1
|
Kim KS, Lee YH, Yun JW, Kim YB, Song HY, Park JS, Jung SH, Sohn JW, Kim KW, Kim HR, Choi HJ. A normative framework dissociates need and motivation in hypothalamic neurons. SCIENCE ADVANCES 2024; 10:eado1820. [PMID: 39504367 PMCID: PMC11540019 DOI: 10.1126/sciadv.ado1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Physiological needs evoke motivational drives that produce natural behaviors for survival. In previous studies, the temporally intertwined dynamics of need and motivation have made it challenging to differentiate these two components. On the basis of classic homeostatic theories, we established a normative framework to derive computational models for need-encoding and motivation-encoding neurons. By combining the model-based predictions and naturalistic experimental paradigms, we demonstrated that agouti-related peptide (AgRP) and lateral hypothalamic leptin receptor (LHLepR) neuronal activities encode need and motivation, respectively. Our model further explains the difference in the dynamics of appetitive behaviors induced by optogenetic stimulation of AgRP or LHLepR neurons. Our study provides a normative modeling framework that explains how hypothalamic neurons separately encode need and motivation in the mammalian brain.
Collapse
Affiliation(s)
- Kyu Sik Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Young Hee Lee
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jong Won Yun
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center of Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Yu-Been Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Ha Young Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Joon Seok Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sang-Ho Jung
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Ki Woo Kim
- Division of Physiology, Departments of Oral Biology and Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| | - HyungGoo R. Kim
- Center of Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, 101 Dabyeonbat-gil, Hwachon-myeon, Gangwon-do 25159, Republic of Korea
| |
Collapse
|
2
|
Alyar G, Umudum FZ. Differences in the levels of the appetite peptides ghrelin, peptide tyrosine tyrosine, and glucagon-like peptide-1 between obesity classes and lean controls. Lab Med 2024; 55:553-558. [PMID: 38417041 DOI: 10.1093/labmed/lmae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
OBJECTIVE This study was designed to compare basal concentrations of the gastrointestinal appetite modulators ghrelin, peptide tyrosine tyrosine (PYY), and glucagon-like peptide 1 (GLP-1) between obesity classes and obesity classes and controls. METHODS The study included 49 healthy controls with body mass index (BMI) between 18.5 and 29.9 kg/m² and 62 individuals with obesity with BMI ≥30 kg/m². Basal ghrelin, PYY, and GLP-1 concentrations of the samples were analyzed by an enzyme-linked immunosorbent assay commercial kit (SunRed Human). Other biochemical parameters were measured by a clinical chemistry autoanalyzer (Beckman Coulter AU 5800) in the biochemistry laboratory. RESULTS Compared with the control group, ghrelin, PYY, and GLP-1 levels were significantly lower in the obese group (P < .05). The PYY concentration was significantly different between obese groups (P < .05). The PYY and GLP-1 levels were significantly different between obesity class I and obesity class III. In addition, ghrelin levels were significantly different between obesity class II and obesity class III. Correlation analysis revealed a negative correlation between BMI and serum ghrelin, GLP-1, and PYY concentrations. CONCLUSION Low basal ghrelin, GLP-1, and PYY hormones in the obese group compared with the control group indicate impaired appetite regulation in this population. The significant difference in PYY levels between obese groups was associated with increasing obesity grade.
Collapse
Affiliation(s)
- Gülşah Alyar
- Atatürk University, Vocational School of Health Services, Erzurum, Turkey
| | - Fatma Zühal Umudum
- Atatürk University, Faculty of Medicine, Department of Medical Biochemistry, Erzurum, Turkey
| |
Collapse
|
3
|
Gao J, Zhang S, Deng P, Wu Z, Lemaitre B, Zhai Z, Guo Z. Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat Commun 2024; 15:3514. [PMID: 38664401 PMCID: PMC11045819 DOI: 10.1038/s41467-024-47465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.
Collapse
Affiliation(s)
- Junjun Gao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Deng
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zongzhao Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, PR China.
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Talpir I, Livneh Y. Stereotyped goal-directed manifold dynamics in the insular cortex. Cell Rep 2024; 43:114027. [PMID: 38568813 PMCID: PMC11063631 DOI: 10.1016/j.celrep.2024.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
The insular cortex is involved in diverse processes, including bodily homeostasis, emotions, and cognition. However, we lack a comprehensive understanding of how it processes information at the level of neuronal populations. We leveraged recent advances in unsupervised machine learning to study insular cortex population activity patterns (i.e., neuronal manifold) in mice performing goal-directed behaviors. We find that the insular cortex activity manifold is remarkably consistent across different animals and under different motivational states. Activity dynamics within the neuronal manifold are highly stereotyped during rewarded trials, enabling robust prediction of single-trial outcomes across different mice and across various natural and artificial motivational states. Comparing goal-directed behavior with self-paced free consumption, we find that the stereotyped activity patterns reflect task-dependent goal-directed reward anticipation, and not licking, taste, or positive valence. These findings reveal a core computation in insular cortex that could explain its involvement in pathologies involving aberrant motivations.
Collapse
Affiliation(s)
- Itay Talpir
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoav Livneh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
5
|
Alyar G, Umudum FZ, Akbaş N. Changes in ghrelin, GLP-1, and PYY levels after diet and exercise in obese individuals. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20230263. [PMID: 38511748 PMCID: PMC10941879 DOI: 10.1590/1806-9282.20230263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 03/22/2024]
Abstract
OBJECTIVE Diet and exercise, which are the building blocks of obesity management, provide weight loss by creating a negative energy balance. However, the effect of energy deficit induced by long-term diet and exercise on appetite hormones remains unclear. The study was designed to determine the effect of a 12-week diet and exercise program applied to obese individuals on the levels of appetite hormones, namely, ghrelin, GLP-1, and PYY. METHODS A total of 62 obese individuals (BMI≥30) and 48 healthy controls (BMI 18.50-29.99) participated in the study. Appropriate diet (1000-1500 kcal/day) and exercise (at least 5000 steps/day) programs were applied to obese individuals according to age, gender, and BMI. The ghrelin, GLP-1, and PYY values of the participants were analyzed by the ELISA method and commercial kit by taking venous blood samples before and after 12 weeks of treatment. RESULTS While ghrelin levels of individuals decreased significantly after diet and exercise, PYY levels increased significantly. However, despite the treatment applied, the GLP-1 and PYY levels of the case group did not reach the levels of the control group. CONCLUSION Long-term diet and exercise intervention had a positive effect on appetite regulation hormones. It reduced ghrelin levels after treatment. Associated weight loss was facilitated. In the case group, increased satiety hormones after combined treatment supported the maintenance of body weight by increasing satiety.
Collapse
Affiliation(s)
- Gülşah Alyar
- Atatürk University, Vocational School of Health Services – Erzurum, Turkey
| | - Fatma Zuhal Umudum
- Atatürk University, Faculty of Medicine, Department of Medical Biochemistry – Erzurum, Turkey
| | - Nergis Akbaş
- Yalova University, Faculty of Medicine, Department of Basic Medical Sciences – Erzurum, Turkey
| |
Collapse
|
6
|
Popov MY, Lepik OV, Kozlovskii VL, Popov YV. Pharmacological strategies for appetite modulation in eating disorders: a narrative review. CONSORTIUM PSYCHIATRICUM 2023; 4:79-90. [PMID: 38250648 PMCID: PMC10795951 DOI: 10.17816/cp6150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/15/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND A substantial increase in the prevalence of eating disorders has been noticed over the past decades. Priority in the treatment of eating disorders is justifiably given to psychosocial interventions. However, it is also well known that centrally acting drugs can significantly affect appetite and food consumption. AIM To narratively review the available neurobiological data on the mechanisms of central regulation of eating behavior as a rationale to summarize pharmacological strategies for appetite modulation in eating disorders. METHODS The authors have carried out a narrative review of scientific papers published from January 2013 to March 2023 in the PubMed and Web of Science electronic databases. Studies were considered eligible if they included data on the neurobiological mechanisms of appetite regulation or the results of clinical trials of centrally acting drugs in eating disorders. Relevant studies were included regardless of their design. Descriptive analysis was used to summarize the obtained data. RESULTS The review included 51 studies. The available neurobiological and clinical data allowed us to identify the following pharmacological strategies for appetite modulation in eating disorders: serotonergic, catecholaminergic, amino acidergic and peptidergic. However, implementation of these data into clinical practice difficult due to an insufficient number of good-quality studies, which is particularly relevant for adolescents as there is a research gap in this population. CONCLUSION The progress in neurobiological understanding of the mechanisms of central regulation of appetite opens opportunities for new pharmacotherapeutic approaches aimed at changing the patterns of eating behavior. Obviously, treatment of eating disorders is a much broader problem and cannot be reduced to the correction of eating patterns. Nevertheless, at certain stages of treatment, drug-induced modulation of appetite can play an important role among multi-targeted biological and psychosocial interventions. Translation of neurobiological data into clinical practice requires a large number of clinical studies to confirm the long-term efficacy and safety of pharmacotherapeutic approaches and to develop personalized algorithms for the treatment of various forms of eating disorders in different age groups.
Collapse
Affiliation(s)
- Mikhail Y. Popov
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology
| | - Olga V. Lepik
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology
| | | | - Yuri V. Popov
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology
| |
Collapse
|
7
|
Almesbehi T, Harris L, McGarty A, Alqallaf S, Westrop S, Edwards CA, Dorling JL, Malkova D. Effects of exercise training programmes on fasting gastrointestinal appetite hormones in adults with overweight and obesity: A systematic review and meta-analysis. Appetite 2023; 182:106424. [PMID: 36565928 DOI: 10.1016/j.appet.2022.106424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
A systematic review and meta-analysis was performed to determine the effect of exercise training on fasting gastrointestinal appetite hormones in adults living with overweight and obesity. For eligibility, only randomised controlled trials (duration ≥ four weeks) examining the effect of exercise training interventions were considered. This review was registered in the International Prospective Register of Systematic Reviews (CRD42020218976). The searches were performed on five databases: MEDLINE, EMBASE, Cochrane Library, Web of Science, and Scopus. The initial search identified 13204 records. Nine studies, which include sixteen exercise interventions, met the criteria for inclusion. Meta-analysis was calculated as the standardised mean difference (Cohen's d). Exercise training had no effect on fasting concentrations of total ghrelin (d: 1.06, 95% CI -0.38 to 2.50, P = 0.15), acylated ghrelin (d: 0.08, 95% CI: -0.31 to 0.47, P = 0.68) and peptide YY (PYY) (d = -0.16, 95% CI: -0.62 to 0.31, P = 0.51) compared to the control group. Analysis of body mass index (BMI) (d: -0.31, 95% CI: -0.50 to -0.12, P < 0.01) and body mass (d: -0.22, 95% CI: -0.42 to -0.03, P = 0.03) found a significant reduction after exercise compared to controls. Overall, exercise interventions did not modify fasting concentrations of total ghrelin, acylated ghrelin, and PYY in individuals with overweight or obesity, although they reduced body mass and BMI. Thus, any upregulation of appetite and energy intake in individuals with overweight and obesity participating in exercise programmes is unlikely to be related to fasting concentrations of gastrointestinal appetite hormones.
Collapse
Affiliation(s)
- Taibah Almesbehi
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, UK
| | - Leanne Harris
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, UK
| | - Arlene McGarty
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Sheikha Alqallaf
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, UK
| | - Sophie Westrop
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Christine A Edwards
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, UK
| | - James L Dorling
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, UK
| | - Dalia Malkova
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, UK.
| |
Collapse
|
8
|
Shiu PK, Sterne GR, Engert S, Dickson BJ, Scott K. Taste quality and hunger interactions in a feeding sensorimotor circuit. eLife 2022; 11:e79887. [PMID: 35791902 PMCID: PMC9292995 DOI: 10.7554/elife.79887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Taste detection and hunger state dynamically regulate the decision to initiate feeding. To study how context-appropriate feeding decisions are generated, we combined synaptic resolution circuit reconstruction with targeted genetic access to specific neurons to elucidate a gustatory sensorimotor circuit for feeding initiation in adult Drosophila melanogaster. This circuit connects gustatory sensory neurons to proboscis motor neurons through three intermediate layers. Most neurons in this pathway are necessary and sufficient for proboscis extension, a feeding initiation behavior, and respond selectively to sugar taste detection. Pathway activity is amplified by hunger signals that act at select second-order neurons to promote feeding initiation in food-deprived animals. In contrast, the feeding initiation circuit is inhibited by a bitter taste pathway that impinges on premotor neurons, illuminating a local motif that weighs sugar and bitter taste detection to adjust the behavioral outcomes. Together, these studies reveal central mechanisms for the integration of external taste detection and internal nutritive state to flexibly execute a critical feeding decision.
Collapse
Affiliation(s)
- Philip K Shiu
- University of California, BerkeleyBerkeleyUnited States
| | - Gabriella R Sterne
- University of California, BerkeleyBerkeleyUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteChevy ChaseUnited States
| | | | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteChevy ChaseUnited States
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
| | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
9
|
Dweck HKM, Talross GJS, Luo Y, Ebrahim SAM, Carlson JR. Ir56b is an atypical ionotropic receptor that underlies appetitive salt response in Drosophila. Curr Biol 2022; 32:1776-1787.e4. [PMID: 35294865 PMCID: PMC9050924 DOI: 10.1016/j.cub.2022.02.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 01/28/2023]
Abstract
Salt taste is one of the most ancient of all sensory modalities. However, the molecular basis of salt taste remains unclear in invertebrates. Here, we show that the response to low, appetitive salt concentrations in Drosophila depends on Ir56b, an atypical member of the ionotropic receptor (Ir) family. Ir56b acts in concert with two coreceptors, Ir25a and Ir76b. Mutation of Ir56b virtually eliminates an appetitive behavioral response to salt. Ir56b is expressed in neurons that also sense sugars via members of the Gr (gustatory receptor) family. Misexpression of Ir56b in bitter-sensing neurons confers physiological responses to appetitive doses of salt. Ir56b is unique among tuning Irs in containing virtually no N-terminal region, a feature that is evolutionarily conserved. Moreover, Ir56b is a "pseudo-pseudogene": its coding sequence contains a premature stop codon that can be replaced with a sense codon without loss of function. This stop codon is conserved among many Drosophila species but is absent in a number of species associated with cactus in arid regions. Thus, Ir56b serves the evolutionarily ancient function of salt detection in neurons that underlie both salt and sweet taste modalities.
Collapse
Affiliation(s)
- Hany K M Dweck
- Department Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Gaëlle J S Talross
- Department Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Yichen Luo
- Department Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Shimaa A M Ebrahim
- Department Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - John R Carlson
- Department Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
10
|
Li X, Zhang Y, Wang S, Shi C, Wang S, Wang X, Lü X. A review on the potential use of natural products in overweight and obesity. Phytother Res 2022; 36:1990-2015. [DOI: 10.1002/ptr.7426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/21/2022] [Accepted: 02/05/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xin Li
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Yu Zhang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Shuxuan Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Caihong Shi
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Shuang Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Xin Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Xin Lü
- College of Food Science and Engineering Northwest A&F University Yangling China
| |
Collapse
|
11
|
Ichiki T, Wang T, Kennedy A, Pool AH, Ebisu H, Anderson DJ, Oka Y. Sensory representation and detection mechanisms of gut osmolality change. Nature 2022; 602:468-474. [PMID: 35082448 DOI: 10.1038/s41586-021-04359-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022]
Abstract
Ingested food and water stimulate sensory systems in the oropharyngeal and gastrointestinal areas before absorption1,2. These sensory signals modulate brain appetite circuits in a feed-forward manner3-5. Emerging evidence suggests that osmolality sensing in the gut rapidly inhibits thirst neurons upon water intake. Nevertheless, it remains unclear how peripheral sensory neurons detect visceral osmolality changes, and how they modulate thirst. Here we use optical and electrical recording combined with genetic approaches to visualize osmolality responses from sensory ganglion neurons. Gut hypotonic stimuli activate a dedicated vagal population distinct from mechanical-, hypertonic- or nutrient-sensitive neurons. We demonstrate that hypotonic responses are mediated by vagal afferents innervating the hepatic portal area (HPA), through which most water and nutrients are absorbed. Eliminating sensory inputs from this area selectively abolished hypotonic but not mechanical responses in vagal neurons. Recording from forebrain thirst neurons and behavioural analyses show that HPA-derived osmolality signals are required for feed-forward thirst satiation and drinking termination. Notably, HPA-innervating vagal afferents do not sense osmolality itself. Instead, these responses are mediated partly by vasoactive intestinal peptide secreted after water ingestion. Together, our results reveal visceral hypoosmolality as an important vagal sensory modality, and that intestinal osmolality change is translated into hormonal signals to regulate thirst circuit activity through the HPA pathway.
Collapse
Affiliation(s)
- Takako Ichiki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tongtong Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ann Kennedy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Physiology, Northwestern University, Chicago, IL, USA
| | - Allan-Hermann Pool
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Haruka Ebisu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
12
|
Zheng D, Fu JY, Tang MY, Yu XD, Zhu Y, Shen CJ, Li CY, Xie SZ, Lin S, Luo M, Li XM. A Deep Mesencephalic Nucleus Circuit Regulates Licking Behavior. Neurosci Bull 2022; 38:565-575. [PMID: 35080731 DOI: 10.1007/s12264-021-00817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
Abstract
Licking behavior is important for water intake. The deep mesencephalic nucleus (DpMe) has been implicated in instinctive behaviors. However, whether the DpMe is involved in licking behavior and the precise neural circuit behind this behavior remains unknown. Here, we found that the activity of the DpMe decreased during water intake. Inhibition of vesicular glutamate transporter 2-positive (VGLUT2+) neurons in the DpMe resulted in increased water intake. Somatostatin-expressing (SST+), but not protein kinase C-δ-expressing (PKC-δ+), GABAergic neurons in the central amygdala (CeA) preferentially innervated DpMe VGLUT2+ neurons. The SST+ neurons in the CeA projecting to the DpMe were activated at the onset of licking behavior. Activation of these CeA SST+ GABAergic neurons, but not PKC-δ+ GABAergic neurons, projecting to the DpMe was sufficient to induce licking behavior and promote water intake. These findings redefine the roles of the DpMe and reveal a novel CeASST-DpMeVGLUT2 circuit that regulates licking behavior and promotes water intake.
Collapse
Affiliation(s)
- Di Zheng
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Yu Fu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Meng-Yu Tang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Dan Yu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yi Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Jie Shen
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yue Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shi-Ze Xie
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shan Lin
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.,Chinese Institute for Brain Research, Beijing, 102206, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China. .,Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, China/Guangdong-Hong Kong-Macao Greater Bay Area, Joint Institute for Genetics and Genome Medicine Between Zhejiang University and University of Toronto, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Livneh Y, Andermann ML. Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron 2021; 109:3576-3593. [PMID: 34582784 PMCID: PMC8602715 DOI: 10.1016/j.neuron.2021.08.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 02/09/2023]
Abstract
Our wellness relies on continuous interactions between our brain and body: different organs relay their current state to the brain and are regulated, in turn, by descending visceromotor commands from our brain and by actions such as eating, drinking, thermotaxis, and predator escape. Human neuroimaging and theoretical studies suggest a key role for predictive processing by insular cortex in guiding these efforts to maintain bodily homeostasis. Here, we review recent studies recording and manipulating cellular activity in rodent insular cortex at timescales from seconds to hours. We argue that consideration of these findings in the context of predictive processing of future bodily states may reconcile several apparent discrepancies and offer a unifying, heuristic model for guiding future work.
Collapse
Affiliation(s)
- Yoav Livneh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
14
|
Ali MA, Wang Y, Qin Z, Yuan X, Zhang Y, Zeng C. Odorant and Taste Receptors in Sperm Chemotaxis and Cryopreservation: Roles and Implications in Sperm Capacitation, Motility and Fertility. Genes (Basel) 2021; 12:genes12040488. [PMID: 33801624 PMCID: PMC8065900 DOI: 10.3390/genes12040488] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Sperm chemotaxis, which guide sperm toward oocyte, is tightly associated with sperm capacitation, motility, and fertility. However, the molecular mechanism of sperm chemotaxis is not known. Reproductive odorant and taste receptors, belong to G-protein-coupled receptors (GPCR) super-family, cause an increase in intracellular Ca2+ concentration which is pre-requisite for sperm capacitation and acrosomal reaction, and result in sperm hyperpolarization and increase motility through activation of Ca2+-dependent Cl¯ channels. Recently, odorant receptors (ORs) in olfactory transduction pathway were thought to be associated with post-thaw sperm motility, freeze tolerance or freezability and cryo-capacitation-like change during cryopreservation. Investigation of the roles of odorant and taste receptors (TRs) is important for our understanding of the freeze tolerance or freezability mechanism and improve the motility and fertility of post-thaw sperm. Here, we reviewed the roles, mode of action, impact of odorant and taste receptors on sperm chemotaxis and post-thaw sperm quality.
Collapse
Affiliation(s)
- Malik Ahsan Ali
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
- Department of Theriogenology, Riphah College of Veterinary Sciences, Lahore 54000, Punjab, Pakistan;
- Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan
| | - Yihan Wang
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Ziyue Qin
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Xiang Yuan
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Yan Zhang
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
| | - Changjun Zeng
- College of Animal Science and Technology and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.W.); (Z.Q.); (X.Y.); (Y.Z.)
- Correspondence: ; Tel./Fax: +86-28-86291010
| |
Collapse
|
15
|
Boulan L, Léopold P. What determines organ size during development and regeneration? Development 2021; 148:148/1/dev196063. [PMID: 33431590 DOI: 10.1242/dev.196063] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sizes of living organisms span over 20 orders of magnitude or so. This daunting observation could intimidate researchers aiming to understand the general mechanisms controlling growth. However, recent progress suggests the existence of principles common to organisms as diverse as fruit flies, mice and humans. As we review here, these studies have provided insights into both autonomous and non-autonomous mechanisms controlling organ growth as well as some of the principles underlying growth coordination between organs and across bilaterally symmetrical organisms. This research tackles several aspects of developmental biology and integrates inputs from physics, mathematical modelling and evolutionary biology. Although many open questions remain, this work also helps to shed light on medically related conditions such as tissue and limb regeneration, as well as metabolic homeostasis and cancer.
Collapse
Affiliation(s)
- Laura Boulan
- Institut Curie, PSL University, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology unit, 75005 Paris, France
| | - Pierre Léopold
- Institut Curie, PSL University, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology unit, 75005 Paris, France
| |
Collapse
|
16
|
Augustine V, Lee S, Oka Y. Neural Control and Modulation of Thirst, Sodium Appetite, and Hunger. Cell 2020; 180:25-32. [PMID: 31923398 DOI: 10.1016/j.cell.2019.11.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
The function of central appetite neurons is instructing animals to ingest specific nutrient factors that the body needs. Emerging evidence suggests that individual appetite circuits for major nutrients-water, sodium, and food-operate on unique driving and quenching mechanisms. This review focuses on two aspects of appetite regulation. First, we describe the temporal relationship between appetite neuron activity and consumption behaviors. Second, we summarize ingestion-related satiation signals that differentially quench individual appetite circuits. We further discuss how distinct appetite and satiation systems for each factor may contribute to nutrient homeostasis from the functional and evolutional perspectives.
Collapse
Affiliation(s)
- Vineet Augustine
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA; Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Sangjun Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
17
|
Livneh Y, Sugden AU, Madara JC, Essner RA, Flores VI, Sugden LA, Resch JM, Lowell BB, Andermann ML. Estimation of Current and Future Physiological States in Insular Cortex. Neuron 2020; 105:1094-1111.e10. [PMID: 31955944 PMCID: PMC7083695 DOI: 10.1016/j.neuron.2019.12.027] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 01/31/2023]
Abstract
Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. While human insular cortex (InsCtx) is implicated in interoception, the cellular and circuit mechanisms remain unclear. We imaged mouse InsCtx neurons during two physiological deficiency states: hunger and thirst. InsCtx ongoing activity patterns reliably tracked the gradual return to homeostasis but not changes in behavior. Accordingly, while artificial induction of hunger or thirst in sated mice via activation of specific hypothalamic neurons (AgRP or SFOGLUT) restored cue-evoked food- or water-seeking, InsCtx ongoing activity continued to reflect physiological satiety. During natural hunger or thirst, food or water cues rapidly and transiently shifted InsCtx population activity to the future satiety-related pattern. During artificial hunger or thirst, food or water cues further shifted activity beyond the current satiety-related pattern. Together with circuit-mapping experiments, these findings suggest that InsCtx integrates visceral-sensory signals of current physiological state with hypothalamus-gated amygdala inputs that signal upcoming ingestion of food or water to compute a prediction of future physiological state.
Collapse
Affiliation(s)
- Yoav Livneh
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Arthur U Sugden
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rachel A Essner
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Vanessa I Flores
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lauren A Sugden
- Department of Mathematics and Computer Science, Duquesne University, Pittsburgh, PA 15232, USA
| | - Jon M Resch
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Hypothalamic neuronal circuits regulating hunger-induced taste modification. Nat Commun 2019; 10:4560. [PMID: 31594935 PMCID: PMC6783447 DOI: 10.1038/s41467-019-12478-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/09/2019] [Indexed: 01/20/2023] Open
Abstract
The gustatory system plays a critical role in sensing appetitive and aversive taste stimuli for evaluating food quality. Although taste preference is known to change depending on internal states such as hunger, a mechanistic insight remains unclear. Here, we examine the neuronal mechanisms regulating hunger-induced taste modification. Starved mice exhibit an increased preference for sweetness and tolerance for aversive taste. This hunger-induced taste modification is recapitulated by selective activation of orexigenic Agouti-related peptide (AgRP)-expressing neurons in the hypothalamus projecting to the lateral hypothalamus, but not to other regions. Glutamatergic, but not GABAergic, neurons in the lateral hypothalamus function as downstream neurons of AgRP neurons. Importantly, these neurons play a key role in modulating preferences for both appetitive and aversive tastes by using distinct pathways projecting to the lateral septum or the lateral habenula, respectively. Our results suggest that these hypothalamic circuits would be important for optimizing feeding behavior under fasting. Hunger modulates perception of good and bad tastes. Here, the authors report that orexigenic AgRP neurons in the hypothalamus mediate these effects through glutamatergic lateral hypothalamic neurons that send distinct projections to the lateral septum and lateral habenula.
Collapse
|
19
|
Abstract
The gustatory system plays a critical role in sensing appetitive and aversive taste stimuli for evaluating food quality. Although taste preference is known to change depending on internal states such as hunger, a mechanistic insight remains unclear. Here, we examine the neuronal mechanisms regulating hunger-induced taste modification. Starved mice exhibit an increased preference for sweetness and tolerance for aversive taste. This hunger-induced taste modification is recapitulated by selective activation of orexigenic Agouti-related peptide (AgRP)-expressing neurons in the hypothalamus projecting to the lateral hypothalamus, but not to other regions. Glutamatergic, but not GABAergic, neurons in the lateral hypothalamus function as downstream neurons of AgRP neurons. Importantly, these neurons play a key role in modulating preferences for both appetitive and aversive tastes by using distinct pathways projecting to the lateral septum or the lateral habenula, respectively. Our results suggest that these hypothalamic circuits would be important for optimizing feeding behavior under fasting.
Collapse
|
20
|
Ichiki T, Augustine V, Oka Y. Neural populations for maintaining body fluid balance. Curr Opin Neurobiol 2019; 57:134-140. [PMID: 30836260 PMCID: PMC7006364 DOI: 10.1016/j.conb.2019.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 01/03/2023]
Abstract
Fine balance between loss-of water and gain-of water is essential for maintaining body fluid homeostasis. The development of neural manipulation and mapping tools has opened up new avenues to dissect the neural circuits underlying body fluid regulation. Recent studies have identified several nodes in the brain that positively and negatively regulate thirst. The next step forward would be to elucidate how neural populations interact with each other to control drinking behavior.
Collapse
Affiliation(s)
- Takako Ichiki
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd Mail Code: 216-76, Pasadena, CA 91125, USA
| | - Vineet Augustine
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd Mail Code: 216-76, Pasadena, CA 91125, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd Mail Code: 216-76, Pasadena, CA 91125, USA.
| |
Collapse
|
21
|
Augustine V, Ebisu H, Zhao Y, Lee S, Ho B, Mizuno GO, Tian L, Oka Y. Temporally and Spatially Distinct Thirst Satiation Signals. Neuron 2019; 103:242-249.e4. [PMID: 31153646 DOI: 10.1016/j.neuron.2019.04.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/27/2019] [Accepted: 04/26/2019] [Indexed: 11/27/2022]
Abstract
For thirsty animals, fluid intake provides both satiation and pleasure of drinking. How the brain processes these factors is currently unknown. Here, we identified neural circuits underlying thirst satiation and examined their contribution to reward signals. We show that thirst-driving neurons receive temporally distinct satiation signals by liquid-gulping-induced oropharyngeal stimuli and gut osmolality sensing. We demonstrate that individual thirst satiation signals are mediated by anatomically distinct inhibitory neural circuits in the lamina terminalis. Moreover, we used an ultrafast dopamine (DA) sensor to examine whether thirst satiation itself stimulates the reward-related circuits. Interestingly, spontaneous drinking behavior but not thirst drive reduction triggered DA release. Importantly, chemogenetic stimulation of thirst satiation neurons did not activate DA neurons under water-restricted conditions. Together, this study dissected the thirst satiation circuit, the activity of which is functionally separable from reward-related brain activity.
Collapse
Affiliation(s)
- Vineet Augustine
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haruka Ebisu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuan Zhao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sangjun Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brittany Ho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grace O Mizuno
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
22
|
Chemosensory modulation of neural circuits for sodium appetite. Nature 2019; 568:93-97. [PMID: 30918407 PMCID: PMC7122814 DOI: 10.1038/s41586-019-1053-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/31/2019] [Indexed: 11/11/2022]
Abstract
Sodium is the main cation in the extracellular fluid that regulates various physiological functions. Sodium-depletion in the body elevates the hedonic value of sodium taste, which drives animals toward sodium consumption 1,2. Conversely, oral sodium detection rapidly promotes satiation of sodium appetite 3,4, suggesting that chemosensory signals have a central role in sodium appetite and its satiety. Nevertheless, the neural basis of chemosensory-based appetite regulation remains poorly understood. Here, we dissect genetically-defined neural circuits in mice that control sodium intake by integrating sodium taste and internal depletion signals. We show that a subset of excitatory neurons in the pre-locus coeruleus (pre-LC) that express prodynorphin (PDYN) serve as a critical neural substrate for sodium intake behavior. Acute stimulation of this population triggered robust sodium ingestion even from rock salt by transmitting negative valence signals. Inhibition of the same neurons selectively reduced sodium consumption. We further demonstrate that peripheral chemosensory signals rapidly suppressed these sodium appetite neurons. Simultaneous in vivo optical recording and gastric infusion revealed that sensory detection of sodium, but not sodium ingestion per se, is required for the acute modulation of pre-LC PDYN neurons and satiety of sodium appetite. Moreover, retrograde virus tracing showed that sensory modulation is partly mediated by specific GABAergic neurons in the bed nucleus of the stria terminalis. This inhibitory neural population is activated upon sodium ingestion, and sends rapid inhibitory signals to sodium appetite neurons. Together, this study reveals a dynamic circuit diagram that integrates chemosensory signals and the internal need to maintain sodium balance.
Collapse
|
23
|
Zhang X, Shao H, Zheng X. Amino acids at the intersection of nutrition and insulin sensitivity. Drug Discov Today 2019; 24:1038-1043. [PMID: 30818029 DOI: 10.1016/j.drudis.2019.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 01/02/2023]
Abstract
A systems network that is coordinated in the sensing and management of nutrient signals is paramount to energy homeostasis, and its dysfunction induces metabolic stress and insulin resistance. Amino acids have recently emerged as a collection of signaling metabolites that underlie the metabolic impacts of different dietary patterns and life styles. This relationship is beginning to be understood from the close coupling of immune and metabolic systems, and serves to enrich our understanding of metabolic diseases, such as type 2 diabetes mellitus. In this review, we provide an overview of several amino acids or their metabolites that link nutrients with insulin sensitivity and discuss how they integrate into organ crosstalk pathways to influence physiological or pathological metabolic states.
Collapse
Affiliation(s)
- Xueli Zhang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Hua Shao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiao Zheng
- School of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|