1
|
Ning Y, Zhang Y, Jiang T, Feng J, Zhan J, Ou C, Wang L. LRP1-mediated p-tau propagation contributes to cognitive impairment after chronic neuropathic pain in rats. Neurosci Res 2024:S0168-0102(24)00155-X. [PMID: 39674403 DOI: 10.1016/j.neures.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Trigeminal neuralgia (TN) is a prevalent chronic neuropathic pain syndrome characterized by severe pain, often accompanied by cognitive dysfunction and cerebral degeneration. However, its mechanisms remain poorly understood. Hyperphosphorylation of tau protein (p-tau) is often seen in neurodegenerative disorders such as Alzheimer's disease (AD). LRP1 expression on brain neurons and microglial cells is believed to facilitate the propagation of p-tau. We established a TN rat model via infraorbital nerve chronic constrictive injury (ION-CCI). Once the model was established, we investigated the association between p-tau and cognitive impairment in TN rats by evaluating behavioral and degenerative markers. During the initial phase, we noted an increase in p-tau level in the prefrontal cortex and hippocampal tissues of TN rats. The accompanied impaired learning and memory abilities suggested cognitive dysfunction. Blocking p-tau synthesis by orally administering a protein phosphatase and by injecting adenoviral vectors targeting LRP1 into the lateral ventricle of rats ameliorated cognitive impairment. This suggests that cognitive decline in TN rats is linked to elevated p-tau levels. Our findings show that LRP1-mediated p-tau propagation may drive cognitive impairment associated with neuropathic pain in TN rats.
Collapse
Affiliation(s)
- Youzhi Ning
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Zhang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Jiang
- Department of Anesthesiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Zhan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cehua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Lu Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Meng J, Zhang T, Hao T, Xie X, Zhang M, Zhang L, Wan X, Zhu C, Li Q, Wang K. Functional and Structural Abnormalities in the Pain Network of Generalized Anxiety Disorder Patients with Pain Symptoms. Neuroscience 2024; 543:28-36. [PMID: 38382693 DOI: 10.1016/j.neuroscience.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Pain symptoms significantly impact the well-being and work capacity of individuals with generalized anxiety disorder (GAD), and hinder treatment and recovery. Despite existing literature focusing on the neural substrate of pain and anxiety separately, further exploration is needed to understand the possible neuroimaging mechanisms of the pain symptoms in GAD patients. We recruited 73 GAD patients and 75 matched healthy controls (HC) for clinical assessments, as well as resting-state functional and structural magnetic resonance imaging scans. We defined a pain-related network through a published meta-analysis, including the insula, thalamus, periaqueductal gray, prefrontal cortex, anterior cingulate cortex, amygdala, and hippocampus. Subsequently, we conducted the regional homogeneity (ReHo) and the gray matter volume (GMV) within the pain-related network. Correlation analysis was then employed to explore associations between abnormal regions and self-reported outcomes, assessed using the Patient Health Questionnaire-15 (PHQ-15) and pain scores. We observed significantly increased ReHo in the bilateral insula but decreased GMV in the bilateral thalamus of GAD compared to HC. Further correlation analysis revealed a positive correlation between ReHo of the left anterior insula and pain scores in GAD patients, while a respective negative correlation between GMV of the bilateral thalamus and PHQ-15 scores. In summary, GAD patients exhibit structural and functional abnormalities in pain-related networks. The enhanced ReHo in the left anterior insula is correlated with pain symptoms, which might be a crucial brain region of pain symptoms in GAD.
Collapse
Affiliation(s)
- Jie Meng
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Ting Zhang
- Department of Psychiatry, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Tong Hao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Xiaohui Xie
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Mengdan Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Lei Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Xingsong Wan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Chunyan Zhu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China; Institute of Artificial Intelligence, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Qianqian Li
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China.
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China; Institute of Artificial Intelligence, University of Science and Technology of China, Hefei, Anhui Province, China.
| |
Collapse
|
3
|
Lv SS, Lv XJ, Cai YQ, Hou XY, Zhang ZZ, Wang GH, Chen LQ, Lv N, Zhang YQ. Corticotropin-releasing hormone neurons control trigeminal neuralgia-induced anxiodepression via a hippocampus-to-prefrontal circuit. SCIENCE ADVANCES 2024; 10:eadj4196. [PMID: 38241377 PMCID: PMC10798562 DOI: 10.1126/sciadv.adj4196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Anxiety and depression are frequently observed in patients suffering from trigeminal neuralgia (TN), but neural circuits and mechanisms underlying this association are poorly understood. Here, we identified a dedicated neural circuit from the ventral hippocampus (vHPC) to the medial prefrontal cortex (mPFC) that mediates TN-related anxiodepression. We found that TN caused an increase in excitatory synaptic transmission from vHPCCaMK2A neurons to mPFC inhibitory neurons marked by the expression of corticotropin-releasing hormone (CRH). Activation of CRH+ neurons subsequently led to feed-forward inhibition of layer V pyramidal neurons in the mPFC via activation of the CRH receptor 1 (CRHR1). Inhibition of the vHPCCaMK2A-mPFCCRH circuit ameliorated TN-induced anxiodepression, whereas activating this pathway sufficiently produced anxiodepressive-like behaviors. Thus, our studies identified a neural pathway driving pain-related anxiodepression and a molecular target for treating pain-related psychiatric disorders.
Collapse
Affiliation(s)
- Su-Su Lv
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xue-Jing Lv
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ya-Qi Cai
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xin-Yu Hou
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhi-Zhe Zhang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Guo-Hong Wang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Li-Qiang Chen
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ning Lv
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | | |
Collapse
|
4
|
Tran H, Feng Y, Chao D, Liu QS, Hogan QH, Pan B. Descending mechanism by which medial prefrontal cortex endocannabinoid signaling controls the development of neuropathic pain and neuronal activity of dorsal root ganglion. Pain 2024; 165:102-114. [PMID: 37463226 PMCID: PMC10787817 DOI: 10.1097/j.pain.0000000000002992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/05/2023] [Indexed: 07/20/2023]
Abstract
ABSTRACT Although regulation of nociceptive processes in the dorsal horn by deep brain structures has long been established, the role of cortical networks in pain regulation is minimally explored. The medial prefrontal cortex (mPFC) is a key brain area in pain processing that receives ascending nociceptive input and exerts top-down control of pain sensation. We have shown critical changes in mPFC synaptic function during neuropathic pain, controlled by endocannabinoid (eCB) signaling. This study tests whether mPFC eCB signaling modulates neuropathic pain through descending control. Intra-mPFC injection of cannabinoid receptor type 1 (CB1R) agonist WIN-55,212-2 (WIN) in the chronic phase transiently alleviates the pain-like behaviors in spared nerve injury (SNI) rats. By contrast, intra-mPFC injection of CB1R antagonist AM4113 in the early phase of neuropathic pain reduces the development of pain-like behaviors in the chronic phase. Spared nerve injury reduced the mechanical threshold to induce action potential firing of dorsal horn wide-dynamic-range neurons, but this was reversed in rats by WIN in the chronic phase of SNI and by mPFC injection of AM4113 in the early phase of SNI. Elevated dorsal root ganglion neuronal activity after injury was also diminished in rats by mPFC injection of AM4113, potentially by reducing antidromic activity and subsequent neuronal inflammation. These findings suggest that depending on the phase of the pain condition, both blocking and activating CB1 receptors in the mPFC can regulate descending control of pain and affect both dorsal horn neurons and peripheral sensory neurons, contributing to changes in pain sensitivity.
Collapse
Affiliation(s)
- Hai Tran
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Yin Feng
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Dongman Chao
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Qing-song Liu
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| |
Collapse
|
5
|
Cheng Y, Wu B, Huang J, Chen Y. Research Progress on the Mechanisms of Central Post-Stroke Pain: A Review. Cell Mol Neurobiol 2023; 43:3083-3098. [PMID: 37166685 DOI: 10.1007/s10571-023-01360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Central Post-Stroke Pain (CPSP) is a primary sequelae of stroke that can develop in the body part corresponding to the cerebrovascular lesion after stroke, most typically after ischemic stroke but also after hemorrhagic stroke. The pathogenesis of CPSP is currently unknown, and research into its mechanism is ongoing. To summarize current research on the CPSP mechanism and provide guidance for future studies. Use "central post-stroke pain," "stroke AND thalamic pain," "stroke AND neuropathic pain," "post-stroke thalamic pain" as the search term. The search was conducted in the PubMed and China National Knowledge Infrastructure databases, summarizing and classifying the retrieved mechanism studies. The mechanistic studies on CPSP are extensive, and we categorized the included mechanistic studies and summarized them in terms of relevant pathway studies, relevant signals and receptors, relevant neural tissues, and described endoplasmic reticulum stress and other relevant studies, as well as summarized the mechanisms of acupuncture treatment. Studies have shown that the pathogenesis of CPSP involves the entire spinal-thalamo-cortical pathway and that multiple substances in the nervous system are involved in the formation and development of CPSP. Among them, the relevant receptors and signals are the hotspot of research, and the discovery and exploration of different receptors and signals have provided a wide range of therapeutic ideas for CPSP. As a very effective treatment, acupuncture is less studied regarding the analgesic mechanism of CPSP, and further experimental studies are still needed.
Collapse
Affiliation(s)
- Yupei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| | - Bangqi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China.
| | - Jingjie Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| | - Yameng Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| |
Collapse
|
6
|
Chen C, Sun L, Adler A, Zhou H, Zhang L, Zhang L, Deng J, Bai Y, Zhang J, Yang G, Gan WB, Tang P. Synchronized activity of sensory neurons initiates cortical synchrony in a model of neuropathic pain. Nat Commun 2023; 14:689. [PMID: 36755026 PMCID: PMC9908980 DOI: 10.1038/s41467-023-36093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Increased low frequency cortical oscillations are observed in people with neuropathic pain, but the cause of such elevated cortical oscillations and their impact on pain development remain unclear. By imaging neuronal activity in a spared nerve injury (SNI) mouse model of neuropathic pain, we show that neurons in dorsal root ganglia (DRG) and somatosensory cortex (S1) exhibit synchronized activity after peripheral nerve injury. Notably, synchronized activity of DRG neurons occurs within hours after injury and 1-2 days before increased cortical oscillations. This DRG synchrony is initiated by axotomized neurons and mediated by local purinergic signaling at the site of nerve injury. We further show that synchronized DRG activity after SNI is responsible for increasing low frequency cortical oscillations and synaptic remodeling in S1, as well as for inducing animals' pain-like behaviors. In naive mice, enhancing the synchrony, not the level, of DRG neuronal activity causes synaptic changes in S1 and pain-like behaviors similar to SNI mice. Taken together, these results reveal the critical role of synchronized DRG neuronal activity in increasing cortical plasticity and oscillations in a neuropathic pain model. These findings also suggest the potential importance of detection and suppression of elevated cortical oscillations in neuropathic pain states.
Collapse
Affiliation(s)
- Chao Chen
- Department of Orthopaedics, Peking 301 Hospital, Beijing, China
- Department of Hand Surgery, Shenzhen People's Hospital, Second Clinical Medicine College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Linlin Sun
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Neuroscience Research Institute, Peking University, Beijing, China
| | - Avital Adler
- Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Hang Zhou
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Licheng Zhang
- Department of Orthopaedics, Peking 301 Hospital, Beijing, China
| | - Lihai Zhang
- Department of Orthopaedics, Peking 301 Hospital, Beijing, China
| | - Junhao Deng
- Department of Orthopaedics, Peking 301 Hospital, Beijing, China
| | - Yang Bai
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Jinhui Zhang
- Department of Orthopaedics, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou 175 Hospital, Zhangzhou, Fujian, China
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA.
| | - Wen-Biao Gan
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| | - Peifu Tang
- Department of Orthopaedics, Peking 301 Hospital, Beijing, China.
| |
Collapse
|
7
|
Plasticity of neuronal excitability and synaptic balance in the anterior nucleus of paraventricular thalamus after nerve injury. Brain Res Bull 2022; 188:1-10. [PMID: 35850188 DOI: 10.1016/j.brainresbull.2022.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
The anterior nucleus of the paraventricular thalamus (aPVT) integrates various synaptic inputs and conveys information to the downstream brain regions for arousal and pain regulation. Recent studies have indicated that the PVT plays a crucial role in the regulation of chronic pain, but the plasticity mechanism of neuronal excitability and synaptic inputs for aPVT neurons in neuropathic pain remains unclear. Here, we report that spinal nerve ligation (SNL) significantly increased the neuronal excitability and reset the excitatory/inhibitory (E/I) synaptic inputs ratio of aPVT neurons in mice. SNL significantly increased the membrane input resistance, firing frequency, and the half-width of action potential. Additionally, SNL enlarged the area of afterdepolarization and prolonged the rebound low-threshold spike following a hyperpolarized current injection. Further results indicate that an inwardly rectifying current density was decreased in SNL animals. SNL also decreased the amplitude, but not the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), nor the amplitude or frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) of aPVT neurons. Moreover, SNL disrupted the E/I synaptic ratio, caused a decrease in weighted tau and half-width of averaged sIPSCs, but did not change these physiological properties of averaged sEPSCs. Finally, pharmacological activation of the GABAA receptor at aPVT could effective relieve SNL-induced mechanical allodynia in mice. These results reveal the plasticity of intrinsic neuronal excitability and E/I synaptic balance in the aPVT neurons after nerve injury and it may play an important role in the development of pain sensitization.
Collapse
|
8
|
Cardoso-Cruz H, Laranjeira I, Monteiro C, Galhardo V. Altered prefrontal-striatal theta-band oscillatory dynamics underlie working memory deficits in neuropathic pain rats. Eur J Pain 2022; 26:1546-1568. [PMID: 35603472 DOI: 10.1002/ejp.1982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prelimbic medial prefrontal cortex (PL-mPFC) and nucleus accumbens core region (NAcc) play an important role in supporting several executive cognitive mechanisms, such as spatial working-memory (WM). Recently, this circuit has been also associated with both sensory and affective components of pain. However, it is still unclear whether this circuit is endogenously engaged in neuropathic pain-related cognitive dysfunctions. METHODS To answer this question, we induced the expression of halorhodopsin in local PL-mPFC neurons projecting to NAcc, and then selectively inhibited the terminals of these neurons in the NAcc while recording neural activity during the performance of a delayed non-match to sample (DNMS) spatial WM task. Within-subject behavioral performance and PL-mPFC to NAcc circuit neural activity was assessed after the onset of a persistent rodent neuropathic pain model - spared nerve injury (SNI). RESULTS Our results revealed that the induction of the neuropathy reduced WM performance, and altered the interplay between PL-mPFC and NAcc neurons namely in increasing the functional connectivity from NAcc to PL-mPFC, particularly in the theta-band spontaneous oscillations; in addition, these behavioral and functional perturbations were partially reversed by selective optogenetic inhibition of PL-mPFC neuron terminals into the NAcc during the DNMS task delay-period, without significant antinociceptive effects. CONCLUSIONS Altogether, these results strongly suggest that the PL-mPFC excitatory output into the NAcc plays an important role in the deregulation of WM under pain conditions. SIGNIFICANCE Selective optogenetic inhibition of prefrontal-striatal microcircuit reverses pain-related working memory deficits, but has no significant impact on pain responses. Neuropathic pain underlies an increase of functional connectivity between the nucleus accumbens core area and the prelimbic medial prefrontal cortex mediated by theta-band activity.
Collapse
Affiliation(s)
- Helder Cardoso-Cruz
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Group; Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135, Porto, Portugal.,Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental; Universidade do Porto, 4200-319, Porto, Portugal
| | - Inês Laranjeira
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Group; Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135, Porto, Portugal.,Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental; Universidade do Porto, 4200-319, Porto, Portugal.,Mestrado em Neurobiologia da Faculdade de Medicina da Universidade do Porto. 4200-319, Porto, Portugal
| | - Clara Monteiro
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Group; Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135, Porto, Portugal.,Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental; Universidade do Porto, 4200-319, Porto, Portugal
| | - Vasco Galhardo
- Instituto de Investigação e Inovação em Saúde (i3S), Pain Neurobiology Group; Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135, Porto, Portugal.,Faculdade de Medicina (FMUP), Departamento de Biomedicina - Unidade de Biologia Experimental; Universidade do Porto, 4200-319, Porto, Portugal
| |
Collapse
|
9
|
Lan L, Yin T, Tian Z, Lan Y, Sun R, Li Z, Jing M, Wen Q, Li S, Liang F, Zeng F. Acupuncture Modulates the Spontaneous Activity and Functional Connectivity of Calcarine in Patients With Chronic Stable Angina Pectoris. Front Mol Neurosci 2022; 15:842674. [PMID: 35557556 PMCID: PMC9087858 DOI: 10.3389/fnmol.2022.842674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAcupuncture is an effective adjunctive therapy for chronic stable angina pectoris (CSAP), while the underlying mechanism is unclear. This study aimed to investigate the central pathophysiology of CSAP and explore the mechanism of different acupoint prescriptions for CSAP from the perspective of brain-heart interaction.MethodsThirty-seven CSAP patients and sixty-five healthy subjects (HS) were enrolled, and thirty CSAP patients were divided into two acupoint prescriptions groups (Group A: acupoints on the meridian directly related to the Heart; Group B: acupoints on the meridian indirectly related to the Heart). The Magnetic Resonance Imaging data and clinical data were collected at baseline and after treatment. The comparisons of brain spontaneous activity patterns were performed between CSAP patients and HS, as well as between baseline and after treatment in CSAP patients. Then, the changes in resting-state functional connectivity before and after treatment were compared between the two acupoint prescriptions.ResultsChronic stable angina pectoris patients manifested higher spontaneous activity on the bilateral calcarine, left middle occipital gyrus, right superior temporal gyrus, and right postcentral gyrus. After acupuncture treatment, the spontaneous activity of the left calcarine, left cuneus, and right orbitofrontal gyrus was decreased. The left calcarine was identified as region-of-interest for functional connectivity analysis. Compared with group B, CSAP patients in group A had significantly increased functional connectivity between left calcarine and the left inferior temporal gyrus/cerebellum crus 1, left hippocampus, left thalamus, and left middle cingulate cortex after treatment. Thresholds for all comparisons were p < 0.05, Gaussian Random Field corrected.ConclusionRegulating the aberrant spontaneous activity of the calcarine might be an underlying mechanism of acupuncture for CSAP. The multi-threaded modulation of functional connectivity between calcarine and multiple pain-related brain regions might be a potential mechanism for better efficacy of acupuncture at points on the meridian directly related to the Heart.
Collapse
Affiliation(s)
- Lei Lan
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Yin
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zilei Tian
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Lan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruirui Sun
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhengjie Li
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Miaomiao Jing
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Qiao Wen
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shenghong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanrong Liang
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, China
- *Correspondence: Fanrong Liang,
| | - Fang Zeng
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, China
- Fang Zeng,
| |
Collapse
|
10
|
Zhang Y, Furst AJ. Brainstem Diffusion Tensor Tractography and Clinical Applications in Pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:840328. [PMID: 35399154 PMCID: PMC8989264 DOI: 10.3389/fpain.2022.840328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
The brainstem is one of the most vulnerable brain structures in many neurological conditions, such as pain, sleep problems, autonomic dysfunctions, and neurodegenerative disorders. Diffusion tensor imaging and tractography provide structural details and quantitative measures of brainstem fiber pathways. Until recently, diffusion tensor tractographic studies have mainly focused on whole-brain MRI acquisition. Due to the brainstem's spatial localization, size, and tissue characteristics, and limits of imaging techniques, brainstem diffusion MRI poses particular challenges in tractography. We provide a brief overview on recent advances in diffusion tensor tractography in revealing human pathways connecting the brainstem to the subcortical regions (e.g., basal ganglia, mesolimbic, basal forebrain), and cortical regions. Each of these pathways contains different distributions of fiber tracts from known neurotransmitter-specific nuclei in the brainstem. We compare the brainstem tractographic approaches in literature and our in-lab developed automated brainstem tractography in terms of atlas building, technical advantages, and neuroanatomical implications on neurotransmitter systems. Lastly, we summarize recent investigations of using brainstem tractography as a promising tool in association with pain.
Collapse
Affiliation(s)
- Yu Zhang
- War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, CA, United States,*Correspondence: Yu Zhang ;
| | - Ansgar J. Furst
- War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, CA, United States,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, United States,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, United States,Polytrauma System of Care (PSC), VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
11
|
Kasanetz F, Nevian T. Increased burst coding in deep layers of the ventral anterior cingulate cortex during neuropathic pain. Sci Rep 2021; 11:24240. [PMID: 34930957 PMCID: PMC8688462 DOI: 10.1038/s41598-021-03652-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022] Open
Abstract
Neuropathic pain induces changes in neuronal excitability and synaptic connectivity in deep layers of the anterior cingulate cortex (ACC) that play a central role in the sensory, emotional and affective consequences of the disease. However, how this impacts ACC in vivo activity is not completely understood. Using a mouse model, we found that neuropathic pain caused an increase in ACC in vivo activity, as measured by the indirect activity marker c-Fos and juxtacellular electrophysiological recordings. The enhanced firing rate of ACC neurons in lesioned animals was based on a change in the firing pattern towards bursting activity. Despite the proportion of ACC neurons recruited by noxious stimuli was unchanged during neuropathic pain, responses to noxious stimuli were characterized by increased bursting. Thus, this change in coding pattern may have important implications for the processing of nociceptive information in the ACC and could be of great interest to guide the search for new treatment strategies for chronic pain.
Collapse
Affiliation(s)
- Fernando Kasanetz
- Department of Physiology, University of Bern, Bühlplatz 5, 3012, Bern, Switzerland.
- Grupo de Neurociencias de Sistemas, IFIBIO Houssay - CONICET, Universidad de Buenos Aires, Paraguay 2155 piso 7, (1121), Buenos Aires, Argentina.
| | - Thomas Nevian
- Department of Physiology, University of Bern, Bühlplatz 5, 3012, Bern, Switzerland.
| |
Collapse
|
12
|
Zhang X, Liu P, He X, Jiang Z, Wang Q, Gu N, Lu Y. The PKCγ neurons in anterior cingulate cortex contribute to the development of neuropathic allodynia and pain-related emotion. Mol Pain 2021; 17:17448069211061973. [PMID: 34898326 PMCID: PMC8679404 DOI: 10.1177/17448069211061973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background While the PKCγ neurons in spinal dorsal horn play an indispensable part in neuropathic
allodynia, the exact effect of PKCγ neurons of brain regions in neuropathic pain remains
elusive. Mounting research studies have depicted that the anterior cingulate cortex
(ACC) is closely linked with pain perception and behavior, the present study was
designed to investigate the contribution of PKCγ neurons in ACC to neuropathic allodynia
and pain-related emotion in newly developed Prkcg-P2A-Tdtomato mice. Methods The c-fos expression in response to innocuous stimulation was used to monitor the
activity of PKCγ in CCI (chronic constriction injury of the sciatic nerve) induced
neuropathic pain condition. Activating or silencing ACC PKCγ neurons by chemogenetics
was applied to observe the changes of pain behavior. The excitability of ACC PKCγ
neurons in normal and CCI mice was compared by patch-clamp whole-cell recordings. Results The PKCγ-Tdtomato neurons were mainly distributed in layer III-Vof ACC. The Tdtomato
was mainly expressed in ACC pyramidal neurons demonstrated by intracellular staining.
The c-fos expression in ACC PKCγ neurons in response to innocuous stimulation was
obviously elevated in CCI mice. The patch clamp recordings showed that ACC PKCγ-Tdtomato
neurons were largely activated in CCI mice. Chemogenetic activation of ACC PKCγ neurons
in Prkcg-icre mice induced mechanical allodynia and pain-related aversive behavior,
conversely, silencing them in CCI condition significantly reversed the mechanical
allodynia and pain-related place aversive behavior. Conclusion We conclude that the PKCγ neurons in ACC are closely linked with neuropathic allodynia
and pain-related emotional behaviors.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Peng Liu
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Xiaolan He
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Zhenhua Jiang
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Qun Wang
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Nan Gu
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| | - Yan Lu
- Department of Pain Medicine, Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, 12644Fourth Military Medical University, Xian, China
| |
Collapse
|
13
|
Kim DJ, Lim M, Kim JS, Chung CK. Structural and functional thalamocortical connectivity study in female fibromyalgia. Sci Rep 2021; 11:23323. [PMID: 34857797 PMCID: PMC8640058 DOI: 10.1038/s41598-021-02616-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
Dysfunctional thalamocortical interactions have been suggested as putative mechanisms of ineffective pain modulation and also suggested as possible pathophysiology of fibromyalgia (FM). However, it remains unclear which specific thalamocortical networks are altered and whether it is related to abnormal pain perception in people with FM. Here, we conducted combined vertex-wise subcortical shape, cortical thickness, structural covariance, and resting-state functional connectivity analyses to address these questions. FM group exhibited a regional shape deflation of the left posterior thalamus encompassing the ventral posterior lateral and pulvinar nuclei. The structural covariance analysis showed that the extent of regional deflation of the left posterior thalamus was negatively covaried with the left inferior parietal cortical thickness in the FM group, whereas those two regions were positively covaried in the healthy controls. In functional connectivity analysis with the left posterior thalamus as a seed, FM group had less connectivity with the periaqueductal gray compared with healthy controls, but enhanced connectivity between the posterior thalamus and bilateral inferior parietal regions, associated with a lower electrical pain threshold at the hand dorsum (pain-free point). Overall, our findings showed the structural thalamic alteration interacts with the cortical regions in a functionally maladaptive direction, leading the FM brain more responsive to external stimuli and potentially contributing to pain amplification.
Collapse
Affiliation(s)
- Dajung J Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, 08826, Republic of Korea.,Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Manyoel Lim
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 08826, Republic of Korea.,Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - June Sic Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, 08826, Republic of Korea.,Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chun Kee Chung
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, 08826, Republic of Korea. .,Department of Neurosurgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
14
|
Zhang T, Hou Q, Bai T, Ji G, Lv H, Xie W, Jin S, Yang J, Qiu B, Tian Y, Wang K. Functional and structural alterations in the pain-related circuit in major depressive disorder induced by electroconvulsive therapy. J Neurosci Res 2021; 100:477-489. [PMID: 34825381 DOI: 10.1002/jnr.24979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/08/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Approximately two-thirds of major depressive disorder (MDD) patients have pain, which exacerbates the severity of depression. Electroconvulsive therapy (ECT) is an efficacious treatment that can alleviate depressive symptoms; however, treatment for pain and the underlying neural substrate is elusive. We enrolled 34 patients with MDD and 33 matched healthy controls to complete clinical assessments and neuroimaging scans. MDD patients underwent second assessments and scans after ECT. We defined a pain-related network with a published meta-analysis and calculated topological patterns to reveal topologic alterations induced by ECT. Using the amplitude of low-frequency fluctuations (ALFFs), we probed local function aberrations of pain-related circuits in MDD patients. Subsequently, we applied gray matter volume (GMV) to reveal structural alterations of ECT relieving pain. The relationships between functional and structural aberrations and pain were determined. ECT significantly alleviated pain. The neural mechanism based on pain-related circuits indicated that ECT weakened the circuit function (ALFF: left amygdala and right supplementary motor area), while augmenting the structure (GMV: bilateral amygdala/insula/hippocampus and anterior cingulate cortex). The topologic patterns became less efficient after ECT. Correlation analysis between the change in pain and GMV had negative results in bilateral amygdala/insula/hippocampus. Similarity, there was a positive correlation between a change in ALFF in the left amygdala and improved clinical symptoms. ECT improved pain by decreasing brain local function and global network patterns, while increasing structure in pain-related circuits. Functional and structural alterations were associated with improvement in pain.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Qiangqiang Hou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Gongjun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Huaming Lv
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Wen Xie
- Anhui Mental Health Center, Hefei, China
| | | | - Jinying Yang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Optogenetic Stimulation of the Anterior Cingulate Cortex Modulates the Pain Processing in Neuropathic Pain: A Review. J Mol Neurosci 2021; 72:1-8. [PMID: 34505976 DOI: 10.1007/s12031-021-01898-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is characterized by hypersensitivity, hyperalgesia, and allodynia, which is caused by damage to the somatosensory nervous system. It substantially impairs the quality of life. The management of neuropathic pain is challenging and should comprise alternative therapies. Researchers working on neural modulation methods in the field of optogenetics have recently referred to novel techniques that involve the activation or inhibition of signaling proteins by specific wavelengths of light. The use of optogenetics in neuropathic pain facilitates the investigation of pain pathways involved in chronic pain and has the potential for therapeutic use. Neuropathic pain is often accompanied by negative stimuli involving a broad network of brain regions. In particular, the anterior cingulate cortex (ACC) is a part of the limbic system that has highly interconnected structures involved in processing components of pain. The ACC is a key region for acute pain perception as well as the development of neuropathic pain, characterized by long-term potentiation induced in pain pathways. The exact mechanism for neuropathic pain in the ACC is unclear. Current evidence supports the potential of optogenetics methods to modulate the neuronal activity in the ACC for neuropathic pain. We anticipate the neuronal modulation in the ACC will be used widely to manage neuropathic pain.
Collapse
|
16
|
Mecca CM, Chao D, Yu G, Feng Y, Segel I, Zhang Z, Rodriguez-Garcia DM, Pawela CP, Hillard CJ, Hogan QH, Pan B. Dynamic Change of Endocannabinoid Signaling in the Medial Prefrontal Cortex Controls the Development of Depression After Neuropathic Pain. J Neurosci 2021; 41:7492-7508. [PMID: 34244365 PMCID: PMC8412994 DOI: 10.1523/jneurosci.3135-20.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/15/2023] Open
Abstract
Many patients with chronic pain conditions suffer from depression. The mechanisms underlying pain-induced depression are still unclear. There are critical links of medial prefrontal cortex (mPFC) synaptic function to depression, with signaling through the endocannabinoid (eCB) system as an important contributor. We hypothesized that afferent noxious inputs after injury compromise activity-dependent eCB signaling in the mPFC, resulting in depression. Depression-like behaviors were tested in male and female rats with traumatic neuropathy [spared nerve injury (SNI)], and neuronal activity in the mPFC was monitored using the immediate early gene c-fos and in vivo electrophysiological recordings. mPFC eCB Concentrations were determined using mass spectrometry, and behavioral and electrophysiological experiments were used to evaluate the role of alterations in eCB signaling in depression after pain. SNI-induced pain induced the development of depression phenotypes in both male and female rats. Pyramidal neurons in mPFC showed increased excitability followed by reduced excitability in the onset and prolonged phases of pain, respectively. Concentrations of the eCBs, 2-arachidonoylglycerol (2-AG) in the mPFC, were elevated initially after SNI, and our results indicate that this resulted in a loss of CB1R function on GABAergic interneurons in the mPFC. These data suggest that excessive release of 2-AG as a result of noxious stimuli triggers use-dependent loss of function of eCB signaling leading to excessive GABA release in the mPFC, with the final result being behavioral depression.SIGNIFICANCE STATEMENT Pain has both somatosensory and affective components, so the complexity of mechanisms underlying chronic pain is best represented by a biopsychosocial model that includes widespread CNS dysfunction. Many patients with chronic pain conditions develop depression. The mechanism by which pain causes depression is unclear. Although manipulation of the eCB signaling system as an avenue for providing analgesia per se has not shown much promise in previous studies. An important limitation of past research has been inadequate consideration of the dynamic nature of the connection between pain and depression as they develop. Here, we show that activity-dependent synthesis of eCBs during the initial onset of persistent pain is the critical link leading to depression when pain is persistent.
Collapse
Affiliation(s)
- Christina M Mecca
- Departments of Anesthesiology
- Cell Biology, Neurobiology, and Anatomy
| | | | | | | | | | | | | | - Christopher P Pawela
- Departments of Anesthesiology
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Cecilia J Hillard
- Pharmacology and Toxicology
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Quinn H Hogan
- Departments of Anesthesiology
- Cell Biology, Neurobiology, and Anatomy
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Bin Pan
- Departments of Anesthesiology
- Cell Biology, Neurobiology, and Anatomy
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
17
|
Williamson A. Hypnotic interventions in the management of chronic pain. ADVANCES IN CLINICAL NEUROSCIENCE & REHABILITATION 2021. [DOI: 10.47795/tikq8368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This article describes the pain neuro-matrix and shows how hypnotic suggestions can be used directed at each part of this in order to be maximally effective. Although inducing the hypnotic state may be relatively simple, it is important to know how to utilise it effectively using suggestion and imagery. An understanding of the patient’s clinical condition and some counselling or psychological training are essential.
Collapse
|
18
|
Ma J, Wang FY, Xu L, Wang YF, Tang XD. Mechanism of mast cell-mediated COX2-PGE2-Eps signaling pathway in visceral hypersensitivity in irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2021; 29:306-311. [DOI: 10.11569/wcjd.v29.i6.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder (FGID) whose pathophysiological mechanism is complex, involving genetic factors, psychosocial factors, low-grade mucosal inflammation, changes in the intestinal barrier, bacterial flora disorder, neuroimmune abnormalities, and high visceral sensitivity. In recent years, the mechanism of visceral hypersensitivity in IBS has become a hot research topic. Mast cells (MCs) are a group of immune cells that are distributed in the central nervous system and digestive system. The COX2-PGE2-Eps signaling pathway plays a major role in the visceral hypersensitivity in IBS, from peripheral sensitization to central sensitization, which provides a new idea for further clarifying the pathological mechanism of IBS.
Collapse
Affiliation(s)
- Jing Ma
- Graduate School of China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Feng-Yun Wang
- Department of Spleen and Stomach, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lin Xu
- Graduate School of China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Yi-Fan Wang
- Peking University Traditional Chinese Medicine Clinical Medical School, Beijing 100091, China
| | - Xu-Dong Tang
- China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
19
|
Deer TR, Eldabe S, Falowski SM, Huntoon MA, Staats PS, Cassar IR, Crosby ND, Boggs JW. Peripherally Induced Reconditioning of the Central Nervous System: A Proposed Mechanistic Theory for Sustained Relief of Chronic Pain with Percutaneous Peripheral Nerve Stimulation. J Pain Res 2021; 14:721-736. [PMID: 33737830 PMCID: PMC7966353 DOI: 10.2147/jpr.s297091] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Peripheral nerve stimulation (PNS) is an effective tool for the treatment of chronic pain, although its efficacy and utilization have previously been significantly limited by technology. In recent years, purpose-built percutaneous PNS devices have been developed to overcome the limitations of conventional permanently implanted neurostimulation devices. Recent clinical evidence suggests clinically significant and sustained reductions in pain can persist well beyond the PNS treatment period, outcomes that have not previously been observed with conventional permanently implanted neurostimulation devices. This narrative review summarizes mechanistic processes that contribute to chronic pain, and the potential mechanisms by which selective large diameter afferent fiber activation may reverse these changes to induce a prolonged reduction in pain. The interplay of these mechanisms, supported by data in chronic pain states that have been effectively treated with percutaneous PNS, will also be discussed in support of a new theory of pain management in neuromodulation: Peripherally Induced Reconditioning of the Central Nervous System (CNS).
Collapse
Affiliation(s)
- Timothy R Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Steven M Falowski
- Department of Neurosurgery, Neurosurgical Associates of Lancaster, Lancaster, PA, USA
| | - Marc A Huntoon
- Anesthesiology, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | | | | | | | | |
Collapse
|
20
|
Distinct thalamocortical circuits underlie allodynia induced by tissue injury and by depression-like states. Nat Neurosci 2021; 24:542-553. [PMID: 33686297 DOI: 10.1038/s41593-021-00811-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
In humans, tissue injury and depression can both cause pain hypersensitivity, but whether this involves distinct circuits remains unknown. Here, we identify two discrete glutamatergic neuronal circuits in male mice: a projection from the posterior thalamic nucleus (POGlu) to primary somatosensory cortex glutamatergic neurons (S1Glu) mediates allodynia from tissue injury, whereas a pathway from the parafascicular thalamic nucleus (PFGlu) to anterior cingulate cortex GABA-containing neurons to glutamatergic neurons (ACCGABA→Glu) mediates allodynia associated with a depression-like state. In vivo calcium imaging and multi-tetrode electrophysiological recordings reveal that POGlu and PFGlu populations undergo different adaptations in the two conditions. Artificial manipulation of each circuit affects allodynia resulting from either tissue injury or depression-like states, but not both. Our study demonstrates that the distinct thalamocortical circuits POGlu→S1Glu and PFGlu→ACCGABA→Glu subserve allodynia associated with tissue injury and depression-like states, respectively, thus providing insights into the circuit basis of pathological pain resulting from different etiologies.
Collapse
|
21
|
Dynamics of neuronal oscillations underlying nociceptive response in the mouse primary somatosensory cortex. Sci Rep 2021; 11:1667. [PMID: 33462296 PMCID: PMC7813887 DOI: 10.1038/s41598-021-81067-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022] Open
Abstract
Pain is caused by tissue injury, inflammatory disease, pathogen invasion, or neuropathy. The perception of pain is attributed to the neuronal activity in the brain. However, the dynamics of neuronal activity underlying pain perception are not fully known. Herein, we examined theta-oscillation dynamics of local field potentials in the primary somatosensory cortex of a mouse model of formalin-induced pain, which usually shows a bimodal behavioral response interposed between pain-free periods. We found that formalin injection exerted a reversible shift in the theta-peak frequency toward a slower frequency. This shift was observed during nociceptive phases but not during the pain-free period and was inversely correlated with instantaneous pain intensity. Furthermore, instantaneous oscillatory analysis indicated that the probability of slow theta oscillations increased during nociceptive phases with an association of augmented slow theta power. Finally, cross-frequency coupling between theta and gamma oscillations indicated that the coupling peak frequency of theta oscillations was also shifted toward slower oscillations without affecting coupling strength or gamma power. Together, these results suggest that the dynamic changes in theta oscillations in the mouse primary somatosensory cortex represent the ongoing status of pain sensation.
Collapse
|
22
|
Sun L, Liu R, Guo F, Wen MQ, Ma XL, Li KY, Sun H, Xu CL, Li YY, Wu MY, Zhu ZG, Li XJ, Yu YQ, Chen Z, Li XY, Duan S. Parabrachial nucleus circuit governs neuropathic pain-like behavior. Nat Commun 2020; 11:5974. [PMID: 33239627 PMCID: PMC7688648 DOI: 10.1038/s41467-020-19767-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
The lateral parabrachial nucleus (LPBN) is known to relay noxious information to the amygdala for processing affective responses. However, it is unclear whether the LPBN actively processes neuropathic pain characterized by persistent hyperalgesia with aversive emotional responses. Here we report that neuropathic pain-like hypersensitivity induced by common peroneal nerve (CPN) ligation increases nociceptive stimulation-induced responses in glutamatergic LPBN neurons. Optogenetic activation of GABAergic LPBN neurons does not affect basal nociception, but alleviates neuropathic pain-like behavior. Optogenetic activation of glutamatergic or inhibition of GABAergic LPBN neurons induces neuropathic pain-like behavior in naïve mice. Inhibition of glutamatergic LPBN neurons alleviates both basal nociception and neuropathic pain-like hypersensitivity. Repetitive pharmacogenetic activation of glutamatergic or GABAergic LPBN neurons respectively mimics or prevents the development of CPN ligation-induced neuropathic pain-like hypersensitivity. These findings indicate that a delicate balance between excitatory and inhibitory LPBN neuronal activity governs the development and maintenance of neuropathic pain. The parabrachial nucleus (PBN) projects to the amygdala, and contributes to affective aspects of neuropathic pain. Here the authors demonstrate that the lateral parabrachial nucleus (LPBN) contributes to hypersensitivity in a mouse model of neuropathic pain.
Collapse
Affiliation(s)
- Li Sun
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China. .,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China.
| | - Rui Liu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Fang Guo
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Man-Qing Wen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Xiao-Lin Ma
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Kai-Yuan Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Hao Sun
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, 310020, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310027, Hangzhou, China
| | - Ceng-Lin Xu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yuan-Yuan Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Meng-Yin Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, 310058, Hangzhou, China
| | - Zheng-Gang Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Xin-Jian Li
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, 310020, Hangzhou, China
| | - Yan-Qin Yu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Zhong Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xiang-Yao Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China. .,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
23
|
Elina KC, Moon HC, Islam J, Kim HK, Park YS. The Effect of Optogenetic Inhibition of the Anterior Cingulate Cortex in Neuropathic Pain Following Sciatic Nerve Injury. J Mol Neurosci 2020; 71:638-650. [PMID: 32808249 DOI: 10.1007/s12031-020-01685-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
Abstract
Cortical disinhibition is the underlying pathological alteration contributing to neuropathic pain associated with peripheral nerve injury. Nerve injury resulting in disinhibition of the anterior cingulate cortex has been reported. However, the effect of optogenetic inhibition of the anterior cingulate cortex (ACC) on the sensory component of nerve injury-induced neuropathic pain has not been well studied. To investigate the feasibility of optogenetic ACC modulation, we injected an optogenetic virus or a null virus into the ACC of a nerve injury-induced neuropathic pain model. The unilateral ACC was modulated, and the optogenetic effect was measured by mechanical and thermal sensitivity tests. The assessment was performed in "pre-light off," "stimulation-yellow light on," and "post-light off" states. Optogenetic inhibition of the ACC in injury models revealed improved mechanical and thermal latencies with profound pain-relieving effects against nerve injury-induced neuropathic pain. The sensory thalamic discharge in electrophysiological in vivo recordings was also altered during laser stimulation. This finding indicates that hyperactivity of the ACC in nerve injury increases output to the spinothalamic tract through direct or indirect pathways. The direct photoinhibition of ACC neurons could play a vital role in restoring equilibrium and provide novel insight into techniques that can assuage peripheral nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- K C Elina
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Hyeong Cheol Moon
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
- Department of Neurosurgery, Chungbuk National University Hospital, 776, 1 Sunhwanro, Seowon-gu, Cheongju-Si, Chungbuk, 28644, South Korea
| | - Jaisan Islam
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Hyong Kyu Kim
- Department of Medical and Microbiology, College of Medicine, Cheongju, South Korea
| | - Young Seok Park
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, 776, 1 Sunhwanro, Seowon-gu, Cheongju-Si, Chungbuk, 28644, South Korea.
| |
Collapse
|
24
|
Bagg MK, Lo S, Cashin AG, Herbert RD, O'Connell NE, Lee H, Hübscher M, Wand BM, O'Hagan E, Rizzo RRN, Moseley GL, Stanton TR, Maher CG, Goodall S, Saing S, McAuley JH. The RESOLVE Trial for people with chronic low back pain: statistical analysis plan. Braz J Phys Ther 2020; 25:103-111. [PMID: 32811786 DOI: 10.1016/j.bjpt.2020.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Statistical analysis plans describe the planned data management and analysis for clinical trials. This supports transparent reporting and interpretation of clinical trial results. This paper reports the statistical analysis plan for the RESOLVE clinical trial. The RESOLVE trial assigned participants with chronic low back pain to graded sensory-motor precision training or sham-control. RESULTS We report the planned data management and analysis for the primary and secondary outcomes. The primary outcome is pain intensity at 18-weeks post randomization. We will use mixed-effects models to analyze the primary and secondary outcomes by intention-to-treat. We will report adverse effects in full. We also describe analyses if there is non-adherence to the interventions, data management procedures, and our planned reporting of results. CONCLUSION This statistical analysis plan will minimize the potential for bias in the analysis and reporting of results from the RESOLVE trial. TRIAL REGISTRATION ACTRN12615000610538 (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=368619).
Collapse
Affiliation(s)
- Matthew K Bagg
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia; Prince of Wales Clinical School, University of New South Wales, Prince of Wales Hospital Campus, Sydney, Australia; New College Village, University of New South Wales, Sydney, Australia.
| | - Serigne Lo
- Melanoma Institute Australia, University of Sydney, Sydney, Australia
| | - Aidan G Cashin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia; Prince of Wales Clinical School, University of New South Wales, Prince of Wales Hospital Campus, Sydney, Australia
| | - Rob D Herbert
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
| | - Neil E O'Connell
- Department of Clinical Sciences, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, United Kingdom
| | - Hopin Lee
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia; Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, United Kingdom; School of Medicine and Public Health, University of Newcastle, University Drive, Newcastle, Australia
| | - Markus Hübscher
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
| | - Benedict M Wand
- School of Physiotherapy, The University of Notre Dame Australia Fremantle, Perth, Australia
| | - Edel O'Hagan
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia; Prince of Wales Clinical School, University of New South Wales, Prince of Wales Hospital Campus, Sydney, Australia
| | - Rodrigo R N Rizzo
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia; School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - G Lorimer Moseley
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia; IIMPACT in Health, University of South Australia, City East Campus, Australia
| | - Tasha R Stanton
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia; IIMPACT in Health, University of South Australia, City East Campus, Australia
| | - Christopher G Maher
- Institute for Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Stephen Goodall
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Sydney, Australia
| | - Sopany Saing
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Sydney, Australia
| | - James H McAuley
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia; School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
25
|
Grangeon L, O'Connor E, Chan CK, Akijian L, Pham Ngoc TM, Matharu MS. New insights in post-traumatic headache with cluster headache phenotype: a cohort study. J Neurol Neurosurg Psychiatry 2020; 91:572-579. [PMID: 32381638 PMCID: PMC7279192 DOI: 10.1136/jnnp-2019-322725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To define the characteristics of post-traumatic headache with cluster headache phenotype (PTH-CH) and to compare these characteristics with primary CH. METHODS A retrospective study was conducted of patients seen between 2007 and 2017 in a headache centre and diagnosed with PTH-CH that developed within 7 days of head trauma. A control cohort included 553 patients with primary CH without any history of trauma who attended the headache clinic during the same period. Data including demographics, attack characteristics and response to treatments were recorded. RESULTS Twenty-six patients with PTH-CH were identified. Multivariate analysis revealed significant associations between PTH-CH and family history of CH (OR 3.32, 95% CI 1.31 to 8.63), chronic form (OR 3.29, 95% CI 1.70 to 6.49), parietal (OR 14.82, 95% CI 6.32 to 37.39) or temporal (OR 2.04, 95% CI 1.10 to 3.84) location of pain, and presence of prominent cranial autonomic features during attacks (miosis OR 11.24, 95% CI 3.21 to 41.34; eyelid oedema OR 5.79, 95% CI 2.57 to 13.82; rhinorrhoea OR 2.65, 95% CI 1.26 to 5.86; facial sweating OR 2.53, 95% CI 1.33 to 4.93). Patients with PTH-CH were at a higher risk of being intractable to acute (OR 12.34, 95% CI 2.51 to 64.73) and preventive (OR 16.98, 95% CI 6.88 to 45.52) treatments and of suffering from associated chronic migraine (OR 10.35, 95% CI 3.96 to 28.82). CONCLUSION This largest series of PTH-CH defines it as a unique entity with specific evolutive profile. Patients with PTH-CH are more likely to suffer from the chronic variant, have marked autonomic features, be intractable to treatment and have associated chronic migraine compared with primary CH.
Collapse
Affiliation(s)
- Lou Grangeon
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurology, University Hospital Centre Rouen, Rouen, Normandie, France
| | - Emer O'Connor
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Chun-Kong Chan
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, London, UK
| | - Layan Akijian
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, London, UK
| | - Thanh Mai Pham Ngoc
- Mathematics Institute of Orsay, Paris-Sud University, CNRS and Paris-Saclay University, Orsay, Île-de-France, France
| | - Manjit Singh Matharu
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, London, UK .,Headache and Facial Pain Group, The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
26
|
Gilmore CA, Ilfeld BM, Rosenow JM, Li S, Desai MJ, Hunter CW, Rauck RL, Nader A, Mak J, Cohen SP, Crosby ND, Boggs JW. Percutaneous 60-day peripheral nerve stimulation implant provides sustained relief of chronic pain following amputation: 12-month follow-up of a randomized, double-blind, placebo-controlled trial. Reg Anesth Pain Med 2019; 45:rapm-2019-100937. [PMID: 31740443 DOI: 10.1136/rapm-2019-100937] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/03/2019] [Accepted: 10/27/2019] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Peripheral nerve stimulation (PNS) has historically been used to treat chronic pain, but generally requires implantation of a permanent system for sustained relief. A recent study found that a 60-day PNS treatment decreases post-amputation pain, and the current work investigates longer-term outcomes out to 12 months in the same cohort. METHODS As previously reported, 28 traumatic lower extremity amputees with residual and/or phantom limb pain were randomized to receive 8 weeks of PNS (group 1) or 4 weeks of placebo followed by a crossover 4 weeks of PNS (group 2). Percutaneous leads were implanted under ultrasound guidance targeting the femoral and sciatic nerves. During follow-up, changes in average pain and pain interference were assessed using the Brief Pain Inventory-Short Form and comparing with baseline. RESULTS Significantly more participants in group 1 reported ≥50% reductions in average weekly pain at 12 months (67%, 6/9) compared with group 2 at the end of the placebo period (0%, 0/14, p=0.001). Similarly, 56% (5/9) of participants in group 1 reported ≥50% reductions in pain interference at 12 months, compared with 2/13 (15%, p=0.074) in group 2 at crossover. Reductions in depression were also statistically significantly greater at 12 months in group 1 compared with group 2 at crossover. CONCLUSIONS This work suggests that percutaneous PNS delivered over a 60-day period may provide significant carry-over effects including pain relief, potentially avoiding the need for a permanently implanted system while enabling improved function in patients with chronic pain. TRIAL REGISTRATION NUMBER NCT01996254.
Collapse
Affiliation(s)
| | - Brian M Ilfeld
- Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Joshua M Rosenow
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
| | - Sean Li
- Premier Pain Centers, Shrewsbury, New Jersey, USA
| | - Mehul J Desai
- International Spine, Pain, and Performance Center, Washington, District of Columbia, USA
| | - Corey W Hunter
- Ainsworth Institute of Pain Management, New York City, New York, USA
| | - Richard L Rauck
- Center for Clinical Research, Winston-Salem, North Carolina, USA
| | - Antoun Nader
- Department of Anesthesiology, Northwestern University, Chicago, Illinois, USA
| | - John Mak
- Premier Pain Centers, Shrewsbury, New Jersey, USA
| | - Steven P Cohen
- Anesthesiology, Pain Medicine Division, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
27
|
Luo H, Huang Y, Xiao X, Dai W, Nie Y, Geng X, Green AL, Aziz TZ, Wang S. Functional dynamics of thalamic local field potentials correlate with modulation of neuropathic pain. Eur J Neurosci 2019; 51:628-640. [PMID: 31483893 DOI: 10.1111/ejn.14569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022]
Abstract
Understanding the functional dynamics of neural oscillations in the sensory thalamus is essential for elucidating the perception and modulation of neuropathic pain. Local field potentials were recorded from the sensory thalamus of twelve neuropathic pain patients. Single and combinational neural states were defined by the activity state of a single or paired oscillations. Relationships between the duration or occurrence rate of neural state and pre-operative pain level or pain relief induced by deep brain stimulation were evaluated. Results showed that the occurrence rate of the single neural state of low-beta oscillation was significantly correlated with pain relief. The duration and occurrence rate of combinational neural states of the paired low-beta with delta, theta, alpha, high-beta or low-gamma oscillations were more significantly correlated with pain relief than the single neural states. Moreover, these significant combinational neural states formed a local oscillatory network with low-beta oscillation as a key node. The results also showed correlations between measures of combinational neural states and subjective pain level as well. The duration of combinational neural states of paired alpha with delta or theta oscillations and the occurrence rate of neural states of the paired delta with low-beta or low-gamma oscillations were significantly correlated with pre-operative pain level. In conclusion, this study revealed that the integration of oscillations and the functional dynamics of neural states were differentially involved in modulation and perception of neuropathic pain. The functional dynamics could be biomarkers for developing neural state-dependent deep brain stimulation for neuropathic pain.
Collapse
Affiliation(s)
- Huichun Luo
- School of Biomedical Engineering, University of Science and Technology of China, Hefei, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yongzhi Huang
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Xiao Xiao
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wenjing Dai
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yingnan Nie
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xinyi Geng
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Shouyan Wang
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Jiang Y, Greenwood-Van Meerveld B, Johnson AC, Travagli RA. Role of estrogen and stress on the brain-gut axis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G203-G209. [PMID: 31241977 PMCID: PMC6734369 DOI: 10.1152/ajpgi.00144.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 01/31/2023]
Abstract
Symptoms of functional gastrointestinal disorders (FGIDs), including fullness, bloating, abdominal pain, and altered gastrointestinal (GI) motility, present a significant clinical problem, with a reported prevalence of 25%-40% within the general population. More than 60% of those affected seek and require healthcare, and affected individuals report a significantly decreased quality of life. FGIDs are highly correlated with episodes of acute and chronic stress and are increased in prevalence and reported severity in women compared with men. Although there is evidence that sex and stress interact to exacerbate FGID symptoms, the physiological mechanisms that mediate these sex-dependent disparities are incompletely understood, although hormonal-related differences in GI motility and visceral sensitivity have been purported to play a significant role in the etiology. In this mini review, we will discuss brain-gut axis control of GI motility and sensitivity, the influence of estrogen on GI motility and sensitivity, and stress modulation of the brain-gut axis.
Collapse
Affiliation(s)
- Yanyan Jiang
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
- Veterans Affairs Health Care System, Oklahoma City, Oklahoma
| | - Anthony C Johnson
- Veterans Affairs Health Care System, Oklahoma City, Oklahoma
- Department of Neurology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
29
|
Şimşek Ş, Duray M, Altuğ F. Kronik boyun ağrısında bakış yönü tanıma egzersizlerinin ağrı şiddeti, eklem hareket açıklığı ve izometrik kas enduransına etkisi. CUKUROVA MEDICAL JOURNAL 2019. [DOI: 10.17826/cumj.451482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
30
|
Selective optogenetic inhibition of medial prefrontal glutamatergic neurons reverses working memory deficits induced by neuropathic pain. Pain 2019; 160:805-823. [PMID: 30681984 DOI: 10.1097/j.pain.0000000000001457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stability of local medial prefrontal cortex (mPFC) network activity is believed to be critical for sustaining cognitive processes such as working memory (WM) and decision making. Dysfunction of the mPFC has been identified as a leading cause to WM deficits in several chronic pain conditions; however, the underlying mechanisms remain largely undetermined. Here, to address this issue, we implanted multichannel arrays of electrodes in the prelimbic region of the mPFC and recorded the neuronal activity during a food-reinforced delayed nonmatch to sample (DNMS) task of spatial WM. In addition, we used an optogenetic technique to selectively suppress the activity of excitatory pyramidal neurons that are considered the neuronal substrate for memory retention during the delay period of the behavioral task. Within-subject behavioral performance and pattern of neuronal activity were assessed after the onset of persistent pain using the spared nerve injury model of peripheral neuropathy. Our results show that the nerve lesion caused a disruption in WM and prelimbic spike activity and that this disruption was reversed by the selective inhibition of prelimbic glutamatergic pyramidal neurons during the delay period of the WM task. In spared nerve injury animals, photoinhibition of excitatory neurons improved the performance level and restored neural activity to a similar profile observed in the control animals. In addition, we found that selective inhibition of excitatory neurons does not produce antinociceptive effects. Together, our findings suggest that disruption of balance in local prelimbic networks may be crucial for the neurological and cognitive deficits observed during painful syndromes.
Collapse
|
31
|
Brain-derived neurotrophic factor-mediated projection-specific regulation of depressive-like and nociceptive behaviors in the mesolimbic reward circuitry. Pain 2019; 159:175. [PMID: 29076919 DOI: 10.1097/j.pain.0000000000001083] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Increasing evidence suggests that the mesolimbic reward system plays critical roles in the regulation of depression and nociception; however, its circuitry and cellular mechanisms remain unclear. In this study, we investigated the output-specific regulatory roles of dopaminergic (DA) neurons within the ventral tegmental area (VTA) in depressive-like and nociceptive behaviors in mice subjected to unpredictable chronic mild stress (CMS), using the projection-specific electrophysiological recording, pharmacological manipulation, behavioral test, and molecular biology technologies. We demonstrated that CMS decreased the firing activity in VTA projecting to medial prefrontal cortex (VTA → mPFC), but not in VTA to nucleus accumbens (VTA → NAc), DA neurons. However, both VTA → mPFC and VTA → NAc DA neurons showed increased firing activity in response to morphine perfusion in CMS mice. Behavioral results showed that intra-VTA microinjection of morphine (25.5 ng/0.15 μL) relieved depressive-like behaviors, intriguingly, accompanied by a thermal hyperalgesia. Furthermore, the relief of depressive-like behaviors induced by intra-VTA injection of morphine in CMS mice could be prevented by blocking brain-derived neurotrophic factor (BDNF) signaling and mimicked by the administration of exogenous BDNF in mPFC rather than in NAc shell. Nociceptive responses induced by the activation of VTA DA neurons with morphine in CMS mice could be prevented by blocking BDNF signaling or mimicked by administration of exogenous BDNF in NAc shell, but not in mPFC. These results reveal projection-specific regulatory mechanisms of depression and nociception in the mesolimbic reward circuitry and provide new insights into the neural circuits involved in the processing of depressive and nociceptive information.
Collapse
|
32
|
Ishola A, Ademola A, Allen R, Laoye B, Bankole O, Ajao M, Adeniyi P. GABA Areceptor plasticity in neuropathic pain: pain and memory effects in adult female rats. EGYPTIAN PHARMACEUTICAL JOURNAL 2019. [DOI: 10.4103/epj.epj_20_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Abstract
Artificial intelligence allows machines to predict human faculties such as image and voice recognition. Can machines be taught to measure pain? We argue that the two fundamental requirements for a device with 'pain biomarker' capabilities are hardware and software. We discuss the merits and limitations of electroencephalography (EEG) as the hardware component of a putative embodiment of the device, and advances in the application of machine learning approaches to EEG for predicting pain.
Collapse
Affiliation(s)
- Joshua Levitt
- Department of Neurosurgery, Rhode Island Hospital, Department of Neuroscience, Brown University, Providence, RI, USA
| | - Carl Y Saab
- Department of Neurosurgery, Rhode Island Hospital, Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
34
|
Juárez I, Morales-Medina JC, Flores-Tochihuitl J, Juárez GS, Flores G, Oseki HC. Tooth pulp injury induces sex-dependent neuronal reshaping in the ventral posterolateral nucleus of the rat thalamus. J Chem Neuroanat 2018; 96:16-21. [PMID: 30391473 DOI: 10.1016/j.jchemneu.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/18/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
Abstract
Orofacial injuries often result in persistent pain and are therefore considered a common health problem worldwide. Considerable evidence suggests that peripheral sensory nerve injury results in diverse plastic changes in the central nervous system (CNS). Tooth pulp is innervated by trigeminal afferents which extend to the trigeminal brainstem sensory nuclear complex and send input to higher level neurons in the CNS, including the ventral posterolateral nucleus of the thalamus (VPL). In the present study, we examined the long term effects of pulpal injury on neuronal arborization in the VPL using morphological analysis via Golgi-Cox staining. In addition, we examined these effects in both male and female rats due to the major prevalence of oral pain in women. Quantitative morphological analysis revealed that pulpal injury induced neuronal hypertrophy in VPL neurons of female rats. In clear contrast, pulpal injury increased arborization close to the soma and reduced arborization distal to the soma without modification of total dendritic length in male rats. As a result, we show, for the first time, sex-dependent morphological alterations in VPL neurons after orofacial peripheral injury. Since dental injuries are readily reproducible in rat dental molars and closely mimic the clinical setting in humans, this model represents a useful tool to further understand mechanisms of orofacial pain.
Collapse
Affiliation(s)
- Ismael Juárez
- Laboratorio de Fisiología, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, AP 62, 90000, Mexico
| | - Julia Flores-Tochihuitl
- Laboratorio Multidisciplinario, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Gamaliel Santiago Juárez
- Laboratorio de Fisiología, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Gonzalo Flores
- Laboratorio Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Hortencia Chávez Oseki
- Laboratorio de Fisiología, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico.
| |
Collapse
|
35
|
Cardoso-Cruz H, Dourado M, Monteiro C, Galhardo V. Blockade of dopamine D2 receptors disrupts intrahippocampal connectivity and enhances pain-related working memory deficits in neuropathic pain rats. Eur J Pain 2018; 22:1002-1015. [PMID: 29377353 DOI: 10.1002/ejp.1186] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2017] [Indexed: 11/09/2022]
Abstract
BACKGROUND Dopamine (DA) is thought to be important to local hippocampal networks integrity during spatial working memory (sWM) processing. Chronic pain may contribute to deficient dopaminergic signalling, which may in turn affect cognition. However, the neural mechanisms that determine this impairment are poorly understood. Here, we evaluated whether the sWM impairment characteristic of animal models of chronic pain is dependent on DA D2 receptor (D2r) activity. METHODS To address this issue, we implanted multichannel arrays of electrodes in the dorsal and ventral hippocampal CA1 field (dvCA1) of rats and recorded the neuronal activity during a classical delayed food-reinforced T-maze sWM task. Within-subject behavioural performance and patterns of dorsoventral neural activity were assessed before and after the onset of persistent neuropathic pain using the spared nerve injury (SNI) model. RESULTS Our results show that the peripheral nerve lesion caused a disruption in sWM and hippocampus spike activity and that disruption was maximized by the systemic administration of the D2r antagonist raclopride. These deficits are strictly correlated with a selective disruption of hippocampal theta-oscillations. Particularly, we found a significant decrease in intrahippocampal CA1 field connectivity level. CONCLUSIONS Together, these results suggest that disruption of the dopaminergic balance in the intrahippocampal networks may be important for the development of cognitive deficits experienced during painful conditions. SIGNIFICANCE This study provides new insights into the role of D2r in the manifestation of pain-related sWM deficits. Our findings support that selective blockade of D2r produces a significant decrease in intrahippocampal connectivity mediated by theta-oscillations, and amplifies pain-related sWM deficits. These results suggest that further characterization of intrahippocampal dopaminergic modulation may be clinically relevant for the understanding of cognitive impairments that accompanies nociceptive stressful conditions.
Collapse
Affiliation(s)
- H Cardoso-Cruz
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal
| | - M Dourado
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal.,PDN - Programa Doutoral em Neurociências, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - C Monteiro
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal
| | - V Galhardo
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal
| |
Collapse
|
36
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
37
|
Jones L, Fabrizi L, Laudiano-Dray M, Whitehead K, Meek J, Verriotis M, Fitzgerald M. Nociceptive Cortical Activity Is Dissociated from Nociceptive Behavior in Newborn Human Infants under Stress. Curr Biol 2017; 27:3846-3851.e3. [PMID: 29199079 PMCID: PMC5742634 DOI: 10.1016/j.cub.2017.10.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/20/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022]
Abstract
Newborn infants display strong nociceptive behavior in response to tissue damaging stimuli, and this is accompanied by nociceptive activity generated in subcortical and cortical areas of the brain [1, 2]. In the absence of verbal report, these nociceptive responses are used as measures of pain sensation in newborn humans, as they are in animals [3, 4]. However, many infants are raised in a physiologically stressful environment, and little is known about the effect of background levels of stress upon their pain responses. In adults, acute physiological stress causes hyperalgesia [5, 6, 7], and increased background stress increases pain [8, 9, 10], but these data cannot necessarily be extrapolated to infants. Here we have simultaneously measured nociceptive behavior, brain activity, and levels of physiological stress in a sample of 56 newborn human infants aged 36–42 weeks. Salivary cortisol (hypothalamic pituitary axis), heart rate variability (sympathetic adrenal medullary system), EEG event-related potentials (nociceptive cortical activity), and facial expression (behavior) were acquired in individual infants following a clinically required heel lance. We show that infants with higher levels of stress exhibit larger amplitude cortical nociceptive responses, but this is not reflected in their behavior. Furthermore, while nociceptive behavior and cortical activity are normally correlated, this relationship is disrupted in infants with high levels of physiological stress. Brain activity evoked by noxious stimulation is therefore enhanced by stress, but this cannot be deduced from observation of pain behavior. This may be important in the prevention of adverse effects of early repetitive pain on brain development. Infant pain behavior and nociceptive brain activity are generally correlated Stress disrupts the relationship between infant pain brain activity and behavior Stress is associated with increased nociceptive brain activity, but not behavior Stress is an important factor when assessing infant pain experience
Collapse
Affiliation(s)
- Laura Jones
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK
| | - Maria Laudiano-Dray
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK
| | - Kimberley Whitehead
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals, London WC1E6DB, UK
| | - Madeleine Verriotis
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E6BT, UK.
| |
Collapse
|
38
|
Greenwood-Van Meerveld B, Johnson AC. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin. Front Syst Neurosci 2017; 11:86. [PMID: 29213232 PMCID: PMC5702626 DOI: 10.3389/fnsys.2017.00086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced exacerbation of chronic visceral pain. Additionally, we will review the importance of specific experimental models of adult stress and ELS in enhancing our understanding of the basic molecular mechanisms of pain processing.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- VA Medical Center, Oklahoma City, OK, United States
| | | |
Collapse
|
39
|
Abstract
Pain modulates rhythmic neuronal activity recorded by Electroencephalography (EEG) in humans. Our laboratory previously showed that rat models of acute and neuropathic pain manifest increased power in primary somatosensory cortex (S1) recorded by electrocorticography (ECoG). In this study, we hypothesized that pain increases EEG power and corticocortical coherence in different rat models of pain, whereas treatments with clinically effective analgesics reverse these changes. Our results show increased cortical power over S1 and prefrontal cortex (PFC) in awake, freely behaving rat models of acute, inflammatory and neuropathic pain. Coherence between PFC and S1 is increased at a late, but not early, time point during the development of neuropathic pain. Electroencephalography power is not affected by ibuprofen in the acute pain model. However, pregabalin and mexiletine reverse the changes in power and S1-PFC coherence in the inflammatory and neuropathic pain models. These data suggest that quantitative EEG might be a valuable predictor of pain and analgesia in rodents.
Collapse
|
40
|
Activation of cortical somatostatin interneurons prevents the development of neuropathic pain. Nat Neurosci 2017; 20:1122-1132. [PMID: 28671692 PMCID: PMC5559271 DOI: 10.1038/nn.4595] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/20/2017] [Indexed: 12/13/2022]
Abstract
Neuropathic pain involves long-lasting modifications of pain pathways that result in abnormal cortical activity. How cortical circuits are altered and contribute to the intense sensation associated with allodynia is unclear. Here we report a persistent elevation of layer V pyramidal neuron activity in the somatosensory cortex of a mouse model of neuropathic pain. This enhanced pyramidal neuron activity was caused in part by increases of synaptic activity and NMDA-receptor-dependent calcium spikes in apical tuft dendrites. Furthermore, local inhibitory interneuron networks shifted their activity in favor of pyramidal neuron hyperactivity: somatostatin-expressing and parvalbumin-expressing inhibitory neurons reduced their activity, whereas vasoactive intestinal polypeptide–expressing interneurons increased their activity. Pharmacogenetic activation of somatostatin-expressing cells reduced pyramidal neuron hyperactivity and reversed mechanical allodynia. These findings reveal cortical circuit changes that arise during the development of neuropathic pain and identify the activation of specific cortical interneurons as therapeutic targets for chronic pain treatment.
Collapse
|
41
|
Touj S, Houle S, Ramla D, Jeffrey-Gauthier R, Hotta H, Bronchti G, Martinoli MG, Piché M. Sympathetic regulation and anterior cingulate cortex volume are altered in a rat model of chronic back pain. Neuroscience 2017; 352:9-18. [DOI: 10.1016/j.neuroscience.2017.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022]
|
42
|
Kim W, Kim SK, Nabekura J. Functional and structural plasticity in the primary somatosensory cortex associated with chronic pain. J Neurochem 2017; 141:499-506. [PMID: 28278355 DOI: 10.1111/jnc.14012] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 02/03/2023]
Abstract
Tissue or nerve injury induces widespread plastic changes from the periphery and spinal cord up to the cortex, resulting in chronic pain. Although many clinicians and researchers have extensively studied altered nociceptive signaling and neural circuit plasticity at the spinal cord level, effective treatments to ameliorate chronic pain are still insufficient. For about the last two decades, the rapid development in macroscopic brain imaging studies on humans and animal models have revealed maladaptive plastic changes in the 'pain matrix' brain regions, which may subsequently contribute to chronic pain. Among these brain regions, our group has concentrated for many years on the primary somatosensory (S1) cortex with a help of advanced imaging techniques and has found the functional and structural changes in neurons/glia as well as individual synapses in the S1 cortex during chronic pain. Taken together, it is now believed that such S1 plasticity is one of the causes for chronic pain, not a simple and passive epiphenomenon following tissue/nerve injury as previously thought. In this small review, we discuss the relation of plasticity in the S1 cortex with chronic pain, based on clinical trials and experimental studies conducted on this field. This article is part of the special article series "Pain".
Collapse
Affiliation(s)
- Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.,Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama, Kanagawa, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
43
|
Kwon M, Han J, Kim UJ, Cha M, Um SW, Bai SJ, Hong SK, Lee BH. Inhibition of Mammalian Target of Rapamycin (mTOR) Signaling in the Insular Cortex Alleviates Neuropathic Pain after Peripheral Nerve Injury. Front Mol Neurosci 2017; 10:79. [PMID: 28377693 PMCID: PMC5359287 DOI: 10.3389/fnmol.2017.00079] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/06/2017] [Indexed: 12/30/2022] Open
Abstract
Injury of peripheral nerves can trigger neuropathic pain, producing allodynia and hyperalgesia via peripheral and central sensitization. Recent studies have focused on the role of the insular cortex (IC) in neuropathic pain. Because the IC is thought to store pain-related memories, translational regulation in this structure may reveal novel targets for controlling chronic pain. Signaling via mammalian target of rapamycin (mTOR), which is known to control mRNA translation and influence synaptic plasticity, has been studied at the spinal level in neuropathic pain, but its role in the IC under these conditions remains elusive. Therefore, this study was conducted to determine the role of mTOR signaling in neuropathic pain and to assess the potential therapeutic effects of rapamycin, an inhibitor of mTORC1, in the IC of rats with neuropathic pain. Mechanical allodynia was assessed in adult male Sprague-Dawley rats after neuropathic surgery and following microinjections of rapamycin into the IC on postoperative days (PODs) 3 and 7. Optical recording was conducted to observe the neural responses of the IC to peripheral stimulation. Rapamycin reduced mechanical allodynia and downregulated the expression of postsynaptic density protein 95 (PSD95), decreased neural excitability in the IC, thereby inhibiting neuropathic pain-induced synaptic plasticity. These findings suggest that mTOR signaling in the IC may be a critical molecular mechanism modulating neuropathic pain.
Collapse
Affiliation(s)
- Minjee Kwon
- Department of Physiology, Yonsei University College of MedicineSeoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of MedicineSeoul, South Korea
| | - Jeongsoo Han
- Department of Physiology, Yonsei University College of MedicineSeoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of MedicineSeoul, South Korea
| | - Un Jeng Kim
- Department of Physiology, Yonsei University College of Medicine Seoul, South Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine Seoul, South Korea
| | - Sun Woo Um
- Department of Physiology, Yonsei University College of MedicineSeoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of MedicineSeoul, South Korea
| | - Sun Joon Bai
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine Seoul, South Korea
| | - Seong-Karp Hong
- Division of Bio and Health Sciences, Mokwon University Daejeon, South Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of MedicineSeoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of MedicineSeoul, South Korea; Brain Research Institute and Epilepsy Research Institute, Yonsei University College of MedicineSeoul, South Korea
| |
Collapse
|
44
|
Zhang X, Chen WW, Huang WJ. Chemotherapy-induced peripheral neuropathy. Biomed Rep 2017; 6:267-271. [PMID: 28451384 PMCID: PMC5403454 DOI: 10.3892/br.2017.851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022] Open
Abstract
Neuropathy is associated with side effects of frontline chemotherapeutics, which is a prominent therapy utilized in prevalent cancers. Peripheral neuropathy negatively impacts quality of life in cancer patients and survivors. It also affects the dose plan of the treatment, thereby limiting the efficacy of the treatment. We searched the electronic database PubMed for pre-clinically and clinically controlled trials reporting neuropathy of adverse effects, a result of chemotherapy in cancer patients. It was observed clearly that many reports provide clinical evidence to rapidly growing neuropathy cases of cancer patients. Furthermore, the reports clearly showed enhanced cold pain, sensorimotor deficits, sensory innervation of the skin and sensorimotor deficits in the patients with cancer who underwent treatment mainly with the chemotherapeutic approach. The present review highlighted the current view of peripheral neuropathy during chemotherapeutic approaches.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Wei-Wei Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Wen-Juan Huang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
45
|
Kucyi A, Davis KD. The Neural Code for Pain: From Single-Cell Electrophysiology to the Dynamic Pain Connectome. Neuroscientist 2016; 23:397-414. [DOI: 10.1177/1073858416667716] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pain occurs in time. In naturalistic settings, pain perception is sometimes stable but often varies in intensity and quality over the course of seconds, minutes, and days. A principal aim in classic electrophysiology studies of pain was to uncover a neural code based on the temporal patterns of single neuron firing. In contrast, modern neuroimaging studies have placed emphasis on uncovering the spatial pattern of brain activity (or “map”) that may reflect the pain experience. However, in the emerging field of connectomics, communication within and among brain networks is characterized as intrinsically dynamic on multiple time scales. In this review, we revisit the single-cell electrophysiological evidence for a nociceptive neural code and consider how those findings relate to recent advances in understanding systems-level dynamic processes that suggest the existence of a “dynamic pain connectome” as a spatiotemporal physiological signature of pain. We explore how spontaneous activity fluctuations in this dynamic system shape, and are shaped by, acute and chronic pain experiences and individual differences in those experiences. Highlighting the temporal dimension of pain, we aim to move pain theory beyond the concept of a static neurosignature and toward an ethologically relevant account of naturalistic dynamics.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Neurology & Neurological Sciences, Stanford University, Stanford CA, USA
| | - Karen D. Davis
- Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Hulse RP, Drake RAR, Bates DO, Donaldson LF. The control of alternative splicing by SRSF1 in myelinated afferents contributes to the development of neuropathic pain. Neurobiol Dis 2016; 96:186-200. [PMID: 27616424 PMCID: PMC5113660 DOI: 10.1016/j.nbd.2016.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023] Open
Abstract
Neuropathic pain results from neuroplasticity in nociceptive neuronal networks. Here we demonstrate that control of alternative pre-mRNA splicing, through the splice factor serine-arginine splice factor 1 (SRSF1), is integral to the processing of nociceptive information in the spinal cord. Neuropathic pain develops following a partial saphenous nerve ligation injury, at which time SRSF1 is activated in damaged myelinated primary afferent neurons, with minimal found in small diameter (IB4 positive) dorsal root ganglia neurons. Serine arginine protein kinase 1 (SRPK1) is the principal route of SRSF1 activation. Spinal SRPK1 inhibition attenuated SRSF1 activity, abolished neuropathic pain behaviors and suppressed central sensitization. SRSF1 was principally expressed in large diameter myelinated (NF200-rich) dorsal root ganglia sensory neurons and their excitatory central terminals (vGLUT1+ve) within the dorsal horn of the lumbar spinal cord. Expression of pro-nociceptive VEGF-Axxxa within the spinal cord was increased after nerve injury, and this was prevented by SRPK1 inhibition. Additionally, expression of anti-nociceptive VEGF-Axxxb isoforms was elevated, and this was associated with reduced neuropathic pain behaviors. Inhibition of VEGF receptor-2 signaling in the spinal cord attenuated behavioral nociceptive responses to mechanical, heat and formalin stimuli, indicating that spinal VEGF receptor-2 activation has potent pro-nociceptive actions. Furthermore, intrathecal VEGF-A165a resulted in mechanical and heat hyperalgesia, whereas the sister inhibitory isoform VEGF-A165b resulted in anti-nociception. These results support a role for myelinated fiber pathways, and alternative pre-mRNA splicing of factors such as VEGF-A in the spinal processing of neuropathic pain. They also indicate that targeting pre-mRNA splicing at the spinal level could lead to a novel target for analgesic development.
Collapse
Affiliation(s)
- Richard P Hulse
- Cancer Biology, School of Medicine, University of Nottingham, Nottingham, NG7 7UH, United Kingdom; School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| | - Robert A R Drake
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - David O Bates
- Cancer Biology, School of Medicine, University of Nottingham, Nottingham, NG7 7UH, United Kingdom; School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Lucy F Donaldson
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom; School of Life Sciences and Arthritis Research UK Pain Centre, University of Nottingham, Nottingham NG7 7UH, United Kingdom.
| |
Collapse
|
47
|
Gao SH, Wen HZ, Shen LL, Zhao YD, Ruan HZ. Activation of mGluR1 contributes to neuronal hyperexcitability in the rat anterior cingulate cortex via inhibition of HCN channels. Neuropharmacology 2016; 105:361-377. [DOI: 10.1016/j.neuropharm.2016.01.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 01/14/2023]
|
48
|
Russo JF, Sheth SA. Deep brain stimulation of the dorsal anterior cingulate cortex for the treatment of chronic neuropathic pain. Neurosurg Focus 2016; 38:E11. [PMID: 26030699 DOI: 10.3171/2015.3.focus1543] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic neuropathic pain is estimated to affect 3%-4.5% of the worldwide population. It is associated with significant loss of productive time, withdrawal from the workforce, development of mood disorders such as depression and anxiety, and disruption of family and social life. Current medical therapeutics often fail to adequately treat chronic neuropathic pain. Deep brain stimulation (DBS) targeting subcortical structures such as the periaqueductal gray, the ventral posterior lateral and medial thalamic nuclei, and the internal capsule has been investigated for the relief of refractory neuropathic pain over the past 3 decades. Recent work has identified the dorsal anterior cingulate cortex (dACC) as a new potential neuromodulation target given its central role in cognitive and affective processing. In this review, the authors briefly discuss the history of DBS for chronic neuropathic pain in the United States and present evidence supporting dACC DBS for this indication. They review existent literature on dACC DBS and summarize important findings from imaging and neurophysiological studies supporting a central role for the dACC in the processing of chronic neuropathic pain. The available neurophysiological and empirical clinical evidence suggests that dACC DBS is a viable therapeutic option for the treatment of chronic neuropathic pain and warrants further investigation.
Collapse
Affiliation(s)
- Jennifer F Russo
- 1Columbia University College of Physicians and Surgeons and.,2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Sameer A Sheth
- 2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
49
|
Lim M, Kim JS, Kim DJ, Chung CK. Increased Low- and High-Frequency Oscillatory Activity in the Prefrontal Cortex of Fibromyalgia Patients. Front Hum Neurosci 2016; 10:111. [PMID: 27014041 PMCID: PMC4789463 DOI: 10.3389/fnhum.2016.00111] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/29/2016] [Indexed: 11/30/2022] Open
Abstract
Recent human neuroimaging studies have suggested that fibromyalgia (FM), a chronic widespread pain disorder, exhibits altered thalamic structure and function. Since the thalamus has extensive reciprocal connection with the cortex, structural and functional thalamic alterations in FM might be linked to aberrant thalamocortical oscillation. This study investigated the presence of abnormal brain rhythmicity in low- and high-frequency bands during resting state in patients with FM and their relationship to clinical pain symptom. Spontaneous magnetoencephalography (MEG) activity was recorded in 18 females with FM and 18 age- and sex-matched healthy control (HC) subjects. The most remarkable finding was that FM patients had general increases in theta, beta and gamma power along with a slowing of the dominant alpha peak. Increased spectral powers in the theta-band were primarily localized to the left dorsolateral prefrontal (DLPFC) and orbitofrontal cortex (OFC). Beta and gamma over-activation were localized to insular, primary motor and primary and secondary somatosensory (S2) cortices, as well as the DLPFC and OFC. Furthermore, enhanced high-frequency oscillatory activities in the DLPFC and OFC were associated with higher affective pain scores in patients with FM. Our results demonstrate that FM patients feature enhanced low- and high-frequency oscillatory activity in the brain areas related to cognitive and emotional modulation of pain. Increased low- and high-frequency activity of the prefrontal cortex may contribute to persistent perception of pain in FM. Therapeutic intervention based on manipulating neural oscillation to restore normal thalamocortical rhythmicity may be beneficial to pain relief in FM.
Collapse
Affiliation(s)
- Manyoel Lim
- Neuroscience Research Institute, Seoul National University College of Medicine Seoul, South Korea
| | - June Sic Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences Seoul, South Korea
| | - Dajung J Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences Seoul, South Korea
| | - Chun Kee Chung
- Neuroscience Research Institute, Seoul National University College of MedicineSeoul, South Korea; Department of Brain and Cognitive Sciences, Seoul National University College of Natural SciencesSeoul, South Korea; Department of Neurosurgery, Seoul National University HospitalSeoul, South Korea
| |
Collapse
|
50
|
Pathophysiological implication of CaV3.1 T-type Ca2+ channels in trigeminal neuropathic pain. Proc Natl Acad Sci U S A 2016; 113:2270-5. [PMID: 26858455 DOI: 10.1073/pnas.1600418113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A crucial pathophysiological issue concerning central neuropathic pain is the modification of sensory processing by abnormally increased low-frequency brain rhythms. Here we explore the molecular mechanisms responsible for such abnormal rhythmicity and its relation to neuropathic pain syndrome. Toward this aim, we investigated the behavioral and electrophysiological consequences of trigeminal neuropathic pain following infraorbital nerve ligations in CaV3.1 T-type Ca(2+) channel knockout and wild-type mice. CaV3.1 knockout mice had decreased mechanical hypersensitivity and reduced low-frequency rhythms in the primary somatosensory cortex and related thalamic nuclei than wild-type mice. Lateral inhibition of gamma rhythm in primary somatosensory cortex layer 4, reflecting intact sensory contrast, was present in knockout mice but severely impaired in wild-type mice. Moreover, cross-frequency coupling between low-frequency and gamma rhythms, which may serve in sensory processing, was pronounced in wild-type mice but not in CaV3.1 knockout mice. Our results suggest that the presence of CaV3.1 channels is a key element in the pathophysiology of trigeminal neuropathic pain.
Collapse
|