1
|
Li Y, Xue J, Ma Y, Ye K, Zhao X, Ge F, Zheng F, Liu L, Gao X, Wang D, Xia Q. The complex roles of m 6 A modifications in neural stem cell proliferation, differentiation, and self-renewal and implications for memory and neurodegenerative diseases. Neural Regen Res 2025; 20:1582-1598. [PMID: 38845217 PMCID: PMC11688559 DOI: 10.4103/nrr.nrr-d-23-01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 08/07/2024] Open
Abstract
N6-methyladenosine (m 6 A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m 6 A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m 6 A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m 6 A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m 6 A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m 6 A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m 6 A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m 6 A's role in neurodegenerative processes. The roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the time-specific nature of m 6 A and its varying effects on distinct brain regions and in different environments.
Collapse
Affiliation(s)
- Yanxi Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuejia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lulu Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Wang J, Ran Y, Li Z, Zhao T, Zhang F, Wang J, Liu Z, Chen X. Salsolinol as an RNA m6A methylation inducer mediates dopaminergic neuronal death by regulating YAP1 and autophagy. Neural Regen Res 2025; 20:887-899. [PMID: 38886960 PMCID: PMC11433901 DOI: 10.4103/nrr.nrr-d-23-01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/18/2024] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00032/figure1/v/2024-06-17T092413Z/r/image-tiff Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, Sal) is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, an environmental toxin that causes Parkinson's disease. However, the mechanism by which Sal mediates dopaminergic neuronal death remains unclear. In this study, we found that Sal significantly enhanced the global level of N6-methyladenosine (m6A) RNA methylation in PC12 cells, mainly by inducing the downregulation of the expression of m6A demethylases fat mass and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5). RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway. The m6A reader YTH domain-containing family protein 2 (YTHDF2) promoted the degradation of m6A-containing Yes-associated protein 1 (YAP1) mRNA, which is a downstream key effector in the Hippo signaling pathway. Additionally, downregulation of YAP1 promoted autophagy, indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity. These findings reveal the role of Sal on m6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy. Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Jianan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Tianyuan Zhao
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Fangfang Zhang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Juan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
3
|
Mitsuhashi H, Lin R, Chawla A, Mechawar N, Nagy C, Turecki G. Altered m6A RNA methylation profiles in depression implicate the dysregulation of discrete cellular functions in males and females. iScience 2024; 27:111316. [PMID: 39650737 PMCID: PMC11625292 DOI: 10.1016/j.isci.2024.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
Adverse environmental stress represents a significant risk factor for major depressive disorder (MDD), often resulting in disrupted synaptic connectivity which is known to be partly regulated by epigenetic mechanisms. N6-methyladenosine (m6A), an epitranscriptomic modification, has emerged as a crucial regulator of activity-dependent gene regulation. In this study, we characterized m6A profiles in the ventromedial prefrontal cortex (vmPFC) of individuals with MDD. Using m6A sequencing, we identified a total of 30,279 high-confidence m6A peaks, exhibiting significant enrichment in genes related to neuronal and synaptic function. The m6A peaks between males and females with MDD that passed the significance threshold showed opposite m6A patterns, while the threshold-free m6A patterns were concordant. Distinct m6A profiles were found in MDD for each sex, with dysregulation associated with microtubule movement in males and neuronal projection in females. Our results suggest the potential roles of m6A as part of the dysregulated molecular network in MDD.
Collapse
Affiliation(s)
- Haruka Mitsuhashi
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Rixing Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544 USA, USA
| | - Anjali Chawla
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
4
|
Xu XF, Chen J, Long LH, Zhang AM, Yang JW, Li YJ, Chen L, Zhong XL, Xu Y, Cao WY. Chronic social isolation leads to abnormal behavior in male mice through the hippocampal METTL14 mediated epitranscriptomic RNA m6A modifications. J Affect Disord 2024; 366:262-272. [PMID: 39209273 DOI: 10.1016/j.jad.2024.08.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Social isolation not only increases the risk of mortality in later life but also causes depressive symptoms, cognitive and physical disabilities. Although RNA m6A modifications are suggested to play key roles in brain development, neuronal signaling and neurological disorders, both the roles of m6A and the enzymes that regulate RNA m6A modification in social isolation induced abnormal behavior is unknown. The present study aims to explore the possible epitranscriptomic role of RNA m6A modifications and its enzymes in social isolation induced impaired behavior. METHODS 3-4 weeks mice experiencing 8 weeks social isolation stress (SI) were used in the present study. We quantified m6A levels in brain regions related to mood and cognitive behavior. And the expression of hippocampal m6A enzymes was also determined. The role of hippocampal m6A and its enzymes in SI induced abnormal behavior was further verified by the virus tool. RESULTS SI led to not only depressive and anxiety-like behaviors but also cognitive impairment, with corresponding decreases in hippocampal m6A and METTL14. Hippocampal over-expression METTL14 with lentivirus not only rescued these behaviors but also enhanced the hippocampal m6A level. Hippocampal over-expression METTL14 resulted in increased synaptic related genes. CONCLUSIONS We provide the first evidence that post-weaning social isolation reduces hippocampal m6A level and causes altered expression of m6A enzyme in mice. Importantly, hippocampal METTL14 over-expression alleviated the SI-induced depression/anxiety-like and impaired cognitive behaviors and enhanced m6A level and synaptic related genes expression.
Collapse
Affiliation(s)
- Xiao Fan Xu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Jie Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lu Hong Long
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ao Mei Zhang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jing Wen Yang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yu Jia Li
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Ling Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Xiao Lin Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Wen Yu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
5
|
Tegowski M, Prater AK, Holley CL, Meyer KD. Single-cell m 6A profiling in the mouse brain uncovers cell type-specific RNA methylomes and age-dependent differential methylation. Nat Neurosci 2024; 27:2512-2520. [PMID: 39317796 PMCID: PMC11614689 DOI: 10.1038/s41593-024-01768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
N6-methyladenosine (m6A) is an abundant mRNA modification in the brain that has important roles in neurodevelopment and brain function. However, because of technical limitations, global profiling of m6A sites within the individual cell types that make up the brain has not been possible. Here, we develop a mouse model that enables transcriptome-wide m6A detection in any tissue of interest at single-cell resolution. We use these mice to map m6A across different brain regions and within single cells of the mouse cortex and discover a high degree of shared methylation across brain regions and cell types. However, we also identify a small number of differentially methylated mRNAs in neurons that encode important regulators of neuronal signaling, and we discover that microglia have lower levels of m6A than other cell types. Finally, we perform single-cell m6A mapping in aged mice and identify many transcripts with age-dependent changes in m6A.
Collapse
Affiliation(s)
- Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Anna K Prater
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Christopher L Holley
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
6
|
Chen Y, Long T, Chen J, Wei H, Meng J, Kang M, Wang J, Zhang X, Xu Q, Zhang C, Xiong K. WTAP participates in neuronal damage by protein translation of NLRP3 in an m6A-YTHDF1-dependent manner after traumatic brain injury. Int J Surg 2024; 110:5396-5408. [PMID: 38874470 PMCID: PMC11392096 DOI: 10.1097/js9.0000000000001794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a common complication of acute and severe neurosurgery. Remodeling of N6-methyladenosine (m6A) stabilization may be an attractive treatment option for neurological dysfunction after TBI. In the present study, the authors explored the epigenetic methylation of RNA-mediated NLRP3 inflammasome activation after TBI. METHODS Neurological dysfunction, histopathology, and associated molecules were examined in conditional knockout (CKO) WTAP [flox/flox, Camk2a-cre] , WTAP flox/flox , and pAAV-U6-shRNA-YTHDF1-transfected mice. Primary neurons were used in vitro to further explore the molecular mechanisms of action of WTAP/YTHDF1 following neural damage. RESULTS The authors found that WTAP and m6A levels were upregulated at an early stage after TBI, and conditional deletion of WTAP in neurons did not affect neurological function but promoted functional recovery after TBI. Conditional deletion of WTAP in neurons suppressed neuroinflammation at the TBI early phase: WTAP could directly act on NLRP3 mRNA, regulate NLRP3 mRNA m6A level, and promote NLRP3 expression after neuronal injury. Further investigation found that YTH domain of YTHDF1 could directly bind to NLRP3 mRNA and regulate NLRP3 protein expression. YTHDF1 mutation or silencing improved neuronal injury, inhibited Caspase-1 activation, and decreased IL-1β levels. This effect was mediated via suppression of NLRP3 protein translation, which also reversed the stimulative effect of WTAP overexpression on NLRP3 expression and inflammation. CONCLUSIONS Our results indicate that WTAP participates in neuronal damage by protein translation of NLRP3 in an m6A-YTHDF1-dependent manner after TBI and that WTAP/m6A/YTHDF1 downregulation therapeutics is a viable and promising approach for preserving neuronal function after TBI, which can provide support for targeted drug development.
Collapse
Affiliation(s)
- Yuhua Chen
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, Shaanxi
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou
| | - Junhui Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904 Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province
| | - Hong Wei
- Department of Rehabilitation Teaching and Research, Xi'an Siyuan University, Xi'an
| | - Jiao Meng
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, Shaanxi
| | - Meili Kang
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, Shaanxi
| | - Juning Wang
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, Shaanxi
| | - Xin Zhang
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou
| | - Quanhua Xu
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, Hainan
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
7
|
Li B, Wang Z, Zhou H, Tan W, Zou J, Li Y, Yoshida S, Zhou Y. Bibliometric evaluation of global trends and characteristics of RNA methylation during angiogenesis. Heliyon 2024; 10:e29817. [PMID: 38681586 PMCID: PMC11046201 DOI: 10.1016/j.heliyon.2024.e29817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Background RNA methylation is involved in major life processes. Angiogenesis is a normal phenomenon that occurs constantly in the bodies of all mammals, once it is aberrant or something goes wrong, it may lead to pathological changes. The bibliometric analysis could produce a comprehensive overview of RNA methylation during angiogenesis. Methods The Web of Science Core Collection (WoSCC) database was used to screen publications about RNA methylation during angiogenesis from Jan 1, 2000 to Nov 24, 2022. Bibliometric and visualization analyses were conducted to understand publication trends by CiteSpace and VOSviewer. Results In total, 382 publications from 2000 to 2022 were included in the bibliometric and visualization analyses. On the whole, the number of publications had exponential growth. China was the country and Sun Yat-Sen University was the university associated with the largest number of publications, although publications from the United Kingdom and Soochow University were currently having the strongest impact. Cancer was the most studied topic in this field, and N6-methyladenosine is the most studied RNA methylation type. Conclusion There is a continuously increasing trend in publications related to RNA methylation and angiogenesis, which has attracted much attention, particularly since 2011. RNA methylation might be a promising target in the investigation of pathological angiogenesis and related disorders, which deserves further investigation.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
8
|
Li L, Han J, Lo HYG, Tam W, Jia H, Tse E, Taliaferro J, Li Y. Symmetry-breaking malachite green as a near-infrared light-activated fluorogenic photosensitizer for RNA proximity labeling. Nucleic Acids Res 2024; 52:e36. [PMID: 38407347 PMCID: PMC11040151 DOI: 10.1093/nar/gkae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Cellular RNA is asymmetrically distributed in cells and the regulation of RNA localization is crucial for proper cellular functions. However, limited chemical tools are available to capture dynamic RNA localization in complex biological systems with high spatiotemporal resolution. Here, we developed a new method for RNA proximity labeling activated by near-infrared (NIR) light, which holds the potential for deep penetration. Our method, termed FAP-seq, utilizes a genetically encoded fluorogen activating protein (FAP) that selectively binds to a set of substrates known as malachite green (MG). FAP binding restricts the rotation of MG and rapidly activates its fluorescence in a wash-free manner. By introducing a monoiodo modification to MG, we created a photosensitizer (MG-HI) with the highest singlet oxygen generation ability among various MG derivatives, enabling both protein and RNA proximity labeling in live cells. New insights are provided in the transcriptome analysis with FAP-seq, while a deeper understanding of the symmetry-breaking structural arrangement of FAP-MG-HI was obtained through molecular dynamics simulations. Overall, our wash-free and NIR light-inducible RNA proximity labeling method (FAP-seq) offers a powerful and versatile approach for investigating complex mechanisms underlying RNA-related biological processes.
Collapse
Affiliation(s)
- Lan Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jinghua Han
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Hei-Yong G Lo
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Winnie Wai Ling Tam
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, New Territories, Hong Kong 999077, China
| | - Han Jia
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Edmund Chun Ming Tse
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, New Territories, Hong Kong 999077, China
- CAS–HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong 999077, China
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ying Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, New Territories, Hong Kong 999077, China
| |
Collapse
|
9
|
Li B, Wang Z, Zhou H, Zou J, Yoshida S, Zhou Y. N6-methyladenosine methylation in ophthalmic diseases: From mechanisms to potential applications. Heliyon 2024; 10:e23668. [PMID: 38192819 PMCID: PMC10772099 DOI: 10.1016/j.heliyon.2023.e23668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
N6-methyladenosine (m6A) modification, as the most common modification method in eukaryotes, is widely involved in numerous physiological and pathological processes, such as embryonic development, malignancy, immune regulation, and premature aging. Under pathological conditions of ocular diseases, changes in m6A modification and its metabolism can be detected in aqueous and vitreous humor. At the same time, an increasing number of studies showed that m6A modification is involved in the normal development of eye structures and the occurrence and progress of many ophthalmic diseases, especially ocular neovascular diseases, such as diabetic retinopathy, age-related macular degeneration, and melanoma. In this review, we summarized the latest progress regarding m6A modification in ophthalmic diseases, changes in m6A modification-related enzymes in various pathological states and their upstream and downstream regulatory networks, provided new prospects for m6A modification in ophthalmic diseases and new ideas for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
10
|
Torres R, Hidalgo C. Subcellular localization and transcriptional regulation of brain ryanodine receptors. Functional implications. Cell Calcium 2023; 116:102821. [PMID: 37949035 DOI: 10.1016/j.ceca.2023.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Ryanodine receptors (RyR) are intracellular Ca2+ channels localized in the endoplasmic reticulum, where they act as critical mediators of Ca2+-induced Ca2+ calcium release (CICR). In the brain, mammals express in both neurons, and non-neuronal cells, a combination of the three RyR-isoforms (RyR1-3). Pharmacological approaches, which do not distinguish between isoforms, have indicated that RyR-isoforms contribute to brain function. However, isoform-specific manipulations have revealed that RyR-isoforms display different subcellular localizations and are differentially associated with neuronal function. These findings raise the need to understand RyR-isoform specific transcriptional regulation, as this knowledge will help to elucidate the causes of neuronal dysfunction for a growing list of brain disorders that show altered RyR channel expression and function.
Collapse
Affiliation(s)
- Rodrigo Torres
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, 5501842, Puerto Montt, Chile.
| | - Cecilia Hidalgo
- Department of Neurosciences. Biomedical Neuroscience Institute, Physiology and Biophysics Program, Institute of Biomedical Sciences, Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, 8380000, Chile
| |
Collapse
|
11
|
Shao N, Ye T, Xuan W, Zhang M, Chen Q, Liu J, Zhou P, Song H, Cai B. The effects of N 6-methyladenosine RNA methylation on the nervous system. Mol Cell Biochem 2023; 478:2657-2669. [PMID: 36899139 DOI: 10.1007/s11010-023-04691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Epitranscriptomics, also known as "RNA epigenetics", is a type of chemical modification that regulates RNA. RNA methylation is a significant discovery after DNA and histone methylation. The dynamic reversible process of m6A involves methyltransferases (writers), m6A binding proteins (readers), as well as demethylases (erasers). We summarized the current research status of m6A RNA methylation in the neural stem cells' growth, synaptic and axonal function, brain development, learning and memory, neurodegenerative diseases, and glioblastoma. This review aims to provide a theoretical basis for studying the mechanism of m6A methylation and finding its potential therapeutic targets in nervous system diseases.
Collapse
Affiliation(s)
- Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ting Ye
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weiting Xuan
- Department of Neurosurgery (Rehabilitation), Anhui Hospital of Integrated Chinese and Western Medicine, Hefei, 230031, China
| | - Meng Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Qian Chen
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Juan Liu
- Department of Chinese Internal Medicine, Taihe County People's Hospital, Fuyang, 236699, China
| | - Peng Zhou
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Hang Song
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| |
Collapse
|
12
|
Cagnetta R, Flanagan JG, Sonenberg N. Control of Selective mRNA Translation in Neuronal Subcellular Compartments in Health and Disease. J Neurosci 2023; 43:7247-7263. [PMID: 37914402 PMCID: PMC10621772 DOI: 10.1523/jneurosci.2240-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 11/03/2023] Open
Abstract
In multiple cell types, mRNAs are transported to subcellular compartments, where local translation enables rapid, spatially localized, and specific responses to external stimuli. Mounting evidence has uncovered important roles played by local translation in vivo in axon survival, axon regeneration, and neural wiring, as well as strong links between dysregulation of local translation and neurologic disorders. Omic studies have revealed that >1000 mRNAs are present and can be selectively locally translated in the presynaptic and postsynaptic compartments from development to adulthood in vivo A large proportion of the locally translated mRNAs is specifically upregulated or downregulated in response to distinct extracellular signals. Given that the local translatome is large, selectively translated, and cue-specifically remodeled, a fundamental question concerns how selective translation is achieved locally. Here, we review the emerging regulatory mechanisms of local selective translation in neuronal subcellular compartments, their mRNA targets, and their orchestration. We discuss mechanisms of local selective translation that remain unexplored. Finally, we describe clinical implications and potential therapeutic strategies in light of the latest advances in gene therapy.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - John G Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
13
|
Madugalle SU, Liau WS, Zhao Q, Li X, Gong H, Marshall PR, Periyakaruppiah A, Zajaczkowski EL, Leighton LJ, Ren H, Musgrove MRB, Davies JWA, Kim G, Rauch S, He C, Dickinson BC, Fulopova B, Fletcher LN, Williams SR, Spitale RC, Bredy TW. Synapse-Enriched m 6A-Modified Malat1 Interacts with the Novel m 6A Reader, DPYSL2, and Is Required for Fear-Extinction Memory. J Neurosci 2023; 43:7084-7100. [PMID: 37669863 PMCID: PMC10601377 DOI: 10.1523/jneurosci.0943-23.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
The RNA modification N6-methyladenosine (m6A) regulates the interaction between RNA and various RNA binding proteins within the nucleus and other subcellular compartments and has recently been shown to be involved in experience-dependent plasticity, learning, and memory. Using m6A RNA-sequencing, we have discovered a distinct population of learning-related m6A- modified RNAs at the synapse, which includes the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1). RNA immunoprecipitation and mass spectrometry revealed 12 new synapse-specific learning-induced m6A readers in the mPFC of male C57/BL6 mice, with m6A-modified Malat1 binding to a subset of these, including CYFIP2 and DPYSL2. In addition, a cell type- and synapse-specific, and state-dependent, reduction of m6A on Malat1 impairs fear-extinction memory; an effect that likely occurs through a disruption in the interaction between Malat1 and DPYSL2 and an associated decrease in dendritic spine formation. These findings highlight the critical role of m6A in regulating the functional state of RNA during the consolidation of fear-extinction memory, and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.SIGNIFICANCE STATEMENT We have discovered that learning-induced m6A-modified RNA (including the long noncoding RNA, Malat1) accumulates in the synaptic compartment. We have identified several new m6A readers that are associated with fear extinction learning and demonstrate a causal relationship between m6A-modified Malat1 and the formation of fear-extinction memory. These findings highlight the role of m6A in regulating the functional state of an RNA during memory formation and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.
Collapse
Affiliation(s)
| | - Wei-Siang Liau
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Qiongyi Zhao
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China 430071
- Medical Research Institute, Wuhan University, Wuhan, China 430014
| | - Hao Gong
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Paul R Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Ambika Periyakaruppiah
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Esmi L Zajaczkowski
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Laura J Leighton
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Haobin Ren
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Mason R B Musgrove
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Joshua W A Davies
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Gwangmin Kim
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Simone Rauch
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Barbora Fulopova
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Lee N Fletcher
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Stephen R Williams
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Timothy W Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| |
Collapse
|
14
|
Rezayof A, Ghasemzadeh Z, Sahafi OH. Addictive drugs modify neurogenesis, synaptogenesis and synaptic plasticity to impair memory formation through neurotransmitter imbalances and signaling dysfunction. Neurochem Int 2023; 169:105572. [PMID: 37423274 DOI: 10.1016/j.neuint.2023.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Drug abuse changes neurophysiological functions at multiple cellular and molecular levels in the addicted brain. Well-supported scientific evidence suggests that drugs negatively affect memory formation, decision-making and inhibition, and emotional and cognitive behaviors. The mesocorticolimbic brain regions are involved in reward-related learning and habitual drug-seeking/taking behaviors to develop physiological and psychological dependence on the drugs. This review highlights the importance of specific drug-induced chemical imbalances resulting in memory impairment through various neurotransmitter receptor-mediated signaling pathways. The mesocorticolimbic modifications in the expression levels of brain-derived neurotrophic factor (BDNF) and the cAMP-response element binding protein (CREB) impair reward-related memory formation following drug abuse. The contributions of protein kinases and microRNAs (miRNAs), along with the transcriptional and epigenetic regulation have also been considered in memory impairment underlying drug addiction. Overall, we integrate the research on various types of drug-induced memory impairment in distinguished brain regions and provide a comprehensive review with clinical implications addressing the upcoming studies.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
15
|
Cochella L, Chaker Z. Development, regeneration and aging: a bizarre love triangle. Development 2023; 150:dev202086. [PMID: 37791585 DOI: 10.1242/dev.202086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The Jacques Monod Conference on 'Growth and regeneration during development and aging' was organized by Claude Desplan and Allison Bardin in May 2023. The conference took place in Roscoff, France, where participants shared recent conceptual advances under the general motto that developmental processes do not end with embryogenesis. The meeting covered various aspects of how development relates to fitness, regeneration and aging across a refreshing diversity of evolutionarily distant organisms.
Collapse
Affiliation(s)
- Luisa Cochella
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zayna Chaker
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
16
|
Breger K, Kunkler CN, O'Leary NJ, Hulewicz JP, Brown JA. Ghost authors revealed: The structure and function of human N 6 -methyladenosine RNA methyltransferases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1810. [PMID: 37674370 PMCID: PMC10915109 DOI: 10.1002/wrna.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 09/08/2023]
Abstract
Despite the discovery of modified nucleic acids nearly 75 years ago, their biological functions are still being elucidated. N6 -methyladenosine (m6 A) is the most abundant modification in eukaryotic messenger RNA (mRNA) and has also been detected in non-coding RNAs, including long non-coding RNA, ribosomal RNA, and small nuclear RNA. In general, m6 A marks can alter RNA secondary structure and initiate unique RNA-protein interactions that can alter splicing, mRNA turnover, and translation, just to name a few. Although m6 A marks in human RNAs have been known to exist since 1974, the structures and functions of methyltransferases responsible for writing m6 A marks have been established only recently. Thus far, there are four confirmed human methyltransferases that catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to the N6 position of adenosine, producing m6 A: methyltransferase-like protein (METTL) 3/METTL14 complex, METTL16, METTL5, and zinc-finger CCHC-domain-containing protein 4. Though the methyltransferases have unique RNA targets, all human m6 A RNA methyltransferases contain a Rossmann fold with a conserved SAM-binding pocket, suggesting that they utilize a similar catalytic mechanism for methyl transfer. For each of the human m6 A RNA methyltransferases, we present the biological functions and links to human disease, RNA targets, catalytic and kinetic mechanisms, and macromolecular structures. We also discuss m6 A marks in human viruses and parasites, assigning m6 A marks in the transcriptome to specific methyltransferases, small molecules targeting m6 A methyltransferases, and the enzymes responsible for hypermodified m6 A marks and their biological functions in humans. Understanding m6 A methyltransferases is a critical steppingstone toward establishing the m6 A epitranscriptome and more broadly the RNome. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kurtis Breger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Charlotte N Kunkler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Nathan J O'Leary
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jacob P Hulewicz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
17
|
Mitsuhashi H, Nagy C. Potential Roles of m6A and FTO in Synaptic Connectivity and Major Depressive Disorder. Int J Mol Sci 2023; 24:ijms24076220. [PMID: 37047192 PMCID: PMC10093820 DOI: 10.3390/ijms24076220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
RNA modifications known as epitranscriptomics have emerged as a novel layer of transcriptomic regulation. Like the well-studied epigenetic modifications characterized in DNA and on histone-tails, they have been shown to regulate activity-dependent gene expression and play a vital role in shaping synaptic connections in response to external stimuli. Among the hundreds of known RNA modifications, N6-methyladenosine (m6A) is the most abundant mRNA modification in eukaryotes. Through recognition of its binding proteins, m6A can regulate various aspects of mRNA metabolism and is essential for maintaining higher brain functions. Indeed, m6A is highly enriched in synapses and is involved in neuronal plasticity, learning and memory, and adult neurogenesis. m6A can also respond to environmental stimuli, suggesting an important role in linking molecular and behavioral stress. This review summarizes key findings from fields related to major depressive disorder (MDD) including stress and learning and memory, which suggest that activity-dependent m6A changes may, directly and indirectly, contribute to synaptic connectivity changes underlying MDD. Furthermore, we will highlight the roles of m6A and FTO, a m6A eraser, in the context of depressive-like behaviors. Although we have only begun to explore m6A in the context of MDD and psychiatry, elucidating a link between m6A and MDD presents a novel molecular mechanism underlying MDD pathogenesis.
Collapse
|
18
|
Anreiter I, Tian YW, Soller M. The cap epitranscriptome: Early directions to a complex life as mRNA. Bioessays 2023; 45:e2200198. [PMID: 36529693 DOI: 10.1002/bies.202200198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Animal, protist and viral messenger RNAs (mRNAs) are most prominently modified at the beginning by methylation of cap-adjacent nucleotides at the 2'-O-position of the ribose (cOMe) by dedicated cap methyltransferases (CMTrs). If the first nucleotide of an mRNA is an adenosine, PCIF1 can methylate at the N6 -position (m6 A), while internally the Mettl3/14 writer complex can methylate. These modifications are introduced co-transcriptionally to affect many aspects of gene expression including localisation to synapses and local translation. Of particular interest, transcription start sites of many genes are heterogeneous leading to sequence diversity at the beginning of mRNAs, which together with cOMe and m6 Am could constitute an extensive novel layer of gene expression control. Given the role of cOMe and m6 A in local gene expression at synapses and higher brain functions including learning and memory, such code could be implemented at the transcriptional level for lasting memories through local gene expression at synapses.
Collapse
Affiliation(s)
- Ina Anreiter
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Yuan W Tian
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Matthias Soller
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
19
|
Zhang X, Yang S, Han S, Sun Y, Han M, Zheng X, Li F, Wei Y, Wang Y, Bi J. Differential methylation of circRNA m6A in an APP/PS1 Alzheimer's disease mouse model. Mol Med Rep 2023; 27:55. [PMID: 36660942 PMCID: PMC9879070 DOI: 10.3892/mmr.2023.12942] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/25/2022] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurological disease characterized by memory loss and progressive cognitive impairment. The characteristic AD pathologies include extracellular senile plaques formed by β‑amyloid protein deposition, neurofibrillary tangles formed by hyper‑phosphorylation of τ protein and neuronal loss caused by glial cell proliferation. However, the pathogenesis of AD is still unclear. Dysregulation of RNA methylation is associated with biological processes, including neurodevelopment and neurodegenerative disease. N6‑methyladenosine (m6A) is the main modification in eukaryotic RNA and may be associated with the pathophysiology of AD. Circular RNA (circRNA) is a new type of evolutionarily conserved non‑coding RNA without 5'‑cap and 3'‑polyadenylic acid tail. circRNA undergoes m6A RNA methylation and may be involved in the pathogenesis of AD. In the present study, high‑throughput sequencing was performed to assess the degree of circRNA m6A methylation in APP/PS1 AD and C57BL/6 mice. These results suggested that circRNA m6A methylation in AD mice was markedly altered compared to the control group. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis was used to predict associated pathways; genes with different circRNA m6A methylation in AD mice were associated with 'axon guidance', 'long‑term potentiation', 'glutamatergic synapse', 'cholinergic synapse', 'GABAergic synapse' and 'long‑term depression'. Methylated RNA immunoprecipitation reverse transcription‑quantitative PCR demonstrated that among the eight selected circRNA m6A genes, there were five genes that demonstrated significantly increased methylation and three demonstrated significantly decreased methylation. In summary, the present study indicated that circRNA m6A methylation may be associated with pathogenesis of AD.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Suge Yang
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Song Han
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuan Sun
- Department of Outpatients, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Min Han
- Department of Geriatric Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaolei Zheng
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Fan Li
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yan Wei
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yun Wang
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China,Correspondence to: Dr Yun Wang, Department of Neurological Medicine, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, Shandong 250033, P.R. China, E-mail:
| | - Jianzhong Bi
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
20
|
Artz O, Ackermann A, Taylor L, Koo PK, Pedmale UV. Light and temperature regulate m 6A-RNA modification to regulate growth in plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524395. [PMID: 36711495 PMCID: PMC9882139 DOI: 10.1101/2023.01.17.524395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
N6-methyladenosine is a highly dynamic, abundant mRNA modification which is an excellent potential mechanism for fine tuning gene expression. Plants adapt to their surrounding light and temperature environment using complex gene regulatory networks. The role of m6A in controlling gene expression in response to variable environmental conditions has so far been unexplored. Here, we map the transcriptome-wide m6A landscape under various light and temperature environments. Identified m6A-modifications show a highly specific spatial distribution along transcripts with enrichment occurring in 5'UTR regions and around transcriptional end sites. We show that the position of m6A modifications on transcripts might influence cellular transcript localization and the presence of m6A-modifications is associated with alternative polyadenylation, a process which results in multiple RNA isoforms with varying 3'UTR lengths. RNA with m6A-modifications exhibit a higher preference for shorter 3'UTRs. These shorter 3'UTR regions might directly influence transcript abundance and localization by including or excluding cis-regulatory elements. We propose that environmental stimuli might change the m6A landscape of plants as one possible way of fine tuning gene regulation through alternative polyadenylation and transcript localization.
Collapse
Affiliation(s)
- Oliver Artz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724. USA
| | - Amanda Ackermann
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724. USA
| | - Laura Taylor
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724. USA
| | - Peter K. Koo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724. USA
| | - Ullas V. Pedmale
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724. USA
| |
Collapse
|
21
|
Cozzuto L, Delgado-Tejedor A, Hermoso Pulido T, Novoa EM, Ponomarenko J. Nanopore Direct RNA Sequencing Data Processing and Analysis Using MasterOfPores. Methods Mol Biol 2023; 2624:185-205. [PMID: 36723817 DOI: 10.1007/978-1-0716-2962-8_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This chapter describes MasterOfPores v.2 (MoP2), an open-source suite of pipelines for processing and analyzing direct RNA Oxford Nanopore sequencing data. The MoP2 relies on the Nextflow DSL2 framework and Linux containers, thus enabling reproducible data analysis in transcriptomic and epitranscriptomic studies. We introduce the key concepts of MoP2 and provide a step-by-step fully reproducible and complete example of how to use the workflow for the analysis of S. cerevisiae total RNA samples sequenced using MinION flowcells. The workflow starts with the pre-processing of raw FAST5 files, which includes basecalling, read quality control, demultiplexing, filtering, mapping, estimation of per-gene/transcript abundances, and transcriptome assembly, with support of the GPU computing for the basecalling and read demultiplexing steps. The secondary analyses of the workflow focus on the estimation of RNA poly(A) tail lengths and the identification of RNA modifications. The MoP2 code is available at https://github.com/biocorecrg/MOP2 and is distributed under the MIT license.
Collapse
Affiliation(s)
- Luca Cozzuto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Delgado-Tejedor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Toni Hermoso Pulido
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
22
|
Ouyang H, Zhang J, Chi D, Zhang K, Huang Y, Huang J, Huang W, Bai X. The YTHDF1-TRAF6 pathway regulates the neuroinflammatory response and contributes to morphine tolerance and hyperalgesia in the periaqueductal gray. J Neuroinflammation 2022; 19:310. [PMID: 36550542 PMCID: PMC9784087 DOI: 10.1186/s12974-022-02672-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Long-term use of opioids such as morphine has negative side effects, such as morphine analgesic tolerance and morphine-induced hyperalgesia (MIH). These side effects limit the clinical use and analgesic efficacy of morphine. Elucidation of the mechanisms and identification of feasible and effective methods or treatment targets to solve this clinical phenomenon are important. Here, we discovered that YTHDF1 and TNF receptor-associated factor 6 (TRAF6) are crucial for morphine analgesic tolerance and MIH. The m6A reader YTHDF1 positively regulated the translation of TRAF6 mRNA, and chronic morphine treatments enhanced the m6A modification of TRAF6 mRNA. TRAF6 protein expression was drastically reduced by YTHDF1 knockdown, although TRAF6 mRNA levels were unaffected. By reducing inflammatory markers such as IL-1β, IL-6, TNF-α and NF-κB, targeted reduction of YTHDF1 or suppression of TRAF6 activity in ventrolateral periaqueductal gray (vlPAG) slows the development of morphine analgesic tolerance and MIH. Our findings provide new insights into the mechanism of morphine analgesic tolerance and MIH indicating that YTHDF1 regulates inflammatory factors such as IL-1β, IL-6, TNF-α and NF-κB by enhancing TRAF6 protein expression.
Collapse
Affiliation(s)
- Handong Ouyang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Jianxing Zhang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Dongmei Chi
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Kun Zhang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Yongtian Huang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Jingxiu Huang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Wan Huang
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China
| | - Xiaohui Bai
- grid.488530.20000 0004 1803 6191Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Rd East, Guangzhou, China ,grid.412536.70000 0004 1791 7851Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yangjiang Road West, Guangzhou, China
| |
Collapse
|
23
|
Reis AL, Hammond JH, Stevanovski I, Arnold JC, McGregor IS, Deveson IW, Gururajan A. Sex-specific transcriptomic and epitranscriptomic signatures of PTSD-like fear acquisition. iScience 2022; 25:104861. [PMID: 36039298 PMCID: PMC9418440 DOI: 10.1016/j.isci.2022.104861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/03/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Our understanding of the molecular pathology of posttraumatic stress disorder (PTSD) is evolving due to advances in sequencing technologies. With the recent emergence of Oxford Nanopore direct RNA-seq (dRNA-seq), it is now also possible to interrogate diverse RNA modifications, collectively known as the “epitranscriptome.”. Here, we present our analyses of the male and female mouse amygdala transcriptome and epitranscriptome, obtained using parallel Illumina RNA-seq and Oxford Nanopore dRNA-seq, associated with the acquisition of PTSD-like fear induced by Pavlovian cued-fear conditioning. We report significant sex-specific differences in the amygdala transcriptional response during fear acquisition and a range of shared and dimorphic epitranscriptomic signatures. Differential RNA modifications are enriched among mRNA transcripts associated with neurotransmitter regulation and mitochondrial function, many of which have been previously implicated in PTSD. Very few differentially modified transcripts are also differentially expressed, suggesting an influential, expression-independent role for epitranscriptional regulation in PTSD-like fear acquisition. PTSD-like trauma has sexually dimorphic effects on the amygdala transcriptome Most RNA modifications identified adhere to the known patterns associated with m6A There was enrichment of RNA modifications in neurological/PTSD-related genes There was little overlap between transcriptomic and epitranscriptomic signatures
Collapse
|
24
|
Flamand MN, Meyer KD. m6A and YTHDF proteins contribute to the localization of select neuronal mRNAs. Nucleic Acids Res 2022; 50:4464-4483. [PMID: 35438793 PMCID: PMC9071445 DOI: 10.1093/nar/gkac251] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023] Open
Abstract
The transport of mRNAs to distal subcellular compartments is an important component of spatial gene expression control in neurons. However, the mechanisms that control mRNA localization in neurons are not completely understood. Here, we identify the abundant base modification, m6A, as a novel regulator of this process. Transcriptome-wide analysis following genetic loss of m6A reveals hundreds of transcripts that exhibit altered subcellular localization in hippocampal neurons. Additionally, using a reporter system, we show that mutation of specific m6A sites in select neuronal transcripts diminishes their localization to neurites. Single molecule fluorescent in situ hybridization experiments further confirm our findings and identify the m6A reader proteins YTHDF2 and YTHDF3 as mediators of this effect. Our findings reveal a novel function for m6A in controlling mRNA localization in neurons and enable a better understanding of the mechanisms through which m6A influences gene expression in the brain.
Collapse
Affiliation(s)
- Mathieu N Flamand
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
25
|
Li L, Yu J, Ji SJ. Axonal mRNA localization and translation: local events with broad roles. Cell Mol Life Sci 2021; 78:7379-7395. [PMID: 34698881 PMCID: PMC11072051 DOI: 10.1007/s00018-021-03995-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022]
Abstract
Messenger RNA (mRNA) can be transported and targeted to different subcellular compartments and locally translated. Local translation is an evolutionally conserved mechanism that in mammals, provides an important tool to exquisitely regulate the subcellular proteome in different cell types, including neurons. Local translation in axons is involved in processes such as neuronal development, function, plasticity, and diseases. Here, we summarize the current progress on axonal mRNA transport and translation. We focus on the regulatory mechanisms governing how mRNAs are transported to axons and how they are locally translated in axons. We discuss the roles of axonally synthesized proteins, which either function locally in axons, or are retrogradely trafficked back to soma to achieve neuron-wide gene regulation. We also examine local translation in neurological diseases. Finally, we give a critical perspective on the remaining questions that could be answered to uncover the fundamental rules governing local translation, and discuss how this could lead to new therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Lichao Li
- School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Jun Yu
- School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Sheng-Jian Ji
- School of Life Sciences, Department of Biology, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
26
|
Wang DO. Epitranscriptomic regulation of cognitive development and decline. Semin Cell Dev Biol 2021; 129:3-13. [PMID: 34857470 DOI: 10.1016/j.semcdb.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
Functional genomics and systems biology have opened new doors to previously inaccessible genomic information and holistic approaches to study complex networks of genes and proteins in the central nervous system. The advances are revolutionizing our understanding of the genetic underpinning of cognitive development and decline by facilitating identifications of novel molecular regulators and physiological pathways underlying brain function, and by associating polymorphism and mutations to cognitive dysfunction and neurological diseases. However, our current understanding of these complex gene regulatory mechanisms has yet lacked sufficient mechanistic resolution for further translational breakthroughs. Here we review recent findings from the burgeoning field of epitranscriptomics in association of cognitive functions with a special focus on the epitranscritomic regulation in subcellular locations such as chromosome, synapse, and mitochondria. Although there are important gaps in knowledge, current evidence is suggesting that this layer of RNA regulation may be of particular interest for the spatiotemporally coordinated regulation of gene networks in developing and maintaining brain function that underlie cognitive changes.
Collapse
Affiliation(s)
- Dan Ohtan Wang
- Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Yoshida Hon-machi, Kyoto 606-8501, Japan.
| |
Collapse
|
27
|
Furlan M, Delgado-Tejedor A, Mulroney L, Pelizzola M, Novoa EM, Leonardi T. Computational methods for RNA modification detection from nanopore direct RNA sequencing data. RNA Biol 2021; 18:31-40. [PMID: 34559589 PMCID: PMC8677041 DOI: 10.1080/15476286.2021.1978215] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
The covalent modification of RNA molecules is a pervasive feature of all classes of RNAs and has fundamental roles in the regulation of several cellular processes. Mapping the location of RNA modifications transcriptome-wide is key to unveiling their role and dynamic behaviour, but technical limitations have often hampered these efforts. Nanopore direct RNA sequencing is a third-generation sequencing technology that allows the sequencing of native RNA molecules, thus providing a direct way to detect modifications at single-molecule resolution. Despite recent advances, the analysis of nanopore sequencing data for RNA modification detection is still a complex task that presents many challenges. Many works have addressed this task using different approaches, resulting in a large number of tools with different features and performances. Here we review the diverse approaches proposed so far and outline the principles underlying currently available algorithms.
Collapse
Affiliation(s)
- Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| | - Anna Delgado-Tejedor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Logan Mulroney
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| |
Collapse
|
28
|
Sun W, Song Y, Xia K, Yu L, Huang X, Zhao Z, Liu J. Transcriptome-wide m 6A methylome during osteogenic differentiation of human adipose-derived stem cells. Stem Cell Res Ther 2021; 12:489. [PMID: 34470673 PMCID: PMC8411547 DOI: 10.1186/s13287-021-02508-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023] Open
Abstract
Objectives Adipose-derived stem cells are frequently used for bone regeneration both in vitro and in vivo. N6-methyladenosine (m6A) is the most abundant post-transcriptional modification on eukaryotic RNAs and plays multifaceted roles in development and diseases. However, the regulatory mechanisms of m6A in osteogenic differentiation of human adipose-derived stem cells (hASCs) remain elusive. The present study aimed to build the transcriptome-wide m6A methylome during the osteogenic differentiation of hASCs. Materials and methods hASCs were harvested after being cultured in a basic or osteogenic medium for 7 days, and the osteogenic differentiation was validated by alkaline phosphatase (ALP) and Alizarin Red S staining, ALP activity assay, and qRT-PCR analysis of ALP, RUNX2, BGLAP, SPP1, SP7, and COL1A1 genes. The m6A level was colorimetrically measured, and the expression of m6A regulators was confirmed by qRT-PCR and western blot. Moreover, m6A MeRIP-seq and RNA-seq were performed to build the transcriptome and m6A methylome. Furthermore, bioinformatic analyses including volcano plots, Venn plots, clustering analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, gene sets enrichment analysis, and protein-protein interaction analysis were conducted. Results In total, 1145 differentially methylated peaks, 2261 differentially expressed genes, and 671 differentially methylated and expressed genes (DMEGs) were identified. GO and KEGG pathway analyses conducted for these DMEGs revealed extensive and osteogenic biological functions. The “PI3K-Akt signaling pathway”; “MAPK signaling pathway”; “parathyroid hormone synthesis, secretion, and action”; and “p53 signaling pathway” were significantly enriched, and the DMEGs in these pathways were identified as m6A-specific key genes. A protein-protein interaction network based on DMEGs was built, and VEGFA, CD44, MMP2, HGF, and SPARC were speculated as the hub DMEGs. Conclusions The total m6A level was reduced with osteogenic differentiation of hASCs. The transcriptome-wide m6A methylome built in the present study indicated quite a few signaling pathways, and hub genes were influenced by m6A modification. Future studies based on these epigenetic clues could promote understanding of the mechanisms of osteogenic differentiation of hASCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02508-1.
Collapse
Affiliation(s)
- Wentian Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Yidan Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Kai Xia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Liyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
29
|
Wang Q, Liang Y, Luo X, Liu Y, Zhang X, Gao L. N6-methyladenosine RNA modification: A promising regulator in central nervous system injury. Exp Neurol 2021; 345:113829. [PMID: 34339678 DOI: 10.1016/j.expneurol.2021.113829] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022]
Abstract
In addition to DNA methylation, reversible epigenetic modification occurring in RNA has been discovered recently. The most abundant type of RNA methylation is N6-methyladenosine (m6A) modification, which is dynamically regulated by methylases ("writers"), demethylases ("erasers") and m6A-binding proteins ("readers"). As an essential posttranscriptional regulator, m6A can control mRNA splicing, processing, stability, export and translation. Recent studies have revealed that m6A modification has the strongest tissue specificity for brain tissue and plays crucial roles in central nervous system (CNS) injures by affecting its downstream target genes or non-coding RNAs. This review focuses on the expression and function of m6A regulatory proteins in CNS trauma in vitro and in vivo. We also highlight the latest insights into the molecular mechanisms of pathological damage in the CNS. Understanding m6A dynamics, functions, and machinery will yield an opportunity for designing and developing novel therapeutic agents for CNS injuries.
Collapse
Affiliation(s)
- Qiang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yundan Liang
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Xiaolei Luo
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yuqing Liu
- Laboratory of Metabolomics and Gynecological Disease Research, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiaoli Zhang
- Laboratory of Metabolomics and Gynecological Disease Research, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, PR China
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
30
|
Teng Y, Liu Z, Chen X, Liu Y, Geng F, Le W, Jiang H, Yang L. Conditional deficiency of m6A methyltransferase Mettl14 in substantia nigra alters dopaminergic neuron function. J Cell Mol Med 2021; 25:8567-8572. [PMID: 34288397 PMCID: PMC8419180 DOI: 10.1111/jcmm.16740] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/19/2021] [Accepted: 06/05/2021] [Indexed: 11/30/2022] Open
Abstract
N6‐Methyladenosine (m6A) is the most prevalent internal modification in messenger RNAs (mRNAs) of eukaryotes and plays a vital role in post‐transcriptional regulation. Recent studies demonstrated that m6A is essential for the normal function of the central nervous system (CNS), and the deregulation of m6A leads to a series of CNS diseases. However, the functional consequences of m6A deficiency within the dopaminergic neurons of adult brain are elusive. To evaluate the necessity of m6A in dopaminergic neuron functions, we conditionally deleted Mettl14, one of the most important part of m6A methyltransferase complexes, in the substantia nigra (SN) region enriched with dopaminergic neurons. By using rotarod test, pole test, open‐field test and elevated plus maze, we found that the deletion of Mettl14 in the SN region induces impaired motor function and locomotor activity. Further molecular analysis revealed that Mettl14 deletion significantly reduced the total level of m6A in the mRNA isolated from SN region. Tyrosine hydroxylase (TH), an essential enzyme for dopamine synthesis, was also down‐regulated upon Mettl14 deletion, while the activation of microglia and astrocyte was enhanced. Moreover, the expression of three essential transcription factors in the regulation of TH including Nurr1, Pitx3 and En1, with abundant m6A‐binding sites on their RNA 3’‐untranslated regions (UTR), was significantly decreased upon Mettl14 deletion in SN. Our finding first confirmed the significance of m6A in maintaining normal dopaminergic function in the SN of adult mouse.
Collapse
Affiliation(s)
- Yan Teng
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhihao Liu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingmin Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanzhuo Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Geng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Haisong Jiang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
31
|
The m 6A-epitranscriptome in brain plasticity, learning and memory. Semin Cell Dev Biol 2021; 125:110-121. [PMID: 34053866 DOI: 10.1016/j.semcdb.2021.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Activity-dependent gene expression and protein translation underlie the ability of neurons to dynamically adjust their synaptic strength in response to sensory experience and during learning. The emerging field of epitranscriptomics (RNA modifications) has rapidly shifted our views on the mechanisms that regulate gene expression. Among hundreds of biochemical modifications on RNA, N6-methyladenosine (m6A) is the most abundant reversible mRNA modification in the brain. Its dynamic nature and ability to regulate all aspects of mRNA processing have positioned m6A as an important and versatile regulator of nervous system functions, including neuronal plasticity, learning and memory. In this review, we summarise recent experimental evidence that supports the role of m6A signalling in learning and memory, as well as providing an overview of the underlying molecular mechanisms in neurons. We also discuss the consequences of perturbed m6A signalling and/or its regulatory networks which are increasingly being linked to various cognitive disorders in humans.
Collapse
|
32
|
Graille M. Division of labor in epitranscriptomics: What have we learnt from the structures of eukaryotic and viral multimeric RNA methyltransferases? WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1673. [PMID: 34044474 DOI: 10.1002/wrna.1673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The translation of an mRNA template into the corresponding protein is a highly complex and regulated choreography performed by ribosomes, tRNAs, and translation factors. Most RNAs involved in this process are decorated by multiple chemical modifications (known as epitranscriptomic marks) contributing to the efficiency, the fidelity, and the regulation of the mRNA translation process. Many of these epitranscriptomic marks are written by holoenzymes made of a catalytic subunit associated with an activating subunit. These holoenzymes play critical roles in cell development. Indeed, several mutations being identified in the genes encoding for those proteins are linked to human pathologies such as cancers and intellectual disorders for instance. This review describes the structural and functional properties of RNA methyltransferase holoenzymes, which when mutated often result in brain development pathologies. It illustrates how structurally different activating subunits contribute to the catalytic activity of these holoenzymes through common mechanistic trends that most likely apply to other classes of holoenzymes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France
| |
Collapse
|
33
|
Mathoux J, Henshall DC, Brennan GP. Regulatory Mechanisms of the RNA Modification m 6A and Significance in Brain Function in Health and Disease. Front Cell Neurosci 2021; 15:671932. [PMID: 34093133 PMCID: PMC8170084 DOI: 10.3389/fncel.2021.671932] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
RNA modifications have emerged as an additional layer of regulatory complexity governing the function of almost all species of RNA. N6-methyladenosine (m6A), the addition of methyl groups to adenine residues, is the most abundant and well understood RNA modification. The current review discusses the regulatory mechanisms governing m6A, how this influences neuronal development and function and how aberrant m6A signaling may contribute to neurological disease. M6A is known to regulate the stability of mRNA, the processing of microRNAs and function/processing of tRNAs among other roles. The development of antibodies against m6A has facilitated the application of next generation sequencing to profile methylated RNAs in both health and disease contexts, revealing the extent of this transcriptomic modification. The mechanisms by which m6A is deposited, processed, and potentially removed are increasingly understood. Writer enzymes include METTL3 and METTL14 while YTHDC1 and YTHDF1 are key reader proteins, which recognize and bind the m6A mark. Finally, FTO and ALKBH5 have been identified as potential erasers of m6A, although there in vivo activity and the dynamic nature of this modification requires further study. M6A is enriched in the brain and has emerged as a key regulator of neuronal activity and function in processes including neurodevelopment, learning and memory, synaptic plasticity, and the stress response. Changes to m6A have recently been linked with Schizophrenia and Alzheimer disease. Elucidating the functional consequences of m6A changes in these and other brain diseases may lead to novel insight into disease pathomechanisms, molecular biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Justine Mathoux
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin, Ireland
| | - Gary P Brennan
- FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin, Ireland.,UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Jonkhout N, Cruciani S, Santos Vieira HG, Tran J, Liu H, Liu G, Pickford R, Kaczorowski D, Franco GR, Vauti F, Camacho N, Abedini SS, Najmabadi H, Ribas de Pouplana L, Christ D, Schonrock N, Mattick JS, Novoa EM. Subcellular relocalization and nuclear redistribution of the RNA methyltransferases TRMT1 and TRMT1L upon neuronal activation. RNA Biol 2021; 18:1905-1919. [PMID: 33499731 DOI: 10.1080/15476286.2021.1881291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
RNA modifications are dynamic chemical entities that expand the RNA lexicon and regulate RNA fate. The most abundant modification present in mRNAs, N6-methyladenosine (m6A), has been implicated in neurogenesis and memory formation. However, whether additional RNA modifications may be playing a role in neuronal functions and in response to environmental queues is largely unknown. Here we characterize the biochemical function and cellular dynamics of two human RNA methyltransferases previously associated with neurological dysfunction, TRMT1 and its homolog, TRMT1-like (TRMT1L). Using a combination of next-generation sequencing, LC-MS/MS, patient-derived cell lines and knockout mouse models, we confirm the previously reported dimethylguanosine (m2,2G) activity of TRMT1 in tRNAs, as well as reveal that TRMT1L, whose activity was unknown, is responsible for methylating a subset of cytosolic tRNAAla(AGC) isodecoders at position 26. Using a cellular in vitro model that mimics neuronal activation and long term potentiation, we find that both TRMT1 and TRMT1L change their subcellular localization upon neuronal activation. Specifically, we observe a major subcellular relocalization from mitochondria and other cytoplasmic domains (TRMT1) and nucleoli (TRMT1L) to different small punctate compartments in the nucleus, which are as yet uncharacterized. This phenomenon does not occur upon heat shock, suggesting that the relocalization of TRMT1 and TRMT1L is not a general reaction to stress, but rather a specific response to neuronal activation. Our results suggest that subcellular relocalization of RNA modification enzymes may play a role in neuronal plasticity and transmission of information, presumably by addressing new targets.
Collapse
Affiliation(s)
- Nicky Jonkhout
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Sonia Cruciani
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain.,University Pompeu Fabra (UPF), Barcelona, Spain
| | - Helaine Graziele Santos Vieira
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Julia Tran
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Huanle Liu
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Ganqiang Liu
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Current Address: School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | | | - Gloria R Franco
- Departamento De Bioquímica E Imunologia, Universidade Federal De Minas Gerais,Belo Horizonte,Minas Gerais, Brazil
| | - Franz Vauti
- Division of Cellular & Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Noelia Camacho
- Institute for Research in Biomedicine, Barcelona, Catalonia, Spain
| | - Seyedeh Sedigheh Abedini
- Department of Genetics, Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Department of Genetics, Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine, Barcelona, Catalonia, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia, Spain
| | - Daniel Christ
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nicole Schonrock
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - John S Mattick
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Eva Maria Novoa
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain.,University Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
35
|
Mews P, Calipari ES, Day J, Lobo MK, Bredy T, Abel T. From Circuits to Chromatin: The Emerging Role of Epigenetics in Mental Health. J Neurosci 2021; 41:873-882. [PMID: 33446519 PMCID: PMC7880276 DOI: 10.1523/jneurosci.1649-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 02/01/2023] Open
Abstract
A central goal of neuroscience research is to understand how experiences modify brain circuits to guide future adaptive behavior. In response to environmental stimuli, neural circuit activity engages gene regulatory mechanisms within each cell. This activity-dependent gene expression is governed, in part, by epigenetic processes that can produce persistent changes in both neural circuits and the epigenome itself. The complex interplay between circuit activity and neuronal gene regulation is vital to learning and memory, and, when disrupted, is linked to debilitating psychiatric conditions, such as substance use disorder. To develop clinical treatments, it is paramount to advance our understanding of how neural circuits and the epigenome cooperate to produce behavioral adaptation. Here, we discuss how new genetic tools, used to manipulate neural circuits and chromatin, have enabled the discovery of epigenetic processes that bring about long-lasting changes in behavior relevant to mental health and disease.
Collapse
Affiliation(s)
- Philipp Mews
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10129
| | - Erin S Calipari
- Departments of Pharmacology, Molecular Physiology and Biophysics, Psychiatry and Behavioral Sciences; Vanderbilt Center for Addiction Research; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37323
| | - Jeremy Day
- Department of Neurobiology, McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Timothy Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
36
|
Liau WS, Samaddar S, Banerjee S, Bredy TW. On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA Biol 2021; 18:1025-1036. [PMID: 33397182 DOI: 10.1080/15476286.2020.1868165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The majority of transcriptionally active RNA derived from the mammalian genome does not code for protein. Long noncoding RNA (lncRNA) is the most abundant form of noncoding RNA found in the brain and is involved in many aspects of cellular metabolism. Beyond their fundamental role in the nucleus as decoys for RNA-binding proteins associated with alternative splicing or as guides for the epigenetic regulation of protein-coding gene expression, recent findings indicate that activity-induced lncRNAs also regulate neural plasticity. In this review, we discuss how lncRNAs may exert molecular control over brain function beyond their known roles in the nucleus. We propose that subcellular localization is a critical feature of experience-dependent lncRNA activity in the brain, and that lncRNA-mediated control over RNA metabolism at the synapse serves to regulate local mRNA stability and translation, thereby influencing neuronal function, learning and memory.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | | | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
37
|
Nakamura M, Gao Y, Dominguez AA, Qi LS. CRISPR technologies for precise epigenome editing. Nat Cell Biol 2021; 23:11-22. [PMID: 33420494 DOI: 10.1038/s41556-020-00620-7] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023]
Abstract
The epigenome involves a complex set of cellular processes governing genomic activity. Dissecting this complexity necessitates the development of tools capable of specifically manipulating these processes. The repurposing of prokaryotic CRISPR systems has allowed for the development of diverse technologies for epigenome engineering. Here, we review the state of currently achievable epigenetic manipulations along with corresponding applications. With future optimization, CRISPR-based epigenomic editing stands as a set of powerful tools for understanding and controlling biological function.
Collapse
Affiliation(s)
- Muneaki Nakamura
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yuchen Gao
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Cancer Biology Program, Stanford University, Stanford, CA, USA.,Mammoth Biosciences, South San Francisco, CA, USA
| | - Antonia A Dominguez
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Sana Biotechnology, South San Francisco, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA. .,Stanford ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|