1
|
Dang R, Liu A, Zhou Y, Li X, Wu M, Cao K, Meng Y, Zhang H, Gan G, Xie W, Jia Z. Astrocytic neuroligin 3 regulates social memory and synaptic plasticity through adenosine signaling in male mice. Nat Commun 2024; 15:8639. [PMID: 39366972 PMCID: PMC11452673 DOI: 10.1038/s41467-024-52974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Social memory impairment is a key symptom of many brain disorders, but its underlying mechanisms remain unclear. Neuroligins (NLGs) are a family of cell adhesion molecules essential for synapse development and function and their dysfunctions are linked to neurodevelopmental and neuropsychiatric disorders, including autism and schizophrenia. Although NLGs are extensively studied in neurons, their role in glial cells is poorly understood. Here we show that astrocytic deletion of NLG3 in the ventral hippocampus of adult male mice impairs social memory, attenuates astrocytic Ca2+ signals, enhances the expression of EAAT2 and prevents long-term potentiation, and these impairments are rescued by increasing astrocyte activity, reducing EAAT2 function or enhancing adenosine/A2a receptor signaling. This study has revealed an important role of NLG3 in astrocyte function, glutamate homeostasis and social memory and identified the glutamate transporter and adenosine signaling pathway as potential therapeutic strategies to treat brain disorders.
Collapse
Affiliation(s)
- Rui Dang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Shenzhen, 518063, China
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
- Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Shenzhen, 518063, China.
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada.
| | - Yu Zhou
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Shenzhen, 518063, China
| | - Xingcan Li
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Miao Wu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Kun Cao
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Yanghong Meng
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Haiwang Zhang
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Guangming Gan
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
- Institute for Brain and Intelligence, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
- Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, 2 Sipailou Road, Nanjing, 210096, China.
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
2
|
Jang MH, Song J. Adenosine and adenosine receptors in metabolic imbalance-related neurological issues. Biomed Pharmacother 2024; 177:116996. [PMID: 38897158 DOI: 10.1016/j.biopha.2024.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic syndromes (e.g., obesity) are characterized by insulin resistance, chronic inflammation, impaired glucose metabolism, and dyslipidemia. Recently, patients with metabolic syndromes have experienced not only metabolic problems but also neuropathological issues, including cognitive impairment. Several studies have reported blood-brain barrier (BBB) disruption and insulin resistance in the brain of patients with obesity and diabetes. Adenosine, a purine nucleoside, is known to regulate various cellular responses (e.g., the neuroinflammatory response) by binding with adenosine receptors in the central nervous system (CNS). Adenosine has four known receptors: A1R, A2AR, A2BR, and A3R. These receptors play distinct roles in various physiological and pathological processes in the brain, including endothelial cell homeostasis, insulin sensitivity, microglial activation, lipid metabolism, immune cell infiltration, and synaptic plasticity. Here, we review the recent findings on the role of adenosine receptor-mediated signaling in neuropathological issues related to metabolic imbalance. We highlight the importance of adenosine signaling in the development of therapeutic solutions for neuropathological issues in patients with metabolic syndromes.
Collapse
Affiliation(s)
- Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| |
Collapse
|
3
|
Bhardwaj I, Ansari AH, Rai SP, Singh S, Singh D. Molecular targets of caffeine in the central nervous system. PROGRESS IN BRAIN RESEARCH 2024; 288:35-58. [PMID: 39168558 DOI: 10.1016/bs.pbr.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Caffeine is an alkaloid obtained from plants and is one of the most consumptive drug in the form of chocolate, coffee and beverages. The potential impact of caffeine within CNS can be easily understood by mechanism of action-antagonism of adenosine receptor, calcium influx, inhibits phosphodiesterases. Adenosine a neuromodulator for adenosine receptors, which are abundantly expressed within the central nervous system. Caffeine antagonized the adenosine receptor, hence stimulate expression of dopamine. It plays pivotal role in many metabolic pathways within the brain and nervous system, it reduced the amyloid-β-peptide (Aβ) accumulation, downregulation of tau protein phosphorylation, stimulate cholinergic neurons and inhibits the acetylcholinestrase (AChE). It also possess antioxidant and antiapoptotic activity. Caffeine act as nutraceutical product, improves mental health. It contains antioxidants, vitamins, minerals and dietary supplements, by reducing the risk factor of several neurodegenerations including Alzheimer's disease, migraine, gallstone, cancer, Huntington's disease and sclerosis. This act as a stimulant and have capability to increase the effectiveness of certain pain killer. Beside positive affects, over-consumption of caffeine leads to negative impact: change in sleep pattern, hallucinations, high blood pressure, mineral loss and even heartburn. This chapter highlights pros and cons of caffeine consumption.
Collapse
Affiliation(s)
- Ishita Bhardwaj
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Atifa Haseeb Ansari
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Swayam Prabha Rai
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Sippy Singh
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Durgesh Singh
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India.
| |
Collapse
|
4
|
Juvenal G, Higa GSV, Bonfim Marques L, Tessari Zampieri T, Costa Viana FJ, Britto LR, Tang Y, Illes P, di Virgilio F, Ulrich H, de Pasquale R. Regulation of GABAergic neurotransmission by purinergic receptors in brain physiology and disease. Purinergic Signal 2024:10.1007/s11302-024-10034-x. [PMID: 39046648 DOI: 10.1007/s11302-024-10034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied. Through their ramifications, astrocytes and GABAergic interneurons reach large groups of excitatory pyramidal neurons. Their inhibitory effect establishes different synchronization patterns that determine gamma frequency rhythms, which characterize neural activities related to cognitive processes. During early life, GABAergic-mediated synchronization of excitatory signals directs the experience-driven maturation of cognitive development, and dysfunctions concerning this process have been associated with neurological and neuropsychiatric diseases. Purinergic receptors timely modulate GABAergic control over ongoing neural activity and deeply affect neural processing in the hippocampal and neocortical circuitry. Stimulation of A2 receptors increases GABA release from presynaptic terminals, leading to a considerable reduction in neuronal firing of pyramidal neurons. A1 receptors inhibit GABAergic activity but only act in the early postnatal period when GABA produces excitatory signals. P2X and P2Y receptors expressed in pyramidal neurons reduce the inhibitory tone by blocking GABAA receptors. Finally, P2Y receptor activation elicits depolarization of GABAergic neurons and increases GABA release, thus favoring the emergence of gamma oscillations. The present review provides an overall picture of purinergic influence on GABAergic transmission and its consequences on neural processing, extending the discussion to receptor subtypes and their involvement in the onset of brain disorders, including epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Guilherme Juvenal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme Shigueto Vilar Higa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Thais Tessari Zampieri
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe José Costa Viana
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luiz R Britto
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yong Tang
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Roberto de Pasquale
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Nasrallah K, Berthoux C, Hashimotodani Y, Chávez AE, Gulfo MC, Luján R, Castillo PE. Retrograde adenosine/A 2A receptor signaling facilitates excitatory synaptic transmission and seizures. Cell Rep 2024; 43:114382. [PMID: 38905101 PMCID: PMC11286346 DOI: 10.1016/j.celrep.2024.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/12/2023] [Accepted: 06/03/2024] [Indexed: 06/23/2024] Open
Abstract
Retrograde signaling at the synapse is a fundamental way by which neurons communicate and neuronal circuit function is fine-tuned upon activity. While long-term changes in neurotransmitter release commonly rely on retrograde signaling, the mechanisms remain poorly understood. Here, we identified adenosine/A2A receptor (A2AR) as a retrograde signaling pathway underlying presynaptic long-term potentiation (LTP) at a hippocampal excitatory circuit critically involved in memory and epilepsy. Transient burst activity of a single dentate granule cell induced LTP of mossy cell synaptic inputs, a BDNF/TrkB-dependent form of plasticity that facilitates seizures. Postsynaptic TrkB activation released adenosine from granule cells, uncovering a non-conventional BDNF/TrkB signaling mechanism. Moreover, presynaptic A2ARs were necessary and sufficient for LTP. Lastly, seizure induction released adenosine in a TrkB-dependent manner, while removing A2ARs or TrkB from the dentate gyrus had anti-convulsant effects. By mediating presynaptic LTP, adenosine/A2AR retrograde signaling may modulate dentate gyrus-dependent learning and promote epileptic activity.
Collapse
Affiliation(s)
- Kaoutsar Nasrallah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Coralie Berthoux
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yuki Hashimotodani
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrés E Chávez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michelle C Gulfo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rafael Luján
- Instituto de Biomedicina de la UCLM (IB-UCLM), Facultad de Medicina, Universidad Castilla-La Mancha, 02008 Albacete, Spain
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
6
|
Martínez-Gallego I, Rodríguez-Moreno A. Adenosine and Cortical Plasticity. Neuroscientist 2024:10738584241236773. [PMID: 38497585 DOI: 10.1177/10738584241236773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Brain plasticity is the ability of the nervous system to change its structure and functioning in response to experiences. These changes occur mainly at synaptic connections, and this plasticity is named synaptic plasticity. During postnatal development, environmental influences trigger changes in synaptic plasticity that will play a crucial role in the formation and refinement of brain circuits and their functions in adulthood. One of the greatest challenges of present neuroscience is to try to explain how synaptic connections change and cortical maps are formed and modified to generate the most suitable adaptive behavior after different external stimuli. Adenosine is emerging as a key player in these plastic changes at different brain areas. Here, we review the current knowledge of the mechanisms responsible for the induction and duration of synaptic plasticity at different postnatal brain development stages in which adenosine, probably released by astrocytes, directly participates in the induction of long-term synaptic plasticity and in the control of the duration of plasticity windows at different cortical synapses. In addition, we comment on the role of the different adenosine receptors in brain diseases and on the potential therapeutic effects of acting via adenosine receptors.
Collapse
Affiliation(s)
- Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| |
Collapse
|
7
|
Mota-Rojas D, Villanueva-García D, Hernández-Ávalos I, Casas-Alvarado A, Domínguez-Oliva A, Lezama-García K, Miranda-Cortés A, Martínez-Burnes J. Cardiorespiratory and Neuroprotective Effects of Caffeine in Neonate Animal Models. Animals (Basel) 2023; 13:1769. [PMID: 37889643 PMCID: PMC10252037 DOI: 10.3390/ani13111769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
Caffeine is widely used to improve neonatal health in animals with low vitality. Due to its pharmacokinetics and pharmacodynamics, caffeine stimulates the cardiorespiratory system by antagonism of adenosine receptors and alteration in Ca+2 ion channel activity. Moreover, the availability of intracellular Ca+2 also has positive inotropic effects by increasing heart contractibility and by having a possible positive effect on neonate vitality. Nonetheless, since neonatal enzymatic and tissular systems are immature at birth, there is a controversy about whether caffeine is an effective therapy for newborns. This review aims to analyze the basic concepts of caffeine in neonatal animal models (rat and mouse pups, goat kids, lambs, and piglets), and it will discuss the neuroprotective effect and its physiological actions in reducing apnea in newborns.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Dina Villanueva-García
- Division of Neonatology, National Institute of Health, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico; (I.H.-Á.)
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Agatha Miranda-Cortés
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico; (I.H.-Á.)
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| |
Collapse
|
8
|
Sebastião AM, Ribeiro JA. Adjusting the brakes to adjust neuronal activity: Adenosinergic modulation of GABAergic transmission. Neuropharmacology 2023; 236:109600. [PMID: 37225084 DOI: 10.1016/j.neuropharm.2023.109600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/20/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
About 50 years elapsed from the publication of the first full paper on the neuromodulatory action of adenosine at a 'simple' synapse model, the neuromuscular junction (Ginsborg and Hirst, 1972). In that study adenosine was used as a tool to increase cyclic AMP and for the great surprise, it decreased rather than increased neurotransmitter release, and for a further surprise, its action was prevented by theophylline, at the time only known as inhibitor of phosphodiesterases. These intriguing observations opened the curiosity for immediate studies relating the action of adenine nucleotides, known to be released together with neurotransmitters, to that of adenosine (Ribeiro and Walker, 1973, 1975). Our understanding on the ways adenosine uses to modulate synapses, circuits, and brain activity, vastly expanded since then. However, except for A2A receptors, whose actions upon GABAergic neurons of the striatum are well known, most of the attention given to the neuromodulatory action of adenosine has been focusing upon excitatory synapses. Evidence is growing that GABAergic transmission is also a target for adenosinergic neuromodulation through A1 and A2A receptors. Some o these actions have specific time windows during brain development, and others are selective for specific GABAergic neurons. Both tonic and phasic GABAergic transmission can be affected, and either neurons or astrocytes can be targeted. In some cases, those effects result from a concerted action with other neuromodulators. Implications of these actions in the control of neuronal function/dysfunction will be the focus of this review.
Collapse
Affiliation(s)
- Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| | - Joaquim Alexandre Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
9
|
Wu Z, Cui Y, Wang H, Wu H, Wan Y, Li B, Wang L, Pan S, Peng W, Dong A, Yuan Z, Jing M, Xu M, Luo M, Li Y. Neuronal activity-induced, equilibrative nucleoside transporter-dependent, somatodendritic adenosine release revealed by a GRAB sensor. Proc Natl Acad Sci U S A 2023; 120:e2212387120. [PMID: 36996110 PMCID: PMC10083574 DOI: 10.1073/pnas.2212387120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
The purinergic signaling molecule adenosine (Ado) modulates many physiological and pathological functions in the brain. However, the exact source of extracellular Ado remains controversial. Here, utilizing a newly optimized genetically encoded GPCR-Activation-Based Ado fluorescent sensor (GRABAdo), we discovered that the neuronal activity-induced extracellular Ado elevation is due to direct Ado release from somatodendritic compartments of neurons, rather than from the axonal terminals, in the hippocampus. Pharmacological and genetic manipulations reveal that the Ado release depends on equilibrative nucleoside transporters but not the conventional vesicular release mechanisms. Compared with the fast-vesicular glutamate release, the Ado release is slow (~40 s) and requires calcium influx through L-type calcium channels. Thus, this study reveals an activity-dependent second-to-minute local Ado release from the somatodendritic compartments of neurons, potentially serving modulatory functions as a retrograde signal.
Collapse
Affiliation(s)
- Zhaofa Wu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Yuting Cui
- National Institute of Biological Sciences, Beijing102206, China
- Chinese Institute for Brain Research, Beijing102206, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
| | - Hao Wu
- School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yi Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Bohan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Lei Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing100871, China
| | - Sunlei Pan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Wanling Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai200031, China
| | - Ao Dong
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Zhengwei Yuan
- National Institute of Biological Sciences, Beijing102206, China
- School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing102206, China
| | - Min Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai200031, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing102206, China
- Chinese Institute for Brain Research, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing100005, China
- New Cornerstone Science Institute at Chinese Institute for Brain Research, Beijing102206, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong518055, China
- National Biomedical Imaging Center, Peking University, Beijing100871, China
- New Cornerstone Science Institute at Peking University, Beijing100871, China
| |
Collapse
|
10
|
Launay A, Nebie O, Vijaya Shankara J, Lebouvier T, Buée L, Faivre E, Blum D. The role of adenosine A 2A receptors in Alzheimer's disease and tauopathies. Neuropharmacology 2023; 226:109379. [PMID: 36572177 DOI: 10.1016/j.neuropharm.2022.109379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Adenosine signals through four distinct G protein-coupled receptors that are located at various synapses, cell types and brain areas. Through them, adenosine regulates neuromodulation, neuronal signaling, learning and cognition as well as the sleep-wake cycle, all strongly impacted in neurogenerative disorders, among which Alzheimer's Disease (AD). AD is a complex form of cognitive deficits characterized by two pathological hallmarks: extracellular deposits of aggregated β-amyloid peptides and intraneuronal fibrillar aggregates of hyper- and abnormally phosphorylated Tau proteins. Both lesions contribute to the early dysfunction and loss of synapses which are strongly associated to the development of cognitive decline in AD patients. The present review focuses on the pathophysiological impact of the A2ARs dysregulation observed in cognitive area from AD patients. We are reviewing not only evidence of the cellular changes in A2AR levels in pathological conditions but also describe what is currently known about their consequences in term of synaptic plasticity, neuro-glial miscommunication and memory abilities. We finally summarize the proof-of-concept studies that support A2AR as credible targets and the clinical interest to repurpose adenosine drugs for the treatment of AD and related disorders. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Agathe Launay
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - Ouada Nebie
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - Jhenkruthi Vijaya Shankara
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - Thibaud Lebouvier
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France; CHU Lille, Memory Clinic, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - Emilie Faivre
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France.
| |
Collapse
|
11
|
Bertoncello KT, Bonan CD. The Effect of Adenosine Signaling on Memory Impairment Induced by Pentylenetetrazole in Zebrafish. Neurochem Res 2023; 48:1889-1899. [PMID: 36729312 DOI: 10.1007/s11064-023-03867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/03/2023]
Abstract
Epilepsy is characterized by the manifestation of spontaneous and recurrent seizures. The high prevalence of comorbidities associated with epilepsy, such as cognitive dysfunction, affects the patients quality of life. Adenosine signaling modulation might be an effective alternative to control seizures and epilepsy-associated comorbidities. This study aimed to verify the role of adenosine modulation on the seizure development and cognitive impairment induced by pentylenetetrazole (PTZ) in zebrafish. At first, animals were submitted to a training session in the inhibitory avoidance test and, after 10 min, they received an intraperitoneal injection of valproate, adenosine A1 receptor agonist cyclopentyladenosine (CPA), adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), adenosine A2A receptor antagonist ZM 241385, adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nony1)-adenine hydrochloride (EHNA) or the nucleoside transporter inhibitor dipyridamole. Thirty min after the intraperitoneal injection, the animals were exposed to 7.5 mM PTZ for 10 min, where they were evaluated for latency to reach the seizure stages (I, II, and III). Finally, 24 h after the training session, the animals were submitted to the inhibitory avoidance test to verify their cognitive performance during the test session. Valproate, CPA, and EHNA showed antiseizure effects and prevented the memory impairment induced by PTZ exposure. DPCPX, ZM 241385, and dipyridamole pretreatments caused no changes in seizure development; however, these drugs prevented memory impairment without altering locomotion. Our results reinforce the antiseizure effects of adenosine signaling and support the idea that the involvement of adenosine in memory processes may be a target for preventive strategies against cognitive impairment associated with epilepsy.
Collapse
Affiliation(s)
- Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
12
|
A Pattern to Link Adenosine Signaling, Circadian System, and Potential Final Common Pathway in the Pathogenesis of Major Depressive Disorder. Mol Neurobiol 2022; 59:6713-6723. [PMID: 35999325 PMCID: PMC9525429 DOI: 10.1007/s12035-022-03001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/07/2022] [Indexed: 11/18/2022]
Abstract
Several studies have reported separate roles of adenosine receptors and circadian clockwork in major depressive disorder. While less evidence exists for regulation of the circadian clock by adenosine signaling, a small number of studies have linked the adenosinergic system, the molecular circadian clock, and mood regulation. In this article, we review relevant advances and propose that adenosine receptor signaling, including canonical and other alternative downstream cellular pathways, regulates circadian gene expression, which in turn may underlie the pathogenesis of mood disorders. Moreover, we summarize the convergent point of these signaling pathways and put forward a pattern by which Homer1a expression, regulated by both cAMP-response element binding protein (CREB) and circadian clock genes, may be the final common pathogenetic mechanism in depression.
Collapse
|
13
|
A. Samara M, Oikonomou GD, Trompoukis G, Madarou G, Adamopoulou M, Papatheodoropoulos C. Septotemporal variation in modulation of synaptic transmission, paired-pulse ratio and frequency facilitation/depression by adenosine and GABA B receptors in the rat hippocampus. Brain Neurosci Adv 2022; 6:23982128221106315. [PMID: 35782711 PMCID: PMC9240614 DOI: 10.1177/23982128221106315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/19/2022] [Indexed: 11/26/2022] Open
Abstract
Short-term synaptic plasticity represents a fundamental mechanism in
neural information processing and is regulated by neuromodulators.
Here, using field recordings from the CA1 region of adult rat
hippocampal slices, we show that excitatory synaptic transmission is
suppressed by strong but not moderate activation of adenosine
A1 receptors by
2-Chloro-N6-cyclopentyladenosine (CCPA) more in the dorsal
than the ventral hippocampus; in contrast, both mild and strong
activation of GABAB receptors by baclofen (1 μM, 10 μM)
suppress synaptic transmission more in the ventral than the dorsal
hippocampus. Using a 10-pulse stimulation train of variable frequency,
we found that CCPA modulates short-term synaptic plasticity
independently of the suppression of synaptic transmission in both
segments of the hippocampus and at stimulation frequencies greater
than 10 Hz. However, specifically regarding the paired-pulse ratio
(PPR) and frequency facilitation/depression (FF/D) we found
significant drug action before but not after adjusting conditioning
responses to control levels. Activation of GABABRs by
baclofen suppressed synaptic transmission more in the ventral than the
dorsal hippocampus. Furthermore, relatively high (10 μM) but not low
(1 μM) baclofen concentration enhanced both PPR and FF in both
hippocampal segments at stimulation frequencies greater than 1 Hz,
independently of the suppression of synaptic transmission by baclofen.
These results show that A1Rs and GABABRs control
synaptic transmission more effectively in the dorsal and the ventral
hippocampus, respectively, and suggest that these receptors modulate
PPR and FF/D at different frequency bands of afferent input, in both
segments of the hippocampus.
Collapse
Affiliation(s)
- Maria A. Samara
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - George D. Oikonomou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - George Trompoukis
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Georgia Madarou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Maria Adamopoulou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | | |
Collapse
|
14
|
Huang Y, Wei Y, Xu J, Wei X. A comprehensive review on the prevention and regulation of Alzheimer's disease by tea and its active ingredients. Crit Rev Food Sci Nutr 2022; 63:10560-10584. [PMID: 35647742 DOI: 10.1080/10408398.2022.2081128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) has brought a heavy burden to society as a representative neurodegenerative disease. The etiology of AD combines multiple factors, concluding family, gender, head trauma, diseases and social psychology. There are multiple hypotheses explaining the pathogenesis of AD such as β-amyloid (Aβ) deposition and tau hyperphosphorylation, which lead to extracellular amyloid plaques and neurofibrillary tangles in neurons. The existing therapeutic drugs have several disadvantages including single target, poor curative effect, and obvious side effects. Tea contains many bioactive components, such as tea polyphenols (TPP), L-theanine (L-TH), tea pigment, tea polysaccharides and caffeine. The epidemiological investigations have shown that drinking tea can reduce the risk of AD. The mechanisms of tea active ingredients in the prevention and regulation of AD includes reducing the generation and aggregation of Aβ; inhibiting tau aggregation and hyperphosphorylation; inhibiting neuronal apoptosis and regulate neurotransmitters; relieving oxidative stress and neuroinflammation as well as the regulation of intestinal flora. This review summarizes the different signaling pathways that tea active ingredients regulate AD. Furthermore, we propose the main limitations of current research and future research directions, hoping to contribute to the development of natural functional foods based on tea active ingredients in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
15
|
Hayatdavoudi P, Hosseini M, Hajali V, Hosseini A, Rajabian A. The role of astrocytes in epileptic disorders. Physiol Rep 2022; 10:e15239. [PMID: 35343625 PMCID: PMC8958496 DOI: 10.14814/phy2.15239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 04/17/2023] Open
Abstract
Epilepsy affects about 1% of the population and approximately 30% of epileptic patients are resistant to current antiepileptic drugs. As a hallmark in epileptic tissue, many of the epileptic patients show changes in glia morphology and function. There are characteristic changes in different types of glia in different epilepsy models. Some of these changes such as astrogliosis are enough to provoke epileptic seizures. Astrogliosis is well known in mesial temporal lobe epilepsy (MTLE), the most common form of refractory epilepsy. A better understanding of astrocytes alterations could lead to novel and efficient pharmacological approaches for epilepsy. In this review, we present the alterations of astrocyte morphology and function and present some instances of targeting astrocytes in seizure and epilepsy.
Collapse
Affiliation(s)
- Parichehr Hayatdavoudi
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of PhysiologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | - Vahid Hajali
- Department of NeuroscienceFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
- Department of PharmacologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Arezoo Rajabian
- Department of Internal MedicineFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
16
|
Grković I, Mitrović N, Dragić M. Ectonucleotidases in the hippocampus: Spatial distribution and expression after ovariectomy and estradiol replacement. VITAMINS AND HORMONES 2021; 118:199-221. [PMID: 35180927 DOI: 10.1016/bs.vh.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular purine nucleotides, such as adenosine 5'-triphosphate (ATP), are important modulators of hippocampal function and plasticity. In the extracellular space, ATP is inherently short-lived molecule, which undergoes rapid enzymatic degradation to adenosine by ectonucleotidases. Given that ectonucleotidases have distinct and overlapping distribution in the hippocampus, and as ovarian hormones participate in a formation, maturation, and a refinement of synaptic contacts, both during development and in adulthood, the present chapter summarizes known data about spatial distribution of selected ecto-enzymes and estradiol-induced effects on ectonucleotidases in the rat hippocampus.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Hamel R, Lepage JF, Bernier PM. Anterograde interference emerges along a gradient as a function of task similarity: A behavioural study. Eur J Neurosci 2021; 55:49-66. [PMID: 34894023 PMCID: PMC9299670 DOI: 10.1111/ejn.15561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Anterograde interference emerges when two opposite (B → A) or identical tasks (A → A) are learned in close temporal succession, suggesting that interference cannot be fully accounted for by competing memories. Informed by neurobiological evidence, this work tested the hypothesis that interference depends upon the degree of overlap between the neural networks involved in the learning of two tasks. In a fully within‐subject and counterbalanced design, participants (n = 24) took part in two learning sessions where the putative overlap between learning‐specific neural networks was behaviourally manipulated across four conditions by modifying reach direction and the effector used during gradual visuomotor adaptation. The results showed that anterograde interference emerged regardless of memory competition—that is, to a similar extent in the B → A and A → A conditions—and along a gradient as a function of the tasks' similarity. Specifically, learning under similar reaching conditions generated more anterograde interference than learning under dissimilar reaching conditions, suggesting that putatively overlapping neural networks are required to generate interference. Overall, these results indicate that competing memories are not the sole contributor to anterograde interference and suggest that overlapping neural networks between two learning sessions are required to trigger interference. One discussed possibility is that initial learning modifies the properties of its neural networks to constrain further plasticity induction and learning capabilities, therefore causing anterograde interference in a network‐dependent manner. One implication is that learning‐specific neural networks must be maximally dissociated to minimize the interfering influences of previous learning on subsequent learning.
Collapse
Affiliation(s)
- Raphaël Hamel
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Lepage
- Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pierre-Michel Bernier
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
18
|
Villanueva-García D, Mota-Rojas D, Miranda-Cortés A, Ibarra-Ríos D, Casas-Alvarado A, Mora-Medina P, Martínez-Burnes J, Olmos-Hernández A, Hernández-Avalos I. Caffeine: cardiorespiratory effects and tissue protection in animal models. Exp Anim 2021; 70:431-439. [PMID: 34039788 PMCID: PMC8614017 DOI: 10.1538/expanim.20-0185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 10/31/2022] Open
Abstract
The aim of this review is to analyze the cardiorespiratory and tissue-protective effects of caffeine in animal models. Peer-reviewed literature published between 1975 and 2021 was retrieved from CAB Abstracts, PubMed, ISI Web of Knowledge, and Scopus. Extracted data were analyzed to address the mechanism of action of caffeine on cardiorespiratory parameters (heart rate and rhythm), vasopressor effects, and some indices of respiratory function; we close this review by discussing the current debate on the research carried out on the effects of caffeine on tissue protection. Adenosine acts through specific receptors and is a negative inotropic and chronotropic agent. Blockage of its cardiac receptors can cause tachycardia (with arrhythmogenic potential) due to the intense activity of β1 receptors. In terms of tissue protection, caffeine inhibits hyperoxia-induced pulmonary inflammation by decreasing proinflammatory cytokine expression in animal models. The protection that caffeine provides to tissues is not limited to the CNS, as studies have demonstrated that it generates attenuation of inflammatory effects in pulmonary tissue. It inhibits the effects of some pro-inflammatory cytokines and prevents functional and structural changes.
Collapse
Affiliation(s)
- Dina Villanueva-García
- Division of Neonatology, National Institute of Health, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, 06720, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior, and Animal Welfare Assessment, Department of Animal Production and Agriculture (DPAA), Universidad Autónoma Metropolitana (UAM) Xochimilco Campus, Calzada del Hueso 1100. Col. Villa Quietud. Coyoacán, 04960, Mexico City, Mexico
| | - Agatha Miranda-Cortés
- Clinical Pharmacology and Veterinary Anaesthesia, Department of Biological Science, FESC, Universidad Nacional Autónoma de México (UNAM), Carretera Cuautitlán-Teoloyucan Km. 2.5 San Sebastian Xhala, 54714, Cuautitlán Izcalli, State of Mexico, Mexico
| | - Daniel Ibarra-Ríos
- Division of Neonatology, National Institute of Health, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, 06720, Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior, and Animal Welfare Assessment, Department of Animal Production and Agriculture (DPAA), Universidad Autónoma Metropolitana (UAM) Xochimilco Campus, Calzada del Hueso 1100. Col. Villa Quietud. Coyoacán, 04960, Mexico City, Mexico
| | - Patricia Mora-Medina
- Livestock Science Department, Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores Cuautitlán, Carretera Cuautitlán-Teoloyucan Km. 2.5 San Sabastian Xhala, 54714, Cuautitlán Izcalli, State of Mexico, Mexico
| | - Julio Martínez-Burnes
- Graduate and Research Department, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km 5 Carretera Victoria-Mante, 87000, Cd. Victoria, Tamaulipas, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology, Department Bioterio and Experimental Surgery. Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Calzada México Xochimilco, 289, 14389, Mexico City, Mexico
| | - Ismael Hernández-Avalos
- Clinical Pharmacology and Veterinary Anaesthesia, Department of Biological Science, FESC, Universidad Nacional Autónoma de México (UNAM), Carretera Cuautitlán-Teoloyucan Km. 2.5 San Sebastian Xhala, 54714, Cuautitlán Izcalli, State of Mexico, Mexico
| |
Collapse
|
19
|
Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases. J Biomed Sci 2021; 28:70. [PMID: 34635103 PMCID: PMC8507231 DOI: 10.1186/s12929-021-00766-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
In modern societies, with an increase in the older population, age-related neurodegenerative diseases have progressively become greater socioeconomic burdens. To date, despite the tremendous effort devoted to understanding neurodegenerative diseases in recent decades, treatment to delay disease progression is largely ineffective and is in urgent demand. The development of new strategies targeting these pathological features is a timely topic. It is important to note that most degenerative diseases are associated with the accumulation of specific misfolded proteins, which is facilitated by several common features of neurodegenerative diseases (including poor energy homeostasis and mitochondrial dysfunction). Adenosine is a purine nucleoside and neuromodulator in the brain. It is also an essential component of energy production pathways, cellular metabolism, and gene regulation in brain cells. The levels of intracellular and extracellular adenosine are thus tightly controlled by a handful of proteins (including adenosine metabolic enzymes and transporters) to maintain proper adenosine homeostasis. Notably, disruption of adenosine homeostasis in the brain under various pathophysiological conditions has been documented. In the past two decades, adenosine receptors (particularly A1 and A2A adenosine receptors) have been actively investigated as important drug targets in major degenerative diseases. Unfortunately, except for an A2A antagonist (istradefylline) administered as an adjuvant treatment with levodopa for Parkinson's disease, no effective drug based on adenosine receptors has been developed for neurodegenerative diseases. In this review, we summarize the emerging findings on proteins involved in the control of adenosine homeostasis in the brain and discuss the challenges and future prospects for the development of new therapeutic treatments for neurodegenerative diseases and their associated disorders based on the understanding of adenosine homeostasis.
Collapse
|
20
|
Ribeiro FF, Ferreira F, Rodrigues RS, Soares R, Pedro DM, Duarte-Samartinho M, Aroeira RI, Ferreiro E, Valero J, Solá S, Mira H, Sebastião AM, Xapelli S. Regulation of hippocampal postnatal and adult neurogenesis by adenosine A 2A receptor: Interaction with brain-derived neurotrophic factor. Stem Cells 2021; 39:1362-1381. [PMID: 34043863 DOI: 10.1002/stem.3421] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Adenosine A2A receptor (A2A R) activation modulates several brain processes, ranging from neuronal maturation to synaptic plasticity. Most of these actions occur through the modulation of the actions of the neurotrophin brain-derived neurotrophic factor (BDNF). In this work, we studied the role of A2A Rs in regulating postnatal and adult neurogenesis in the rat hippocampal dentate gyrus (DG). Here, we show that A2A R activation with CGS 21680 promoted neural stem cell self-renewal, protected committed neuronal cells from cell death and contributed to a higher density of immature and mature neuronal cells, particularly glutamatergic neurons. Moreover, A2A R endogenous activation was found to be essential for BDNF-mediated increase in cell proliferation and neuronal differentiation. Our findings contribute to further understand the role of adenosinergic signaling in the brain and may have an impact in the development of strategies for brain repair under pathological conditions.
Collapse
Affiliation(s)
- Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Soares
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Diogo M Pedro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Duarte-Samartinho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rita I Aroeira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Elisabete Ferreiro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Jorge Valero
- Laboratory of Glial Cell Biology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
- University of the Basque Country EHU/UPV, Leioa, Spain
| | - Susana Solá
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Helena Mira
- Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Terrisse S, Derosa L, Iebba V, Ghiringhelli F, Vaz-Luis I, Kroemer G, Fidelle M, Christodoulidis S, Segata N, Thomas AM, Martin AL, Sirven A, Everhard S, Aprahamian F, Nirmalathasan N, Aarnoutse R, Smidt M, Ziemons J, Caldas C, Loibl S, Denkert C, Durand S, Iglesias C, Pietrantonio F, Routy B, André F, Pasolli E, Delaloge S, Zitvogel L. Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment. Cell Death Differ 2021; 28:2778-2796. [PMID: 33963313 PMCID: PMC8408230 DOI: 10.1038/s41418-021-00784-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 02/03/2023] Open
Abstract
The prognosis of early breast cancer (BC) relies on cell autonomous and immune parameters. The impact of the intestinal microbiome on clinical outcome has not yet been evaluated. Shotgun metagenomics was used to determine the composition of the fecal microbiota in 121 specimens from 76 early BC patients, 45 of whom were paired before and after chemotherapy. These patients were enrolled in the CANTO prospective study designed to record the side effects associated with the clinical management of BC. We analyzed associations between baseline or post-chemotherapy fecal microbiota and plasma metabolomics with BC prognosis, as well as with therapy-induced side effects. We examined the clinical relevance of these findings in immunocompetent mice colonized with BC patient microbiota that were subsequently challenged with histo-compatible mouse BC and chemotherapy. We conclude that specific gut commensals that are overabundant in BC patients compared with healthy individuals negatively impact BC prognosis, are modulated by chemotherapy, and may influence weight gain and neurological side effects of BC therapies. These findings obtained in adjuvant and neoadjuvant settings warrant prospective validation.
Collapse
Affiliation(s)
- Safae Terrisse
- Gustave Roussy Cancer Center, Villejuif, France
- INSERM U1015, Equipe Labellisée par la ligue Contre le Cancer, Villejuif, France
- University Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- Department of Medical Oncology, Saint Louis Hospital, Paris, France
| | - Lisa Derosa
- Gustave Roussy Cancer Center, Villejuif, France
- INSERM U1015, Equipe Labellisée par la ligue Contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France
| | - Valerio Iebba
- Gustave Roussy Cancer Center, Villejuif, France
- INSERM U1015, Equipe Labellisée par la ligue Contre le Cancer, Villejuif, France
| | - François Ghiringhelli
- Research Platform in Biological Oncology, Dijon, France
- GIMI Genetic and Immunology Medical Institute, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
- Department of Medical Oncology, Center GF Leclerc, Dijon, France
| | - Ines Vaz-Luis
- INSERM U 981, Gustave Roussy, Villejuif, Île-de-France, France
- Department of Medicine, Breast Cancer committee, Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- INSERM U1138, Equipe Labelisée par la ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Marine Fidelle
- Gustave Roussy Cancer Center, Villejuif, France
- INSERM U1015, Equipe Labellisée par la ligue Contre le Cancer, Villejuif, France
- University Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France
| | - Stergios Christodoulidis
- University Paris Saclay, Saint-Aubain, France
- Prism Precision Medicine Center, Gustave Roussy, Villejuif, France
| | - Nicola Segata
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | | | | | - Fanny Aprahamian
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Romy Aarnoutse
- Faculty of Health, Medicine & Life Sciences, Department of Surgery, Maastricht, The Netherlands
- GROW School for Oncology & Developmental Biology, Maastricht, The Netherlands
- Maastricht University, Maastricht, The Netherlands
| | - Marjolein Smidt
- Faculty of Health, Medicine & Life Sciences, Department of Surgery, Maastricht, The Netherlands
- GROW School for Oncology & Developmental Biology, Maastricht, The Netherlands
- Maastricht University, Maastricht, The Netherlands
| | - Janine Ziemons
- Faculty of Health, Medicine & Life Sciences, Department of Surgery, Maastricht, The Netherlands
- GROW School for Oncology & Developmental Biology, Maastricht, The Netherlands
- Maastricht University, Maastricht, The Netherlands
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Sibylle Loibl
- Goethe University Frankfurt, Frankfurt, Germany
- Clinical Consultant Centre for Haematology and Oncology, Frankfurt, Germany
| | - Carsten Denkert
- Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Sylvere Durand
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudia Iglesias
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Bertrand Routy
- Division d'hémato-oncologie, Département de Médicine, Centre Hospitalier de l'université de Montréal (CHUM), Montréal, Québec, Canada
| | - Fabrice André
- Gustave Roussy Cancer Center, Villejuif, France
- INSERM U 981, Gustave Roussy, Villejuif, Île-de-France, France
- Department of Medicine, Breast Cancer committee, Gustave Roussy, Villejuif, France
- University Paris Saclay, Saint-Aubain, France
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Suzette Delaloge
- Gustave Roussy Cancer Center, Villejuif, France
- Department of Medicine, Breast Cancer committee, Gustave Roussy, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Center, Villejuif, France.
- INSERM U1015, Equipe Labellisée par la ligue Contre le Cancer, Villejuif, France.
- University Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France.
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.
| |
Collapse
|
22
|
Zhou X, Zhang L. The Neuroprotective Effects of Moderate and Regular Caffeine Consumption in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5568011. [PMID: 34447487 PMCID: PMC8384510 DOI: 10.1155/2021/5568011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022]
Abstract
The increasing numbers of elderly Alzheimer's disease (AD) patients because of a steady increase in the average lifespan and aging society attract great scientific concerns, while there were fewer effective treatments on AD progression due to unclear exact causes and pathogenesis of AD. Moderate (200-500 mg/d) and regular caffeine consumption from coffee and tea are considered to alleviate the risk of AD and have therapeutic potential. This paper reviewed epidemiological studies about the relationship of caffeine intake from coffee or/and tea with the risk of AD and summarized the caffeine-related AD therapies based on experimental models. And further well-designed and well-conducted studies are suggested to investigate the optimal dosages, frequencies, and durations of caffeine consumption to slow down AD progression and treat AD.
Collapse
Affiliation(s)
- Xiangyu Zhou
- School of Food Science and Nutrition, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Lin Zhang
- The Key Laboratory for Special Medical Food Process in Hunan Province, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
23
|
Altered Heterosynaptic Plasticity Impairs Visual Discrimination Learning in Adenosine A1 Receptor Knock-Out Mice. J Neurosci 2021; 41:4631-4640. [PMID: 33849950 DOI: 10.1523/jneurosci.3073-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/04/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022] Open
Abstract
Theoretical and modeling studies demonstrate that heterosynaptic plasticity-changes at synapses inactive during induction-facilitates fine-grained discriminative learning in Hebbian-type systems, and helps to achieve a robust ability for repetitive learning. A dearth of tools for selective manipulation has hindered experimental analysis of the proposed role of heterosynaptic plasticity in behavior. Here we circumvent this obstacle by testing specific predictions about the behavioral consequences of the impairment of heterosynaptic plasticity by experimental manipulations to adenosine A1 receptors (A1Rs). Our prior work demonstrated that the blockade of adenosine A1 receptors impairs heterosynaptic plasticity in brain slices and, when implemented in computer models, selectively impairs repetitive learning on sequential tasks. Based on this work, we predict that A1R knock-out (KO) mice will express (1) impairment of heterosynaptic plasticity and (2) behavioral deficits in learning on sequential tasks. Using electrophysiological experiments in slices and behavioral testing of animals of both sexes, we show that, compared with wild-type controls, A1R KO mice have impaired synaptic plasticity in visual cortex neurons, coupled with significant deficits in visual discrimination learning. Deficits in A1R knockouts were seen specifically during relearning, becoming progressively more apparent with learning on sequential visual discrimination tasks of increasing complexity. These behavioral results confirm our model predictions and provide the first experimental evidence for a proposed role of heterosynaptic plasticity in organism-level learning. Moreover, these results identify heterosynaptic plasticity as a new potential target for interventions that may help to enhance new learning on a background of existing memories.SIGNIFICANCE STATEMENT Understanding how interacting forms of synaptic plasticity mediate learning is fundamental for neuroscience. Theory and modeling revealed that, in addition to Hebbian-type associative plasticity, heterosynaptic changes at synapses that were not active during induction are necessary for stable system operation and fine-grained discrimination learning. However, lacking tools for selective manipulation prevented behavioral analysis of heterosynaptic plasticity. Here we circumvent this barrier: from our prior experimental and computational work we predict differential behavioral consequences of the impairment of Hebbian-type versus heterosynaptic plasticity. We show that, in adenosine A1 receptor knock-out mice, impaired synaptic plasticity in visual cortex neurons is coupled with specific deficits in learning sequential, increasingly complex visual discrimination tasks. This provides the first evidence linking heterosynaptic plasticity to organism-level learning.
Collapse
|
24
|
Marcelino H, Carvalho TMA, Tomás J, Teles FI, Honório AC, Rosa CB, Costa AR, Costa BM, Santos CRA, Sebastião AM, Cascalheira JF. Adenosine Inhibits Cell Proliferation Differently in Human Astrocytes and in Glioblastoma Cell Lines. Neuroscience 2021; 467:122-133. [PMID: 34033870 DOI: 10.1016/j.neuroscience.2021.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is the most common brain primary tumour. Hypoxic regions in GBM are associated to tumour growth. Adenosine accumulates in hypoxic regions and can affect cell proliferation and survival. However, how proliferating GBM cells respond/adapt to increased adenosine levels compared to human astrocytes (HA) is not clarified and was addressed in the present work. GBM cell lines and HA were treated for 3 days with test drugs. Thirty Adenosine (30 µM) caused a 43% ± 5% (P < 0.05) reduction of cell proliferation/viability in HA, through an adenosine receptor-independent mechanism, but had no effect in GBM cell lines U87MG, U373MG and SNB19. Contrastingly, inhibition of adenosine phosphorylation (using the adenosine kinase (ADK) inhibitor 5-iodotubercidin (ITU) (25 µM)), produced a strong and similar decrease on cell proliferation in both HA and GBM cells. The effect of adenosine on HA proliferation/viability was potentiated by 100 µM-homocysteine. Combined application of 30 µM-adenosine and 100 µM-homocysteine reduced the cell proliferation/viability in all three GBM cell lines, but this reduction was much lower than that observed in HA. Adenosine alone did not induce cell death, assessed by lactate dehydrogenase (LDH) release, both in HA and GBM cells, but potentiated the cytotoxic effect of homocysteine in HA and in U87MG and U373MG cells. Results show a strong attenuation of adenosine anti-proliferative effect in GBM cells compared to HA, probably resulting from increased adenosine elimination by ADK, suggesting a proliferative-prone adaptation of tumour cells to increased adenosine levels.
Collapse
Affiliation(s)
- Helena Marcelino
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Chemistry, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Joana Tomás
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Francisca I Teles
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana C Honório
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carolina B Rosa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana R Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal; Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - José F Cascalheira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Chemistry, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
25
|
Takamura Y, Kakuta H. In Vivo Receptor Visualization and Evaluation of Receptor Occupancy with Positron Emission Tomography. J Med Chem 2021; 64:5226-5251. [PMID: 33905258 DOI: 10.1021/acs.jmedchem.0c01714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Positron emission tomography (PET) is useful for noninvasive in vivo visualization of disease-related receptors, for evaluation of receptor occupancy to determine an appropriate drug dosage, and for proof-of-concept of drug candidates in translational research. For these purposes, the specificity of the PET tracer for the target receptor is critical. Here, we review work in this area, focusing on the chemical structures of reported PET tracers, their Ki/Kd values, and the physical properties relevant to target receptor selectivity. Among these physical properties, such as cLogP, cLogD, molecular weight, topological polar surface area, number of hydrogen bond donors, and pKa, we focus especially on LogD and LogP as important physical properties that can be easily compared across a range of studies. We discuss the success of PET tracers in evaluating receptor occupancy and consider likely future developments in the field.
Collapse
Affiliation(s)
- Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
26
|
Gomes JI, Farinha-Ferreira M, Rei N, Gonçalves-Ribeiro J, Ribeiro JA, Sebastião AM, Vaz SH. Of adenosine and the blues: The adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacol Res 2020; 163:105363. [PMID: 33285234 DOI: 10.1016/j.phrs.2020.105363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is the foremost cause of global disability, being responsible for enormous personal, societal, and economical costs. Importantly, existing pharmacological treatments for MDD are partially or totally ineffective in a large segment of patients. As such, the search for novel antidepressant drug targets, anchored on a clear understanding of the etiological and pathophysiological mechanisms underpinning MDD, becomes of the utmost importance. The adenosinergic system, a highly conserved neuromodulatory system, appears as a promising novel target, given both its regulatory actions over many MDD-affected systems and processes. With this goal in mind, we herein review the evidence concerning the role of adenosine as a potential player in pathophysiology and treatment of MDD, combining data from both human and animal studies. Altogether, evidence supports the assertions that the adenosinergic system is altered in both MDD patients and animal models, and that drugs targeting this system have considerable potential as putative antidepressants. Furthermore, evidence also suggests that modifications in adenosine signaling may have a key role in the effects of several pharmacological and non-pharmacological antidepressant treatments with demonstrated efficacy, such as electroconvulsive shock, sleep deprivation, and deep brain stimulation. Lastly, it becomes clear from the available literature that there is yet much to study regarding the role of the adenosinergic system in the pathophysiology and treatment of MDD, and we suggest several avenues of research that are likely to prove fruitful.
Collapse
Affiliation(s)
- Joana I Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
27
|
Diao XT, Yao L, Ma JJ, Zhang TY, Bai HH, Suo ZW, Yang X, Hu XD. Analgesic action of adenosine A1 receptor involves the dephosphorylation of glycine receptor α1ins subunit in spinal dorsal horn of mice. Neuropharmacology 2020; 176:108219. [DOI: 10.1016/j.neuropharm.2020.108219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 01/18/2023]
|
28
|
Short-term nicotine deprivation alters dorsal anterior cingulate glutamate concentration and concomitant cingulate-cortical functional connectivity. Neuropsychopharmacology 2020; 45:1920-1930. [PMID: 32559759 PMCID: PMC7608204 DOI: 10.1038/s41386-020-0741-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
Most cigarette smokers who wish to quit too often relapse within the first few days of abstinence, primarily due to the aversive aspects of the nicotine withdrawal syndrome (NWS), which remains poorly understood. Considerable research has suggested that the dorsal anterior cingulate cortex (dACC) plays a key role in nicotine dependence, with its functional connections between other brain regions altered as a function of trait addiction and state withdrawal. The flow of information between dACC and fronto-striatal regions is secured through different pathways, the vast majority of which are glutamatergic. As such, we investigated dACC activity using resting state functional connectivity (rsFC) with functional magnetic resonance imaging (fMRI) and glutamate (Glu) concentration with magnetic resonance spectroscopy (MRS). We also investigated the changes in adenosine levels in plasma during withdrawal as a surrogate for brain adenosine, which plays a role in fine-tuning synaptic glutamate transmission. Using a double-blind, placebo-controlled, randomized crossover design, nontreatment seeking smoking participants (N = 30) completed two imaging sessions, one while nicotine sated and another after 36 h nicotine abstinence. We observed reduced dACC Glu (P = 0.029) along with a significant reduction in plasma adenosine (P = 0.03) and adenosine monophosphate (AMP; P < 0.0001) concentrations during nicotine withdrawal in comparison with nicotine sated state. This withdrawal state manipulation also led to an increase in rsFC strength (P < 0.05) between dACC and several frontal cortical regions, including left superior frontal gyrus (LSFG), and right middle frontal gyrus (RMFG). Moreover, the state-trait changes in dACC Glu and rsFC strength between the dACC and both SFG and MFG were positively correlated (P = 0.012, and P = 0.007, respectively). Finally, the change in circuit strength between dACC and LSFG was negatively correlated with the change in withdrawal symptom manifestations as measured by the Wisconsin Smoking Withdrawal Scale (P = 0.04) and Tobacco Craving Questionnaire (P = 0.014). These multimodal imaging-behavioral findings reveal the complex cascade of changes induced by acute nicotine deprivation and call for further investigation into the potential utility of adenosine- and glutamate-signaling as novel therapeutic targets to treat the NWS.
Collapse
|
29
|
Schepici G, Silvestro S, Bramanti P, Mazzon E. Caffeine: An Overview of Its Beneficial Effects in Experimental Models and Clinical Trials of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21134766. [PMID: 32635541 PMCID: PMC7369844 DOI: 10.3390/ijms21134766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s Disease (PD) is a neurological disease characterized by the progressive degeneration of the nigrostriatal dopaminergic pathway with consequent loss of neurons in the substantia nigra pars compacta and dopamine depletion. The cytoplasmic inclusions of α-synuclein (α-Syn), known as Lewy bodies, are the cytologic hallmark of PD. The presence of α-Syn aggregates causes mitochondrial degeneration, responsible for the increase in oxidative stress and consequent neurodegeneration. PD is a progressive disease that shows a complicated pathogenesis. The current therapies are used to alleviate the symptoms of the disease without changing its clinical course. Recently, phytocompounds with neuroprotective effects and antioxidant properties such as caffeine have aroused the interest of researchers. The purpose of this review is to summarize the preclinical studies present in the literature and clinical trials recorded in ClinicalTrial.gov, aimed at illustrating the effects of caffeine used as a nutraceutical compound combined with the current PD therapies. Therefore, the preventive effects of caffeine in the neurodegeneration of dopaminergic neurons encourage the use of this alkaloid as a supplement to reduce the progress of the PD.
Collapse
|
30
|
Yang D, Ding C, Qi G, Feldmeyer D. Cholinergic and Adenosinergic Modulation of Synaptic Release. Neuroscience 2020; 456:114-130. [PMID: 32540364 DOI: 10.1016/j.neuroscience.2020.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/14/2023]
Abstract
In this review we will discuss the effect of two neuromodulatory transmitters, acetylcholine (ACh) and adenosine, on the synaptic release probability and short-term synaptic plasticity. ACh and adenosine differ fundamentally in the way they are released into the extracellular space. ACh is released mostly from synaptic terminals and axonal bouton of cholinergic neurons in the basal forebrain (BF). Its mode of action on synaptic release probability is complex because it activate both ligand-gated ion channels, so-called nicotinic ACh receptors and G-protein coupled muscarinic ACh receptors. In contrast, adenosine is released from both neurons and glia via nucleoside transporters or diffusion over the cell membrane in a non-vesicular, non-synaptic fashion; its receptors are exclusively G-protein coupled receptors. We show that ACh and adenosine effects are highly specific for an identified synaptic connection and depend mostly on the presynaptic but also on the postsynaptic receptor type and discuss the functional implications of these differences.
Collapse
Affiliation(s)
- Danqing Yang
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Chao Ding
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Guanxiao Qi
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Dirk Feldmeyer
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany; RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, Germany; Jülich-Aachen Research Alliance Brain - JARA Brain, Germany.
| |
Collapse
|
31
|
Rei N, Rombo DM, Ferreira MF, Baqi Y, Müller CE, Ribeiro JA, Sebastião AM, Vaz SH. Hippocampal synaptic dysfunction in the SOD1 G93A mouse model of Amyotrophic Lateral Sclerosis: Reversal by adenosine A 2AR blockade. Neuropharmacology 2020; 171:108106. [PMID: 32311420 DOI: 10.1016/j.neuropharm.2020.108106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) mostly affects motor neurons, but non-motor neural and cognitive alterations have been reported in ALS mouse models and patients. Here, we evaluated if time-dependent biphasic changes in synaptic transmission and plasticity occur in hippocampal synapses of ALS SOD1G93A mice. Recordings were performed in hippocampal slices of SOD1G93A and age-matched WT mice, in the pre-symptomatic and symptomatic stages. We found an enhancement of pre-synaptic function and increased adenosine A2A receptor levels in the hippocampus of pre-symptomatic mice. In contrast, in symptomatic mice, there was an impairment of long-term potentiation (LTP) and a decrease in NMDA receptor-mediated synaptic currents, with A2AR levels also being increased. Chronic treatment with the A2AR antagonist KW-6002, rescued LTP and A2AR values. Altogether, these findings suggest an increase in synaptic function during the pre-symptomatic stage, followed by a decrease in synaptic plasticity in the symptomatic stage, which involves over-activation of A2AR from early disease stages.
Collapse
Affiliation(s)
- N Rei
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - D M Rombo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - M F Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Y Baqi
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, PO Box 36, Postal Code 123, Muscat, Oman
| | - C E Müller
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie I, University of Bonn, Germany
| | - J A Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - A M Sebastião
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - S H Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
32
|
Nabinger DD, Altenhofen S, Bonan CD. Zebrafish models: Gaining insight into purinergic signaling and neurological disorders. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109770. [PMID: 31678483 DOI: 10.1016/j.pnpbp.2019.109770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/22/2019] [Accepted: 10/02/2019] [Indexed: 12/21/2022]
Abstract
Zebrafish (Danio rerio) has been considered a complementary model for biomedical studies, especially due to advantages such as external and rapid development, and genetic manipulation. There is growing interest in this model in neuroscience research since the species has morphological and physiological similarities to mammals and a complex behavioral repertoire. The purinergic signaling has been described in zebrafish, and purinoceptors and nucleotide- and nucleoside-metabolizing enzymes have already been identified in the central nervous system (CNS) of this species. The involvement of the purinergic system in several models of neurological disorders, such as Alzheimers disease, Parkinson's disease, epilepsy, schizophrenia, and autism has been investigated in zebrafish. This mini review presents several studies describing purinergic signaling in the zebrafish CNS and the action of this neurotransmitter system in models of neurological disorders using this species as a biological model. The use of pharmacological approaches at different stages of development may be a useful tool for preclinical assays and the testing of purinergic compounds as new alternatives for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Débora Dreher Nabinger
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
33
|
New frontiers in probing the dynamics of purinergic transmitters in vivo. Neurosci Res 2020; 152:35-43. [PMID: 31958495 DOI: 10.1016/j.neures.2020.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 12/16/2022]
Abstract
Purinergic transmitters such as adenosine, ADP, ATP, UTP, and UDP-glucose play important roles in a wide range of physiological processes, including the sleep-wake cycle, learning and memory, cardiovascular function, and the immune response. Moreover, impaired purinergic signaling has been implicated in various pathological conditions such as pain, migraine, epilepsy, and drug addiction. Examining the function of purinergic transmission in both health and disease requires direct, sensitive, non-invasive tools for monitoring structurally similar purinergic transmitters; ideally, these tools should have high spatial and temporal resolution in in vivo applications. Here, we review the recent progress with respect to the development and application of new methods for detecting purinergic transmitters, focusing on optical tools; in addition, we provide discussion regarding future perspectives.
Collapse
|
34
|
Marcelino H, Nogueira VC, Santos CRA, Quelhas P, Carvalho TMA, Fonseca-Gomes J, Tomás J, Diógenes MJ, Sebastião AM, Cascalheira JF. Adenosine inhibits human astrocyte proliferation independently of adenosine receptor activation. J Neurochem 2019; 153:455-467. [PMID: 31811731 DOI: 10.1111/jnc.14937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Brain adenosine concentrations can reach micromolar concentrations in stressful situations such as stroke, neurodegenerative diseases or hypoxic regions of brain tumours. Adenosine can act by receptor-independent mechanism by reversing the reaction catalysed by S-adenosylhomocysteine (SAH) hydrolase, leading to SAH accumulation and inhibition of S-adenosylmethionine (SAM)-dependent methyltransferases. Astrocytes are essential in maintaining brain homeostasis but their pathological activation and uncontrolled proliferation plays a role in neurodegeneration and glioma. Adenosine can affect cell proliferation, but the effect of increased adenosine concentration on proliferation of astrocytes is not clarified and was addressed in present work. Human astrocytes (HA) were treated for 3 days with test drugs. Cell proliferation/viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay and by cell counting. Cell death was evaluated by assessing lactate dehydrogenase release and by western blot analysis of αII-Spectrin cleavage. 30 µM-Adenosine caused a 40% ± 3% (p < .05, n = 5) reduction in cell proliferation/viability, an effect reversed by 2U/ml-adenosine deaminase, but unchanged in the presence of antagonists of any of the adenosine receptors. Adenosine alone did not induce cell death. 100 µM-Homocysteine alone caused 16% ± 3% (p < .05) decrease in HA proliferation. Combined action of adenosine and homocysteine decreased HA proliferation by 76% ± 4%, an effect higher (p < .05) than the sum of the effects of adenosine and homocysteine alone (56% ± 5%). The inhibitory effect of adenosine on HA proliferation/viability was mimicked by two adenosine kinase inhibitors and attenuated in the presence of folate (100 µM) or SAM (50-100 µM). The results suggest that adenosine reduces HA proliferation by a receptor-independent mechanism probably involving reversal of SAH hydrolase-catalysed reaction.
Collapse
Affiliation(s)
- Helena Marcelino
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Department of Chemistry, University of Beira Interior, Covilhã, Portugal
| | - Vanda C Nogueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - Cecília R A Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Patrícia Quelhas
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - João Fonseca-Gomes
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - Joana Tomás
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Maria J Diógenes
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - José F Cascalheira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Department of Chemistry, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
35
|
Chern Y, Rei N, Ribeiro JA, Sebastião AM. Adenosine and Its Receptors as Potential Drug Targets in Amyotrophic Lateral Sclerosis. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Nádia Rei
- Faculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim A. Ribeiro
- Faculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M. Sebastião
- Faculdade de Medicina, Instituto de Farmacologia e Neurociências, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
36
|
Morgan PJ, Bourboulou R, Filippi C, Koenig-Gambini J, Epsztein J. Kv1.1 contributes to a rapid homeostatic plasticity of intrinsic excitability in CA1 pyramidal neurons in vivo. eLife 2019; 8:49915. [PMID: 31774395 PMCID: PMC6881145 DOI: 10.7554/elife.49915] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
In area CA1 of the hippocampus, the selection of place cells to represent a new environment is biased towards neurons with higher excitability. However, different environments are represented by orthogonal cell ensembles, suggesting that regulatory mechanisms exist. Activity-dependent plasticity of intrinsic excitability, as observed in vitro, is an attractive candidate. Here, using whole-cell patch-clamp recordings of CA1 pyramidal neurons in anesthetized rats, we have examined how inducing theta-bursts of action potentials affects their intrinsic excitability over time. We observed a long-lasting, homeostatic depression of intrinsic excitability which commenced within minutes, and, in contrast to in vitro observations, was not mediated by dendritic Ih. Instead, it was attenuated by the Kv1.1 channel blocker dendrotoxin K, suggesting an axonal origin. Analysis of place cells’ out-of-field firing in mice navigating in virtual reality further revealed an experience-dependent reduction consistent with decreased excitability. We propose that this mechanism could reduce memory interference.
Collapse
Affiliation(s)
- Peter James Morgan
- Institute of Neurobiology of the Mediterranean Sea (INMED), Turing Center for Living Systems (CENTURI), Aix-Marseille University, INSERM, Marseille, France
| | - Romain Bourboulou
- Institute of Neurobiology of the Mediterranean Sea (INMED), Turing Center for Living Systems (CENTURI), Aix-Marseille University, INSERM, Marseille, France
| | - Caroline Filippi
- Institute of Neurobiology of the Mediterranean Sea (INMED), Turing Center for Living Systems (CENTURI), Aix-Marseille University, INSERM, Marseille, France
| | - Julie Koenig-Gambini
- Institute of Neurobiology of the Mediterranean Sea (INMED), Turing Center for Living Systems (CENTURI), Aix-Marseille University, INSERM, Marseille, France.,Institut Universitaire de France, Paris, France
| | - Jérôme Epsztein
- Institute of Neurobiology of the Mediterranean Sea (INMED), Turing Center for Living Systems (CENTURI), Aix-Marseille University, INSERM, Marseille, France
| |
Collapse
|
37
|
Yang D, Zhang Q, Ma Y, Che Z, Zhang W, Wu M, Wu L, Liu F, Chu Y, Xu W, McGrath M, Song C, Liu J. Augmenting the therapeutic efficacy of adenosine against pancreatic cancer by switching the Akt/p21-dependent senescence to apoptosis. EBioMedicine 2019; 47:114-127. [PMID: 31495718 PMCID: PMC6796568 DOI: 10.1016/j.ebiom.2019.08.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 01/02/2023] Open
Abstract
Background There are many reports of the anti-tumour effects of exogenous adenosine in gastrointestinal tumours. Gemcitabine, a first line agent for patients with poor performance status, and adenosine have structural similarities. For these reasons, it is worth exploring the therapeutic efficacy of adenosine and its underlying mechanism in pancreatic cancer. Methods Tumour volumes and survival periods were measured in a patient-derived xenograft (PDX) model of pancreatic cancer. The Akt-p21 signalling axis was blocked by p21 silencing or by the Akt inhibitor GSK690693. The combined effect of GSK690693 and adenosine was calculated by the Chou-Talalay equation and verified by measuring fluorescent areas in orthotopic models. Findings Among the PDX mice, the tumour volume in the adenosine treatment group was only 61% of that in the saline treatment group. Adenosine treatment in combination with the Akt inhibitor, GSK690693, or the silencing of p21 to interfere with the Akt-p21 axis can switch the senescence-to-apoptosis signal and alleviate drug resistance. A GSK690693-adenosine combination caused 37.4% further reduction of tumour fluorescent areas in orthotopic models compared with that observed in adenosine monotherapy. Interpretation: Our data confirmed the therapeutic effect of adenosine on pancreatic cancer, and revealed the potential of Akt inhibitors as sensitization agents in this treatment. Fund The work is supported by grants from the National Natural Science Foundation of China to Dongqin Yang (81572336, 81770579) and Jie Liu (81630016, 81830080), and jointly by the Development Fund for Shanghai Talents (201660).
Collapse
Affiliation(s)
- Dongqin Yang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China.
| | - Qi Zhang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Yunfang Ma
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Zhihui Che
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Wenli Zhang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Mengmeng Wu
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Lijun Wu
- Department of Library, Fudan University, Shanghai, China
| | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Xu
- Department of Immunology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mary McGrath
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
He X, Chen F, Zhang Y, Gao Q, Guan Y, Wang J, Zhou J, Zhai F, Boison D, Luan G, Li T. Upregulation of adenosine A2A receptor and downregulation of GLT1 is associated with neuronal cell death in Rasmussen's encephalitis. Brain Pathol 2019; 30:246-260. [PMID: 31353670 DOI: 10.1111/bpa.12770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/23/2019] [Indexed: 02/02/2023] Open
Abstract
Rasmussen encephalitis (RE) is a severe pediatric inflammatory brain disease characterized by unilateral inflammation and atrophy of the cerebral cortex, drug-resistant focal epilepsy and progressive neurological and cognitive deterioration. The etiology and pathogenesis of RE remain unclear. Our previous results demonstrated that the adenosine A1 receptor (A1R) and the major adenosine-removing enzyme adenosine kinase play an important role in the etiology of RE. Because the downstream pathways of inhibitory A1R signaling are modulated by stimulatory A2AR signaling, which by itself controls neuro-inflammation, glial activation and glial glutamate homeostasis through interaction with glutamate transporter GLT-1, we hypothesized that maladaptive changes in adenosine A2A receptor (A2AR) expression are associated with RE. We used immunohistochemistry and Western blot analysis to examine the expression of A2ARs, glutamate transporter-I (GLT-1) and the apoptotic marker Bcl-2 in surgically resected cortical specimens from RE patients (n = 18) in comparison with control cortical tissue. In lesions of the RE specimen we found upregulation of A2ARs, downregulation of GLT-1 and increased apoptosis of both neurons and astroglia. Double staining revealed colocalization of A2ARs and Bcl-2 in RE lesions. These results suggest that maladaptive changes in A2AR expression are associated with a decrease in GLT-I expression as a possible precipitator for apoptotic cell loss in RE. Because A2AR antagonists are already under clinical evaluation for Parkinson's disease, the A2AR might likewise be a tractable target for the treatment of RE.
Collapse
Affiliation(s)
- Xinghui He
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Fan Chen
- Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.,Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yifan Zhang
- Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.,Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Qing Gao
- Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jing Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jian Zhou
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Feng Zhai
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Jones & New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Guoming Luan
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Tianfu Li
- Department of Brian Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.,Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| |
Collapse
|
39
|
Endothelial Adora2a Activation Promotes Blood-Brain Barrier Breakdown and Cognitive Impairment in Mice with Diet-Induced Insulin Resistance. J Neurosci 2019; 39:4179-4192. [PMID: 30886019 DOI: 10.1523/jneurosci.2506-18.2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/18/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and insulin resistance elicit blood-brain barrier (BBB) breakdown in humans and animal models, but the relative contributions of the two pathologies remain poorly understood. These studies initially addressed the temporal progression of cerebrovascular dysfunction relative to dietary obesity or diet-induced insulin resistance in male mice. Obesity increased BBB permeability to the low molecular weight fluorophore sodium fluorescein (NaFl), whereas diet-induced insulin resistance increased permeability to both NaFl and Evans blue, which forms a high molecular weight complex with serum albumin. Serial section transmission electron microscopy analysis of hippocampal capillaries revealed that diabetes promotes involution of tight junctions, fenestration of endothelial cells, and pericyte regression. Chronic activation of adenosine receptor 2a (Adora2a) erodes tight junctions between endothelial cells of the cerebral vasculature in other models of chronic neuropathology, and we observed that acute Adora2a antagonism normalized BBB permeability in wild-type mice with diet-induced insulin resistance. Experiments in mice with inducible deletion of Adora2a in endothelial cells revealed protection against BBB breakdown with diet-induced insulin resistance, despite comparable metabolic dysfunction relative to nontransgenic littermates. Protection against BBB breakdown was associated with decreased vascular inflammation, recovery of hippocampal synaptic plasticity, and restoration of hippocampus-dependent memory. These findings indicate that Adora2a-mediated signaling in vascular endothelial cells disrupts the BBB in dietary obesity, and implicate cerebrovascular dysfunction as the underlying mechanism for deficits in synaptic plasticity and cognition with obesity and insulin resistance.SIGNIFICANCE STATEMENT The blood-brain barrier (BBB) restricts the entry of circulating factors into the brain, but obesity promotes BBB breakdown in humans and animal models. We used transgenic mice with resistance to BBB breakdown to investigate the role of neurovascular dysfunction in high-fat diet (HFD)-induced cognitive impairment. Transgenic mice with inducible ablation of Adora2a in endothelial cells were protected against BBB breakdown on HFD, despite comparable metabolic impairments relative to normal mice. Transgenic mice were also resistant to HFD-induced cognitive dysfunction and were protected against deficits in hippocampal synaptic plasticity. These findings indicate that Adora2a-mediated signaling in endothelial cells mediates obesity-induced BBB breakdown, and implicate cerebrovascular dysfunction as the mechanism for deficits in synaptic plasticity and cognition with obesity and diabetes.
Collapse
|
40
|
Grković I, Drakulić D, Martinović J, Mitrović N. Role of Ectonucleotidases in Synapse Formation During Brain Development: Physiological and Pathological Implications. Curr Neuropharmacol 2019; 17:84-98. [PMID: 28521702 PMCID: PMC6341498 DOI: 10.2174/1570159x15666170518151541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/19/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Extracellular adenine nucleotides and nucleosides, such as ATP and adenosine, are among the most recently identified and least investigated diffusible signaling factors that contribute to the structural and functional remodeling of the brain, both during embryonic and postnatal development. Their levels in the extracellular milieu are tightly controlled by various ectonucleotidases: ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPP), alkaline phosphatases (AP), ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-5'- nucleotidase (eN). METHODS Studies related to the expression patterns of ectonucleotidases and their known features during brain development are reviewed, highlighting involvement of these enzymes in synapse formation and maturation in physiological as well as in pathological states. RESULTS During brain development and in adulthood all ectonucleotidases have diverse expression pattern, cell specific localization and function. NPPs are expressed at early embryonic days, but the expression of NPP3 is reduced and restricted to ependymal area in adult brain. NTPDase2 is dominant ectonucleotidase existing in the progenitor cells as well as main astrocytic NTPDase in the adult brain, while NTPDase3 is fully expressed after third postnatal week, almost exclusively on varicose fibers. Specific brain AP is functionally associated with synapse formation and this enzyme is sufficient for adenosine production during neurite growth and peak of synaptogenesis. eN is transiently associated with synapses during synaptogenesis, however in adult brain it is more glial than neuronal enzyme. CONCLUSION Control of extracellular adenine nucleotide levels by ectonucleotidases are important for understanding the role of purinergic signaling in developing tissues and potential targets in developmental disorders such as autism.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Jelena Martinović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| |
Collapse
|
41
|
Lutte AH, Nazario LR, Majolo JH, Pereira TCB, Altenhofen S, Dadda ADS, Bogo MR, Da Silva RS. Persistent increase in ecto‑5'‑nucleotidase activity from encephala of adult zebrafish exposed to ethanol during early development. Neurotoxicol Teratol 2018; 70:60-66. [PMID: 30366104 DOI: 10.1016/j.ntt.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure causes alterations to the brain and can lead to numerous cognitive and behavioral outcomes. Long-lasting effects of early ethanol exposure have been registered in glutamatergic and dopaminergic systems. The purinergic system has been registered as an additional target of ethanol exposure. The objective of this research was to evaluate if the ecto‑5'‑nucleotidase and adenosine deaminase activities and gene expression of adult zebrafish exposed to 1% ethanol during early development could be part of the long-lasting targets of ethanol. Zebrafish embryos were exposed to 1% ethanol in two distinct developmental phases: gastrula/segmentation (5-24 h post-fertilization) or pharyngula (24-48 h post-fertilization). At the end of three months, after checking for morphological outcomes, the evaluation of enzymatic activity and gene expression was performed. Exposure to ethanol did not promote gross morphological defects; however, a significant decrease in the body length was observed (17% in the gastrula and 22% in the pharyngula stage, p < 0.0001). Ethanol exposure during the gastrula/segmentation stage promoted an increase in ecto‑5'‑nucleotidase activity (39.5%) when compared to the control/saline group (p < 0.0001). The ecto‑5'‑nucleotidase gene expression and the deamination of adenosine exerted by ecto and cytosolic adenosine deaminase were not affected by exposure to ethanol in both developmental stages. HPLC experiments did not identify differences in adenosine concentration on the whole encephala of adult animals exposed to ethanol during the gastrula stage or on control animals (p > 0.05). Although the mechanism underlying these findings requires further investigation, these results indicate that ethanol exposure during restricted periods of brain development can have long-term consequences on ecto‑5'‑nucleotidase activity, which could have an impact on subtle sequels of ethanol early exposure.
Collapse
Affiliation(s)
- Aline Haab Lutte
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza Reali Nazario
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlia Huppes Majolo
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Talita Carneiro Brandão Pereira
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adilio da Silva Dadda
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rosane Souza Da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
42
|
Mouro FM, Rombo DM, Dias RB, Ribeiro JA, Sebastião AM. Adenosine A 2A receptors facilitate synaptic NMDA currents in CA1 pyramidal neurons. Br J Pharmacol 2018; 175:4386-4397. [PMID: 30220081 PMCID: PMC6240125 DOI: 10.1111/bph.14497] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/18/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE NMDA receptors play a key role in both synaptic plasticity and neurodegeneration. Adenosine is an endogenous neuromodulator and through membrane receptors of the A2A subtype can influence both synaptic plasticity and neuronal death. The present work was designed to evaluate the influence of adenosine A2A receptors upon NMDA receptor activity in CA1 hippocampal neurons. We discriminated between modulation of synaptic versus extrasynaptic receptors, since extrasynaptic NMDA receptors are mostly associated with neurodegeneration while synaptic NMDA receptors are linked to plasticity phenomena. EXPERIMENTAL APPROACH Whole-cell patch-clamp recordings were obtained to evaluate NMDA receptor actions on CA1 pyramidal neurons of young adult (5-10 weeks) male Wistar rat hippocampus. KEY RESULTS Activation of A2A receptors with CGS 21680 (30 nM) consistently facilitated chemically-evoked NMDA receptor-currents (NMDA-PSCs) and afferent-evoked NMDA-currents (NMDA-EPSCs), an action prevented by an A2A receptor antagonist (SCH58261, 100 nM) and a PKA inhibitor, H-89 (1 μM). These actions did not reflect facilitation in glutamate release since there was no change in NMDA-EPSCs paired pulse ratio. A2A receptor actions were lost in the presence of an open-channel NMDA receptor blocker, MK-801 (10 μM), but persisted in the presence of memantine, at a concentration (10 μM) known to preferentially block extrasynaptic NMDA receptors. CONCLUSION AND IMPLICATIONS These results show that A2A receptors exert a positive postsynaptic modulatory effect over synaptic, but not extrasynaptic, NMDA receptors in CA1 neurons and, therefore, under non-pathological conditions may contribute to shift the dual role of NMDA receptors towards enhancement of synaptic plasticity.
Collapse
Affiliation(s)
- Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diogo M Rombo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Raquel B Dias
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
43
|
Hackett TA. Adenosine A 1 Receptor mRNA Expression by Neurons and Glia in the Auditory Forebrain. Anat Rec (Hoboken) 2018; 301:1882-1905. [PMID: 30315630 PMCID: PMC6282551 DOI: 10.1002/ar.23907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/05/2017] [Accepted: 01/10/2018] [Indexed: 12/30/2022]
Abstract
In the brain, purines such as ATP and adenosine can function as neurotransmitters and co‐transmitters, or serve as signals in neuron–glial interactions. In thalamocortical (TC) projections to sensory cortex, adenosine functions as a negative regulator of glutamate release via activation of the presynaptic adenosine A1 receptor (A1R). In the auditory forebrain, restriction of A1R‐adenosine signaling in medial geniculate (MG) neurons is sufficient to extend LTP, LTD, and tonotopic map plasticity in adult mice for months beyond the critical period. Interfering with adenosine signaling in primary auditory cortex (A1) does not contribute to these forms of plasticity, suggesting regional differences in the roles of A1R‐mediated adenosine signaling in the forebrain. To advance understanding of the circuitry, in situ hybridization was used to localize neuronal and glial cell types in the auditory forebrain that express A1R transcripts (Adora1), based on co‐expression with cell‐specific markers for neuronal and glial subtypes. In A1, Adora1 transcripts were concentrated in L3/4 and L6 of glutamatergic neurons. Subpopulations of GABAergic neurons, astrocytes, oligodendrocytes, and microglia expressed lower levels of Adora1. In MG, Adora1 was expressed by glutamatergic neurons in all divisions, and subpopulations of all glial classes. The collective findings imply that A1R‐mediated signaling broadly extends to all subdivisions of auditory cortex and MG. Selective expression by neuronal and glial subpopulations suggests that experimental manipulations of A1R‐adenosine signaling could impact several cell types, depending on their location. Strategies to target Adora1 in specific cell types can be developed from the data generated here. Anat Rec, 301:1882–1905, 2018. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
44
|
Kovács R, Gerevich Z, Friedman A, Otáhal J, Prager O, Gabriel S, Berndt N. Bioenergetic Mechanisms of Seizure Control. Front Cell Neurosci 2018; 12:335. [PMID: 30349461 PMCID: PMC6187982 DOI: 10.3389/fncel.2018.00335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is characterized by the regular occurrence of seizures, which follow a stereotypical sequence of alterations in the electroencephalogram. Seizures are typically a self limiting phenomenon, concluding finally in the cessation of hypersynchronous activity and followed by a state of decreased neuronal excitability which might underlie the cognitive and psychological symptoms the patients experience in the wake of seizures. Many efforts have been devoted to understand how seizures spontaneously stop in hope to exploit this knowledge in anticonvulsant or neuroprotective therapies. Besides the alterations in ion-channels, transmitters and neuromodulators, the successive build up of disturbances in energy metabolism have been suggested as a mechanism for seizure termination. Energy metabolism and substrate supply of the brain are tightly regulated by different mechanisms called neurometabolic and neurovascular coupling. Here we summarize the current knowledge whether these mechanisms are sufficient to cover the energy demand of hypersynchronous activity and whether a mismatch between energy need and supply could contribute to seizure control.
Collapse
Affiliation(s)
- Richard Kovács
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Zoltan Gerevich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel.,Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jakub Otáhal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Siegrun Gabriel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Nikolaus Berndt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Computational and Imaging Science in Cardiovascular Medicine, Berlin, Germany
| |
Collapse
|
45
|
Haab Lutte A, Huppes Majolo J, Reali Nazario L, Da Silva RS. Early exposure to ethanol is able to affect the memory of adult zebrafish: Possible role of adenosine. Neurotoxicology 2018; 69:17-22. [PMID: 30157450 DOI: 10.1016/j.neuro.2018.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022]
Abstract
Ethanol is one of the most widely consumed drugs in the world, and the effects of ethanol during early development include morphological and cognitive problems. The regulation of adenosine levels is essential for the proper function of major neurotransmitter systems in the brain, particularly glutamate and dopamine; thus, the investigation of the relation of adenosine and memory after early ethanol exposure becomes relevant. Embryos of zebrafish were exposed to 1% ethanol during two distinct developmental stages: gastrula/segmentation or pharyngula. The evaluation of memory, morphology, and locomotor parameters was performed when fish were 3 months old. The effect of ecto-5'-nucleotidase and adenosine deaminase inhibition on the consequences of ethanol exposure with regard to memory formation was observed. Morphological evaluation showed decreases in body length and the relative telencephalic and cerebellar areas in ethanol exposed animals. The locomotor parameters evaluated were not affected by ethanol. In the inhibitory avoidance paradigm, ethanol exposure during the gastrula/segmentation and pharyngula stages decreased zebrafish memory retention. When ethanol was given in the pharyngula stage, the inhibition of ecto-5'-nucleotidase in the acquisition phase of memory tests was able to revert the effects of ethanol on the memory of adults. These findings suggest that the increased adenosine levels caused by ethanol could alter the neuromodulation of important components of memory formation, such as neurotransmitters. The adjustment of adenosine levels through ecto-5'-nucleotidase inhibition appears to be effective at restoring normal adenosine levels and the acquisition of memory in animals exposed to ethanol during the pharyngula stage.
Collapse
Affiliation(s)
- Aline Haab Lutte
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlia Huppes Majolo
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza Reali Nazario
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rosane Souza Da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
46
|
Qi G, van Aerde K, Abel T, Feldmeyer D. Adenosine Differentially Modulates Synaptic Transmission of Excitatory and Inhibitory Microcircuits in Layer 4 of Rat Barrel Cortex. Cereb Cortex 2018; 27:4411-4422. [PMID: 27522071 DOI: 10.1093/cercor/bhw243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/15/2016] [Indexed: 12/27/2022] Open
Abstract
Adenosine is considered to be a key regulator of sleep homeostasis by promoting slow-wave sleep through inhibition of the brain's arousal centers. However, little is known about the effect of adenosine on neuronal network activity at the cellular level in the neocortex. Here, we show that adenosine differentially modulates synaptic transmission between different types of neurons in cortical layer 4 (L4) through activation of pre- and/or postsynaptically located adenosine A1 receptors. In recurrent excitatory connections between L4 spiny neurons, adenosine suppresses synaptic transmission through activation of both pre- and postsynaptic A1 receptors. In reciprocal excitatory and inhibitory connections between L4 spiny neurons and interneurons, adenosine strongly suppresses excitatory transmission via activating presynaptic A1 receptors but only slightly suppresses inhibitory transmission via activating postsynaptic A1 receptors. Adenosine has no effect on inhibitory transmission between L4 interneurons. The effect of adenosine is concentration dependent and first visible at a concentration of 1 μM. The effect of adenosine is blocked by the specific A1 receptor antagonist, 8-cyclopentyltheophylline or the nonspecific adenosine receptor antagonist, caffeine. By differentially affecting excitatory and inhibitory synaptic transmission, adenosine changes the excitation-inhibition balance and causes an overall shift to lower excitability in L4 primary somatosensory (barrel) cortical microcircuits.
Collapse
Affiliation(s)
- Guanxiao Qi
- Institute of Neuroscience and Medicine, INM-2, Research Centre Jülich, D-52425 Jülich, Germany
| | - Karlijn van Aerde
- Institute of Neuroscience and Medicine, INM-2, Research Centre Jülich, D-52425 Jülich, Germany.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-2, Research Centre Jülich, D-52425 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, D-52074 Aachen, Germany.,Jülich-Aachen Research Alliance-Brain, Translational Brain Medicine, D-52074 Aachen, Germany
| |
Collapse
|
47
|
Yoshida E, Terada SI, Tanaka YH, Kobayashi K, Ohkura M, Nakai J, Matsuzaki M. In vivo wide-field calcium imaging of mouse thalamocortical synapses with an 8 K ultra-high-definition camera. Sci Rep 2018; 8:8324. [PMID: 29844612 PMCID: PMC5974322 DOI: 10.1038/s41598-018-26566-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
In vivo wide-field imaging of neural activity with a high spatio-temporal resolution is a challenge in modern neuroscience. Although two-photon imaging is very powerful, high-speed imaging of the activity of individual synapses is mostly limited to a field of approximately 200 µm on a side. Wide-field one-photon epifluorescence imaging can reveal neuronal activity over a field of ≥1 mm2 at a high speed, but is not able to resolve a single synapse. Here, to achieve a high spatio-temporal resolution, we combine an 8 K ultra-high-definition camera with spinning-disk one-photon confocal microscopy. This combination allowed us to image a 1 mm2 field with a pixel resolution of 0.21 µm at 60 fps. When we imaged motor cortical layer 1 in a behaving head-restrained mouse, calcium transients were detected in presynaptic boutons of thalamocortical axons sparsely labeled with GCaMP6s, although their density was lower than when two-photon imaging was used. The effects of out-of-focus fluorescence changes on calcium transients in individual boutons appeared minimal. Axonal boutons with highly correlated activity were detected over the 1 mm2 field, and were probably distributed on multiple axonal arbors originating from the same thalamic neuron. This new microscopy with an 8 K ultra-high-definition camera should serve to clarify the activity and plasticity of widely distributed cortical synapses.
Collapse
Affiliation(s)
- Eriko Yoshida
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Terada
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyo H Tanaka
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Aichi, Japan
| | - Masamichi Ohkura
- Brain and Body System Science Institute, Saitama University, Saitama, Japan
| | - Junichi Nakai
- Brain and Body System Science Institute, Saitama University, Saitama, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan.
| |
Collapse
|
48
|
Lee CC, Chang CP, Lin CJ, Lai HL, Kao YH, Cheng SJ, Chen HM, Liao YP, Faivre E, Buée L, Blum D, Fang JM, Chern Y. Adenosine Augmentation Evoked by an ENT1 Inhibitor Improves Memory Impairment and Neuronal Plasticity in the APP/PS1 Mouse Model of Alzheimer's Disease. Mol Neurobiol 2018; 55:8936-8952. [PMID: 29616397 DOI: 10.1007/s12035-018-1030-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment and synaptic dysfunction. Adenosine is an important homeostatic modulator that controls the bioenergetic network in the brain through regulating receptor-evoked signaling pathways, bioenergetic machineries, and epigenetic-mediated gene regulation. Equilibrative nucleoside transporter 1 (ENT1) is a major adenosine transporter that recycles adenosine from the extracellular space. In the present study, we report that a small adenosine analogue (designated J4) that inhibited ENT1 prevented the decline in spatial memory in an AD mouse model (APP/PS1). Electrophysiological and biochemical analyses further demonstrated that chronic treatment with J4 normalized the impaired basal synaptic transmission and long-term potentiation (LTP) at Schaffer collateral synapses as well as the aberrant expression of synaptic proteins (e.g., NR2A and NR2B), abnormal neuronal plasticity-related signaling pathways (e.g., PKA and GSK3β), and detrimental elevation in astrocytic A2AR expression in the hippocampus and cortex of APP/PS1 mice. In conclusion, our findings suggest that modulation of adenosine homeostasis by J4 is beneficial in a mouse model of AD. Our study provides a potential therapeutic strategy to delay the progression of AD.
Collapse
Affiliation(s)
- Chia-Chia Lee
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Ching-Pang Chang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Hsing-Lin Lai
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Yu-Han Kao
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Sin-Jhong Cheng
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Yu-Ping Liao
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Emilie Faivre
- Université de Lille, Inserm, CHU-Lille, LabEx DISTALZ, Jean-Pierre Aubert research centre UMR-S1172, Lille, France
| | - Luc Buée
- Université de Lille, Inserm, CHU-Lille, LabEx DISTALZ, Jean-Pierre Aubert research centre UMR-S1172, Lille, France
| | - David Blum
- Université de Lille, Inserm, CHU-Lille, LabEx DISTALZ, Jean-Pierre Aubert research centre UMR-S1172, Lille, France
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
49
|
The Scope of Adenosine Signaling. J Caffeine Adenosine Res 2018. [DOI: 10.1089/caff.2018.29007.sf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
50
|
Rotermund N, Winandy S, Fischer T, Schulz K, Fregin T, Alstedt N, Buchta M, Bartels J, Carlström M, Lohr C, Hirnet D. Adenosine A 1 receptor activates background potassium channels and modulates information processing in olfactory bulb mitral cells. J Physiol 2018; 596:717-733. [PMID: 29274133 DOI: 10.1113/jp275503] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Adenosine is a widespread neuromodulator in the mammalian brain, but whether it affects information processing in sensory system(s) remains largely unknown. Here we show that adenosine A1 receptors hyperpolarize mitral cells, one class of principal neurons that propagate odour information from the olfactory bulb to higher brain areas, by activation of background K+ channels. The adenosine-modulated background K+ channels belong to the family of two-pore domain K+ channels. Adenosine reduces spontaneous activity of mitral cells, whereas action potential firing evoked by synaptic input upon stimulation of sensory neurons is not affected, resulting in a higher ratio of evoked firing (signal) over spontaneous firing (noise) and hence an improved signal-to-noise ratio. The study shows for the first time that adenosine influences fine-tuning of the input-output relationship in sensory systems. ABSTRACT Neuromodulation by adenosine is of critical importance in many brain regions, but the role of adenosine in olfactory information processing has not been studied so far. We investigated the effects of adenosine on mitral cells, which are projection neurons of the olfactory bulb. Significant expression of A1 and A2A receptors was found in mitral cells, as demonstrated by in situ hybridization. Application of adenosine in acute olfactory bulb slices hyperpolarized mitral cells in wild-type but not in adenosine A1 receptor knockout mice. Adenosine-induced hyperpolarization was mediated by background K+ currents that were reduced by halothane and bupivacaine, which are known to inhibit two-pore domain K+ (K2P) channels. In mitral cells, electrical stimulation of axons of olfactory sensory neurons evoked synaptic currents, which can be considered as input signals, while spontaneous firing independent of sensory input can be considered as noise. Synaptic currents were not affected by adenosine, while adenosine reduced spontaneous firing, leading to an increase in the signal-to-noise ratio of mitral cell firing. Our findings demonstrate that A1 adenosine receptors activate two-pore domain K+ channels, which increases the signal-to-noise ratio of the input-output relationship in mitral cells and thereby modulates information processing in the olfactory bulb.
Collapse
Affiliation(s)
- Natalie Rotermund
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Svenja Winandy
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Timo Fischer
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Kristina Schulz
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Torsten Fregin
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Nadine Alstedt
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Melanie Buchta
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Janick Bartels
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Nanna Svartz Väg 2, Stockholm, 17177, Sweden
| | - Christian Lohr
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Daniela Hirnet
- Division of Neurophysiology, Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| |
Collapse
|