1
|
Skalickova M, Hadrava Vanova K, Uher O, Leischner Fialova J, Petrlakova K, Masarik M, Kejík Z, Martasek P, Pacak K, Jakubek M. Injecting hope: the potential of intratumoral immunotherapy for locally advanced and metastatic cancer. Front Immunol 2025; 15:1479483. [PMID: 39850897 PMCID: PMC11754201 DOI: 10.3389/fimmu.2024.1479483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Despite enormous progress, advanced cancers are still one of the most serious medical problems in current society. Although various agents and therapeutic strategies with anticancer activity are known and used, they often fail to achieve satisfactory long-term patient outcomes and survival. Recently, immunotherapy has shown success in patients by harnessing important interactions between the immune system and cancer. However, many of these therapies lead to frequent side effects when administered systemically, prompting treatment modifications or discontinuation or, in severe cases, fatalities. New therapeutic approaches like intratumoral immunotherapy, characterized by reduced side effects, cost, and systemic toxicity, offer promising prospects for future applications in clinical oncology. In the context of locally advanced or metastatic cancer, combining diverse immunotherapeutic and other treatment strategies targeting multiple cancer hallmarks appears crucial. Such combination therapies hold promise for improving patient outcomes and survival and for promoting a sustained systemic response. This review aims to provide a current overview of immunotherapeutic approaches, specifically focusing on the intratumoral administration of drugs in patients with locally advanced and metastatic cancers. It also explores the integration of intratumoral administration with other modalities to maximize therapeutic response. Additionally, the review summarizes recent advances in intratumoral immunotherapy and discusses novel therapeutic approaches, outlining future directions in the field.
Collapse
Affiliation(s)
- Marketa Skalickova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Katerina Hadrava Vanova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Ondrej Uher
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jindriska Leischner Fialova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Katerina Petrlakova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Michal Masarik
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Pavel Martasek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
2
|
Rosales-López A, López-Castillo GN, Sandoval-Ramírez J, Terán JL, Carrasco-Carballo A. Correlation between Molecular Docking and the Stabilizing Interaction of HOMO-LUMO: Spirostans in CHK1 and CHK2, an In Silico Cancer Approach. Int J Mol Sci 2024; 25:8588. [PMID: 39201276 PMCID: PMC11354435 DOI: 10.3390/ijms25168588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 09/02/2024] Open
Abstract
Checkpoint kinases 1 and 2 (CHK1 and CHK2) are enzymes that are involved in the control of DNA damage. At the present time, these enzymes are some of the most important targets in the fight against cancer since their inhibition produces cytotoxic effects in carcinogenic cells. This paper proposes the use of spirostans (Sp), natural compounds, as possible inhibitors of the enzymes CHK1 and CHK2 from an in silico analysis of a database of 155 molecules (S5). Bioinformatics studies of molecular docking were able to discriminate between 13 possible CHK1 inhibitors, 13 CHK2 inhibitors and 1 dual inhibitor for both enzymes. The administration, distribution, metabolism, excretion and toxicity (ADMETx) studies allowed a prediction of the distribution and metabolism of the potential inhibitors in the body, as well as determining the excretion routes and the appropriate administration route. The best inhibition candidates were discriminated by comparing the enzyme-substrate interactions from 2D diagrams and molecular docking. Specific inhibition candidates were obtained, in addition to studying the dual inhibitor candidate and observing their stability in dynamic molecular studies. In addition, Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital (HOMO-LUMO) interactions were analyzed to study the stability of interactions between the selected enzymes and spirostans resulting in the predominant gaps from HOMOCHKs to LUMOSp (Highest Occupied Molecular Orbital of CHKs-Lowest Unoccupied Molecular Orbital of spirostan). In brief, this study presents the selection inhibitors of CHK1 and CHK2 as a potential treatment for cancer using a combination of molecular docking and dynamics, ADMETx predictons, and HOMO-LUMO calculation for selection.
Collapse
Affiliation(s)
- Antonio Rosales-López
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Instituto de Ciencias, BUAP, Puebla 72570, Mexico; (A.R.-L.); (G.N.L.-C.); (J.S.-R.)
| | - Guiee N. López-Castillo
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Instituto de Ciencias, BUAP, Puebla 72570, Mexico; (A.R.-L.); (G.N.L.-C.); (J.S.-R.)
- Laboratorio de Modificación y Síntesis en Productos Naturales, FCQ, BUAP, Puebla 72570, Mexico
| | - Jesús Sandoval-Ramírez
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Instituto de Ciencias, BUAP, Puebla 72570, Mexico; (A.R.-L.); (G.N.L.-C.); (J.S.-R.)
- Laboratorio de Modificación y Síntesis en Productos Naturales, FCQ, BUAP, Puebla 72570, Mexico
| | - Joel L. Terán
- Centro de Química, Instituto de Ciencias, BUAP, Puebla 72570, Mexico
| | - Alan Carrasco-Carballo
- Laboratorio de Elucidación y Síntesis en Química Orgánica, Instituto de Ciencias, BUAP, Puebla 72570, Mexico; (A.R.-L.); (G.N.L.-C.); (J.S.-R.)
- Centro de Química, Instituto de Ciencias, BUAP, Puebla 72570, Mexico
- CONAHCYT, LESQO, ICUAP, BUAP, Puebla 72570, Mexico
| |
Collapse
|
3
|
Sheta YS, Sarg MT, Abdulrahman FG, Nossier ES, Husseiny EM. Novel imidazolone derivatives as potential dual inhibitors of checkpoint kinases 1 and 2: Design, synthesis, cytotoxicity evaluation, and mechanistic insights. Bioorg Chem 2024; 149:107471. [PMID: 38823311 DOI: 10.1016/j.bioorg.2024.107471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Applying various drug design strategies including ring variation, substituents variation, and ring fusion, two series of 2-(alkylthio)-5-(arylidene/heteroarylidene)imidazolones and imidazo[1,2-a]thieno[2,3-d]pyrimidines were designed and prepared as dual potential Chk1 and Chk2 inhibitors. The newly synthesized hybrids were screened in NCI 60 cell line panel where the most active derivatives 4b, d-f, and 6a were further estimated for their five dose antiproliferative activity against the most sensitive tumor cells including breast MCF-7 and MDA-MB-468 and non-small cell lung cancer EKVX as well as normal WI-38 cell. Noticeably, increasing the carbon chain attached to thiol moiety at C-2 of imidazolone scaffold elevated the cytotoxic activity. Hence, compounds 4e and 4f, containing S-butyl fragment, exhibited the most antiproliferative activity against the tested cells where 4f showed extremely potent selectivity toward them. As well, compound 6a, containing imidazothienopyrimidine core, exerted significant cytotoxic activity and selectivity toward the examined cells. The mechanistic investigation of the most active cytotoxic analogs was achieved through the evaluation of their inhibitory activity against Chk1 and Chk2. Results revealed that 4f displayed potent dual inhibition of both Chk1 and Chk2 with IC50 equal 0.137 and 0.25 μM, respectively. It also promoted its antiproliferative and Chk suppression activity via EKVX cell cycle arrest at S phase through stimulating the apoptotic approach. The apoptosis induction was also emphasized by elevating the expression of Caspase-3 and Bax, that are accompanied by Bcl-2 diminution. The in silico molecular docking and ADMET profiles of the most active analogs have been carried out to evaluate their potential as significant anticancer drug candidates.
Collapse
Affiliation(s)
- Yasmin S Sheta
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Marwa T Sarg
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Fatma G Abdulrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt; The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo 11516, Egypt
| | - Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt.
| |
Collapse
|
4
|
Black S, Roach M, Rappuoli R. Primary cancer prevention for cancers with no known infectious etiology: Time for a new paradigm. Vaccine 2024; 42:1906-1909. [PMID: 38365488 DOI: 10.1016/j.vaccine.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Vaccines developed for hepatitis B and human papilloma virus infections have been very successful in reducing the burden of cancer due to these infections. In the past decade, our understanding of the immunology of cancer has greatly improved and important progress has been made in the use of immunotherapy for several cancers. However, for the majority of cancers, an infectious etiology is either unknown or does not exist. Prostate cancer, for which no infectious etiology is known, is the most common cancer in men in the United States. Here we discuss the rationale for developing a preventive vaccine for prostate cancer, discuss a possible approach for further work in this area and a means of testing the effectiveness of a prostate cancer prevention vaccine in a clinical trial.
Collapse
Affiliation(s)
| | - Mack Roach
- Department of Radiation Oncology, University of California San Francisco, USA
| | | |
Collapse
|
5
|
Yip HYK, Shin SY, Chee A, Ang CS, Rossello FJ, Wong LH, Nguyen LK, Papa A. Integrative modeling uncovers p21-driven drug resistance and prioritizes therapies for PIK3CA-mutant breast cancer. NPJ Precis Oncol 2024; 8:20. [PMID: 38273040 PMCID: PMC10810864 DOI: 10.1038/s41698-024-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2022] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Utility of PI3Kα inhibitors like BYL719 is limited by the acquisition of genetic and non-genetic mechanisms of resistance which cause disease recurrence. Several combination therapies based on PI3K inhibition have been proposed, but a way to systematically prioritize them for breast cancer treatment is still missing. By integrating published and in-house studies, we have developed in silico models that quantitatively capture dynamics of PI3K signaling at the network-level under a BYL719-sensitive versus BYL719 resistant-cell state. Computational predictions show that signal rewiring to alternative components of the PI3K pathway promote resistance to BYL719 and identify PDK1 as the most effective co-target with PI3Kα rescuing sensitivity of resistant cells to BYL719. To explore whether PI3K pathway-independent mechanisms further contribute to BYL719 resistance, we performed phosphoproteomics and found that selection of high levels of the cell cycle regulator p21 unexpectedly promoted drug resistance in T47D cells. Functionally, high p21 levels favored repair of BYL719-induced DNA damage and bypass of the associated cellular senescence. Importantly, targeted inhibition of the check-point inhibitor CHK1 with MK-8776 effectively caused death of p21-high T47D cells, thus establishing a new vulnerability of BYL719-resistant breast cancer cells. Together, our integrated studies uncover hidden molecular mediators causing resistance to PI3Kα inhibition and provide a framework to prioritize combination therapies for PI3K-mutant breast cancer.
Collapse
Affiliation(s)
- Hon Yan Kelvin Yip
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Sung-Young Shin
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Annabel Chee
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Fernando J Rossello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Lee Hwa Wong
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Lan K Nguyen
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
6
|
Duabil AJN, Cooper CR, Aldujaily E, Halford SER, Hirschberg S, Katugampola SD, Jones GDD. Investigations of the novel checkpoint kinase 1 inhibitor SRA737 in non-small cell lung cancer and colorectal cancer cells of differing tumour protein 53 gene status. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1210-1226. [PMID: 38214010 PMCID: PMC10776598 DOI: 10.37349/etat.2023.00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 01/13/2024] Open
Abstract
Aim In response to DNA damage the serine/threonine-specific protein kinase checkpoint kinase 1 (CHK1) is activated allowing cells to enter S phase (S) and G2 phase (G2) cell-cycle arrest. CHK1 inhibitors are expected to prevent cells from entering such arrest, thereby enhancing DNA damage-induced cytotoxicity. In contrast, normal cells with intact ataxia-telangiectasia mutated (ATM), CHK2 and tumour suppressor protein 53 (P53) signalling are still able to enter cell-cycle arrest using the functioning G1/S checkpoint, thereby being rescued from enhanced cytotoxicity. The main objective of this work is to investigate the in vitro effects of the novel CHK1 inhibitor SRA737 on pairs of non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) cell lines, all with genetic aberrations rendering them susceptible to replication stress but of differing tumour protein 53 (TP53) gene status, focusing on DNA damage induction and the subsequent effects on cell proliferation and viability. Methods NSCLC cell lines H23 [TP53 mutant (MUT)] and A549 [TP53 wild-type (WT)] and CRC cell lines HT29 (TP53 MUT) and HCT116 (TP53 WT) were incubated with differing micromolar concentrations of SRA737 for 24 h and then analysed using alkaline comet and phosphorylated H2A.X variant histone (γH2AX)-foci assays to assess mostly DNA single strand break and double strand break damage, respectively. Cell-counting/trypan blue staining was also performed to assess cell proliferation/viability. Results Clear concentration-dependent increases in comet formation and γH2AX-foci/cell were noted for the TP53 MUT cells with no or lower increases being noted in the corresponding TP53 WT cells. Also, greater anti-proliferative and cell killing effects were noted in the TP53 MUT cells than in the TP53 WT cells. Conclusions This study's data suggests that P53 status/functioning is a key factor in determining the sensitivity of NSCLC and CRC cancer cells towards CHK1 inhibition, even in circumstances conducive to high replicative stress.
Collapse
Affiliation(s)
- Ali JN Duabil
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, LE1 7RH Leics, UK
- Department of Surgery, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Christian R Cooper
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, LE1 7RH Leics, UK
- MRC Oxford Institute for Radiation Oncology, University of Oxford, OX3 7DQ Oxon, UK
| | - Esraa Aldujaily
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, LE1 7RH Leics, UK
- Department of Pathology & Forensic Medicine, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Sarah ER Halford
- Cancer Research UK Centre for Drug Development, London E20 1JQ, UK
| | | | | | - George DD Jones
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, LE1 7RH Leics, UK
| |
Collapse
|
7
|
Al-Qadhi MA, Allam HA, Fahim SH, Yahya TAA, Ragab FAF. Design and synthesis of certain 7-Aryl-2-Methyl-3-Substituted Pyrazolo{1,5-a}Pyrimidines as multikinase inhibitors. Eur J Med Chem 2023; 262:115918. [PMID: 37922829 DOI: 10.1016/j.ejmech.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Four new series 7a-e, 8a-e, 9a-e, and 10a-e of 7-aryl-3-substituted pyrazolo[1,5-a]pyrimidines were synthesized and tested for their RTK and STK inhibitory activity. Compound 7d demonstrated potent enzymatic inhibitory activity against TrkA and ALK2 with IC50 0.087and 0.105 μM, respectively, and potent antiproliferative activity against KM12 and EKVX cell lines with IC50 0.82 and 4.13 μM, respectively. Compound 10e showed good enzyme inhibitory activity against TrkA, ALK2, c-KIT, EGFR, PIM1, CK2α, CHK1, and CDK2 in submicromolar values. Additionally 10e revealed antiproliferative activity against MCF7, HCT116 and EKVX with IC50 3.36, 1.40 and 3.49 μM, respectively; with good safety profile. Moreover, 10e showed cell cycle arrest at the G1/S phase and G1 phase in MCF7 and HCT116 cells with good apoptotic effect. Molecular docking studies were fulfilled for compound 10e and illustrated good interaction with the hot spots of the active site of the tested enzymes.
Collapse
Affiliation(s)
- Mustafa A Al-Qadhi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt.
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| | - Tawfeek A A Yahya
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Fatma A F Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| |
Collapse
|
8
|
Bruyer A, Dutrieux L, de Boussac H, Martin T, Chemlal D, Robert N, Requirand G, Cartron G, Vincent L, Herbaux C, Lutzmann M, Bret C, Pasero P, Moreaux J, Ovejero S. Combined inhibition of Wee1 and Chk1 as a therapeutic strategy in multiple myeloma. Front Oncol 2023; 13:1271847. [PMID: 38125947 PMCID: PMC10730928 DOI: 10.3389/fonc.2023.1271847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by an abnormal clonal proliferation of malignant plasma cells. Despite the introduction of novel agents that have significantly improved clinical outcome, most patients relapse and develop drug resistance. MM is characterized by genomic instability and a high level of replicative stress. In response to replicative and DNA damage stress, MM cells activate various DNA damage signaling pathways. In this study, we reported that high CHK1 and WEE1 expression is associated with poor outcome in independent cohorts of MM patients treated with high dose melphalan chemotherapy or anti-CD38 immunotherapy. Combined targeting of Chk1 and Wee1 demonstrates synergistic toxicities on MM cells and was associated with higher DNA double-strand break induction, as evidenced by an increased percentage of γH2AX positive cells subsequently leading to apoptosis. The therapeutic interest of Chk1/Wee1 inhibitors' combination was validated on primary MM cells of patients. The toxicity was specific of MM cells since normal bone marrow cells were not significantly affected. Using deconvolution approach, MM patients with high CHK1 expression exhibited a significant lower percentage of NK cells whereas patients with high WEE1 expression displayed a significant higher percentage of regulatory T cells in the bone marrow. These data emphasize that MM cell adaptation to replicative stress through Wee1 and Chk1 upregulation may decrease the activation of the cell-intrinsic innate immune response. Our study suggests that association of Chk1 and Wee1 inhibitors may represent a promising therapeutic approach in high-risk MM patients characterized by high CHK1 and WEE1 expression.
Collapse
Affiliation(s)
| | - Laure Dutrieux
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | | | - Thibaut Martin
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Djamila Chemlal
- Diag2Tec, Montpellier, France
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Guillaume Cartron
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Charles Herbaux
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Malik Lutzmann
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Caroline Bret
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Philippe Pasero
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Jérôme Moreaux
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Sara Ovejero
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| |
Collapse
|
9
|
Ratajczak K, Grel H, Olejnik P, Jakiela S, Stobiecka M. Current progress, strategy, and prospects of PD-1/PDL-1 immune checkpoint biosensing platforms for cancer diagnostics, therapy monitoring, and drug screening. Biosens Bioelectron 2023; 240:115644. [PMID: 37660460 DOI: 10.1016/j.bios.2023.115644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Recent technological advancements in testing and monitoring instrumentation have greatly contributed to the progress in cancer treatment by surgical, chemotherapeutic and radiotherapeutic interventions. However, the mortality rate still remains high, calling for the development of new treatment strategies with higher efficacy. Extensive efforts driven in this direction have included broadening of early cancer screening and applying innovative theranostic nanotechnologies. They have been supported by platforms introduced to enable the detection and monitoring of cancer biomarkers, inhibitors, and other agents, able to slow down cancer progression and prevent metastasis. Despite of the well-recognized principles of the immune checkpoint blockade, the efficacy of immunotherapy achieved so far does not meet the well-founded expectations. For a successful cancer treatment, highly sensitive, robust, and inexpensive multiplex biosensors have to be designed to aid in the biomarkers monitoring and in the development of new inhibitors. In this review, we provide an overview of the efforts undertaken to aid in the development and monitoring of anticancer immunotherapy, based on the programmed cell-death immune checkpoint (PD-1/PDL-1) blockade, by designing biosensors for the detection of relevant cancer biomarkers and their inhibitors screening. This review also emphasizes alternative targets made by exosomes carrying PD-L1 overexpressed in cancer cells and passed into the excreted exosomes. Evaluated are also novel targeted drug delivery nanocarriers, providing simultaneous biosensing, thereby contributing to the emerging immune checkpoint cancer therapy. On the basis of the current trends and the emerging technologies, future perspectives of cancer diagnostics and treatment monitoring using biosensing platforms are projected.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Hubert Grel
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Piotr Olejnik
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| |
Collapse
|
10
|
Wu M, Xue L, Chen Y, Tang W, Guo Y, Xiong J, Chen D, Zhu Q, Fu F, Wang S. Inhibition of checkpoint kinase prevents human oocyte apoptosis induced by chemotherapy and allows enhanced tumour chemotherapeutic efficacy. Hum Reprod 2023; 38:1769-1783. [PMID: 37451671 DOI: 10.1093/humrep/dead145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2022] [Revised: 05/26/2023] [Indexed: 07/18/2023] Open
Abstract
STUDY QUESTION Could inhibition of the checkpoint kinase (CHEK) pathway protect human oocytes and even enhance the anti-tumour effects, during chemotherapy? SUMMARY ANSWER CHEK inhibitors prevented apoptosis of human oocytes induced by chemotherapy and even enhanced the anti-tumour effects. WHAT IS KNOWN ALREADY CHEK inhibitors showed ovarian protective effects in mice during chemotherapy, while their role in human oocytes is unclear. STUDY DESIGN, SIZE, DURATION This experimental study evaluated the ovarian reserve of young patients (120 patients) with cancer, exposed or not exposed to taxane and platinum (TP)-combined chemotherapy. Single RNA-sequencing analysis of human primordial oocytes from 10 patients was performed to explore the mechanism of oocyte apoptosis induced by TP chemotherapy. The damaging effects of paclitaxel (PTX) and cisplatin on human oocytes were also evaluated by culturing human ovaries in vitro. A new mouse model that combines human ovarian xenotransplantation and patient-derived tumour xenografts was developed to explore adjuvant therapies for ovarian protection. The mice were randomly allocated to four groups (10 mice for each group): control, cisplatin, cisplatin + CK1 (CHEK1 inhibitor, SCH 900776), and cisplatin + CK2 (CHEK2 inhibitor, BML277). PARTICIPANTS/MATERIALS, SETTING, METHODS In the prospective cohort study, human ovarian follicles were counted and serum AMH levels were evaluated. RNA-sequencing analysis was conducted, and staining for follicular damage (phosphorylated H2AX histone; γH2AX), terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL) assays and assessments of apoptotic biomarkers (western blot and immunofluorescence) were conducted in human ovaries. After the treatments, histological analysis was performed on human ovarian samples to investigate follicular populations, and oocyte damage was measured by γH2AX staining, BAX staining, and TUNEL assays. At the same time, the tumours were evaluated for volume, weight, and apoptosis levels. MAIN RESULTS AND THE ROLE OF CHANCE Patients who received TP chemotherapy showed decreased ovarian reserves. Single RNA-sequencing analysis of human primordial oocytes indicated that TP chemotherapy induced apoptosis of human primordial oocytes by causing CHEK-mediated TAp63α phosphorylation. In vitro culture of human ovaries showed greater damaging effects on oocytes after cisplatin treatment compared with that after PTX treatment. Using the new animal model, CHEK1/2 inhibitors prevented the apoptosis of human oocytes induced by cisplatin and even enhanced its anti-tumour effects. This protective effect appeared to be mediated by inhibiting DNA damage via the CHEK-TAp63α pathway and by generation of anti-apoptotic signals in the oocytes. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was a preclinical study performed with human ovarian samples, and clinical research is required for validation. WIDER IMPLICATIONS OF THE FINDINGS These findings highlight the therapeutic potential of CHEK1/2 inhibitors as a complementary strategy for preserving fertility in female cancer patients. STUDY FUNDING/COMPETING INTEREST(S) This work was financially supported by the National Natural Science Foundation of China (nos. 82001514 and 81902669) and the Fundamental Research Funds for the Central Universities (2021yjsCXCY087). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Qingqing Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| |
Collapse
|
11
|
Wu M, Xue L, Guo Y, Dong X, Chen Z, Wei S, Yi X, Li Y, Zhang J, Zhou S, Wu M, Lou X, Dai J, Xia F, Wang S. Microenvironmentally Responsive Chemotherapeutic Prodrugs and CHEK2 Inhibitors Self-Assembled Micelles: Protecting Fertility and Enhancing Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210017. [PMID: 36528787 DOI: 10.1002/adma.202210017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/30/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Chemotherapy is a widely used and effective adjuvant treatment for cancer, and it has unavoidable damage to female fertility, with statistics showing 38% of women who have received chemotherapy are infertile. How to reduce fertility toxicity while enhancing the oncologic chemotherapy is a clinical challenge. Herein, co-delivery micelles (BML@PMP) are developed, which are composed of a reduction-sensitive paclitaxel prodrug (PMP) for chemotherapy and a CHEK2 inhibitor (BML277) for both fertility protection and chemotherapy enhancement. BML@PMP achieves fertility protection through three actions: (1) Due to the enhanced permeability and retention (EPR) effect, BML@PMP is more enriched in the tumor, while very little in the ovary (about 1/10th of the tumor). (2) Glutathione (GSH) triggers the release of PTX, and with low levels of GSH in the ovary, the amount of PTX released in the ovary is correspondingly reduced. (3) BML277 inhibits oocyte apoptosis by inhibiting the CHEK2-TAp63α pathway. Because of the different downstream targets of CHEK2 in tumor cells and oocytes, BML277 also enhances chemotherapeutic efficacy by reducing DNA damage repair which is activated through the CHEK2 pathway. This bidirectional effect of CHEK2 inhibitor-based co-delivery system represents a promising strategy for improving oncology treatment indices and preventing chemotherapy-associated fertility damage.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Xiaoqi Dong
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhaojun Chen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Xiaoqing Yi
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, China
| | - Yinuo Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| |
Collapse
|
12
|
Pietris J, Santhosh S, Ferdinando Cirocco G, Lam A, Bacchi S, Tan Y, Gupta AK, Kovoor JG, Chan W. Immune Checkpoint Inhibitors and Optic Neuropathy: A Systematic Review. Semin Ophthalmol 2023:1-12. [PMID: 36683270 DOI: 10.1080/08820538.2023.2168494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Immune checkpoint inhibitors are a class of monoclonal antibodies that are used as a mainstay of immunotherapy for multiple solid organ malignancies. With the recent increase in popularity of these agents, immune-related adverse events including optic neuropathy are becoming more frequently reported. This review aims to explore the association between immune checkpoint inhibitors and optic neuropathy through analysis of incidence, clinical features, investigations, treatment, and patient outcomes. METHOD A systematic search of the databases PubMed/MEDLINE, Embase, and CENTRAL was performed from inception to September 2022. Data collection and risk of bias analysis was subsequently conducted in accordance with the PRISMA guidelines. RESULTS Eleven articles fulfilled the inclusion criteria. The results showed an increased incidence of optic neuropathy among patients receiving immune checkpoint inhibitor therapy compared to the general population. Presentation with painless reduced visual acuity and optic disc swelling was most common. Investigation findings were poorly documented. The only two patients who achieved full resolution of symptoms were treated with oral prednisolone. CONCLUSION There is a strong association between immune checkpoint inhibitor therapy and development of optic neuropathy. Although it remains uncommon, the incidence of optic neuropathy in this population exceeds that of the general population. Future research is needed to further characterise the risk profiles of patients who are most likely to develop ICI-associated optic neuropathy, and treatment pathways for these patients.
Collapse
Affiliation(s)
- James Pietris
- Faculty of Medicine, University of Queensland, Herston, Australia.,Princess Alexandra Hospital, Woolloongabba, Australia
| | - Sanjana Santhosh
- Faculty of Medicine, University of Adelaide, Adelaide, Australia
| | | | - Antoinette Lam
- Faculty of Medicine, University of Adelaide, Adelaide, Australia.,Department of Ophthalmology, Royal Adelaide Hospital, Adelaide, Australia
| | - Stephen Bacchi
- Faculty of Medicine, University of Adelaide, Adelaide, Australia.,Department of Ophthalmology, Royal Adelaide Hospital, Adelaide, Australia.,Flinders University, Bedford Park, Australia
| | - Yiran Tan
- Department of Ophthalmology, Royal Adelaide Hospital, Adelaide, Australia
| | - Aashray K Gupta
- Faculty of Medicine, University of Adelaide, Adelaide, Australia.,Gold Coast University Hospital, Southport, Australia
| | - Joshua G Kovoor
- Faculty of Medicine, University of Adelaide, Adelaide, Australia.,Department of Ophthalmology, Royal Adelaide Hospital, Adelaide, Australia
| | - WengOnn Chan
- Faculty of Medicine, University of Adelaide, Adelaide, Australia.,Department of Ophthalmology, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
13
|
Post-Translational Modification of ZEB Family Members in Cancer Progression. Int J Mol Sci 2022; 23:ijms232315127. [PMID: 36499447 PMCID: PMC9737314 DOI: 10.3390/ijms232315127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Post-translational modification (PTM), the essential regulatory mechanisms of proteins, play essential roles in physiological and pathological processes. In addition, PTM functions in tumour development and progression. Zinc finger E-box binding homeobox (ZEB) family homeodomain transcription factors, such as ZEB1 and ZEB2, play a pivotal role in tumour progression and metastasis by induction epithelial-mesenchymal transition (EMT), with activation of stem cell traits, immune evasion and epigenetic reprogramming. However, the relationship between ZEB family members' post-translational modification (PTM) and tumourigenesis remains largely unknown. Therefore, we focussed on the PTM of ZEBs and potential therapeutic approaches in cancer progression. This review provides an overview of the diverse functions of ZEBs in cancer and the mechanisms and therapeutic implications that target ZEB family members' PTMs.
Collapse
|
14
|
Hunter JE, Campbell AE, Kerridge S, Fraser C, Hannaway NL, Luli S, Ivanova I, Brownridge PJ, Coxhead J, Taylor L, Leary P, Hasoon MSR, Eyers CE, Perkins ND. Up-regulation of the PI3K/AKT and RHO/RAC/PAK signalling pathways in CHK1 inhibitor resistant Eµ-Myc lymphoma cells. Biochem J 2022; 479:2131-2151. [PMID: 36240067 PMCID: PMC9704644 DOI: 10.1042/bcj20220103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
The development of resistance and the activation of bypass pathway signalling represents a major problem for the clinical application of protein kinase inhibitors. While investigating the effect of either a c-Rel deletion or RelAT505A phosphosite knockin on the Eµ-Myc mouse model of B-cell lymphoma, we discovered that both NF-κB subunit mutations resulted in CHK1 inhibitor resistance, arising from either loss or alteration of CHK1 activity, respectively. However, since Eµ-Myc lymphomas depend on CHK1 activity to cope with high levels of DNA replication stress and consequent genomic instability, it was not clear how these mutant NF-κB subunit lymphomas were able to survive. To understand these survival mechanisms and to identify potential compensatory bypass signalling pathways in these lymphomas, we applied a multi-omics strategy. With c-Rel-/- Eµ-Myc lymphomas we observed high levels of Phosphatidyl-inositol 3-kinase (PI3K) and AKT pathway activation. Moreover, treatment with the PI3K inhibitor Pictilisib (GDC-0941) selectively inhibited the growth of reimplanted c-Rel-/- and RelAT505A, but not wild type (WT) Eµ-Myc lymphomas. We also observed up-regulation of a RHO/RAC pathway gene expression signature in both Eµ-Myc NF-κB subunit mutation models. Further investigation demonstrated activation of the RHO/RAC effector p21-activated kinase (PAK) 2. Here, the PAK inhibitor, PF-3758309 successfully overcame resistance of RelAT505A but not WT lymphomas. These findings demonstrate that up-regulation of multiple bypass pathways occurs in CHK1 inhibitor resistant Eµ-Myc lymphomas. Consequently, drugs targeting these pathways could potentially be used as either second line or combinatorial therapies to aid the successful clinical application of CHK1 inhibitors.
Collapse
Affiliation(s)
- Jill E. Hunter
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Amy E. Campbell
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Scott Kerridge
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Callum Fraser
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Nicola L. Hannaway
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Saimir Luli
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging (PIVI), Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Iglika Ivanova
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Philip J. Brownridge
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Jonathan Coxhead
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Leigh Taylor
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Peter Leary
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Megan S. R. Hasoon
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Claire E. Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Neil D. Perkins
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
15
|
Madgwick S, Luli S, Sellier H, Butterworth JA, Leslie J, Moore AJ, Corbin EK, Yemm AI, Chiremba RT, Tiniakos D, Oakley F, Perkins ND, Hunter JE. Claspin haploinsufficiency leads to defects in fertility, hyperplasia and an increased oncogenic potential. Biochem J 2022; 479:2115-2130. [PMID: 36240068 PMCID: PMC9704638 DOI: 10.1042/bcj20220101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022]
Abstract
Claspin is an adaptor protein required for ATR-dependent phosphorylation of CHK1 during S-phase following DNA replication stress. Claspin expression is highly variable in cancer, with low levels frequently correlating with poor patient survival. To learn more about the biological consequences of reduced Claspin expression and its effects on tumorigenesis, we investigated mice with a heterozygous knockout of the Clspn gene. Claspin haploinsufficiency resulted in reduced female fertility and a maternally inherited defect in oocyte meiosis I cell cycle progression. Furthermore, aged Clspn+/- mice developed spontaneous lymphoid hyperplasia and increased susceptibility to non-alcoholic fatty liver disease. Importantly, we demonstrate a tumour suppressor role for Claspin. Reduced Claspin levels result in increased liver damage and tumourigenesis in the DEN model of hepatocellular carcinoma. These data reveal that Clspn haploinsufficiency has widespread unanticipated biological effects and establishes the importance of Claspin as a regulatory node controlling tumorigenesis and multiple disease aetiologies.
Collapse
Affiliation(s)
- Suzanne Madgwick
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Level 6, Herschel Building, Newcastle University, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Saimir Luli
- Preclinical In Vivo Imaging Facility, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Helene Sellier
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Level 6, Herschel Building, Newcastle University, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Jacqueline A. Butterworth
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Level 6, Herschel Building, Newcastle University, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Adam J. Moore
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Level 6, Herschel Building, Newcastle University, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Emma K. Corbin
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Level 6, Herschel Building, Newcastle University, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Adrian I. Yemm
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Level 6, Herschel Building, Newcastle University, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Robson T. Chiremba
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Level 6, Herschel Building, Newcastle University, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Dina Tiniakos
- Newcastle Fibrosis Research Group, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Neil D. Perkins
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Level 6, Herschel Building, Newcastle University, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Jill E. Hunter
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Level 6, Herschel Building, Newcastle University, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
16
|
Hunter JE, Campbell AE, Hannaway NL, Kerridge S, Luli S, Butterworth JA, Sellier H, Mukherjee R, Dhillon N, Sudhindar PD, Shukla R, Brownridge PJ, Bell HL, Coxhead J, Taylor L, Leary P, Hasoon MS, Collins I, Garrett MD, Eyers CE, Perkins ND. Regulation of CHK1 inhibitor resistance by a c-Rel and USP1 dependent pathway. Biochem J 2022; 479:2063-2086. [PMID: 36240066 PMCID: PMC9704646 DOI: 10.1042/bcj20220102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/19/2022]
Abstract
Previously, we discovered that deletion of c-Rel in the Eµ-Myc mouse model of lymphoma results in earlier onset of disease, a finding that contrasted with the expected function of this NF-κB subunit in B-cell malignancies. Here we report that Eµ-Myc/cRel-/- cells have an unexpected and major defect in the CHK1 pathway. Total and phospho proteomic analysis revealed that Eµ-Myc/cRel-/- lymphomas highly resemble wild-type (WT) Eµ-Myc lymphomas treated with an acute dose of the CHK1 inhibitor (CHK1i) CCT244747. Further analysis demonstrated that this is a consequence of Eµ-Myc/cRel-/- lymphomas having lost expression of CHK1 protein itself, an effect that also results in resistance to CCT244747 treatment in vivo. Similar down-regulation of CHK1 protein levels was also seen in CHK1i resistant U2OS osteosarcoma and Huh7 hepatocellular carcinoma cells. Further investigation revealed that the deubiquitinase USP1 regulates CHK1 proteolytic degradation and that its down-regulation in our model systems is responsible, at least in part, for these effects. We demonstrate that treating WT Eµ-Myc lymphoma cells with the USP1 inhibitor ML323 was highly effective at reducing tumour burden in vivo. Targeting USP1 activity may thus be an alternative therapeutic strategy in MYC-driven tumours.
Collapse
Affiliation(s)
- Jill E. Hunter
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Amy E. Campbell
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Nicola L. Hannaway
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Scott Kerridge
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Saimir Luli
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging (PIVI), Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Jacqueline A. Butterworth
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Helene Sellier
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Reshmi Mukherjee
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Nikita Dhillon
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Praveen D. Sudhindar
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Ruchi Shukla
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Philip J. Brownridge
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Hayden L. Bell
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Jonathan Coxhead
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Leigh Taylor
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Peter Leary
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Megan S.R. Hasoon
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton SM2 5NG, U.K
| | - Michelle D. Garrett
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent CT2 7NJ, U.K
| | - Claire E. Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Neil D. Perkins
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| |
Collapse
|
17
|
Schirmer EC, Latonen L, Tollis S. Nuclear size rectification: A potential new therapeutic approach to reduce metastasis in cancer. Front Cell Dev Biol 2022; 10:1022723. [PMID: 36299481 PMCID: PMC9589484 DOI: 10.3389/fcell.2022.1022723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 03/07/2024] Open
Abstract
Research on metastasis has recently regained considerable interest with the hope that single cell technologies might reveal the most critical changes that support tumor spread. However, it is possible that part of the answer has been visible through the microscope for close to 200 years. Changes in nuclear size characteristically occur in many cancer types when the cells metastasize. This was initially discarded as contributing to the metastatic spread because, depending on tumor types, both increases and decreases in nuclear size could correlate with increased metastasis. However, recent work on nuclear mechanics and the connectivity between chromatin, the nucleoskeleton, and the cytoskeleton indicate that changes in this connectivity can have profound impacts on cell mobility and invasiveness. Critically, a recent study found that reversing tumor type-dependent nuclear size changes correlated with reduced cell migration and invasion. Accordingly, it seems appropriate to now revisit possible contributory roles of nuclear size changes to metastasis.
Collapse
Affiliation(s)
- Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Sylvain Tollis
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
18
|
Serine O-acetyltransferase derived NV14 peptide reduces cytotoxicity in H 2O 2 induced MDCK cells and inhibits MCF-7 cell proliferation through caspase gene expression. Mol Biol Rep 2022; 49:9205-9215. [PMID: 35941417 DOI: 10.1007/s11033-022-07746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Most of the bioactive peptides exhibit antioxidant effect and do elicit inhibitory effect on proliferation of cancer cells. This study investigates the in-vitro antioxidant and anti-cancer properties of NV14 peptide, derived from serine O-acetyltransferase (SAT) of spirulina, Arthrospira platensis. METHODS The anti-cancer effect of the peptide was evaluated using human adenocarcinoma epithelial cells (MCF-7), while the anti-oxidant potential, as in reduction in ROS concentration, has been established using the H2O2-exposed, Madin-Darby canine kidney (MDCK) cells. The outcome of the in vitro analyses has been evaluated by in silico molecular docking analyses. RESULTS The peptide, dose-dependently, reduced oxidative stress as well as cell proliferation. Besides, based on the binding scores between NV14 peptide and the important proteins associated with apoptosis and antioxidant defense, it is evident that the peptide has antioxidant and anti-cancer effect, in vitro. CONCLUSIONS Together, this study demonstrates that NV14 has a potent antioxidant and anti-cancer capability; however, further direction needs to be focused on clinical or pharmacodynamics aspects.
Collapse
|
19
|
Targeting tumor cell senescence and polyploidy as potential therapeutic strategies. Semin Cancer Biol 2022; 81:37-47. [PMID: 33358748 PMCID: PMC8214633 DOI: 10.1016/j.semcancer.2020.12.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 01/14/2023]
Abstract
Senescence is a unique state of growth arrest that develops in response to a plethora of cellular stresses, including replicative exhaustion, oxidative injury, and genotoxic insults. Senescence has been implicated in the pathogenesis of multiple aging-related pathologies, including cancer. In cancer, senescence plays a dual role, initially acting as a barrier against tumor progression by enforcing a durable growth arrest in premalignant cells, but potentially promoting malignant transformation in neighboring cells through the secretion of pro-tumorigenic drivers. Moreover, senescence is induced in tumor cells upon exposure to a wide variety of conventional and targeted anticancer drugs (termed Therapy-Induced Senescence-TIS), representing a critical contributing factor to therapeutic outcomes. As with replicative or oxidative senescence, TIS manifests as a complex phenotype of macromolecular damage, energetic dysregulation, and altered gene expression. Senescent cells are also frequently polyploid. In vitro studies have suggested that polyploidy may confer upon senescent tumor cells the ability to escape from growth arrest, thereby providing an additional avenue whereby tumor cells escape the lethality of anticancer treatment. Polyploidy in tumor cells is also associated with persistent energy production, chromatin remodeling, self-renewal, stemness and drug resistance - features that are also associated with escape from senescence and conversion to a more malignant phenotype. However, senescent cells are highly heterogenous and can present with variable phenotypes, where polyploidy is one component of a complex reversion process. Lastly, emerging efforts to pharmacologically target polyploid tumor cells might pave the way towards the identification of novel targets for the elimination of senescent tumor cells by the incorporation of senolytic agents into cancer therapeutic strategies.
Collapse
|
20
|
Molecular Docking of SA11, RF13 and DI14 Peptides from Vacuolar Protein Sorting Associated Protein 26B Against Cancer Proteins and In vitro Investigation of its Anticancer Potency in Hep-2 Cells. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10395-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
|
21
|
An J, Peng C, Xie X, Peng F. New Advances in Targeted Therapy of HER2-Negative Breast Cancer. Front Oncol 2022; 12:828438. [PMID: 35311116 PMCID: PMC8931202 DOI: 10.3389/fonc.2022.828438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2021] [Accepted: 02/10/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has an extremely high incidence in women, and its morbidity and mortality rank first among female tumors. With the increasing development of molecular biology and genomics, molecular targeted therapy has become one of the most active areas in breast cancer treatment research and has also achieved remarkable achievements. However, molecular targeted therapy is mainly aimed at HER2-positive breast cancer and has not yet achieved satisfactory curative effect on HER2-negative breast cancer. This article describes the potential targets that may be used for breast cancer treatment from the aspects of PI3K/AKT signaling pathway, DDR, angiogenesis, the cell cycle, breast cancer stem cells, etc., and explores possible inhibitors for the treatment of HER2-negative breast cancer, such as PI3K inhibitors, AKT inhibitors and m-TOR inhibitors that inhibit the PI3K/AKT signaling pathway, small molecule tyrosine kinase inhibitors that restrain angiogenesis, CDK inhibitors, aurora kinase inhibitors and HDAC inhibitors that block cell cycle, as well as the drugs targeting breast cancer stem cells which have been a hit, aiming to provide a new idea and strategy for the treatment of HER2-negative breast cancer.
Collapse
Affiliation(s)
- Junsha An
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Hu W, Wang Z, Zhang H, Mahaman YAR, Huang F, Meng D, Zhou Y, Wang S, Jiang N, Xiong J, Westermarck J, Lu Y, Wang J, Wang X, Shentu Y, Liu R. Chk1 Inhibition Ameliorates Alzheimer's Disease Pathogenesis and Cognitive Dysfunction Through CIP2A/PP2A Signaling. Neurotherapeutics 2022; 19:570-591. [PMID: 35286657 PMCID: PMC9226264 DOI: 10.1007/s13311-022-01204-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease with limited therapeutic strategies. Cell cycle checkpoint protein kinase 1 (Chk1) is a Ser/Thr protein kinase which is activated in response to DNA damage, the latter which is an early event in AD. However, whether DNA damage-induced Chk1 activation participates in the development of AD and Chk1 inhibition ameliorates AD-like pathogenesis remain unclarified. Here, we demonstrate that Chk1 activity and the levels of protein phosphatase 2A (PP2A) inhibitory protein CIP2A are elevated in AD human brains, APP/PS1 transgenic mice, and primary neurons with Aβ treatment. Chk1 overexpression induces CIP2A upregulation, PP2A inhibition, tau and APP hyperphosphorylation, synaptic impairments, and cognitive memory deficit in mice. Moreover, Chk1 inhibitor (GDC0575) effectively increases PP2A activity, decreases tau phosphorylation, and inhibits Aβ overproduction in AD cell models. GDC0575 also reverses AD-like cognitive deficits and prevents neuron loss and synaptic impairments in APP/PS1 mice. In conclusion, our study uncovers a mechanism by which DNA damage-induced Chk1 activation promotes CIP2A-mediated tau and APP hyperphosphorylation and cognitive dysfunction in Alzheimer's disease and highlights the therapeutic potential of Chk1 inhibitors in AD.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoqun Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiliang Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Huang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongli Meng
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shiyi Wang
- Wenzhou Medical University, Wenzhou, China
| | - Nan Jiang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Youming Lu
- Collaborative Innovation Center for Brain Science, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jianzhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Collaborative Innovation Center for Brain Science, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
23
|
Jaaks P, Coker EA, Vis DJ, Edwards O, Carpenter EF, Leto SM, Dwane L, Sassi F, Lightfoot H, Barthorpe S, van der Meer D, Yang W, Beck A, Mironenko T, Hall C, Hall J, Mali I, Richardson L, Tolley C, Morris J, Thomas F, Lleshi E, Aben N, Benes CH, Bertotti A, Trusolino L, Wessels L, Garnett MJ. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 2022; 603:166-173. [PMID: 35197630 PMCID: PMC8891012 DOI: 10.1038/s41586-022-04437-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2021] [Accepted: 01/18/2022] [Indexed: 02/08/2023]
Abstract
Combinations of anti-cancer drugs can overcome resistance and provide new treatments1,2. The number of possible drug combinations vastly exceeds what could be tested clinically. Efforts to systematically identify active combinations and the tissues and molecular contexts in which they are most effective could accelerate the development of combination treatments. Here we evaluate the potency and efficacy of 2,025 clinically relevant two-drug combinations, generating a dataset encompassing 125 molecularly characterized breast, colorectal and pancreatic cancer cell lines. We show that synergy between drugs is rare and highly context-dependent, and that combinations of targeted agents are most likely to be synergistic. We incorporate multi-omic molecular features to identify combination biomarkers and specify synergistic drug combinations and their active contexts, including in basal-like breast cancer, and microsatellite-stable or KRAS-mutant colon cancer. Our results show that irinotecan and CHEK1 inhibition have synergistic effects in microsatellite-stable or KRAS–TP53 double-mutant colon cancer cells, leading to apoptosis and suppression of tumour xenograft growth. This study identifies clinically relevant effective drug combinations in distinct molecular subpopulations and is a resource to guide rational efforts to develop combinatorial drug treatments. A survey of potency and efficacy of 2,025 clinically relevant two-drug combinations against 125 molecularly characterized breast, colorectal and pancreatic cancer cell lines identifies rare synergistic effects of anticancer drugs, informing rational combination treatments for specific cancer subtypes.
Collapse
Affiliation(s)
| | | | - Daniel J Vis
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | | | | | | | - Lisa Dwane
- Wellcome Sanger Institute, Cambridge, UK
| | | | | | | | | | | | | | | | | | - James Hall
- Wellcome Sanger Institute, Cambridge, UK
| | - Iman Mali
- Wellcome Sanger Institute, Cambridge, UK
| | | | | | | | | | | | - Nanne Aben
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cyril H Benes
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Bertotti
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.,Department of Oncology, University of Torino School of Medicine, Turin, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.,Department of Oncology, University of Torino School of Medicine, Turin, Italy
| | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of EEMCS, Delft University of Technology, Delft, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
24
|
Velayutham M, Sarkar P, Rajakrishnan R, Kuppusamy P, Juliet A, Arockiaraj J. Antiproliferation of MP12 derived from a fungus, Aphanomyces invadans virulence factor, cysteine-rich trypsin inhibitor on human laryngeal epithelial cells, and in vivo zebrafish embryo model. Toxicon 2022; 210:100-108. [PMID: 35217022 DOI: 10.1016/j.toxicon.2022.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 11/19/2022]
Abstract
Peptide-based drug development is an emerging and promising approach in cancer therapeutics. The present study focuses on understanding the mechanism of MP12 peptide (MDNHVCIPLCPP) derived from cysteine-rich trypsin inhibitor protein of virulence factor of pathogenic fungus Aphanomyces invadans. MP12 is involved in antiproliferative activity against the human laryngeal epithelial cell (Hep-2), demonstrated in this study. MP12 sequence showed a significant binding score and has multiple hydrogen bond interactions with the proteins that play a vital role in apoptotic pathways such as Bcl-2, caspase-3, caspase-7, and XIAP. Based on the bioinformatics characterization and molecular docking result, further study was focused on MP12 antiproliferative activity. The peptide showed a dose-dependent inhibition against Hep-2 cell line proliferation, analyzed over MTT and neutral red uptake assays. The IC50 value of the MP12 peptide was calculated based on the antiproliferative property (24.7 ± 0.34 μM). MP12 treated Hep-2 cells showed significant shrinkage in cell morphology compared to untreated cells, inhibiting the cell cycle. The gene expression analysis validated that the MP12 significantly upregulates the caspase-3, caspase-7, and caspase-9 genes. The developmental toxicity study using zebrafish embryos as in vivo model proved that the MP12 is nontoxic. Based on the obtained results, we proposed that the peptide MP12 derived from cysteine-rich trypsin inhibitor protein of virulence molecule of pathogenic fungus have a potential antiproliferative activity. However, further clinical trials need to be focused on the mechanism and therapeutic application against laryngeal cancer.
Collapse
Affiliation(s)
- Manikandan Velayutham
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Purabi Sarkar
- School of Allied Healthcare and Sciences, Jain Deemed-to-be University, Whitefield, Bangalore, 560 066, Karnataka, India
| | - R Rajakrishnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Palaniselvam Kuppusamy
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX, 78712, USA
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
25
|
Wang H, Xu Y, Sun J, Sui Z. The Novel Curcumin Derivative 1g Induces Mitochondrial and ER-Stress-Dependent Apoptosis in Colon Cancer Cells by Induction of ROS Production. Front Oncol 2021; 11:644197. [PMID: 34195069 PMCID: PMC8236884 DOI: 10.3389/fonc.2021.644197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2020] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Reactive oxygen species (ROS) play an important role in cellular metabolism. Many chemotherapeutic drugs are known to promote apoptosis through the production of ROS. In the present study, the novel curcumin derivative, 1g, was found to inhibit tumor growth in colon cancer cells both in vitro and in vivo. Bioinformatics was used to analyze the differentially expressed mRNAs. The mechanism of this effect was a change in mitochondrial membrane potential caused by 1g that increased its pro-apoptotic activity. In addition, 1g produced ROS, induced G1 checkpoint blockade, and enhanced endoplasmic reticulum (ER)-stress in colon cancer cells. Conversely, pretreatment with the ROS scavenging agent N-acetyl-l-cysteine (NAC) inhibited the mitochondrial dysfunction caused by 1g and reversed ER-stress, cell cycle stagnation, and apoptosis. Additionally, pretreatment with the p-PERK inhibitor GSK2606414 significantly reduced ER-stress and reversed the apoptosis induced by colon cancer cells. In summary, the production of ROS plays an important role in the destruction of colon cancer cells by 1g and demonstrates that targeted strategies based on ROS represent a promising approach to inhibit colon cancer proliferation. These findings reveal that the novel curcumin derivative 1g represents a potential candidate therapeutics for the treatment of colon cancer cells, via apoptosis caused by mitochondrial dysfunction and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Hao Wang
- Department of Medicine, Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Medicine, Qingdao University, Qingdao, China
| | - Yingxing Xu
- Department of Medicine, Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Medicine, Qingdao University, Qingdao, China
| | - Jialin Sun
- Department of Medicine, Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Medicine, Qingdao University, Qingdao, China
| | - Zhongguo Sui
- Department of Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Fernandes SG, Shah P, Khattar E. Recent Advances in Therapeutic Application of DNA Damage Response Inhibitors against Cancer. Anticancer Agents Med Chem 2021; 22:469-484. [PMID: 34102988 DOI: 10.2174/1871520621666210608105735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
DNA integrity is continuously challenged by intrinsic cellular processes and environmental agents. To overcome this genomic damage, cells have developed multiple signaling pathways collectively named as DNA damage response (DDR) and composed of three components: (i) sensor proteins, which detect DNA damage, (ii) mediators that relay the signal downstream and recruit the repair machinery, and (iii) the repair proteins, which restore the damaged DNA. A flawed DDR and failure to repair the damage lead to the accumulation of genetic lesions and increased genomic instability, which is recognized as a hallmark of cancer. Cancer cells tend to harbor increased mutations in DDR genes and often have fewer DDR pathways than normal cells. This makes cancer cells more dependent on particular DDR pathways and thus become more susceptible to compounds inhibiting those pathways compared to normal cells, which have all the DDR pathways intact. Understanding the roles of different DDR proteins in the DNA damage response and repair pathways and identification of their structures have paved the way for the development of their inhibitors as targeted cancer therapy. In this review, we describe the major participants of various DDR pathways, their significance in carcinogenesis, and focus on the inhibitors developed against several key DDR proteins.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| | - Prachi Shah
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| |
Collapse
|
27
|
Herbert KJ, Puliyadi R, Prevo R, Rodriguez-Berriguete G, Ryan A, Ramadan K, Higgins GS. Targeting TOPK sensitises tumour cells to radiation-induced damage by enhancing replication stress. Cell Death Differ 2021; 28:1333-1346. [PMID: 33168956 PMCID: PMC8027845 DOI: 10.1038/s41418-020-00655-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2019] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 01/04/2023] Open
Abstract
T-LAK-originated protein kinase (TOPK) overexpression is a feature of multiple cancers, yet is absent from most phenotypically normal tissues. As such, TOPK expression profiling and the development of TOPK-targeting pharmaceutical agents have raised hopes for its future potential in the development of targeted therapeutics. Results presented in this paper confirm the value of TOPK as a potential target for the treatment of solid tumours, and demonstrate the efficacy of a TOPK inhibitor (OTS964) when used in combination with radiation treatment. Using H460 and Calu-6 lung cancer xenograft models, we show that pharmaceutical inhibition of TOPK potentiates the efficacy of fractionated irradiation. Furthermore, we provide in vitro evidence that TOPK plays a hitherto unknown role during S phase, showing that TOPK depletion increases fork stalling and collapse under conditions of replication stress and exogenous DNA damage. Transient knockdown of TOPK was shown to impair recovery from fork stalling and to increase the formation of replication-associated single-stranded DNA foci in H460 lung cancer cells. We also show that TOPK interacts directly with CHK1 and Cdc25c, two key players in the checkpoint signalling pathway activated after replication fork collapse. This study thus provides novel insights into the mechanism by which TOPK activity supports the survival of cancer cells, facilitating checkpoint signalling in response to replication stress and DNA damage.
Collapse
Affiliation(s)
- Katharine J Herbert
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Rathi Puliyadi
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Remko Prevo
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Gonzalo Rodriguez-Berriguete
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Anderson Ryan
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Kristijan Ramadan
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Geoff S Higgins
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
28
|
Gorecki L, Andrs M, Korabecny J. Clinical Candidates Targeting the ATR-CHK1-WEE1 Axis in Cancer. Cancers (Basel) 2021; 13:795. [PMID: 33672884 PMCID: PMC7918546 DOI: 10.3390/cancers13040795] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish cancer cells from healthy ones. Accordingly, several clinical candidates that use particular mutations in cell-cycle progressions have been developed to kill cancer cells. As the majority of cancer cells have defects in G1 control, targeting the subsequent intra‑S or G2/M checkpoints has also been extensively pursued. This review focuses on clinical candidates that target the kinases involved in intra‑S and G2/M checkpoints, namely, ATR, CHK1, and WEE1 inhibitors. It provides insight into their current status and future perspectives for anticancer treatment. Overall, even though CHK1 inhibitors are still far from clinical establishment, promising accomplishments with ATR and WEE1 inhibitors in phase II trials present a positive outlook for patient survival.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
| | - Martin Andrs
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
| |
Collapse
|
29
|
Barnieh FM, Loadman PM, Falconer RA. Progress towards a clinically-successful ATR inhibitor for cancer therapy. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100017. [PMID: 34909652 PMCID: PMC8663972 DOI: 10.1016/j.crphar.2021.100017] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
The DNA damage response (DDR) is now known to play an important role in both cancer development and its treatment. Targeting proteins such as ATR (Ataxia telangiectasia mutated and Rad3-related) kinase, a major regulator of DDR, has demonstrated significant therapeutic potential in cancer treatment, with ATR inhibitors having shown anti-tumour activity not just as monotherapies, but also in potentiating the effects of conventional chemotherapy, radiotherapy, and immunotherapy. This review focuses on the biology of ATR, its functional role in cancer development and treatment, and the rationale behind inhibition of this target as a therapeutic approach, including evaluation of the progress and current status of development of potent and specific ATR inhibitors that have emerged in recent decades. The current applications of these inhibitors both in preclinical and clinical studies either as single agents or in combinations with chemotherapy, radiotherapy and immunotherapy are also extensively discussed. This review concludes with some insights into the various concerns raised or observed with ATR inhibition in both the preclinical and clinical settings, with some suggested solutions.
Collapse
Affiliation(s)
- Francis M. Barnieh
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Paul M. Loadman
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Robert A. Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| |
Collapse
|
30
|
Alba-Linero C, Alba E. Ocular side effects of checkpoint inhibitors. Surv Ophthalmol 2021; 66:951-959. [PMID: 33440195 DOI: 10.1016/j.survophthal.2021.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/24/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 01/06/2023]
Abstract
The incidence and impact of ocular side effects in patients treated with checkpoint inhibitors are not clearly defined. We reviewed prospective phase III clinical trials of checkpoint inhibitors applied in lung cancer, renal cell cancer, and melanoma. Case reports of the occurrence of ocular toxicities in patients receiving immune checkpoint inhibitors were also included. Of the 35 articles corresponding to phase III clinical trials with checkpoint inhibitors, ocular toxicity was described in four. Forty-six clinical cases of ocular toxicity after therapy with checkpoint inhibitors have been reported. The most frequently described ocular toxicities are uveitis, inflammatory orbital disease, and alterations of the ocular surface. Ocular toxicity is underestimated in checkpoint inhibitors clinical trials. Early ophthalmic examination and treatment with corticosteroids may improve the visual prognosis in these patients.
Collapse
Affiliation(s)
- Carmen Alba-Linero
- Hospital Regional Universitario Málaga, Málaga, Spain; Departamento Oftalmología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.
| | - Emilio Alba
- Unidad de gestión clínica (UGI) Oncología Médica Hospital Regional y Universitario de Málaga, Instituto de Investigación de Biotecnología de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
31
|
Bakhtiari H, Gheysarzadeh A, Ghanadian M, Aghaei M. 15-Hydroxy-8(17),13(E)-labdadiene-19-carboxylic acid (HLCA) inhibits proliferation and induces cell cycle arrest and apoptosis in ovarian cancer cells. Life Sci 2020; 267:118981. [PMID: 33385409 DOI: 10.1016/j.lfs.2020.118981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2020] [Revised: 12/12/2020] [Accepted: 12/22/2020] [Indexed: 11/15/2022]
Abstract
AIM 15-Hydroxy-8(17),13(E)-labdadiene-19-carboxylic acid (HLCA) isolated from Juniperus foetidissima, has been recently identified as an antiproliferative agent; however, the molecular basis of antiproliferative effects of HLCA remains unknown. To investigate it, the current study has emphasized the hypothesis that HLCA induced cell death is a consequence of intracellular reactive oxygen species (ROS) production followed by cell cycle arrest and apoptosis. MAIN METHODS Human ovarian OVCAR-3 and Caov-4 cells were treated with various concentrations of HLCA (48 h) and the measurement of intracellular ROS was considered. Then, the potential of HLCA in promoting apoptosis was investigated via flow cytometry, western blot, and caspase activity assay. Also, the inhibitory effect of HLCA on the cell cycle was evaluated using flow cytometry and western blot analysis. KEY FINDINGS We found intracellular (ROS) accumulation in HLCA-treated cells. Subsequent observation of the increment in pro-apoptotic Bax as well as the decrement in antiapoptotic Bcl2 revealed that the HLCA-induced cytotoxicity may be triggered by the intrinsic pathway of apoptosis. Our subsequent experiments suggested that caspase-9 and -3 were activated and led the cells to apoptosis during the process. Cell cycle disruption at the G1 phase via down-regulation of cyclin D1 and Cyclin-dependent kinase 4 (CDK4) was another proved mechanism by which HLCA exerts its antiproliferative effects on the ovarian cell lines, OVCAR-3 and Caov-4, especially at relatively lower concentrations. SIGNIFICANCE This is the first study that reveals the apoptotic effects of HLCA, suggesting its therapeutic potential as an effective anti-tumor agent. However, further in vivo studies are required to confirm these effects.
Collapse
Affiliation(s)
- Hadi Bakhtiari
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Gheysarzadeh
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Oharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Scuiences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
32
|
Yu CW, Yau M, Mezey N, Joarder I, Micieli JA. Neuro-ophthalmic Complications of Immune Checkpoint Inhibitors: A Systematic Review. Eye Brain 2020; 12:139-167. [PMID: 33173368 PMCID: PMC7648547 DOI: 10.2147/eb.s277760] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Immune checkpoint inhibitors (ICIs) are novel cancer therapies that may be associated with immune-related adverse events (IRAEs) and come to the attention of neuro-ophthalmologists. This systematic review aims to synthesize the reported ICI-associated IRAEs relevant to neuro-ophthalmologists to help in the diagnosis and management of these conditions. METHODS A systematic review of the literature indexed by MEDLINE, Embase, CENTRAL, and Web of Science databases was searched from inception to May 2020. Reporting followed the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines. Primary studies on ICIs and neuro-ophthalmic complications were included. Outcomes included number of cases and incidence of neuro-ophthalmic IRAEs. RESULTS Neuro-ophthalmic complications of ICIs occurred in 0.46% of patients undergoing ICI and may affect the afferent and efferent visual systems. Afferent complications include optic neuritis (12.8%), neuroretinitis (0.9%), and giant cell arteritis (3.7%). Efferent complications include myasthenia gravis (MG) (45.0%), thyroid-like eye disease (11.9%), orbital myositis (13.8%), general myositis with ptosis (7.3%), internuclear ophthalmoplegia (0.9%), opsoclonus-myoclonus-ataxia syndrome (0.9%), and oculomotor nerve palsy (0.9%). Pembrolizumab was the most common causative agent for neuro-ophthalmic complications (32.1%). Mortality was highest for MG (19.8%). Most patients (79.8%) experienced improvement or complete resolution of neuro-ophthalmic symptoms due to cessation of ICI and immunosuppression with systemic corticosteroids. CONCLUSION While incidence of neuro-ophthalmic IRAEs is low, clinicians involved in the care of cancer patients must be aware of their presentation to facilitate prompt recognition and management. Collaboration between oncology and neuro-ophthalmology teams is required to effectively manage patients and reduce morbidity and mortality.
Collapse
Affiliation(s)
- Caberry W Yu
- Faculty of Medicine, Queen’s University, Kingston, Canada
| | - Matthew Yau
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Natalie Mezey
- Faculty of Medicine, Queen’s University, Kingston, Canada
| | - Ishraq Joarder
- Faculty of Science, University of Toronto, Scarborough, Ontario, Canada
| | - Jonathan A Micieli
- Department of Ophthalmology and Vision Sciences and Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
- Kensington Vision and Research Centre, Toronto, Canada
| |
Collapse
|
33
|
Singh R, Bhardwaj VK, Sharma J, Das P, Purohit R. Discovery and in silico evaluation of aminoarylbenzosuberene molecules as novel checkpoint kinase 1 inhibitor determinants. Genomics 2020; 113:707-715. [PMID: 33065246 DOI: 10.1016/j.ygeno.2020.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 10/01/2020] [Indexed: 01/12/2023]
Abstract
Checkpoint kinase 1 (CHK1) is an essential kinase with a critical function in cell cycle arrest. Several potent inhibitors targeting CHK1 have been published, but most of them have failed in clinical trials. Acknowledging the emerging consequence of CHK1 inhibitors in medication of cancer, there is a demand for widening the chemical range of CHK1 inhibitors. In this research, we considered a set of in-house plant based semi-synthetic aminoarylbenzosuberene molecules as potential CHK1 inhibitors. Based on a combined computational research that consolidates molecular docking and binding free energy computations we recognized the crucial determinants for their receptor binding. The drug likeness of these molecules were also scrutinized based on their toxicity and bioavailibilty profile. The computational strategy indicates that the Bch10 could be regarded as a potential CHK1 inhibitor in comparison with top five co-crystallize molecules. Bch10 signifies a promising outlet for the development of potent inhibitors for CHK1.
Collapse
Affiliation(s)
- Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP 176061, India
| | - Jatin Sharma
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India
| | - Pralay Das
- Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP 176061, India; Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP 176061, India.
| |
Collapse
|
34
|
Li WY, Li LC, Huo JG. Side effects and management in immunotherapy based on immune checkpoint inhibitors. Shijie Huaren Xiaohua Zazhi 2020; 28:755-764. [DOI: 10.11569/wcjd.v28.i16.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors, which exert their antitumor effects by targeting suppressive immune molecules, are a class of monoclonal antibody drugs based on certain immune checkpoints. Cancer immunotherapies lead to unique toxicity profiles distinct from the toxicities of other cancer therapies, depending on their mechanism of action. Immune-related adverse events can involve any organ or system. These effects are frequently low grade and reversible, affecting the skin, gastrointestinal tract, liver, endocrine system, and lung most commonly. However, some adverse effects can be severe and life-threatening. Therefore, the effective management of immune-related adverse events and reducing the occurrence of grade 3-4 treatment-related adverse events are critical in optimizing treatment outcomes. In this review, we summarize the clinical guidelines and the latest studies, and focus on the common toxic effects and management of the adverse events related to anti-cytotoxic T lymphocyte-associated antigen-4 or programmed death-1/programmed death-ligand-1 monoclonal antibody drugs, in order to provide better management of immune-related adverse events.
Collapse
Affiliation(s)
- Wen-Yu Li
- The Third Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Ling-Chang Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Jie-Ge Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| |
Collapse
|
35
|
Heidler CL, Roth EK, Thiemann M, Blattmann C, Perez RL, Huber PE, Kovac M, Amthor B, Neu‐Yilik G, Kulozik AE. Prexasertib (LY2606368) reduces clonogenic survival by inducing apoptosis in primary patient-derived osteosarcoma cells and synergizes with cisplatin and talazoparib. Int J Cancer 2020; 147:1059-1070. [PMID: 31782150 PMCID: PMC7384073 DOI: 10.1002/ijc.32814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2018] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022]
Abstract
Progress in the systemic control of osteosarcoma has been limited over the past decades thus indicating the urgent clinical need for the development of novel treatment strategies. Therefore, we have recently developed new preclinical models to study promising novel agents for the treatment of pediatric osteosarcoma. The checkpoint kinase (chk) inhibitor prexasertib (LY2606368) and its salt form (LSN2940930) have recently been shown to be active in adult and pediatric malignancies, including sarcoma. We have now tested the potency of prexasertib in clonogenic survival assays in two new lines of primary patient-derived osteosarcoma cells and in two established osteosarcoma cell lines as a single agent and in combination with cisplatin and the poly ADP-ribose polymerase (PARP) inhibitor talazoparib. Prexasertib alone results in strongly reduced clonogenic survival at low nanomolar concentrations and acts by affecting cell cycle progression, induction of apoptosis and induction of double-stranded DNA breakage at concentrations that are well below clinically tolerable and safe plasma concentrations. In combination with cisplatin and talazoparib, prexasertib acts in a synergistic fashion. Chk1 inhibition by prexasertib and its combination with the DNA damaging agent cisplatin and the PARP-inhibitor talazoparib thus emerges as a potential new treatment option for pediatric osteosarcoma which will now have to be tested in preclinical primary patient derived in vivo models and clinical studies.
Collapse
Affiliation(s)
- Christopher L. Heidler
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ)Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of HeidelbergHeidelbergGermany
| | - Eva K. Roth
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ)Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of HeidelbergHeidelbergGermany
| | - Markus Thiemann
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ)Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of HeidelbergHeidelbergGermany
| | - Claudia Blattmann
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ)Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of HeidelbergHeidelbergGermany
- Pediatrics 5 (Oncology, Hematology, Immunology)Klinikum Stuttgart OlgahospitalStuttgartGermany
- German Cancer Consortium (DKTK)HeidelbergGermany
| | - Ramon L. Perez
- Department of Molecular and Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Radiation Oncology (HIRO)National Center for Radiation Research in OncologyHeidelbergGermany
| | - Peter E. Huber
- Department of Molecular and Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Radiation Oncology (HIRO)National Center for Radiation Research in OncologyHeidelbergGermany
- Department of Radiation OncologyHeidelberg University HospitalHeidelbergGermany
| | - Michal Kovac
- Bone Tumour Reference Center, Institute of PathologyUniversity Hospital Basel and University of BaselBaselSwitzerland
| | - Beate Amthor
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ)Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of HeidelbergHeidelbergGermany
| | - Gabriele Neu‐Yilik
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ)Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of HeidelbergHeidelbergGermany
| | - Andreas E. Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ)Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of HeidelbergHeidelbergGermany
| |
Collapse
|
36
|
Czaja K, Kujawski J, Kamel K, Bernard MK. Selected arylsulphonyl pyrazole derivatives as potential Chk1 kinase ligands-computational investigations. J Mol Model 2020; 26:144. [PMID: 32424505 PMCID: PMC7235069 DOI: 10.1007/s00894-020-04407-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2019] [Accepted: 04/29/2020] [Indexed: 01/12/2023]
Abstract
Protein kinases control diversity of biochemical processes in human organism. Checkpoint 1 kinase (Chk1) is an important element of the checkpoint signalling pathways and is responsible for DNA damage repair. Hence, this kinase plays an essential role in cancer cells survival and has become an important target for anticancer agents. Our previous investigations showed that some arylsulphonyl indazole derivatives displayed anticancer effect in vitro. In the present study, in order to verify possibility of interactions of pyrazole and indazole derivatives with Chk1, we focused on the docking of selected tosyl derivatives of indazole and condensed pyrazole 1-7 to the Chk1 pocket, analysis of interactions involving optimized ligand-protein system using DFT formalism, and estimation of the interaction enthalpy of the ligand-protein complex by applying the PM7 method. The estimation of binding affinity seems to indicate that the indazole 5-substituted with 3,5-dimethylpyrazole 4 and condensed pyrazoloquinoline derivative 7 fit the best to the Chk1-binding pocket. The values of the energy of interaction, i.e. the enthalpy change (ΔHint), were between - 85.06 and - 124.04 kcal mol-1 for the optimized ligand-Chk1 complexes. The relaxation of the ligands within the complexes azole-protein as well as the distribution of hydrogen contacts between the ligands and kinase pocket amino acids was also analysed using molecular dynamics as a supporting method. Graphical Abstract Presentation of methods used to describe the interactions between arylsulphonyl pyrazole derivatives and Chk1 kinase.
Collapse
Affiliation(s)
- Kornelia Czaja
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780, Poznan, Poland.
| | - Jacek Kujawski
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780, Poznan, Poland
| | - Karol Kamel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Marek K Bernard
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780, Poznan, Poland
| |
Collapse
|
37
|
Rogers RF, Walton MI, Cherry DL, Collins I, Clarke PA, Garrett MD, Workman P. CHK1 Inhibition Is Synthetically Lethal with Loss of B-Family DNA Polymerase Function in Human Lung and Colorectal Cancer Cells. Cancer Res 2020; 80:1735-1747. [PMID: 32161100 PMCID: PMC7611445 DOI: 10.1158/0008-5472.can-19-1372] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2019] [Revised: 01/10/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Checkpoint kinase 1 (CHK1) is a key mediator of the DNA damage response that regulates cell-cycle progression, DNA damage repair, and DNA replication. Small-molecule CHK1 inhibitors sensitize cancer cells to genotoxic agents and have shown single-agent preclinical activity in cancers with high levels of replication stress. However, the underlying genetic determinants of CHK1 inhibitor sensitivity remain unclear. We used the developmental clinical drug SRA737 in an unbiased large-scale siRNA screen to identify novel mediators of CHK1 inhibitor sensitivity and uncover potential combination therapies and biomarkers for patient selection. We identified subunits of the B-family of DNA polymerases (POLA1, POLE, and POLE2) whose silencing sensitized the human A549 non-small cell lung cancer (NSCLC) and SW620 colorectal cancer cell lines to SRA737. B-family polymerases were validated using multiple siRNAs in a panel of NSCLC and colorectal cancer cell lines. Replication stress, DNA damage, and apoptosis were increased in human cancer cells following depletion of the B-family DNA polymerases combined with SRA737 treatment. Moreover, pharmacologic blockade of B-family DNA polymerases using aphidicolin or CD437 combined with CHK1 inhibitors led to synergistic inhibition of cancer cell proliferation. Furthermore, low levels of POLA1, POLE, and POLE2 protein expression in NSCLC and colorectal cancer cells correlated with single-agent CHK1 inhibitor sensitivity and may constitute biomarkers of this phenotype. These findings provide a potential basis for combining CHK1 and B-family polymerase inhibitors in cancer therapy. SIGNIFICANCE: These findings demonstrate how the therapeutic benefit of CHK1 inhibitors may potentially be enhanced and could have implications for patient selection and future development of new combination therapies.
Collapse
Affiliation(s)
- Rebecca F Rogers
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Michael I Walton
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Daniel L Cherry
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, United Kingdom
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Paul A Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Michelle D Garrett
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, United Kingdom.
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
38
|
Abad E, Graifer D, Lyakhovich A. DNA damage response and resistance of cancer stem cells. Cancer Lett 2020; 474:106-117. [PMID: 31968219 DOI: 10.1016/j.canlet.2020.01.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
The cancer stem cell (CSC) model defines tumors as hierarchically organized entities, containing a small population of tumorigenic CSC, or tumour-initiating cells, placed at the apex of this hierarchy. These cells may share common qualities with chemo- and radio-resistant cancer cells and contribute to self-renewal activities resulting in tumour formation, maintenance, growth and metastasis. Yet, it remains obscure what self-defense mechanisms are utilized by these cells against the chemotherapeutic drugs or radiotherapy. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis. In line with this note, an increased DDR that prevents CSC and chemoresistant cells from genotoxic pressure of chemotherapeutic drugs or radiation may be responsible for cancer metastasis. In this review, we focus on the current knowledge concerning the role of DDR in CSC and resistant cancer cells and describe the existing opportunities of re-sensitizing such cells to modulate therapeutic treatment effects.
Collapse
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia; Vall D'Hebron Institut de Recerca, 08035, Barcelona, Spain.
| |
Collapse
|
39
|
Brandão P, Pineiro M, Pinho e Melo TMVD. Flow Chemistry: Towards A More Sustainable Heterocyclic Synthesis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901335] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pedro Brandão
- CQC and Department of Chemistry; University of Coimbra; 3004-535 Coimbra Portugal
- Centro de Química de Évora; Institute for Research and Advanced Studies; University of Évora; 7000 Évora Portugal
| | - Marta Pineiro
- CQC and Department of Chemistry; University of Coimbra; 3004-535 Coimbra Portugal
| | | |
Collapse
|
40
|
Marampon F, Di Nisio V, Pietrantoni I, Petragnano F, Fasciani I, Scicchitano BM, Ciccarelli C, Gravina GL, Festuccia C, Del Fattore A, Tombolini M, De Felice F, Musio D, Cecconi S, Tini P, Maddalo M, Codenotti S, Fanzani A, Polimeni A, Maggio R, Tombolini V. Pro-differentiating and radiosensitizing effects of inhibiting HDACs by PXD-101 (Belinostat) in in vitro and in vivo models of human rhabdomyosarcoma cell lines. Cancer Lett 2019; 461:90-101. [DOI: 10.1016/j.canlet.2019.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2019] [Revised: 07/08/2019] [Accepted: 07/13/2019] [Indexed: 12/11/2022]
|
41
|
Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair (Amst) 2019; 82:102679. [PMID: 31450085 DOI: 10.1016/j.dnarep.2019.102679] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2019] [Revised: 07/27/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
|
42
|
Jung SY, Nam KY, Park JI, Song KH, Ahn J, Park JK, Um HD, Hwang SG, Choi SU, Song JY. Radiosensitizing Effect of Novel Phenylpyrimidine Derivatives on Human Lung Cancer Cells via Cell Cycle Perturbation. J Pharmacol Exp Ther 2019; 370:514-527. [PMID: 31253693 DOI: 10.1124/jpet.119.257717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Radiotherapy is one of the most common treatments for cancer, but radioresistance and injury to normal tissue are considered major obstacles to successful radiotherapy. Thus, there is an urgent need to develop radiosensitizers to improve the therapeutic outcomes of radiotherapy in cancer patients. Our previous efforts to identify novel radiosensitizers, using high-throughput screening targeting p53 and Nrf2 revealed a promising N-phenylpyrimidin-2-amine (PPA) lead compound. In the present study, 17 derivatives of this lead compound were examined, and it was found that 4-(4-fluorophenyl)-N-(4-nitrophenyl)-6-phenylpyrimidin-2-amine (PPA5), 4-((4-(4-fluorophenyl)pyrimidin-2-yl)amino)-3-methoxy-N-methyl -benzamide (PPA13), 4-((4-(4-fluorophenyl)pyrimidin-2-yl)amino)benzenesulfonamide (PPA14), 4-((4-(2-chlorophenyl)pyrimidin-2-yl)amino)benzenesulfonamide (PPA15), and 4-((4-(2-chlorophenyl)pyrimidin-2-yl)amino)-N-methylbenzamide (PPA17) inhibited cell viability by more than 50%, with a marked increase in the proportion of cells arrested at the G2/M phase of cell cycle. Among these compounds, PPA15 markedly increased the sub-G1 cell population and increased the levels of cyclin B1 and the phosphorylation levels of cyclin-dependent kinase (CDK) 1. Combined treatment with radiation and PPA14 or PPA15 significantly decreased clonogenic survival. An in vitro kinase assay revealed that PPA15 inhibited multiple CDKs involved in cell cycle regulation. Compared with drug or radiation treatment alone, combined treatment with PPA15 and radiation resulted in the suppression of A549 tumor growth in mice by 59.5% and 52.7%, respectively. Treatment with PPA15 alone directly inhibited tumor growth by 25.7%. These findings suggest that the novel pan CDK inhibitor, PPA15, may be a promising treatment to improve the effectiveness of radiotherapy for the treatment of cancer. SIGNIFICANCE STATEMENT: Several inhibitors of CDK have been successfully evaluated in combination with other chemotherapeutics in clinical trials, but negative side effects have partially restricted their clinical use. In this study, we identified a novel pan-CDK inhibitor to increase radiosensitivity, and we hope this work will encourage the development of promising small-molecule radiosensitizers.
Collapse
Affiliation(s)
- Seung-Youn Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea (S.-Y.J., J.-I.P., K.-H.S., J.A., J.K.P., H.-D.U., S.-G.H., J.-Y.S.); Research Center, Pharos I&BT Co., Ltd., Anyang, Republic of Korea (K.-Y.N.); Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea (K.-H.S.); and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea (S.U.C.)
| | - Ky-Youb Nam
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea (S.-Y.J., J.-I.P., K.-H.S., J.A., J.K.P., H.-D.U., S.-G.H., J.-Y.S.); Research Center, Pharos I&BT Co., Ltd., Anyang, Republic of Korea (K.-Y.N.); Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea (K.-H.S.); and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea (S.U.C.)
| | - Jeong-In Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea (S.-Y.J., J.-I.P., K.-H.S., J.A., J.K.P., H.-D.U., S.-G.H., J.-Y.S.); Research Center, Pharos I&BT Co., Ltd., Anyang, Republic of Korea (K.-Y.N.); Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea (K.-H.S.); and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea (S.U.C.)
| | - Kyung-Hee Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea (S.-Y.J., J.-I.P., K.-H.S., J.A., J.K.P., H.-D.U., S.-G.H., J.-Y.S.); Research Center, Pharos I&BT Co., Ltd., Anyang, Republic of Korea (K.-Y.N.); Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea (K.-H.S.); and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea (S.U.C.)
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea (S.-Y.J., J.-I.P., K.-H.S., J.A., J.K.P., H.-D.U., S.-G.H., J.-Y.S.); Research Center, Pharos I&BT Co., Ltd., Anyang, Republic of Korea (K.-Y.N.); Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea (K.-H.S.); and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea (S.U.C.)
| | - Jong Kuk Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea (S.-Y.J., J.-I.P., K.-H.S., J.A., J.K.P., H.-D.U., S.-G.H., J.-Y.S.); Research Center, Pharos I&BT Co., Ltd., Anyang, Republic of Korea (K.-Y.N.); Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea (K.-H.S.); and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea (S.U.C.)
| | - Hong-Duck Um
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea (S.-Y.J., J.-I.P., K.-H.S., J.A., J.K.P., H.-D.U., S.-G.H., J.-Y.S.); Research Center, Pharos I&BT Co., Ltd., Anyang, Republic of Korea (K.-Y.N.); Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea (K.-H.S.); and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea (S.U.C.)
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea (S.-Y.J., J.-I.P., K.-H.S., J.A., J.K.P., H.-D.U., S.-G.H., J.-Y.S.); Research Center, Pharos I&BT Co., Ltd., Anyang, Republic of Korea (K.-Y.N.); Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea (K.-H.S.); and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea (S.U.C.)
| | - Sang Un Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea (S.-Y.J., J.-I.P., K.-H.S., J.A., J.K.P., H.-D.U., S.-G.H., J.-Y.S.); Research Center, Pharos I&BT Co., Ltd., Anyang, Republic of Korea (K.-Y.N.); Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea (K.-H.S.); and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea (S.U.C.)
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea (S.-Y.J., J.-I.P., K.-H.S., J.A., J.K.P., H.-D.U., S.-G.H., J.-Y.S.); Research Center, Pharos I&BT Co., Ltd., Anyang, Republic of Korea (K.-Y.N.); Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea (K.-H.S.); and Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea (S.U.C.)
| |
Collapse
|
43
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
44
|
Lukášová E, Řezáčová M, Bačíková A, Šebejová L, Vávrová J, Kozubek S. Distinct cellular responses to replication stress leading to apoptosis or senescence. FEBS Open Bio 2019; 9:870-890. [PMID: 30982228 PMCID: PMC6487726 DOI: 10.1002/2211-5463.12632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
Replication stress (RS) is a major driver of genomic instability and tumorigenesis. Here, we investigated whether RS induced by the nucleotide analog fludarabine and specific kinase inhibitors [e.g. targeting checkpoint kinase 1 (Chk1) or ataxia telangiectasia and Rad3‐related (ATR)] led to apoptosis or senescence in four cancer cell lines differing in TP53 mutation status and expression of lamin A/C (LA/C). RS resulted in uneven chromatin condensation in all cell types, as evidenced by the presence of metaphasic chromosomes with unrepaired DNA damage, as well as detection of less condensed chromatin in the same nucleus, frequent ultrafine anaphase bridges, and micronuclei. We observed that responses to these chromatin changes may be distinct in individual cell types, suggesting that expression of lamin A/C and lamin B1 (LB1) may play an important role in the transition of damaged cells to senescence. MCF7 mammary carcinoma cells harboring wild‐type p53 (WT‐p53) and LA/C responded to RS by transition to senescence with a significant reduction of lamin B receptor and LB1 proteins. In contrast, a lymphoid cancer cell line WSU‐NHL (WT‐p53) lacking LA/C and expressing low levels of LB1 died after several hours, while lines MEC‐1 and SU‐DHL‐4, both with mutated p53, and SU‐DHL‐4 with mutations in LA/C, died at different rates by apoptosis. Our results show that, in addition to being influenced by p53 mutation status, the response to RS (apoptosis or senescence) may also be influenced by lamin A/C and LB1 status.
Collapse
Affiliation(s)
- Emilie Lukášová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Alena Bačíková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Ludmila Šebejová
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiřina Vávrová
- Department of Radiobiology, Faculty of Military Health Sciences Hradec Králové, University of Defence Brno, Hradec Králové, Czech Republic
| | - Stanislav Kozubek
- Department of Cell Biology and Radiobiology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
45
|
Kwon J, Lee S, Kim YN, Lee IH. Deacetylation of CHK2 by SIRT1 protects cells from oxidative stress-dependent DNA damage response. Exp Mol Med 2019; 51:1-9. [PMID: 30902968 PMCID: PMC6430805 DOI: 10.1038/s12276-019-0232-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Growing evidence indicates that metabolic signaling pathways are interconnected to DNA damage response (DDR). However, factors that link metabolism to DDR remain incompletely understood. SIRT1, an NAD+-dependent deacetylase that regulates metabolism and aging, has been shown to protect cells from DDR. Here, we demonstrate that SIRT1 protects cells from oxidative stress-dependent DDR by binding and deacetylating checkpoint kinase 2 (CHK2). We first showed that essential proteins in DDR were hyperacetylated in Sirt1-deficient cells and that among them, the level of acetylated CHK2 was highly increased. We found that Sirt1 formed molecular complexes with CHK2, BRCA1/BRCA2-associated helicase 1 (BACH1), tumor suppressor p53-binding protein 1 (53BP1), and H2AX, all of which are key factors in response to DNA damage. We then demonstrated that CHK2 was normally inhibited by SIRT1 via deacetylation but dissociated with SIRT1 under oxidative stress conditions. This led to acetylation and activation of CHK2, which increased cell death under oxidative stress conditions. Our data also indicated that SIRT1 deacetylated the K235 and K249 residues of CHK2, whose acetylation increased cell death in response to oxidative stress. Thus, SIRT1, a metabolic sensor, protects cells from oxidative stress-dependent DDR by the deacetylation of CHK2. Our findings suggest a crucial function of SIRT1 in inhibiting CHK2 as a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Jiyun Kwon
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Suhee Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Yong-Nyun Kim
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, Goyang, Korea
| | - In Hye Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
46
|
Pillay N, Tighe A, Nelson L, Littler S, Coulson-Gilmer C, Bah N, Golder A, Bakker B, Spierings DCJ, James DI, Smith KM, Jordan AM, Morgan RD, Ogilvie DJ, Foijer F, Jackson DA, Taylor SS. DNA Replication Vulnerabilities Render Ovarian Cancer Cells Sensitive to Poly(ADP-Ribose) Glycohydrolase Inhibitors. Cancer Cell 2019; 35:519-533.e8. [PMID: 30889383 PMCID: PMC6428690 DOI: 10.1016/j.ccell.2019.02.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/20/2018] [Revised: 12/21/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Inhibitors of poly(ADP-ribose) polymerase (PARP) have demonstrated efficacy in women with BRCA-mutant ovarian cancer. However, only 15%-20% of ovarian cancers harbor BRCA mutations, therefore additional therapies are required. Here, we show that a subset of ovarian cancer cell lines and ex vivo models derived from patient biopsies are sensitive to a poly(ADP-ribose) glycohydrolase (PARG) inhibitor. Sensitivity is due to underlying DNA replication vulnerabilities that cause persistent fork stalling and replication catastrophe. PARG inhibition is synthetic lethal with inhibition of DNA replication factors, allowing additional models to be sensitized by CHK1 inhibitors. Because PARG and PARP inhibitor sensitivity are mutually exclusive, our observations demonstrate that PARG inhibitors have therapeutic potential to complement PARP inhibitor strategies in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Nisha Pillay
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Anthony Tighe
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Louisa Nelson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Samantha Littler
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Camilla Coulson-Gilmer
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Nourdine Bah
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Anya Golder
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | - Dominic I James
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Kate M Smith
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Allan M Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Robert D Morgan
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK; The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Donald J Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | - Dean A Jackson
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK.
| |
Collapse
|
47
|
Poly-ADP-ribosyl-polymerase inhibitor resistance mechanisms and their therapeutic implications. Curr Opin Obstet Gynecol 2019; 31:12-17. [DOI: 10.1097/gco.0000000000000517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
|
48
|
Novel quinazolin-4-one derivatives as potentiating agents of doxorubicin cytotoxicity. Bioorg Chem 2019; 82:204-210. [DOI: 10.1016/j.bioorg.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
|
49
|
Alblihy A, Mesquita KA, Sadiq MT, Madhusudan S. Development and implementation of precision therapies targeting base-excision DNA repair in BRCA1-associated tumors. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1567266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
Affiliation(s)
- Adel Alblihy
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
| | - Katia A. Mesquita
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
| | - Maaz T. Sadiq
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, UK
| | - Srinivasan Madhusudan
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
- Department of Oncology, Nottingham University Hospitals, City Hospital Campus, Nottingham, UK
| |
Collapse
|
50
|
Elsayed MSA, Nielsen JJ, Park S, Park J, Liu Q, Kim CH, Pommier Y, Agama K, Low PS, Cushman M. Application of Sequential Palladium Catalysis for the Discovery of Janus Kinase Inhibitors in the Benzo[ c]pyrrolo[2,3- h][1,6]naphthyridin-5-one (BPN) Series. J Med Chem 2018; 61:10440-10462. [PMID: 30460842 DOI: 10.1021/acs.jmedchem.8b00510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
The present account describes the discovery and development of a new benzo[ c]pyrrolo[2,3- h][1,6]naphthyridin-5-one (BPN) JAK inhibitory chemotype that has produced selective JAK inhibitors. Sequential palladium chemistry was optimized for the rapid access to a focused library of derivatives to explore the structure-activity relationships of the new scaffold. Several compounds from the series displayed potencies in the low nanomolar range against the four members of the JAK family with various selectivity profiles. Compound 20a, with an azetidine amide side chain, showed the best selectivity for JAK1 kinase vs JAK2, JAK3, and TYK2, with low nanomolar potency (IC50 = 3.4 nM). On the other hand, BPNs 17b and 18 had good general activity against the JAK family with excellent kinome selectivity profiles. Many of the new BPNs inhibited JAK3-mediated STAT-5 phosphorylation, the production of inflammatory cytokines, and the proliferation of primary T cells. Moreover, BPN 17b showed very similar in vivo results to tofacitinib in a rheumatoid arthritis animal model.
Collapse
Affiliation(s)
- Mohamed S A Elsayed
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States.,The Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Jeffery J Nielsen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States.,The Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Sungtae Park
- Department of Comparative Pathobiology, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States.,The Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Jeongho Park
- Department of Comparative Pathobiology, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States.,The Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Qingyang Liu
- Department of Comparative Pathobiology, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Pathology and Mary H. Weiser Food Allergy Center , University of Michigan Medical School , Ann Arbor , Michigan 48109 , United States
| | - Chang H Kim
- Department of Comparative Pathobiology, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States.,The Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Pathology and Mary H. Weiser Food Allergy Center , University of Michigan Medical School , Ann Arbor , Michigan 48109 , United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research , National Cancer Institute , Bethesda , Maryland 20892 , United States
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research , National Cancer Institute , Bethesda , Maryland 20892 , United States
| | - Philip S Low
- The Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States.,The Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|