1
|
Yang L, Qiao C, Kanamori T, Calhoun VD, Stephen JM, Wilson TW, Wang Y. Tensor dictionary-based heterogeneous transfer learning to study emotion-related gender differences in brain. Neural Netw 2024; 183:106974. [PMID: 39657530 DOI: 10.1016/j.neunet.2024.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
In practice, collecting auxiliary labeled data with same feature space from multiple domains is difficult. Thus, we focus on the heterogeneous transfer learning to address the problem of insufficient sample sizes in neuroimaging. Viewing subjects, time, and features as dimensions, brain activation and dynamic functional connectivity data can be treated as high-order heterogeneous data with heterogeneity arising from distinct feature space. To use the heterogeneous priori knowledge from the low-dimensional brain activation data to improve the classification performance of high-dimensional dynamic functional connectivity data, we propose a tensor dictionary-based heterogeneous transfer learning framework. It combines supervised tensor dictionary learning with heterogeneous transfer learning for enhance high-order heterogeneous knowledge sharing. The former can encode the underlying discriminative features in high-order data into dictionaries, while the latter can transfer heterogeneous knowledge encoded in dictionaries through feature transformation derived from mathematical relationship between domains. The primary focus of this paper is gender classification using fMRI data to identify emotion-related brain gender differences during adolescence. Additionally, experiments on simulated data and EEG data are included to demonstrate the generalizability of the proposed method. Experimental results indicate that incorporating prior knowledge significantly enhances classification performance. Further analysis of brain gender differences suggests that temporal variability in brain activity explains differences in emotion regulation strategies between genders. By adopting the heterogeneous knowledge sharing strategy, the proposed framework can capture the multifaceted characteristics of the brain, improve the generalization of the model, and reduce training costs. Understanding the gender specific neural mechanisms of emotional cognition helps to develop the gender-specific treatments for neurological diseases.
Collapse
Affiliation(s)
- Lan Yang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Chen Qiao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Takafumi Kanamori
- Department of Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo 152-8552, Japan; RIKEN AIP, Tokyo 103-0027, Japan.
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science(TReNDS), Georgia State University, Georgia Institute of Technology, Atlanta, GA 30030, USA; Emory University, Atlanta, GA, USA.
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA.
| | - Yuping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
2
|
Dadam FM, Gonzalez L, Vivas L, Godino A, Caeiro XE. Vasopressinergic sexual dimorphism: Sex chromosome complement and organizational hormonal effects. Mol Cell Endocrinol 2024; 594:112390. [PMID: 39427963 DOI: 10.1016/j.mce.2024.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
This study aimed to analyze the role of the sex chromosomes (SCC: XX/XY) and the interaction with organizational hormonal effects on Avp gene expression at the supraoptic (SON) and paraventricular nuclei (PVN) due to water deprivation, as well as on the vasopressinergic sexually dimorphic antidiuretic and pressor responses. For this purpose, we used gonadectomized (GDX) transgenic mice of the "four core genotypes" model, in which the effect of gonadal sex and SCC are dissociated. A significant interaction between treatment and SCC on Avp gene expression at the SON was observed. Regardless of sex, XX mice showed higher basal expression than those with XY; however after water deprivation no changes in mRNA Avp expression were observed in the XX group, while an increase for XY was reported. At the PVN an interaction of SCC, organizational hormonal, and treatment factors was observed, revealing an increase in Avp gene expression in the XY-GDX male DEP group. Although no SCC or organizational hormonal effects were observed on the demopressin-antidiuretic response and renal Avpr2 mRNA expression, an interplay of organizational hormonal and SCC factors in short and medium-term vasopressin-blood pressure regulation were reported. XX-GDX females showed a facilitated vasopressin-bradycardic baroreflex response when compared to the other genotypes. Furthermore, although vasopressin continuous infusion resulted initially in the expected increase in the percentage change in MAP in all genotypes, in XX-GDX male and female this increase was sustained until the 30-min infusion, while in XY-GDX male and in XY-GDX female mice a decrease in MAP was observed.
Collapse
Affiliation(s)
- Florencia María Dadam
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lihue Gonzalez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ximena E Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
3
|
Lee BH, Eid RS, Hodges TE, Barth C, Galea LAM. Leveraging research into sex differences and steroid hormones to improve brain health. Nat Rev Endocrinol 2024:10.1038/s41574-024-01061-0. [PMID: 39587332 DOI: 10.1038/s41574-024-01061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
Sex differences, driven in part by steroid hormones, shape the structure and function of the brain throughout the lifespan and manifest across brain health and disease. The influence of steroid hormones on neuroplasticity, particularly in the adult hippocampus, differs between the sexes, which has important implications for disorders and diseases that compromise hippocampus integrity, such as depression and Alzheimer disease. This Review outlines the intricate relationship between steroid hormones and hippocampal neuroplasticity across the adult lifespan and explores how the unique physiology of male and female individuals can affect health and disease. Despite calls to include sex and gender in research, only 5% of neuroscience studies published in 2019 directly investigated the influence of sex. Drawing on insights from depression, Alzheimer disease and relevant hippocampal plasticity, this Review underscores the importance of considering sex and steroid hormones to achieve a comprehensive understanding of disease susceptibility and mechanisms. Such consideration will enable the discovery of personalized treatments, ultimately leading to improved health outcomes for all.
Collapse
Affiliation(s)
- Bonnie H Lee
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Rand S Eid
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Travis E Hodges
- Department of Psychology and Education, Mount Holyoke College, South Hadley, MA, USA
| | - Claudia Barth
- Division for Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Liisa A M Galea
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Belloy ME, Le Guen Y, Stewart I, Williams K, Herz J, Sherva R, Zhang R, Merritt V, Panizzon MS, Hauger RL, Gaziano JM, Logue M, Napolioni V, Greicius MD. Role of the X Chromosome in Alzheimer Disease Genetics. JAMA Neurol 2024; 81:1032-1042. [PMID: 39250132 PMCID: PMC11385320 DOI: 10.1001/jamaneurol.2024.2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
Importance The X chromosome has remained enigmatic in Alzheimer disease (AD), yet it makes up 5% of the genome and carries a high proportion of genes expressed in the brain, making it particularly appealing as a potential source of unexplored genetic variation in AD. Objectives To perform the first large-scale X chromosome-wide association study (XWAS) of AD. Design, Setting, and Participants This was a meta-analysis of genetic association studies in case-control, family-based, population-based, and longitudinal AD-related cohorts from the US Alzheimer's Disease Genetics Consortium, the Alzheimer's Disease Sequencing Project, the UK Biobank, the Finnish health registry, and the US Million Veterans Program. Risk of AD was evaluated through case-control logistic regression analyses. Data were analyzed between January 2023 and March 2024. Genetic data available from high-density single-nucleotide variant microarrays and whole-genome sequencing and summary statistics for multitissue expression and protein quantitative trait loci available from published studies were included, enabling follow-up genetic colocalization analyses. A total of 1 629 863 eligible participants were selected from referred and volunteer samples, 477 596 of whom were excluded for analysis exclusion criteria. The number of participants who declined to participate in original studies was not available. Main Outcome and Measures Risk of AD, reported as odds ratios (ORs) with 95% CIs. Associations were considered at X chromosome-wide (P < 1 × 10-5) and genome-wide (P < 5 × 10-8) significance. Primary analyses are nonstratified, while secondary analyses evaluate sex-stratified effects. Results Analyses included 1 152 284 participants of non-Hispanic White, European ancestry (664 403 [57.7%] female and 487 881 [42.3%] male), including 138 558 individuals with AD. Six independent genetic loci passed X chromosome-wide significance, with 4 showing support for links between the genetic signal for AD and expression of nearby genes in brain and nonbrain tissues. One of these 4 loci passed conservative genome-wide significance, with its lead variant centered on an intron of SLC9A7 (OR, 1.03; 95% CI, 1.02-1.04) and colocalization analyses prioritizing both the SLC9A7 and nearby CHST7 genes. Of these 6 loci, 4 displayed evidence for escape from X chromosome inactivation with regard to AD risk. Conclusion and Relevance This large-scale XWAS of AD identified the novel SLC9A7 locus. SLC9A7 regulates pH homeostasis in Golgi secretory compartments and is anticipated to have downstream effects on amyloid β accumulation. Overall, this study advances our knowledge of AD genetics and may provide novel biological drug targets. The results further provide initial insights into elucidating the role of the X chromosome in sex-based differences in AD.
Collapse
Affiliation(s)
- Michael E. Belloy
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Ilaria Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Kennedy Williams
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Joachim Herz
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics University of Texas Southwestern Medical Center at Dallas, Dallas
| | - Richard Sherva
- Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Rui Zhang
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, Massachusetts
| | - Victoria Merritt
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California San Diego, La Jolla
| | - Matthew S. Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla
| | - Richard L. Hauger
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California San Diego, La Jolla
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla
| | - J. Michael Gaziano
- Million Veteran Program (MVP) Coordinating Center, VA Boston Healthcare System, Boston, Massachusetts
- Division of Aging, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark Logue
- Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Michael D. Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
5
|
Serio B, Hettwer MD, Wiersch L, Bignardi G, Sacher J, Weis S, Eickhoff SB, Valk SL. Sex differences in functional cortical organization reflect differences in network topology rather than cortical morphometry. Nat Commun 2024; 15:7714. [PMID: 39231965 PMCID: PMC11375086 DOI: 10.1038/s41467-024-51942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Differences in brain size between the sexes are consistently reported. However, the consequences of this anatomical difference on sex differences in intrinsic brain function remain unclear. In the current study, we investigate whether sex differences in intrinsic cortical functional organization may be associated with differences in cortical morphometry, namely different measures of brain size, microstructure, and the geodesic distance of connectivity profiles. For this, we compute a low dimensional representation of functional cortical organization, the sensory-association axis, and identify widespread sex differences. Contrary to our expectations, sex differences in functional organization do not appear to be systematically associated with differences in total surface area, microstructural organization, or geodesic distance, despite these morphometric properties being per se associated with functional organization and differing between sexes. Instead, functional sex differences in the sensory-association axis are associated with differences in functional connectivity profiles and network topology. Collectively, our findings suggest that sex differences in functional cortical organization extend beyond sex differences in cortical morphometry.
Collapse
Affiliation(s)
- Bianca Serio
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Meike D Hettwer
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lisa Wiersch
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Brain-Based Predictive Modeling Lab, Feinstein Institutes for Medical Research, Glen Oaks, New York, NY, USA
| | - Giacomo Bignardi
- Max Planck School of Cognition, Leipzig, Germany
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Julia Sacher
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig Center for Female Health & Gender Medicine, Medical Faculty, University Clinic Leipzig, Leipzig, Germany
- Clinic for Cognitive Neurology, University Medical Center Leipzig, Leipzig, Germany
| | - Susanne Weis
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
6
|
Shelp GV, Dong J, Orlov NO, Malysheva OV, Bender E, Shoveller AK, Bakovic M, Cho CE. Exposure to prenatal excess or imbalanced micronutrients leads to long-term perturbations in one-carbon metabolism, trimethylamine-N-oxide and DNA methylation in Wistar rat offspring. FASEB J 2024; 38:e70032. [PMID: 39212230 DOI: 10.1096/fj.202401018rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Prenatal multivitamins, including folic acid, are commonly consumed in excess, whereas choline, an essential nutrient and an important source of labile methyl groups, is underconsumed. Here, we characterized profiles of one-carbon metabolism and related pathways and patterns of DNA methylation in offspring exposed to excess or imbalanced micronutrients prenatally. Pregnant Wistar rats were fed either recommended 1× vitamins (RV), high 10× vitamins (HV), high 10× folic acid with recommended choline (HFolRC), or high 10× folic acid with no choline (HFolNC). Offspring were weaned to a high-fat diet for 12 weeks. Circulating metabolites were analyzed with a focus on the hypothalamus, an area known to be under epigenetic regulation. HV, HFolRC, and HFolNC males had higher body weight (BW) and lower plasma choline and methionine consistent with lower hypothalamic S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) and global DNA methylation compared with RV. HV and HFolNC females had higher BW and lower plasma 5-methyltetrahydrofolate and methionine consistent with lower hypothalamic global DNA methylation compared with RV. Plasma dimethylglycine (DMG) and methionine were higher as with hypothalamic SAM:SAH and global DNA methylation in HFolRC females without changes in BW compared with RV. Plasma trimethylamine and trimethylamine-N-oxide were higher in males but lower in females from HFolRC compared with RV. Network modeling revealed a link between the folate-dependent pathway and SAH, with most connections through DMG. Final BW was negatively correlated with choline, DMG, and global DNA methylation. In conclusion, prenatal intake of excess or imbalanced micronutrients induces distinct metabolic and epigenetic perturbations in offspring that reflect long-term nutritional programming of health.
Collapse
Affiliation(s)
- Gia V Shelp
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jianzhang Dong
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nikolai O Orlov
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Olga V Malysheva
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, New York, USA
| | - Erica Bender
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, New York, USA
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Clara E Cho
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Mogil JS, Parisien M, Esfahani SJ, Diatchenko L. Sex differences in mechanisms of pain hypersensitivity. Neurosci Biobehav Rev 2024; 163:105749. [PMID: 38838876 DOI: 10.1016/j.neubiorev.2024.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor. Other findings of sex-specific molecular involvement in pain are subjected to pathway analyses and reveal at least one novel hypothesis: that females may preferentially use Th1 and males Th2 T cell activity to mediate chronic pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Sahel J Esfahani
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
8
|
Krabbe S. Epigenetic control of memory formation. Science 2024; 385:367-368. [PMID: 39052819 DOI: 10.1126/science.adq8496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A neuron's suitability to participate in a memory trace is modulated by its epigenetic state.
Collapse
Affiliation(s)
- Sabine Krabbe
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
9
|
Kim H, Joo MW, Yoon J, Park HS, Kim JH, Lee JH, Kim SH, Lee SK, Chung YG, Cho YJ. Can DNA Methylation Profiling Classify Histologic Subtypes and Grades in Soft Tissue Sarcoma? Clin Orthop Relat Res 2024; 482:00003086-990000000-01545. [PMID: 38517415 PMCID: PMC11124674 DOI: 10.1097/corr.0000000000003041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND A clear classification of the subtype and grade of soft tissue sarcoma is important for predicting prognosis and establishing treatment strategies. However, the rarity and heterogeneity of these tumors often make diagnosis difficult. In addition, it remains challenging to predict the response to chemotherapy and prognosis. Thus, we need a new method to help diagnose soft tissue sarcomas and determine treatment strategies in conjunction with traditional methods. Genetic alterations can be found in some subtypes of soft tissue sarcoma, but many other types show dysregulated gene expression attributed to epigenetic changes, such as DNA methylation status. However, research on DNA methylation profiles in soft tissue sarcoma is still insufficient to provide information to assist in diagnosis and therapeutic decisions. QUESTIONS/PURPOSES (1) Do DNA methylation profiles differ between normal tissue and soft tissue sarcoma? (2) Do DNA methylation profiles vary between different histologic subtypes of soft tissue sarcoma? (3) Do DNA methylation profiles differ based on tumor grade? METHODS Between January 2019 and December 2022, we treated 85 patients for soft tissue sarcomas. We considered patients whose specimens were approved for pilot research by the Human Biobank of St. Vincent's Hospital, The Catholic University of Korea, as potentially eligible. Based on this, 41% (35 patients) were eligible; 1% (one patient) was excluded because of gender mismatch between clinical and genetic data after controlling for data quality. Finally, 39 specimens (34 soft tissue sarcomas and five normal samples) were included from 34 patients who had clinical data. All tissue samples were collected intraoperatively. The five normal tissue samples were from muscle tissues. There were 20 female patients and 14 male patients, with a median age of 58 years (range 19 to 82 years). Genomic DNA was extracted from frozen tissue, and DNA methylation profiles were obtained. Genomic annotation of DNA methylation sites and hierarchical cluster analysis were performed to interpret results from DNA methylation profiling. A t-test was used to analyze different methylation probes. Benjamini-Hochberg-adjusted p value calculations were used to account for bias resulting from evaluating thousands of methylation sites. RESULTS The most common histologic subtypes were liposarcoma (n = 10) and leiomyosarcoma (n = 9). The tumor grade was Fédération Nationale des Centres de Lutte Contre Le Cancer Grades 1, 2, and 3 in 3, 15, and 16 patients, respectively. DNA methylation profiling demonstrated differences between soft tissue sarcoma and normal tissue as 21,188 cytosine-phosphate-guanine sites. Despite the small number of samples, 72 of these sites showed an adjusted p value of < 0.000001, suggesting a low probability of statistical errors. Among the 72 sites, 70 exhibited a hypermethylation pattern in soft tissue sarcoma, with only two sites showing a hypomethylation pattern. Thirty of 34 soft tissue sarcomas were distinguished from normal samples using hierarchical cluster analysis. There was a different methylation pattern between leiomyosarcoma and liposarcoma at 7445 sites. Using the data, hierarchical clustering analysis showed that liposarcoma was distinguished from leiomyosarcoma. When we used the same approach and included other subtypes with three or more samples, only leiomyosarcoma and myxofibrosarcoma were separated from the other subtypes, while liposarcoma and alveolar soft-part sarcoma were mixed with the others. When comparing DNA methylation profiles between low-grade (Grade 1) and high-grade (Grades 2 and 3) soft tissue sarcomas, a difference in methylation pattern was observed at 144 cytosine-phosphate-guanine sites. Among these, 132 cytosine-phosphate-guanine sites exhibited hypermethylation in the high-grade group compared with the low-grade group. Hierarchical clustering analysis showed a division into two groups, with most high-grade sarcomas (28 of 31) separated from the low-grade group and few (3 out of 31) clustered together with the low-grade group. However, three high-grade soft tissue sarcomas were grouped with the Grade 1 cluster, and all of these sarcomas were Grade 2. When comparing Grades 1 and 2 to Grade 3, Grade 3 tumors were separated from Grades 1 and 2. CONCLUSION We observed a different DNA methylation pattern between soft tissue sarcomas and normal tissues. Liposarcoma was distinguished from leiomyosarcoma using methylation profiling. High-grade soft tissue sarcoma samples showed a hypermethylation pattern compared with low-grade ones. Our findings indicate the need for research using methylation profiling to better understand the diverse biological characteristics of soft tissue sarcoma. Such research should include studies with sufficient samples and a variety of subtypes, as well as analyses of the expression and function of related genes. Additionally, efforts to link this research with clinical data related to treatment and prognosis are necessary. LEVEL OF EVIDENCE Level III, diagnostic study.
Collapse
Affiliation(s)
- Hyunho Kim
- Division of Medical Oncology, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min Wook Joo
- Department of Orthopedic Surgery, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joohee Yoon
- Department of Obstetrics and Gynecology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Sik Park
- Deparment of Hospital Pathology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - June Hyuk Kim
- Orthopaedic Oncology Clinic, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Joo Hwan Lee
- Deparment of Radiation Oncology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Hwan Kim
- Deparment of Radiation Oncology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seul Ki Lee
- Deparment of Radiology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yang-Guk Chung
- Department of Orthopedic Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Joo Cho
- Department of Orthopedic Surgery, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
10
|
Bridges J, Ramirez-Guerrero JA, Rosa-Garrido M. Gender-specific genetic and epigenetic signatures in cardiovascular disease. Front Cardiovasc Med 2024; 11:1355980. [PMID: 38529333 PMCID: PMC10962446 DOI: 10.3389/fcvm.2024.1355980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/13/2024] [Indexed: 03/27/2024] Open
Abstract
Cardiac sex differences represent a pertinent focus in pursuit of the long-awaited goal of personalized medicine. Despite evident disparities in the onset and progression of cardiac pathology between sexes, historical oversight has led to the neglect of gender-specific considerations in the treatment of patients. This oversight is attributed to a predominant focus on male samples and a lack of sex-based segregation in patient studies. Recognizing these sex differences is not only relevant to the treatment of cisgender individuals; it also holds paramount importance in addressing the healthcare needs of transgender patients, a demographic that is increasingly prominent in contemporary society. In response to these challenges, various agencies, including the National Institutes of Health, have actively directed their efforts toward advancing our comprehension of this phenomenon. Epigenetics has proven to play a crucial role in understanding sex differences in both healthy and disease states within the heart. This review presents a comprehensive overview of the physiological distinctions between males and females during the development of various cardiac pathologies, specifically focusing on unraveling the genetic and epigenetic mechanisms at play. Current findings related to distinct sex-chromosome compositions, the emergence of gender-biased genetic variations, and variations in hormonal profiles between sexes are highlighted. Additionally, the roles of DNA methylation, histone marks, and chromatin structure in mediating pathological sex differences are explored. To inspire further investigation into this crucial subject, we have conducted global analyses of various epigenetic features, leveraging data previously generated by the ENCODE project.
Collapse
Affiliation(s)
| | | | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Rocks D, Purisic E, Gallo EF, Greally JM, Suzuki M, Kundakovic M. Egr1 is a sex-specific regulator of neuronal chromatin, synaptic plasticity, and behaviour. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572697. [PMID: 38187614 PMCID: PMC10769422 DOI: 10.1101/2023.12.20.572697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Sex differences are found in brain structure and function across species, and across brain disorders in humans1-3. The major source of brain sex differences is differential secretion of steroid hormones from the gonads across the lifespan4. Specifically, ovarian hormones oestrogens and progesterone are known to dynamically change structure and function of the adult female brain, having a major impact on psychiatric risk5-7. However, due to limited molecular studies in female rodents8, very little is still known about molecular drivers of female-specific brain and behavioural plasticity. Here we show that overexpressing Egr1, a candidate oestrous cycle-dependent transcription factor9, induces sex-specific changes in ventral hippocampal neuronal chromatin, gene expression, and synaptic plasticity, along with hippocampus-dependent behaviours. Importantly, Egr1 overexpression mimics the high-oestrogenic phase of the oestrous cycle, and affects behaviours in ovarian hormone-depleted females but not in males. We demonstrate that Egr1 opens neuronal chromatin directly across the sexes, although with limited genomic overlap. Our study not only reveals the first sex-specific chromatin regulator in the brain, but also provides functional evidence that this sex-specific gene regulation drives neuronal gene expression, synaptic plasticity, and anxiety- and depression-related behaviour. Our study exemplifies an innovative sex-based approach to studying neuronal gene regulation1 in order to understand sex-specific synaptic and behavioural plasticity and inform novel brain disease treatments.
Collapse
Affiliation(s)
- Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Eric Purisic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Eduardo F. Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - John M. Greally
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Masako Suzuki
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|