medicine, MA
| |
Collapse
|
17
|
Won J, Callow DD, Purcell JJ, Smith JC. Differential associations of regional cerebellar volume with gait speed and working memory. Sci Rep 2022; 12:2355. [PMID: 35149757 PMCID: PMC8837608 DOI: 10.1038/s41598-022-06180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/21/2022] [Indexed: 11/21/2022] Open
Abstract
The relationship between gait speed and working memory is well-understood in older adults. However, it remains to be determined whether this relationship also exists in younger adults; and there is little known regarding the possible neural mechanism underlying the association between gait speed and working memory. The aims of this study are to determine if there is: (1) an association between gait speed and working memory performance; and (2) a mediating role of cerebellar subregion volume in the correlation between gait speed and working memory in healthy younger adults. 1054 younger adults (28.7 ± 3.6 years) from the Human Connectome Project were included in the analyses. A four-meter gait test was used to assess gait speed. The 2-back task was used to measure working memory performance [accuracy and response time (RT)]. T1-weighted structural MRI data (obtained using Siemens 3 T MRI scanner) was used to assess cerebellar subregion volumes. Linear regression and mediation analysis were used to examine the relationships between the variables after controlling for age, sex, and education. There was no association between gait speed and 2-back working memory performance in younger adults. Greater Crus I and whole cerebellar volumes were associated with better 2-back working memory accuracy. Greater VIIIa volume was associated with faster gait speed. Greater Crus 1 and VIIIa volumes were also associated with higher fluid cognition. The present study suggests that specific subregions of the cerebellar volumes are distinctively associated with gait speed and working memory performance in healthy younger adults.
Collapse
Affiliation(s)
- Junyeon Won
- Department of Kinesiology, School of Public Health, University of Maryland, 2351 SPH Bldg #255, College Park, MD, 20742, USA
| | - Daniel D Callow
- Department of Kinesiology, School of Public Health, University of Maryland, 2351 SPH Bldg #255, College Park, MD, 20742, USA.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, 20740, USA
| | - Jeremy J Purcell
- Maryland Neuroimaging Center, University of Maryland, College Park, MD, 20740, USA
| | - J Carson Smith
- Department of Kinesiology, School of Public Health, University of Maryland, 2351 SPH Bldg #255, College Park, MD, 20742, USA. .,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, 20740, USA.
| |
Collapse
|
18
|
Sheu YS, Desmond JE. Cerebro-Cerebellar Response to Sequence Violation in a Cognitive Task: an fMRI Study. CEREBELLUM (LONDON, ENGLAND) 2022; 21:73-85. [PMID: 34021492 PMCID: PMC8606618 DOI: 10.1007/s12311-021-01279-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Abstract
The phonological loop is part of Baddeley's verbal working memory (VWM) model that stores phonological information and refreshes its contents through an articulatory process. Many studies have reported the cerebellum's involvement during VWM tasks. In the motor literature, the cerebellum is thought to support smooth and rapid movement sequences through internal models that simulate the action of motor commands, then use the error signals generating from the discrepancy between the predicted and actual sensory consequences to adjust the motor system. Here, we hypothesize that a similar monitoring and error-driven adjustment process can be extended to VWM; specifically, the cerebellum checks for discrepancies between the predicted and actual articulatory process to ensure the accuracy and fluency of articulatory rehearsal. During neuroimaging, participants rehearsed a sequence of letters in sync with the presentation of a visual pacing stimulus (#) that was terminated by the occurrence of a probe letter. Participants judged whether the probe was the correct letter in the sequence (i.e., match trial), or deviated from the sequence (i.e., mismatch trial). Detection of sequence violation was not only associated with prolonged reaction time but also an increased activation in a left executive control network. Psychophysiological interaction was used to investigate whether the cerebellum interacts with the cerebral cortex for error monitoring and adjustments. We found increased functional connectivity between the right cerebellum and the cerebral cortex during mismatch relative to match probes, indicating sequence violation resulting in greater cerebellar connectivity with areas in the cerebral cortex involved in phonological sequencing.
Collapse
|
19
|
Pierce JE, Péron JA. Reward-Based Learning and Emotional Habit Formation in the Cerebellum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:125-140. [DOI: 10.1007/978-3-030-99550-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Jossinger S, Sares A, Zislis A, Sury D, Gracco V, Ben-Shachar M. White matter correlates of sensorimotor synchronization in persistent developmental stuttering. JOURNAL OF COMMUNICATION DISORDERS 2022; 95:106169. [PMID: 34856426 PMCID: PMC8821245 DOI: 10.1016/j.jcomdis.2021.106169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Individuals with persistent developmental stuttering display deficits in aligning motor actions to external cues (i.e., sensorimotor synchronization). Diffusion imaging studies point to stuttering-associated differences in dorsal, not ventral, white matter pathways, and in the cerebellar peduncles. Here, we studied microstructural white matter differences between adults who stutter (AWS) and fluent speakers using two complementary approaches to: (a) assess previously reported group differences in white matter diffusivity, and (b) evaluate the relationship between white matter diffusivity and sensorimotor synchronization in each group. METHODS Participants completed a sensorimotor synchronization task and a diffusion MRI scan. We identified the cerebellar peduncles and major dorsal- and ventral-stream language pathways in each individual and assessed correlations between sensorimotor synchronization and diffusion measures along the tracts. RESULTS The results demonstrated group differences in dorsal, not ventral, language tracts, in alignment with prior reports. Specifically, AWS had significantly lower fractional anisotropy (FA) in the left arcuate fasciculus, and significantly higher mean diffusivity (MD) in the bilateral frontal aslant tract compared to fluent speakers, while no significant group difference was detected in the inferior fronto-occipital fasciculus. We also found significant group differences in both FA and MD of the left middle cerebellar peduncle. Comparing patterns of association with sensorimotor synchronization revealed a novel double dissociation: MD within the left inferior cerebellar peduncle was significantly correlated with mean asynchrony in AWS but not in fluent speakers, while FA within the left arcuate fasciculus was significantly correlated with mean asynchrony in fluent speakers, but not in AWS. CONCLUSIONS Our results support the view that stuttering involves altered connectivity in dorsal tracts and that AWS may rely more heavily on cerebellar tracts to process timing information. Evaluating microstructural associations with sensitive behavioral measures provides a powerful tool for discovering additional functional differences in the underlying connectivity in AWS.
Collapse
Affiliation(s)
- Sivan Jossinger
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| | - Anastasia Sares
- Department of Psychology, Concordia University, Montréal, Canada; Centre for Research on Brain, Language and Music, McGill University, Montréal, Canada
| | - Avital Zislis
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Dana Sury
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Vincent Gracco
- Centre for Research on Brain, Language and Music, McGill University, Montréal, Canada; School of Communication Sciences and Disorders, McGill University, Montréal, Canada; Haskins Laboratories, New Haven, CT, United States
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; The Department of English Literature and Linguistics, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
21
|
Llano DA, Kwok SS, Devanarayan V. Reported Hearing Loss in Alzheimer's Disease Is Associated With Loss of Brainstem and Cerebellar Volume. Front Hum Neurosci 2021; 15:739754. [PMID: 34630060 PMCID: PMC8498578 DOI: 10.3389/fnhum.2021.739754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple epidemiological studies have revealed an association between presbycusis and Alzheimer’s Disease (AD). Unfortunately, the neurobiological underpinnings of this relationship are not clear. It is possible that the two disorders share a common, as yet unidentified, risk factor, or that hearing loss may independently accelerate AD pathology. Here, we examined the relationship between reported hearing loss and brain volumes in normal, mild cognitive impairment (MCI) and AD subjects using a publicly available database. We found that among subjects with AD, individuals that reported hearing loss had smaller brainstem and cerebellar volumes in both hemispheres than individuals without hearing loss. In addition, we found that these brain volumes diminish in size more rapidly among normal subjects with reported hearing loss and that there was a significant interaction between cognitive diagnosis and the relationship between reported hearing loss and these brain volumes. These data suggest that hearing loss is linked to brainstem and cerebellar pathology, but only in the context of the pathological state of AD. We hypothesize that the presence of AD-related pathology in both the brainstem and cerebellum creates vulnerabilities in these brain regions to auditory deafferentation-related atrophy. These data have implications for our understanding of the potential neural substrates for interactions between hearing loss and AD.
Collapse
Affiliation(s)
- Daniel A Llano
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carle Neuroscience Institute, Urbana, IL, United States.,Carle Illinois College of Medicine, Urbana, IL, United States.,Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Susanna S Kwok
- Carle Illinois College of Medicine, Urbana, IL, United States
| | - Viswanath Devanarayan
- Eisai Inc., Woodcliff Lake, NJ, United States.,Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| | | |
Collapse
|
22
|
Vogel AP, Pearson-Dennett V, Magee M, Wilcox RA, Esterman A, Thewlis D, White JM, Todd G. Adults with a history of recreational cannabis use have altered speech production. Drug Alcohol Depend 2021; 227:108963. [PMID: 34419853 DOI: 10.1016/j.drugalcdep.2021.108963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 11/28/2022]
Abstract
Stereotypical depictions of speech in cannabis users often suggest slow, laboured output, yet objective evidence supporting this assumption is extremely limited. We know that depressants or hallucinogenic drugs such as cannabis can cause acute changes in communication and speech rate, but the long-lasting effects of cannabis use on speech are not well described. The aim of this study was to investigate speech in individuals with a history of recreational cannabis use compared to non-drug-using healthy controls. Speech samples were collected from a carefully described cohort of 31 adults with a history of cannabis use (but not use of illicit stimulant drugs) and 40 non-drug-using controls. Subjects completed simple and complex speech tasks including a monologue, a sustained vowel, saying the days of the week, and reading a phonetically balanced passage. Audio samples were analysed objectively using acoustic analysis for measures of timing, vocal control, and quality. Subtle differences in speech timing, vocal effort, and voice quality may exist between cannabis and control groups, however data remain equivocal. After controlling for lifetime alcohol and tobacco use and applying a false discovery rate, only spectral tilt (vocal effort and intensity) differed between groups and appeared to change in line with duration of abstinence from cannabis use. Differences between groups may reflect longer term changes to the underlying neural control of speech. Our digital analysis of speech shows there may be a signal differentiating individuals with a history of recreational cannabis use from healthy controls, in line with similar findings from gait and hand function studies.
Collapse
Affiliation(s)
- Adam P Vogel
- Centre for Neuroscience of Speech, The University of Melbourne, Parkville, VIC, 3010, Australia; Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany; Redenlab, Melbourne, Australia.
| | - Verity Pearson-Dennett
- UniSA Clinical & Health Sciences, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Michelle Magee
- Centre for Neuroscience of Speech, The University of Melbourne, Parkville, VIC, 3010, Australia; Redenlab, Melbourne, Australia
| | - Robert A Wilcox
- UniSA Clinical & Health Sciences, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia; Department of Neurology, Flinders Medical Centre, Bedford Park, SA, 5042, Australia; Human Physiology, Medical School, Flinders University, Bedford Park, SA, 5042, Australia
| | - Adrian Esterman
- UniSA Clinical & Health Sciences, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Dominic Thewlis
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Jason M White
- UniSA Clinical & Health Sciences, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Gabrielle Todd
- UniSA Clinical & Health Sciences, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia; Alliance for Research in Exercise, Nutrition and Activity (ARENA), UniSA Allied Health & Human Performance, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia.
| |
Collapse
|
23
|
Abstract
Action videogames have been shown to induce modifications in perceptual and cognitive systems, as well as in brain structure and function. Nevertheless, whether such changes are correlated with brain functional connectivity modifications outlasting the training period is not known. Functional magnetic resonance imaging (fMRI) was used in order to quantify acute and long-lasting connectivity changes following a sustained gaming experience on a first-person shooter (FPS) game. Thirty-five healthy participants were assigned to either a gaming or a control group prior to the acquisition of resting state fMRI data and a comprehensive cognitive assessment at baseline (T0), post-gaming (T1) and at a 3 months' follow-up (T2). Seed-based resting-state functional connectivity (rs-FC) analysis revealed a significant greater connectivity between left thalamus and left parahippocampal gyrus in the gamer group, both at T1 and at T2. Furthermore, a positive increase in the rs-FC between the cerebellum, Heschl's gyrus and the middle frontal gyrus paralleled improvements of in-gaming performance. In addition, baseline rs-FC of left supramarginal gyrus, left middle frontal gyrus and right cerebellum were associated with individual changes in videogame performance. Finally, enhancement of perceptual and attentional measures was observed at both T1 and T2, which correlated with a pattern of rs-FC changes in bilateral occipito-temporal regions belonging to the visual and attention fMRI networks. The present findings increase knowledge on functional connectivity changes induced by action videogames, pointing to a greater and long-lasting synchronization between brain regions associated with spatial orientation, visual discrimination and motor learning even after a relatively short multi-day gaming exposure.
Collapse
|
24
|
Treutler M, Sörös P. Functional MRI of Native and Non-native Speech Sound Production in Sequential German-English Bilinguals. Front Hum Neurosci 2021; 15:683277. [PMID: 34349632 PMCID: PMC8326338 DOI: 10.3389/fnhum.2021.683277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Bilingualism and multilingualism are highly prevalent. Non-invasive brain imaging has been used to study the neural correlates of native and non-native speech and language production, mainly on the lexical and syntactic level. Here, we acquired continuous fast event-related FMRI during visually cued overt production of exclusively German and English vowels and syllables. We analyzed data from 13 university students, native speakers of German and sequential English bilinguals. The production of non-native English sounds was associated with increased activity of the left primary sensorimotor cortex, bilateral cerebellar hemispheres (lobule VI), left inferior frontal gyrus, and left anterior insula compared to native German sounds. The contrast German > English sounds was not statistically significant. Our results emphasize that the production of non-native speech requires additional neural resources already on a basic phonological level in sequential bilinguals.
Collapse
Affiliation(s)
- Miriam Treutler
- European Medical School Oldenburg-Groningen, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Peter Sörös
- Department of Neurology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
25
|
Skipper JI, Lametti DR. Speech Perception under the Tent: A Domain-general Predictive Role for the Cerebellum. J Cogn Neurosci 2021; 33:1517-1534. [PMID: 34496370 DOI: 10.1162/jocn_a_01729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The role of the cerebellum in speech perception remains a mystery. Given its uniform architecture, we tested the hypothesis that it implements a domain-general predictive mechanism whose role in speech is determined by connectivity. We collated all neuroimaging studies reporting cerebellar activity in the Neurosynth database (n = 8206). From this set, we found all studies involving passive speech and sound perception (n = 72, 64% speech, 12.5% sounds, 12.5% music, and 11% tones) and speech production and articulation (n = 175). Standard and coactivation neuroimaging meta-analyses were used to compare cerebellar and associated cortical activations between passive perception and production. We found distinct regions of perception- and production-related activity in the cerebellum and regions of perception-production overlap. Each of these regions had distinct patterns of cortico-cerebellar connectivity. To test for domain-generality versus specificity, we identified all psychological and task-related terms in the Neurosynth database that predicted activity in cerebellar regions associated with passive perception and production. Regions in the cerebellum activated by speech perception were associated with domain-general terms related to prediction. One hallmark of predictive processing is metabolic savings (i.e., decreases in neural activity when events are predicted). To test the hypothesis that the cerebellum plays a predictive role in speech perception, we examined cortical activation between studies reporting cerebellar activation and those without cerebellar activation during speech perception. When the cerebellum was active during speech perception, there was far less cortical activation than when it was inactive. The results suggest that the cerebellum implements a domain-general mechanism related to prediction during speech perception.
Collapse
Affiliation(s)
| | - Daniel R Lametti
- University College London.,Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
26
|
Dance Improves Motor, Cognitive, and Social Skills in Children With Developmental Cerebellar Anomalies. THE CEREBELLUM 2021; 21:264-279. [PMID: 34169400 DOI: 10.1007/s12311-021-01291-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
In this multiple single-cases study, we used dance to train sensorimotor synchronization (SMS), motor, and cognitive functions in children with developmental cerebellar anomalies (DCA). DCA are rare dysfunctions of the cerebellum that affect motor and cognitive skills. The cerebellum plays an important role in temporal cognition, including SMS, which is critical for motor and cognitive development. Dancing engages the SMS neuronal circuitry, composed of the cerebellum, the basal ganglia, and the motor cortices. Thus, we hypothesized that dance has a beneficial effect on SMS skills and associated motor and cognitive functions in children with DCA. Seven children (aged 7-11) with DCA participated in a 2-month dance training protocol (3 h/week). A test-retest design protocol with multiple baselines was used to assess children's SMS skills as well as motor, cognitive, and social abilities. SMS skills were impaired in DCA before the training. The training led to improvements in SMS (reduced variability in paced tapping), balance, and executive functioning (cognitive flexibility), as well as in social skills (social cognition). The beneficial effects of the dance training were visible in all participants. Notably, gains were maintained 2 months after the intervention. These effects are likely to be sustained by enhanced activity in SMS brain networks due to the dance training protocol.
Collapse
|
27
|
Frankford SA, Heller Murray ES, Masapollo M, Cai S, Tourville JA, Nieto-Castañón A, Guenther FH. The Neural Circuitry Underlying the "Rhythm Effect" in Stuttering. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:2325-2346. [PMID: 33887150 PMCID: PMC8740675 DOI: 10.1044/2021_jslhr-20-00328] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Purpose Stuttering is characterized by intermittent speech disfluencies, which are dramatically reduced when speakers synchronize their speech with a steady beat. The goal of this study was to characterize the neural underpinnings of this phenomenon using functional magnetic resonance imaging. Method Data were collected from 16 adults who stutter and 17 adults who do not stutter while they read sentences aloud either in a normal, self-paced fashion or paced by the beat of a series of isochronous tones ("rhythmic"). Task activation and task-based functional connectivity analyses were carried out to compare neural responses between speaking conditions and groups after controlling for speaking rate. Results Adults who stutter produced fewer disfluent trials in the rhythmic condition than in the normal condition. Adults who stutter did not have any significant changes in activation between the rhythmic condition and the normal condition, but when groups were collapsed, participants had greater activation in the rhythmic condition in regions associated with speech sequencing, sensory feedback control, and timing perception. Adults who stutter also demonstrated increased functional connectivity among cerebellar regions during rhythmic speech as compared to normal speech and decreased connectivity between the left inferior cerebellum and the left prefrontal cortex. Conclusions Modulation of connectivity in the cerebellum and prefrontal cortex during rhythmic speech suggests that this fluency-inducing technique activates a compensatory timing system in the cerebellum and potentially modulates top-down motor control and attentional systems. These findings corroborate previous work associating the cerebellum with fluency in adults who stutter and indicate that the cerebellum may be targeted to enhance future therapeutic interventions. Supplemental Material https://doi.org/10.23641/asha.14417681.
Collapse
Affiliation(s)
- Saul A. Frankford
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | | | - Matthew Masapollo
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | - Shanqing Cai
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | - Jason A. Tourville
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | | | - Frank H. Guenther
- Department of Speech, Language & Hearing Sciences, Boston University, MA
- Department of Biomedical Engineering, Boston University, MA
- Department of Radiology, Massachusetts General Hospital, Boston
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge
| |
Collapse
|
28
|
Spencer C, Vannest J, Maas E, Preston JL, Redle E, Maloney T, Boyce S. Neuroimaging of the Syllable Repetition Task in Children With Residual Speech Sound Disorder. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:2223-2233. [PMID: 33705667 PMCID: PMC8740709 DOI: 10.1044/2020_jslhr-20-00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Purpose This study investigated phonological and speech motor neural networks in children with residual speech sound disorder (RSSD) during an overt Syllable Repetition Task (SRT). Method Sixteen children with RSSD with /ɹ/ errors (6F [female]; ages 8;0-12;6 [years;months]) and 16 children with typically developing speech (TD; 8F; ages 8;5-13;7) completed a functional magnetic resonance imaging experiment. Children performed the SRT ("SRT-Early Sounds") with the phonemes /b, d, m, n, ɑ/ and an adapted version ("SRT-Late Sounds") with the phonemes /ɹ, s, l, tʃ, ɑ/. We compared the functional activation and transcribed production accuracy of the RSSD and TD groups during both conditions. Expected errors were not scored as inaccurate. Results No between-group or within-group differences in repetition accuracy were found on the SRT-Early Sounds or SRT-Late Sounds tasks at any syllable sequence length. On a first-level analysis of the tasks, the TD group showed expected patterns of activation for both the SRT-Early Sounds and SRT-Late Sounds, including activation in the left primary motor cortex, left premotor cortex, bilateral anterior cingulate, bilateral primary auditory cortex, bilateral superior temporal gyrus, and bilateral insula. The RSSD group showed similar activation when correcting for multiple comparisons. In further exploratory analyses, we observed the following subthreshold patterns: (a) On the SRT-Early Sounds, greater activation was found in the left premotor cortex for the RSSD group, while greater activation was found in the left cerebellum for the TD group; (b) on the SRT-Late Sounds, a small area of greater activation was found in the right cerebellum for the RSSD group. No within-group functional differences were observed (SRT-Early Sounds vs. SRT-Late Sounds) for either group. Conclusions Performance was similar between groups, and likewise, we found that functional activation did not differ. Observed functional differences in previous studies may reflect differences in task performance, rather than fundamental differences in neural mechanisms for syllable repetition.
Collapse
Affiliation(s)
- Caroline Spencer
- Department of Communication Sciences and Disorders, University of Cincinnati, OH
| | - Jennifer Vannest
- Department of Communication Sciences and Disorders, University of Cincinnati, OH
| | - Edwin Maas
- Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA
| | - Jonathan L Preston
- Department of Communication Sciences and Disorders, Syracuse University, NY
| | - Erin Redle
- Department of Communication Sciences and Disorders, University of Cincinnati, OH
| | | | - Suzanne Boyce
- Department of Communication Sciences and Disorders, University of Cincinnati, OH
| |
Collapse
|
29
|
Yagura H, Tanaka H, Kinoshita T, Watanabe H, Motomura S, Sudoh K, Nakamura S. Selective Attention Measurement of Experienced Simultaneous Interpreters Using EEG Phase-Locked Response. Front Hum Neurosci 2021; 15:581525. [PMID: 34163336 PMCID: PMC8215497 DOI: 10.3389/fnhum.2021.581525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
We quantified the electroencephalogram signals associated with the selective attention processing of experienced simultaneous interpreters and calculated the phase-locked responses evoked by a 40-Hz auditory steady-state response (40-Hz ASSR) and the values of robust inter-trial coherence (ITC) for environmental changes. Since we assumed that an interpreter's attention ability improves with an increase in the number of years of experience of simultaneous interpretation, we divided the participants into two groups based on their simultaneous interpretation experience: experts with more than 15 years of experience (E group; n = 7) and beginners with <1 year (B group; n = 15). We also compared two conditions: simultaneous interpretation (SI) and shadowing (SH). We found a significant interaction in the ITC between years of SI experience (E and B groups) and tasks (SI and SH). This result demonstrates that the number of years of SI experience influences selective attention during interpretation.
Collapse
Affiliation(s)
- Haruko Yagura
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroki Tanaka
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Taiki Kinoshita
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroki Watanabe
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Shunnosuke Motomura
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Katsuhito Sudoh
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Satoshi Nakamura
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
30
|
Janssen N, Mendieta CCR. The Dynamics of Speech Motor Control Revealed with Time-Resolved fMRI. Cereb Cortex 2021; 30:241-255. [PMID: 31070731 DOI: 10.1093/cercor/bhz084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/08/2019] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
Holding a conversation means that speech must be started, maintained, and stopped continuously. The brain networks that underlie these aspects of speech motor control remain poorly understood. Here we collected functional magnetic resonance imaging (fMRI) data while participants produced normal and fast rate speech in response to sequences of visually presented objects. We took a non-conventional approach to fMRI data analysis that allowed us to study speech motor behavior as it unfolded over time. To this end, whole-brain fMRI signals were extracted in stimulus-locked epochs using slice-based fMRI. These data were then subjected to group independent component analysis to discover spatially independent networks that were associated with different temporal activation profiles. The results revealed two basic brain networks with different temporal dynamics: a cortical network that was activated continuously during speech production, and a second cortico-subcortical network that increased in activity during the initiation and suppression of speech production. Additional analyses explored whether key areas involved in motor suppression such as the right inferior frontal gyrus, sub-thalamic nucleus and pre-supplementary motor area provide first-order signals to stop speech. The results reveal for the first time the brain networks associated with the initiation, maintenance, and suppression of speech motor behavior.
Collapse
Affiliation(s)
- Niels Janssen
- Psychology Department, Universidad de la Laguna, La Laguna, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain.,Instituto de Neurociencias, Universidad de la Laguna, La Laguna, Spain
| | | |
Collapse
|
31
|
Peng D, Lin Q, Chang Y, Jones JA, Jia G, Chen X, Liu P, Liu H. A Causal Role of the Cerebellum in Auditory Feedback Control of Vocal Production. THE CEREBELLUM 2021; 20:584-595. [PMID: 33555544 DOI: 10.1007/s12311-021-01230-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 01/01/2023]
Abstract
Accumulating evidence demonstrates that the cerebellum is involved in a variety of cognitive functions. Recently, impaired auditory-motor integration for vocal control has been identified in patients with cerebellar degeneration, characterized by abnormally enhanced vocal compensations for pitch perturbations. However, the causal relationship between the cerebellum and auditory feedback during vocal production remains unclear. By applying anodal transcranial direct current stimulation (a-tDCS) over right cerebellum, the present study investigated cerebellar contributions to auditory-motor processing of feedback errors during vocal pitch regulation. Twenty young adults participated in a frequency-altered-feedback (FAF) task, in which they vocalized vowel sounds and heard their voice unexpectedly pitch-shifted by ± 50 or ± 200 cents. Active or sham cerebellar a-tDCS was applied either prior to or during the FAF task. Compensatory vocal responses to pitch perturbations were measured and compared across the conditions. Active cerebellar a-tDCS led to significantly larger and slower vocal compensations for pitch perturbations than sham stimulation. Moreover, this modulatory effect was observed regardless of the timing of cerebellar a-tDCS as well as the size and direction of the pitch perturbation. These findings provide the first causal evidence that the cerebellum is essentially involved in auditory feedback control of vocal production. Enhanced and slowed vocal compensations caused by cerebellar a-tDCS may be related to its inhibition on the prefrontal cortex that exerts inhibitory control over vocal compensation behavior, suggesting the importance of the cerebrocerebellar connections in this feedback control process.
Collapse
Affiliation(s)
- Danhua Peng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Lin
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yichen Chang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Guoqing Jia
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
32
|
Speech rate association with cerebellar white-matter diffusivity in adults with persistent developmental stuttering. Brain Struct Funct 2021; 226:801-816. [PMID: 33538875 DOI: 10.1007/s00429-020-02210-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Speech rate is a basic characteristic of language production, which affects the speaker's intelligibility and communication efficiency. Various speech disorders, including persistent developmental stuttering, present altered speech rate. Specifically, adults who stutter (AWS) typically exhibit a slower speech rate compared to fluent speakers. Evidence from imaging studies suggests that the cerebellum contributes to the paced production of speech. People who stutter show structural and functional abnormalities in the cerebellum. However, the involvement of the cerebellar pathways in controlling speech rate remains unexplored. Here, we assess the association of the cerebellar peduncles with speech rate in AWS and control speakers. Diffusion MRI and speech-rate data were collected in 42 participants (23 AWS, 19 controls). We used deterministic tractography with Automatic Fiber segmentation and Quantification (AFQ) to identify the superior, middle, and inferior cerebellar peduncles (SCP, MCP, ICP) bilaterally, and quantified fractional anisotropy (FA) and mean diffusivity (MD) along each tract. No significant differences were observed between AWS and controls in the diffusivity values of the cerebellar peduncles. However, AWS demonstrated a significant negative association between speech rate and FA within the left ICP, a major cerebellar pathway that transmits sensory feedback signals from the olivary nucleus into the cerebellum. The involvement of the ICP in controlling speech production in AWS is compatible with the view that stuttering stems from hyperactive speech monitoring, where even minor deviations from the speech plan are considered as errors. In conclusion, our findings suggest a plausible neural mechanism for speech rate reduction observed in AWS.
Collapse
|
33
|
Masapollo M, Segawa JA, Beal DS, Tourville JA, Nieto-Castañón A, Heyne M, Frankford SA, Guenther FH. Behavioral and neural correlates of speech motor sequence learning in stuttering and neurotypical speakers: an fMRI investigation. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2021; 2:106-137. [PMID: 34296194 PMCID: PMC8294667 DOI: 10.1162/nol_a_00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Stuttering is a neurodevelopmental disorder characterized by impaired production of coordinated articulatory movements needed for fluent speech. It is currently unknown whether these abnormal production characteristics reflect disruptions to brain mechanisms underlying the acquisition and/or execution of speech motor sequences. To dissociate learning and control processes, we used a motor sequence learning paradigm to examine the behavioral and neural correlates of learning to produce novel phoneme sequences in adults who stutter (AWS) and neurotypical controls. Participants intensively practiced producing pseudowords containing non-native consonant clusters (e.g., "gvasf") over two days. The behavioral results indicated that although the two experimental groups showed comparable learning trajectories, AWS performed significantly worse on the task prior to and after speech motor practice. Using functional magnetic resonance imaging (fMRI), the authors compared brain activity during articulation of the practiced words and a set of novel pseudowords (matched in phonetic complexity). FMRI analyses revealed no differences between AWS and controls in cortical or subcortical regions; both groups showed comparable increases in activation in left-lateralized brain areas implicated in phonological working memory and speech motor planning during production of the novel sequences compared to the practiced sequences. Moreover, activation in left-lateralized basal ganglia sites was negatively correlated with in-scanner mean disfluency in AWS. Collectively, these findings demonstrate that AWS exhibit no deficit in constructing new speech motor sequences but do show impaired execution of these sequences before and after they have been acquired and consolidated.
Collapse
Affiliation(s)
- Matthew Masapollo
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL
| | - Jennifer A. Segawa
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
- Departments of Neuroscience and Biology, Stonehill College, Easton, MA
| | - Deryk S. Beal
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
- Department of Speech-Language Pathology, University of Toronto, Toronto, Canada
| | - Jason A. Tourville
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
| | | | - Matthias Heyne
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
| | - Saul A. Frankford
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
| | - Frank H. Guenther
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA
- Department of Biomedical Engineering, Boston University, Boston, MA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
34
|
Sadoun A, Chauhan T, Mameri S, Zhang Y, Barone P, Deguine O, Strelnikov K. Stimulus-specific information is represented as local activity patterns across the brain. Neuroimage 2020; 223:117326. [PMID: 32882381 DOI: 10.1016/j.neuroimage.2020.117326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
|
35
|
Pinheiro AP, Schwartze M, Kotz SA. Cerebellar circuitry and auditory verbal hallucinations: An integrative synthesis and perspective. Neurosci Biobehav Rev 2020; 118:485-503. [DOI: 10.1016/j.neubiorev.2020.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
|
36
|
Tezel-Bayraktaroglu O, Bayraktaroglu Z, Demirtas-Tatlidede A, Demiralp T, Oge AE. Neuronavigated rTMS inhibition of right pars triangularis anterior in stuttering: Differential effects on reading and speaking. BRAIN AND LANGUAGE 2020; 210:104862. [PMID: 32979643 DOI: 10.1016/j.bandl.2020.104862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Functional neuroimaging studies show an overactivation of speech and language related homologous areas of the right hemisphere in persons who stutter. In this study, we inhibited Broca's homologues using 1 Hz repetitive transcranial magnetic stimulation (rTMS) and assessed its effects on stuttering severity. The investigated cortical areas included pars opercularis (BA44), anterior and posterior pars triangularis (BA45), mouth area on the primary motor cortex (BA4). We collected reading and speaking samples before and after rTMS sessions and calculated the percentage of syllables stuttered. Only right anterior pars triangularis stimulation induced significant changes in speech fluency. Notably, the effects were differential for reading and speaking conditions. Overall, our results provide supportive evidence that right anterior BA45 may be a critical region for stuttering. The observed differential effects following the inhibition of right anterior BA45 merits further study of contributions of this region on different language domains in persons who stutter.
Collapse
Affiliation(s)
| | - Zubeyir Bayraktaroglu
- Istanbul Medipol University, International School of Medicine, Department of Physiology, 34815 Beykoz, Istanbul, Turkey; Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Restorative and Regenerative Medicine Research Center (REMER), functional Imaging and Cognitive Affective Neuroscience Laboratory (fINCAN), 34810 Beykoz, Istanbul, Turkey
| | - Asli Demirtas-Tatlidede
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, 34093 Capa, Istanbul, Turkey; Bahcesehir University, School of Medicine, Department of Neurology, 34734 Kadikoy, Istanbul, Turkey
| | - Tamer Demiralp
- Istanbul University, Hulusi Behcet Life Sciences Research Laboratory-Neuroimaging Unit, 34093 Capa, Istanbul, Turkey; Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, 34093 Capa, Istanbul, Turkey
| | - A Emre Oge
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, 34093 Capa, Istanbul, Turkey
| |
Collapse
|
37
|
de Lima Xavier L, Simonyan K. Neural Representations of the Voice Tremor Spectrum. Mov Disord 2020; 35:2290-2300. [PMID: 32976662 DOI: 10.1002/mds.28259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Voice tremor is a common movement disorder that manifests as involuntary oscillations of laryngeal muscles, leading to rhythmic alterations in voice pitch and loudness. Differential diagnosis of essential tremor of voice (ETv) is often challenging and includes dystonic tremor of voice (DTv), which is characterized by irregular, isometric contractions of laryngeal muscles during dystonic activity. Although clinical characteristics of voice tremor are well described, the pathophysiology underlying its heterogeneous phenomenology remains limited. METHODS We used a multimodal approach of functional magnetic resonance imaging for assessment of brain activity during symptomatic speech production, high-resolution magnetic resonance imaging for the examination of cortical thickness and gray matter volume, and diffusion-weighted imaging for evaluation of white matter integrity to identify disorder-specific neural alterations and their relationships with the symptomatology of ETv and DTv. RESULTS We found a broad overlap between cortical alterations in ETv and DTv, involving sensorimotor regions responsible for the integration of multisensory information during speech production, such as primary sensorimotor, inferior/superior parietal, and inferior temporal cortices. In addition, ETv and DTv showed unique patterns of abnormalities in regions controlling speech motor preparation, which were localized in the cerebellum in ETv and the premotor cortex, insula, and superior temporal gyrus in DTv. Neural alterations in superior parietal and inferior temporal cortices were correlated with ETv severity, whereas changes in the left premotor cortex were associated with DTv severity. CONCLUSIONS Our findings point to the pathophysiological spectrum underlying ETv and DTv and favor a more heterogeneous rather than dichotomous diagnostic classification of these voice tremor disorders. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Laura de Lima Xavier
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina Simonyan
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Dellatolas G, Câmara-Costa H. The role of cerebellum in the child neuropsychological functioning. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:265-304. [PMID: 32958180 DOI: 10.1016/b978-0-444-64150-2.00023-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter proposes a review of neuropsychologic and behavior findings in pediatric pathologies of the cerebellum, including cerebellar malformations, pediatric ataxias, cerebellar tumors, and other acquired cerebellar injuries during childhood. The chapter also contains reviews of the cerebellar mutism/posterior fossa syndrome, reported cognitive associations with the development of the cerebellum in typically developing children and subjects born preterm, and the role of the cerebellum in neurodevelopmental disorders such as autism spectrum disorders and developmental dyslexia. Cognitive findings in pediatric cerebellar disorders are considered in the context of known cerebellocerebral connections, internal cellular organization of the cerebellum, the idea of a universal cerebellar transform and computational internal models, and the role of the cerebellum in specific cognitive and motor functions, such as working memory, language, timing, or control of eye movements. The chapter closes with a discussion of the strengths and weaknesses of the cognitive affective syndrome as it has been described in children and some conclusions and perspectives.
Collapse
Affiliation(s)
- Georges Dellatolas
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France.
| | - Hugo Câmara-Costa
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France; Centre d'Etudes en Santé des Populations, INSERM U1018, Paris, France
| |
Collapse
|
39
|
De Letter M, Criel Y, Lind A, Hartsuiker R, Santens P. Articulation lost in space. The effects of local orobuccal anesthesia on articulation and intelligibility of phonemes. BRAIN AND LANGUAGE 2020; 207:104813. [PMID: 32442772 DOI: 10.1016/j.bandl.2020.104813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Motor speech requires numerous neural computations including feedforward and feedback control mechanisms. A reduction of auditory or somatosensory feedback may be implicated in disorders of speech, as predicted by various models of speech control. In this paper the effects of reduced somatosensory feedback on articulation and intelligibility of individual phonemes was evaluated by using topical anesthesia of orobuccal structures in 24 healthy subjects. The evaluation was done using a combination of perceptual intelligibility estimation of consonants and vowels and acoustic analysis of motor speech. A significantly reduced intelligibility was found, with a major impact on consonant formation. Acoustic analysis demonstrated disturbed diadochokinesis. These results underscore the clinical importance of somatosensory feedback in speech control. The interpretation of these findings in the context of speech control models, neuro-anatomy and clinical neurology may have implications for subtyping of dysarthria.
Collapse
Affiliation(s)
- Miet De Letter
- Department of Rehabilitation Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Yana Criel
- Department of Rehabilitation Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Andreas Lind
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium; Department of Philosophy, Lund University Cognitive Science, Lund University, Box 192, 221 00 Lund, Sweden
| | - Robert Hartsuiker
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
40
|
Zhang H, Bao Y, Feng Y, Hu H, Wang Y. Evidence for Reciprocal Structural Network Interactions Between Bilateral Crus Lobes and Broca's Complex. Front Neuroanat 2020; 14:27. [PMID: 32625067 PMCID: PMC7316155 DOI: 10.3389/fnana.2020.00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/05/2020] [Indexed: 11/24/2022] Open
Abstract
While the proximal dentatothalamocortical tracts are considered pivotal in the occurrence of cerebellar mutism syndrome (CMS) after medulloblastoma resection, how the cerebellum participates in motor–speech networks through direct structural connectivity is still unclear. Via tractography, we provide evidence of cerebellar streamlines projecting into the left inferior frontal gyrus majorly connecting Broca’s complex and the bilateral Crus lobes. The streamlines, named Crus–Broca tracts, originated from the bilateral Crus lobes, synapsed onto the dentate nucleus, ascended into the superior cerebellar peduncle (where these streamlines were closely superior to the superior border of the supratonsillar cleft and the superolateral roof of the fourth ventricle), surprisingly bypassed the left red nucleus and the left thalamus, and ended at the subregions of Broca’s complex. The streamlines, named Broca–Crus tracts, originated from the subregions of Broca’s complex and ended predominantly at the right Crus lobes. If verified, the existence of these connections would support the notion of the bilateral cerebellums’ participation in motor–speech planning, and the anatomical relationship of Broca–Crus tracts with the supratonsillar cleft would merit consideration for further studies aimed at further elucidating CMS mechanisms.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China.,Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Bao
- Department of Neurosurgery, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Yuan Feng
- Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haijun Hu
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yibao Wang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| |
Collapse
|
41
|
Abstract
Vocal affect is a subcomponent of emotion programs that coordinate a variety of physiological and psychological systems. Emotional vocalizations comprise a suite of vocal behaviors shaped by evolution to solve adaptive social communication problems. The acoustic forms of vocal emotions are often explicable with reference to the communicative functions they serve. An adaptationist approach to vocal emotions requires that we distinguish between evolved signals and byproduct cues, and understand vocal affect as a collection of multiple strategic communicative systems subject to the evolutionary dynamics described by signaling theory. We should expect variability across disparate societies in vocal emotion according to culturally evolved pragmatic rules, and universals in vocal production and perception to the extent that form–function relationships are present.
Collapse
Affiliation(s)
- Gregory A. Bryant
- Department of Communication, Center for Behavior, Evolution, and Culture, University of California, Los Angeles, USA
| |
Collapse
|
42
|
Dash D, Ferrari P, Wang J. Decoding Imagined and Spoken Phrases From Non-invasive Neural (MEG) Signals. Front Neurosci 2020; 14:290. [PMID: 32317917 PMCID: PMC7154084 DOI: 10.3389/fnins.2020.00290] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 03/13/2020] [Indexed: 11/16/2022] Open
Abstract
Speech production is a hierarchical mechanism involving the synchronization of the brain and the oral articulators, where the intention of linguistic concepts is transformed into meaningful sounds. Individuals with locked-in syndrome (fully paralyzed but aware) lose their motor ability completely including articulation and even eyeball movement. The neural pathway may be the only option to resume a certain level of communication for these patients. Current brain-computer interfaces (BCIs) use patients' visual and attentional correlates to build communication, resulting in a slow communication rate (a few words per minute). Direct decoding of imagined speech from the neural signals (and then driving a speech synthesizer) has the potential for a higher communication rate. In this study, we investigated the decoding of five imagined and spoken phrases from single-trial, non-invasive magnetoencephalography (MEG) signals collected from eight adult subjects. Two machine learning algorithms were used. One was an artificial neural network (ANN) with statistical features as the baseline approach. The other was convolutional neural networks (CNNs) applied on the spatial, spectral and temporal features extracted from the MEG signals. Experimental results indicated the possibility to decode imagined and spoken phrases directly from neuromagnetic signals. CNNs were found to be highly effective with an average decoding accuracy of up to 93% for the imagined and 96% for the spoken phrases.
Collapse
Affiliation(s)
- Debadatta Dash
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, United States
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Paul Ferrari
- MEG Lab, Dell Children's Medical Center, Austin, TX, United States
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
| | - Jun Wang
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Communication Sciences and Disorders, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
43
|
Hull C. Prediction signals in the cerebellum: beyond supervised motor learning. eLife 2020; 9:54073. [PMID: 32223891 PMCID: PMC7105376 DOI: 10.7554/elife.54073] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
While classical views of cerebellar learning have suggested that this structure predominantly operates according to an error-based supervised learning rule to refine movements, emerging evidence suggests that the cerebellum may also harness a wider range of learning rules to contribute to a variety of behaviors, including cognitive processes. Together, such evidence points to a broad role for cerebellar circuits in generating and testing predictions about movement, reward, and other non-motor operations. However, this expanded view of cerebellar processing also raises many new questions about how such apparent diversity of function arises from a structure with striking homogeneity. Hence, this review will highlight both current evidence for predictive cerebellar circuit function that extends beyond the classical view of error-driven supervised learning, as well as open questions that must be addressed to unify our understanding cerebellar circuit function.
Collapse
Affiliation(s)
- Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| |
Collapse
|
44
|
Dash D, Ferrari P, Malik S, Montillo A, Maldjian JA, Wang J. Determining the Optimal Number of MEG Trials: A Machine Learning and Speech Decoding Perspective. BRAIN INFORMATICS : INTERNATIONAL CONFERENCE, BI 2018, ARLINGTON, TX, USA, DECEMBER 7-9, 2018, PROCEEDINGS. INTERNATIONAL CONFERENCE ON BRAIN INFORMATICS (2018 : ARLINGTON, TEX.) 2019; 11309:163-172. [PMID: 31768504 PMCID: PMC6876632 DOI: 10.1007/978-3-030-05587-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Advancing the knowledge about neural speech mechanisms is critical for developing next-generation, faster brain computer interface to assist in speech communication for the patients with severe neurological conditions (e.g., locked-in syndrome). Among current neuroimaging techniques, Magnetoencephalography (MEG) provides direct representation for the large-scale neural dynamics of underlying cognitive processes based on its optimal spatiotemporal resolution. However, the MEG measured neural signals are smaller in magnitude compared to the background noise and hence, MEG usually suffers from a low signal-to-noise ratio (SNR) at the single-trial level. To overcome this limitation, it is common to record many trials of the same event-task and use the time-locked average signal for analysis, which can be very time consuming. In this study, we investigated the effect of the number of MEG recording trials required for speech decoding using a machine learning algorithm. We used a wavelet filter for generating the denoised neural features to train an Artificial Neural Network (ANN) for speech decoding. We found that wavelet based denoising increased the SNR of the neural signal prior to analysis and facilitated accurate speech decoding performance using as few as 40 single-trials. This study may open up the possibility of limiting MEG trials for other task evoked studies as well.
Collapse
Affiliation(s)
- Debadatta Dash
- Department of Bioengineering, University of Texas at Dallas, Richardson, USA
| | - Paul Ferrari
- Department of Psychology, University of Texas at Austin, Austin, USA
- MEG Laboratory, Dell Children's Medical Center, Austin, USA
| | - Saleem Malik
- MEG Lab, Cook Children's Hospital, Fort Worth, TX, USA
| | - Albert Montillo
- Department of Radiology, UT Southwestern Medical Center, Dallas, USA
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, USA
| | - Joseph A Maldjian
- Department of Radiology, UT Southwestern Medical Center, Dallas, USA
| | - Jun Wang
- Department of Bioengineering, University of Texas at Dallas, Richardson, USA
- Callier Center for Communication Disorders, University of Texas at Dallas, Richardson, USA
| |
Collapse
|
45
|
Gill JS, Sillitoe RV. Functional Outcomes of Cerebellar Malformations. Front Cell Neurosci 2019; 13:441. [PMID: 31636540 PMCID: PMC6787289 DOI: 10.3389/fncel.2019.00441] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The cerebellum is well-established as a primary center for controlling sensorimotor functions. However, recent experiments have demonstrated additional roles for the cerebellum in higher-order cognitive functions such as language, emotion, reward, social behavior, and working memory. Based on the diversity of behaviors that it can influence, it is therefore not surprising that cerebellar dysfunction is linked to motor diseases such as ataxia, dystonia, tremor, and Parkinson's disease as well to non-motor disorders including autism spectrum disorders (ASD), schizophrenia, depression, and anxiety. Regardless of the condition, there is a growing consensus that developmental disturbances of the cerebellum may be a central culprit in triggering a number of distinct pathophysiological processes. Here, we consider how cerebellar malformations and neuronal circuit wiring impact brain function and behavior during development. We use the cerebellum as a model to discuss the expanding view that local integrated brain circuits function within the context of distributed global networks to communicate the computations that drive complex behavior. We highlight growing concerns that neurological and neuropsychiatric diseases with severe behavioral outcomes originate from developmental insults to the cerebellum.
Collapse
Affiliation(s)
- Jason S. Gill
- Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
46
|
Puyjarinet F, Bégel V, Gény C, Driss V, Cuartero MC, Kotz SA, Pinto S, Dalla Bella S. Heightened orofacial, manual, and gait variability in Parkinson's disease results from a general rhythmic impairment. NPJ PARKINSONS DISEASE 2019; 5:19. [PMID: 31583269 PMCID: PMC6761142 DOI: 10.1038/s41531-019-0092-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023]
Abstract
Individuals with Parkinson’s disease (PD) experience rhythm disorders in a number of motor tasks, such as (i) oral diadochokinesis, (ii) finger tapping, and (iii) gait. These common motor deficits may be signs of “general dysrhythmia”, a central disorder spanning across effectors and tasks, and potentially sharing the same neural substrate. However, to date, little is known about the relationship between rhythm impairments across domains and effectors. To test this hypothesis, we assessed whether rhythmic disturbances in three different domains (i.e., orofacial, manual, and gait) can be related in PD. Moreover, we investigated whether rhythmic motor performance across these domains can be predicted by rhythm perception, a measure of central rhythmic processing not confounded with motor output. Twenty-two PD patients (mean age: 69.5 ± 5.44) participated in the study. They underwent neurological and neuropsychological assessments, and they performed three rhythmic motor tasks. For oral diadochokinesia, participants had to repeatedly produce a trisyllable pseudoword. For gait, they walked along a computerized walkway. For the manual task, patients had to repeatedly produce finger taps. The first two rhythmic motor tasks were unpaced, and the manual tapping task was performed both without a pacing stimulus and musically paced. Rhythm perception was also tested. We observed that rhythmic variability of motor performances (inter-syllable, inter-tap, and inter-stride time error) was related between the three functions. Moreover, rhythmic performance was predicted by rhythm perception abilities, as demonstrated with a logistic regression model. Hence, rhythm impairments in different motor domains are found to be related in PD and may be underpinned by a common impaired central rhythm mechanism, revealed by a deficit in rhythm perception. These results may provide a novel perspective on how interpret the effects of rhythm-based interventions in PD, within and across motor domains.
Collapse
Affiliation(s)
- Frédéric Puyjarinet
- 1EuroMov Laboratory, University of Montpellier, 700 Avenue du Pic Saint Loup, 34090 Montpellier, France
| | - Valentin Bégel
- Charles-de-Gaulle University, Lille 3, 42 Rue Paul Duez, 59 000 Lille, France
| | - Christian Gény
- 3Neurology Department, CHRU of Montpellier, 80 Avenue Augustin Fliche, 34000 Montpellier, France
| | - Valérie Driss
- 4Investigation Clinic Center, CHRU of Montpellier, 80 Avenue Augustin Fliche, 34000 Montpellier, France
| | | | - Sonja A Kotz
- 6Department of Neuropsychology and Psychopharmacology, University of Maastricht, Universiteitssingel, 6200 MD Maastricht, Netherlands
| | - Serge Pinto
- 5Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France
| | - Simone Dalla Bella
- 1EuroMov Laboratory, University of Montpellier, 700 Avenue du Pic Saint Loup, 34090 Montpellier, France.,7International Laboratory for Brain, Music and Sound Research (BRAMS), 90 Vincent-d'Indy Ave., Outremont, QC H2V 2S9 Canada.,8Department of Psychology, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montréal, QCH3T 1J4 Montreal, Canada.,University of Economics and Human Sciences in Warsaw, Okopowa59, 01-043 Warsaw, Poland
| |
Collapse
|
47
|
Heffley W, Hull C. Classical conditioning drives learned reward prediction signals in climbing fibers across the lateral cerebellum. eLife 2019; 8:46764. [PMID: 31509108 PMCID: PMC6845228 DOI: 10.7554/elife.46764] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/30/2019] [Indexed: 01/03/2023] Open
Abstract
Classical models of cerebellar learning posit that climbing fibers operate according to a supervised learning rule to instruct changes in motor output by signaling the occurrence of movement errors. However, cerebellar output is also associated with non-motor behaviors, and recently with modulating reward association pathways in the VTA. To test how the cerebellum processes reward related signals in the same type of classical conditioning behavior typically studied to evaluate reward processing in the VTA and striatum, we have used calcium imaging to visualize instructional signals carried by climbing fibers across the lateral cerebellum in mice before and after learning. We find distinct climbing fiber responses in three lateral cerebellar regions that can each signal reward prediction. These instructional signals are well suited to guide cerebellar learning based on reward expectation and enable a cerebellar contribution to reward driven behaviors, suggesting a broad role for the lateral cerebellum in reward-based learning.
Collapse
Affiliation(s)
- William Heffley
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| | - Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| |
Collapse
|
48
|
Li W, Zhuang J, Guo Z, Jones JA, Xu Z, Liu H. Cerebellar contribution to auditory feedback control of speech production: Evidence from patients with spinocerebellar ataxia. Hum Brain Mapp 2019; 40:4748-4758. [PMID: 31365181 DOI: 10.1002/hbm.24734] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/17/2019] [Accepted: 07/15/2019] [Indexed: 11/10/2022] Open
Abstract
The cerebellum has been implicated in the feedforward control of speech production. However, the role of the cerebellum in the feedback control of speech production remains unclear. To address this question, the present event-related potential study examined the behavioral and neural correlates of auditory feedback control of vocal production in patients with spinocerebellar ataxia (SCA) and healthy controls. All participants were instructed to produce sustained vowels while hearing their voice unexpectedly pitch-shifted -200 or -500 cents. The behavioral results revealed significantly larger vocal compensations for pitch perturbations in patients with SCA relative to healthy controls. At the cortical level, patients with SCA exhibited significantly smaller cortical P2 responses that were source localized in the right superior temporal gyrus, primary auditory cortex, and supramarginal gyrus than healthy controls. These findings indicate that reduced brain activity in the right temporal and parietal regions are significant neural contributors to abnormal auditory-motor processing of vocal pitch regulation as a consequence of cerebellar degeneration, which may be related to disrupted reciprocal interactions between the cerebellum and cortical regions that support the top-down modulation of auditory-vocal integration. These differences in behavior and cortical activity between healthy controls and patients with SCA demonstrate that the cerebellum is not only essential for feedforward control but also plays a crucial role in the feedback-based control of speech production.
Collapse
Affiliation(s)
- Weifeng Li
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong ProvincialPeople's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiajun Zhuang
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong
| | - Zhiqiang Guo
- Department of Computer Science and Technology, Zhuhai College of Jilin University, Zhuhai, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Zhiqin Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
49
|
Hernández M, Ventura-Campos N, Costa A, Miró-Padilla A, Ávila C. Brain networks involved in accented speech processing. BRAIN AND LANGUAGE 2019; 194:12-22. [PMID: 30959385 DOI: 10.1016/j.bandl.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
We investigated the neural correlates of accented speech processing (ASP) with an fMRI study that overcame prior limitations in this line of research: we preserved intelligibility by using two regional accents that differ in prosody but only mildly in phonetics (Latin American and Castilian Spanish), and we used independent component analysis to identify brain networks as opposed to isolated regions. ASP engaged a speech perception network composed primarily of structures related with the processing of prosody (cerebellum, putamen, and thalamus). This network also included anterior fronto-temporal areas associated with lexical-semantic processing and a portion of the inferior frontal gyrus linked to executive control. ASP also recruited domain-general executive control networks related with cognitive demands (dorsal attentional and default mode networks) and the processing of salient events (salience network). Finally, the reward network showed a preference for the native accent, presumably revealing people's sense of social belonging.
Collapse
Affiliation(s)
- Mireia Hernández
- Section of Cognitive Processes, Department of Cognition, Development, and Educational Psychology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Noelia Ventura-Campos
- Neuropsychology and Functional Imaging Group, Department of Basic Psychology, Clinical Psychology, and Psychobiology, Universitat Jaume I, Castellón, Spain; Department of Education and Specific Didactics, Universitat Jaume I, Castellón, Spain
| | - Albert Costa
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Anna Miró-Padilla
- Neuropsychology and Functional Imaging Group, Department of Basic Psychology, Clinical Psychology, and Psychobiology, Universitat Jaume I, Castellón, Spain
| | - César Ávila
- Neuropsychology and Functional Imaging Group, Department of Basic Psychology, Clinical Psychology, and Psychobiology, Universitat Jaume I, Castellón, Spain
| |
Collapse
|
50
|
Murphy E. No Country for Oldowan Men: Emerging Factors in Language Evolution. Front Psychol 2019; 10:1448. [PMID: 31275219 PMCID: PMC6594215 DOI: 10.3389/fpsyg.2019.01448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/06/2019] [Indexed: 01/14/2023] Open
Abstract
Language evolution has long been researched. I will review a number of broad, emerging research directions which arguably have the potential to contribute to our understanding of language evolution. Emerging topics in genomics and neurolinguistics are explored, and human-specific levels of braincase globularity - and the broader process of self-domestication within which globularity seems capable of being encapsulated - will be argued to be the central pillars of any satisfactory and interdisciplinary model of language evolution.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom
| |
Collapse
|