1
|
Nwabo Kamdje AH, Dongmo Fogang HP, Mimche PN. Role of epigenetic in cancer biology, in hematologic malignancies and in anticancer therapy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1426454. [PMID: 39308891 PMCID: PMC11412843 DOI: 10.3389/fmmed.2024.1426454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Major epigenetic changes are associated with carcinogenesis, including aberrant DNA methylations and post-translational modifications of histone. Indeed evidence accumulated in recent years indicates that inactivating DNA hypermethylation preferentially targets the subset of polycomb group (PcG) genes that are regulators of developmental processes. Conversely, activating DNA hypomethylation targets oncogenic signaling pathway genes, but outcomes of both events lead in the overexpression of oncogenic signaling pathways that contribute to the stem-like state of cancer cells. On the basis of recent evidence from population-basedclinical and experimental studies, we hypothesize that factors associated with risk for developing a hematologic malignancy (HM), such as metabolic syndrome and chronic inflammation, may trigger epigenetic mechanisms to increase the transcriptional expression of oncogenes and activate oncogenic signaling pathways. Signaling pathways associated with such risk factors include but are not limited to pro-inflammatory nuclear factor κB (NF-κB) and mitogenic, growth, and survival Janus kinase (JAK) intracellular non-receptor tyrosine kinase-triggered pathways. The latter includes signaling pathways such as transducer and activator of transcription (STAT), Ras GTPases/mitogen-activated protein kinases (MAPKs)/extracellular signal-related kinases (ERKs), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and β-catenin pathways. Recent findings on epigenetic mechanisms at work in the biology of cancer and in HMs and their importance in the etiology and pathogenesis of these diseases are herein summarized and discussed. Furthermore, the role of epigenetic processes in the determination of biological identity, the consequences for interindividual variability in disease clinical profile, and the potential of epigenetic drugs in HMs are also considered.
Collapse
Affiliation(s)
- Armel Hervé Nwabo Kamdje
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Hervet Paulain Dongmo Fogang
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Patrice N. Mimche
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
2
|
Rana V, Kim E, Murphy M, Rizzuto P. Bilateral, sequential orbital inflammatory syndrome associated with ruxolitinib. Orbit 2024; 43:248-252. [PMID: 36278254 DOI: 10.1080/01676830.2022.2109177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Ruxolitinib is an oral Janus associated kinase (JAK) inhibitor commonly used in the treatment of primary myelofibrosis. We describe a case of an 86-year-old woman on ruxolitinib for primary myelofibrosis who presented with a three-day history of worsening left eyelid swelling, pain, and decreased vision. Her exam was notable for left upper lid ptosis, periorbital edema, and nearly complete external ophthalmoplegia along with diffuse conjunctival injection and microcystic corneal edema. An orbital computed tomography demonstrated left proptosis accompanied by extensive inflammatory changes of the preseptal and orbital soft tissues. She was diagnosed with acute left orbital inflammatory syndrome (OIS) and treated with intravenous methylprednisolone, one gram over 48 hours followed by an oral steroid taper as well as discontinuation of her ruxolitinib. Complete recovery was noted at her one-week follow-up visit and ruxolitinib was restarted. However, 3 weeks later, she presented with new right periorbital swelling and pain and was found to have a sequential right OIS for which she was again treated with methylprednisolone and discontinuation of ruxolitinib with the goal of transitioning to an alternative biologic agent. Although there are no previous documented cases of ruxolitinib associated orbital inflammatory syndrome, a similar JAK inhibitor medication, Fedratinib, has been reported to cause a similar side effect. We propose that her ruxolitinib paradoxically lead to a pro-inflammatory state leading to bilateral, sequential orbital inflammatory syndrome.
Collapse
Affiliation(s)
- Viren Rana
- Division of Ophthalmology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Eric Kim
- Division of Ophthalmology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Marjorie Murphy
- Division of Ophthalmology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Philip Rizzuto
- Division of Ophthalmology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Jia J, Zhou X, Chu Q. Mechanisms and therapeutic prospect of the JAK-STAT signaling pathway in liver cancer. Mol Cell Biochem 2024:10.1007/s11010-024-04983-5. [PMID: 38519710 DOI: 10.1007/s11010-024-04983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
Liver cancer (LC) poses a significant global health challenge due to its high incidence and poor prognosis. Current systemic treatment options, such as surgery, chemotherapy, radiofrequency ablation, and immunotherapy, have shown limited effectiveness for advanced LC patients. Moreover, owing to the heterogeneous nature of LC, it is crucial to uncover more in-depth pathogenic mechanisms and develop effective treatments to address the limitations of the existing therapeutic modalities. Increasing evidence has revealed the crucial role of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in the pathogenesis of LC. The specific mechanisms driving the JAK-STAT pathway activation in LC, participate in a variety of malignant biological processes, including cell differentiation, evasion, anti-apoptosis, immune escape, and treatment resistance. Both preclinical and clinical investigations on the JAK-STAT pathway inhibitors have exhibited potential in LC treatment, thereby opening up avenues for the development of more targeted therapeutic strategies for LC. In this study, we provide an overview of the JAK-STAT pathway, delving into the composition, activation, and dynamic interplay within the pathway. Additionally, we focus on the molecular mechanisms driving the aberrant activation of the JAK-STAT pathway in LC. Furthermore, we summarize the latest advancements in targeting the JAK-STAT pathway for LC treatment. The insights presented in this review aim to underscore the necessity of research into the JAK-STAT signaling pathway as a promising avenue for LC therapy.
Collapse
Affiliation(s)
- JunJun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China.
| | - Xuelian Zhou
- Division of Endocrinology, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Mahjoor M, Mahmoudvand G, Farokhi S, Shadab A, Kashfi M, Afkhami H. Double-edged sword of JAK/STAT signaling pathway in viral infections: novel insights into virotherapy. Cell Commun Signal 2023; 21:272. [PMID: 37784164 PMCID: PMC10544547 DOI: 10.1186/s12964-023-01240-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 10/04/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) is an intricate signaling cascade composed of various cytokines, interferons (IFN, growth factors, and other molecules. This pathway provides a delicate mechanism through which extracellular factors adjust gene expression, thereby acting as a substantial basis for environmental signals to influence cell growth and differentiation. The interactions between the JAK/STAT cascade and antiviral IFNs are critical to the host's immune response against viral microorganisms. Recently, with the emergence of therapeutic classes that target JAKs, the significance of this cascade has been recognized in an unprecedented way. Despite the functions of the JAK/STAT pathway in adjusting immune responses against viral pathogens, a vast body of evidence proposes the role of this cascade in the replication and pathogenesis of viral pathogens. In this article, we review the structure of the JAK/STAT signaling cascade and its role in immuno-inflammatory responses. We also highlight the paradoxical effects of this pathway in the pathogenesis of viral infections. Video Abstract.
Collapse
Affiliation(s)
- Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Mojtaba Kashfi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| |
Collapse
|
5
|
Li M, Duan L, Wu W, Li W, Zhao L, Li A, Lu X, He X, Dong Z, Liu K, Jiang Y. Vortioxetine hydrobromide inhibits the growth of gastric cancer cells in vivo and in vitro by targeting JAK2 and SRC. Oncogenesis 2023; 12:24. [PMID: 37147297 PMCID: PMC10163056 DOI: 10.1038/s41389-023-00472-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Gastric cancer is the fourth leading cause of cancer deaths worldwide. Most patients are diagnosed in the advanced stage. Inadequate therapeutic strategies and the high recurrence rate lead to the poor 5-year survival rate. Therefore, effective chemopreventive drugs for gastric cancer are urgently needed. Repurposing clinical drugs is an effective strategy for discovering cancer chemopreventive drugs. In this study, we find that vortioxetine hydrobromide, an FDA-approved drug, is a dual JAK2/SRC inhibitor, and has inhibitory effects on cell proliferation of gastric cancer. Computational docking analysis, pull-down assay, cellular thermal shift assay (CETSA) and in vitro kinase assays are used to illustrate vortioxetine hydrobromide directly binds to JAK2 and SRC kinases and inhibits their kinase activities. The results of non-reducing SDS-PAGE and Western blotting indicate that vortioxetine hydrobromide suppresses STAT3 dimerization and nuclear translocation activity. Furthermore, vortioxetine hydrobromide inhibits the cell proliferation dependent on JAK2 and SRC and suppresses the growth of gastric cancer PDX model in vivo. These data demonstrate that vortioxetine hydrobromide, as a novel dual JAK2/SRC inhibitor, curbs the growth of gastric cancer in vitro and in vivo by JAK2/SRC-STAT3 signaling pathways. Our results highlight that vortioxetine hydrobromide has the potential application in the chemoprevention of gastric cancer.
Collapse
Affiliation(s)
- Mingzhu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China
| | - Lina Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China
| | - Wenjie Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China
| | - Wenjing Li
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China
| | - Lili Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Ang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China
| | - Xuebo Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China
| | - Xinyu He
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450000, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, 450000, Henan, China.
- Center for Basic Medical Research, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
6
|
Liu J, Wang F, Luo F. The Role of JAK/STAT Pathway in Fibrotic Diseases: Molecular and Cellular Mechanisms. Biomolecules 2023; 13:biom13010119. [PMID: 36671504 PMCID: PMC9855819 DOI: 10.3390/biom13010119] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
There are four members of the JAK family and seven of the STAT family in mammals. The JAK/STAT molecular pathway could be activated by broad hormones, cytokines, growth factors, and more. The JAK/STAT signaling pathway extensively mediates various biological processes such as cell proliferation, differentiation, migration, apoptosis, and immune regulation. JAK/STAT activation is closely related to growth and development, homeostasis, various solid tumors, inflammatory illness, and autoimmune diseases. Recently, with the deepening understanding of the JAK/STAT pathway, the relationship between JAK/STAT and the pathophysiology of fibrotic diseases was noticed, including the liver, renal, heart, bone marrow, and lung. JAK inhibitor has been approved for myelofibrosis, and subsequently, JAK/STAT may serve as a promising target for fibrosis in other organs. Therefore, this article reviews the roles and mechanisms of the JAK/STAT signaling pathway in fibrotic diseases.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Faping Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengming Luo
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: ; Tel.: +86-18980601355
| |
Collapse
|
7
|
Abstract
EGFR is a member of the ERBB family. It plays a significant role in cellular processes such as growth, survival and differentiation via the activation of various signaling pathways. EGFR deregulation is implicated in various human malignancies, and therefore EGFR has emerged as an attractive anticancer target. EGFR inhibition using strategies such as tyrosine kinase inhibitors and monoclonal antibodies hinders cellular proliferation and promotes apoptosis in cancer cells in vitro and in vivo. EGFR inhibition by tyrosine kinase inhibitors has been shown to be a better treatment option than chemotherapy for advanced-stage EGFR-driven non-small-cell lung cancer, yet de novo and acquired resistance limits the clinical benefit of these therapeutic molecules. This review discusses the cellular signaling pathways activated by EGFR. Further, current therapeutic strategies to target aberrant EGFR signaling in cancer and mechanisms of resistance to them are highlighted.
Collapse
|
8
|
Shen P, Wang Y, Jia X, Xu P, Qin L, Feng X, Li Z, Qiu Z. Dual-target Janus kinase (JAK) inhibitors: Comprehensive review on the JAK-based strategies for treating solid or hematological malignancies and immune-related diseases. Eur J Med Chem 2022; 239:114551. [PMID: 35749986 DOI: 10.1016/j.ejmech.2022.114551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022]
Abstract
Janus kinases (JAKs) are the non-receptor tyrosine kinases covering JAK1, JAK2, JAK3, and TYK2 which regulate signal transductions of hematopoietic cytokines and growth factors to play essential roles in cell growth, survival, and development. Dysregulated JAK activity leading to a constitutively activated signal transducers and activators of transcription (STAT) is strongly associated with immune-related diseases and cancers. Targeting JAK to interfere the signaling of JAK/STAT pathway has achieved quite success in the treatment of these diseases. However, inadequate clinical response and serious adverse events come along by the treatment of monotherapy of JAK inhibitors. With better and deeper understanding of JAK/STAT pathway in the pathogenesis of diseases, researchers start to show huge interest in combining inhibition of JAK and other oncogenic targets to realize a broader regulation on pathological processes to block disease development and progression, which has hastened extensive research of dual JAK inhibitors over the past decades. Until now, studies of dual JAK inhibitors have added BTK, SYK, FLT3, HDAC, Src, and Aurora kinases to the overall inhibitory profile and demonstrated significant advantage and superiority over single-target inhibitors. In this review, we elucidated the possible mechanism of synergic effects caused by dual JAK inhibitors and briefly describe the development of these agents.
Collapse
Affiliation(s)
- Pei Shen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Yezhi Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xiangxiang Jia
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Pengfei Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Lian Qin
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xi Feng
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, PR China.
| | - Zhixia Qiu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, PR China.
| |
Collapse
|
9
|
Glassman CR, Tsutsumi N, Saxton RA, Lupardus PJ, Jude KM, Garcia KC. Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation. Science 2022; 376:163-169. [PMID: 35271300 PMCID: PMC9306331 DOI: 10.1126/science.abn8933] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytokines signal through cell surface receptor dimers to initiate activation of intracellular Janus Kinases (JAKs). We report the 3.6-Å resolution cryo-EM structure of full-length JAK1 complexed with a cytokine receptor intracellular Box1/Box2 domain, captured as an activated homodimer bearing the Val→Phe (VF) mutation prevalent in myeloproliferative neoplasms. The seven domains of JAK1 form an extended structural unit whose dimerization is mediated by close-packed pseudokinase (PK) domains. The oncogenic VF mutation lies within the core of the JAK1 PK dimer interface, enhancing packing complementarity to facilitate ligand-independent activation. The C-terminal tyrosine kinase domains are poised to phosphorylate the receptor STAT-recruiting motifs projecting from the overhanging FERM-SH2 domains. Mapping of constitutively active JAK mutants supports a two-step allosteric activation mechanism and reveals new opportunities for selective therapeutic targeting of oncogenic JAK signaling.
Collapse
Affiliation(s)
- Caleb R Glassman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Naotaka Tsutsumi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert A Saxton
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Lupardus
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Karagianni F, Piperi C, Casar B, de la Fuente-Vivas D, García-Gómez R, Lampadaki K, Pappa V, Papadavid E. Combination of Resminostat with Ruxolitinib Exerts Antitumor Effects in the Chick Embryo Chorioallantoic Membrane Model for Cutaneous T Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14041070. [PMID: 35205818 PMCID: PMC8870185 DOI: 10.3390/cancers14041070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The combination of Resminostat (HDACi) and Ruxolitinib (JAKi) exerted cytotoxic effects and inhibited proliferation of CTCL cell lines (MyLa, SeAx) in vitro. The aim of the present study was to validate their antitumor effects in vivo using the chick embryo chorioallantoic membrane (CAM) model, which allows quick and efficient monitoring of tumor growth, migration, invasion, and metastatic potential. The drug combination exhibited a significant inhibition of primary tumor size, and inhibited intravasation and extravasation of tumor cells to the liver and lung. It also exerted an inhibitory effect in the migration and invasion of tumor cells and significantly reduced key signaling pathway activation. Our data demonstrate that the CAM assay could be employed as a preclinical in vivo model in CTCL for pharmacological testing, and that the combination of Resminostat and Ruxolitinib exerts significant antitumor effects in CTCL progression that need to be further evaluated in a clinical setting. Abstract The combination of Resminostat (HDACi) and Ruxolitinib (JAKi) exerted cytotoxic effects and inhibited proliferation of CTCL cell lines (MyLa, SeAx) in previously published work. A xenograft tumor formation was produced by implanting the MyLa or SeAx cells on top of the chick embryo chorioallantoic membrane (CAM). The CAM assay protocol was developed to monitor the metastatic properties of CTCL cells and the effects of Resminostat and/or Ruxolitinib in vivo. In the spontaneous CAM assays, Resminostat and Ruxolitinib treatment inhibited the cell proliferation (p < 0.001) of MyLa and SeAx, and induced cell apoptosis (p < 0.005, p < 0.001, respectively). Although monotherapies reduced the size of primary tumors in the metastasis CAM assay, the drug combination exhibited a significant inhibition of primary tumor size (p < 0.0001). Furthermore, the combined treatment inhibited the intravasation of MyLa (p < 0.005) and SeAx cells (p < 0.0001) in the organs, as well as their extravasation to the liver (p < 0.0001) and lung (p < 0.0001). The drug combination also exerted a stronger inhibitory effect in migration (p < 0.0001) rather in invasion (p < 0.005) of both MyLa and SeAx cells. It further reduced p-p38, p-ERK, p-AKT, and p-STAT in MyLa cells, while it decreased p-ERK and p-STAT in SeAx cells in CAM tumors. Our data demonstrated that the CAM assay could be employed as a preclinical in vivo model in CTCL for pharmacological testing. In agreement with previous in vitro data, the combination of Resminostat and Ruxolitinib was shown to exert antitumor effects in CTCL in vivo.
Collapse
Affiliation(s)
- Fani Karagianni
- National Center of Rare Diseases-Cutaneous Lymphoma—Member of EuroBloodNet, Second Department of Dermatology and Venereal Diseases, Attikon University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (F.K.); (K.L.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School of Athens, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, 39011 Santander, Spain; (D.d.l.F.-V.); (R.G.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (B.C.); (E.P.)
| | - Dalia de la Fuente-Vivas
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, 39011 Santander, Spain; (D.d.l.F.-V.); (R.G.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rocío García-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, 39011 Santander, Spain; (D.d.l.F.-V.); (R.G.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Kyriaki Lampadaki
- National Center of Rare Diseases-Cutaneous Lymphoma—Member of EuroBloodNet, Second Department of Dermatology and Venereal Diseases, Attikon University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (F.K.); (K.L.)
| | - Vasiliki Pappa
- 2nd Department of Internal Medicine—Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School of Athens, University General Hospital Attikon, 124 62 Athens, Greece;
| | - Evangelia Papadavid
- National Center of Rare Diseases-Cutaneous Lymphoma—Member of EuroBloodNet, Second Department of Dermatology and Venereal Diseases, Attikon University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (F.K.); (K.L.)
- Correspondence: (B.C.); (E.P.)
| |
Collapse
|
11
|
DiNatale A, Kaur R, Qian C, Zhang J, Marchioli M, Ipe D, Castelli M, McNair CM, Kumar G, Meucci O, Fatatis A. Subsets of cancer cells expressing CX3CR1 are endowed with metastasis-initiating properties and resistance to chemotherapy. Oncogene 2022; 41:1337-1351. [PMID: 34999735 PMCID: PMC8941631 DOI: 10.1038/s41388-021-02174-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
Metastasis-initiating cells (MICs) display stem cell-like features, cause metastatic recurrences and defy chemotherapy, which leads to patients' demise. Here we show that prostate and breast cancer patients harbor contingents of tumor cells with high expression of CX3CR1, OCT4a (POU5F1), and NANOG. Impairing CX3CR1 expression or signaling hampered the formation of tumor spheroids by cell lines from which we isolated small subsets co-expressing CX3CR1 and stemness-related markers, similarly to patients' tumors. These rare CX3CR1High cells show transcriptomic profiles enriched in pathways that regulate pluripotency and endowed with metastasis-initiating behavior in murine models. Cancer cells lacking these features (CX3CR1Low) were capable of re-acquiring CX3CR1-associated features over time, implying that MICs can continuously emerge from non-stem cancer cells. CX3CR1 expression also conferred resistance to docetaxel, and prolonged treatment with docetaxel selected CX3CR1High phenotypes with de-enriched transcriptomic profiles for apoptotic pathways. These findings nominate CX3CR1 as a novel marker of stem-like tumor cells and provide conceptual ground for future development of approaches targeting CX3CR1 signaling and (re)expression as therapeutic means to prevent or contain metastasis initiation.
Collapse
Affiliation(s)
- Anthony DiNatale
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Ramanpreet Kaur
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Champions Oncology, 1330 Piccard Drive, Rockville, MD, 20850, USA
| | - Chen Qian
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Samuel Oschin Cancer Center, Cedars-Sinai, Los Angeles, CA, 90048, USA
| | - Jieyi Zhang
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Michael Marchioli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Darin Ipe
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Maria Castelli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chris M McNair
- Department of Cancer Biology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Cancer Informatics, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gaurav Kumar
- Department of Cancer Biology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Program in Immune Cell Regulation & Targeting, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Program in Translational and Cellular Oncology at Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
12
|
Ahmad A, Tiwari RK, Almeleebia TM, Al Fayi MS, Alshahrani MY, Ahmad I, Abohassan MS, Saeed M, Ansari IA. Swertia chirayita suppresses the growth of non-small cell lung cancer A549 cells and concomitantly induces apoptosis via downregulation of JAK1/STAT3 pathway. Saudi J Biol Sci 2021; 28:6279-6288. [PMID: 34764752 PMCID: PMC8570953 DOI: 10.1016/j.sjbs.2021.06.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/16/2022] Open
Abstract
Lung carcinoma is the leading cause of cancer-related mortalities worldwide, and present therapeutical interventions are not successful enough to treat this disease in many cases. Recent years have witnessed a surge in exploring natural compounds for their antiproliferative efficacy to expedite the characterization of novel anticancer chemotherapeutics. Swertia chirayita is a valued medicinal herb and possess intrinsic pharmaceutical potential. However, elucidation of its anticancer effects at molecular levels remains unclear and needs to be investigated. We assessed the anticancer and apoptotic efficacy of S. chirayita ethanolic extract (Sw-EtOH) on non-small cell lung cancer (NSCLC) A549 cells during this exploratory study. The results elucidated that S. chirayita extract induced toxic effects within lung cancer cells by ~1 fold during cytotoxicity and LDH release assay at a 400 μg/ml concentration. Sw-EtOH extract elevates the level of ROS, resulting in the disruption of Δψm and release of cytosolic cytochrome c by 3.15 fold. Activation of caspases-3, -8 & -9 also escalated by ~1 fold, which further catalyze the augmentation of PARP cleavage (~3 folds), resulting in a four-fold increase in Sw-EtOH induced apoptosis. The gene expression analysis further demonstrated that Sw-EtOH extracts inhibited JAK1/STAT3 signaling pathway by down-regulating the levels of JAK1 and STAT3 to nearly half a fold. Treatment of Sw-EtOH modulates the expression level of various STAT3 associated proteins, including Bcl-XL, Bcl-2, Mcl-1, Bax, p53, Fas, Fas-L, cyclinD1, c-myc, IL-6, p21 and p27 in NSCLC cells. Thus, our study provided a strong impetus that Sw-EtOH holds the translational potential of being further evaluated as efficient cancer therapeutics and a preventive agent for the management of NSCLC.
Collapse
Affiliation(s)
- Afza Ahmad
- Department of Biosciences, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
| | - Rohit Kumar Tiwari
- Department of Biosciences, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
| | - Tahani M. Almeleebia
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Majed Saad Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Mohammad S. Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Irfan Ahmad Ansari
- Department of Biosciences, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
| |
Collapse
|
13
|
Zhong Y, Yin B, Ye Y, Dekhel OYAT, Xiong X, Jian Z, Gu L. The bidirectional role of the JAK2/STAT3 signaling pathway and related mechanisms in cerebral ischemia-reperfusion injury. Exp Neurol 2021; 341:113690. [PMID: 33798563 DOI: 10.1016/j.expneurol.2021.113690] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/12/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway, a well-conserved and basic intracellular signaling cascade, is mostly inactivated under basal conditions, although it can be phosphorylated under extracellular stimulation; in addition, it can influence the transcription and expression of multiple genes involved in biological processes such as cellular growth, metabolism, differentiation, degradation and angiogenesis. The inflammatory response, apoptosis, oxidative stress and angiogenesis are the main factors involved in the pathogenesis of ischemic stroke. Numerous studies have confirmed that the JAK2/STAT3 axis can be activated rapidly by ischemic stress, which is closely related to the regulation of these important pathological processes. However, different opinions on the specific role of this signaling pathway remain. In this paper, we review and summarize previous studies on the JAK2/STAT3 pathway in ischemic stroke.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Bo Yin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Omar Y A T Dekhel
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Heat Shock Proteins and PD-1/PD-L1 as Potential Therapeutic Targets in Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12092592. [PMID: 32932806 PMCID: PMC7563255 DOI: 10.3390/cancers12092592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Myeloproliferative neoplasms (MPN), which are a heterogeneous group of rare disorders that affect blood cell production in bone marrow, present many significant challenges for clinicians. Though considerable progress has been made, in particular with the JAK1/2 inhibitor ruxolitinib, more effective alternative therapeutic approaches are needed. In the search for new and more efficient therapies, heat shock proteins, also known as stress proteins, and the programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) immune checkpoint axis have been found to be of great interest in hematologic malignancies. Here, we review the therapeutic potential of stress protein inhibitors in the management of patients diagnosed with MPN and summarize the accumulating evidence of the role of the PD-1/PD-L1 axis in MPN in order to provide perspectives on future therapeutic opportunities relative to the inhibition of these targets. Abstract Myeloproliferative neoplasms (MPN) are a group of clonal disorders that affect hematopoietic stem/progenitor cells. These disorders are often caused by oncogenic driver mutations associated with persistent Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling. While JAK inhibitors, such as ruxolitinib, reduce MPN-related symptoms in myelofibrosis, they do not influence the underlying cause of the disease and are not curative. Due to these limitations, there is a need for alternative therapeutic strategies and targets. Heat shock proteins (HSPs) are cytoprotective stress-response chaperones involved in protein homeostasis and in many critical pathways, including inflammation. Over the last decade, several research teams have unraveled the mechanistic connection between STAT signaling and several HSPs, showing that HSPs are potential therapeutic targets for MPN. These HSPs include HSP70, HSP90 (chaperoning JAK2) and both HSP110 and HSP27, which are key factors modulating STAT3 phosphorylation status. Like the HSPs, the PD-1/PD-L1 signaling pathway has been widely studied in cancer, but the importance of PD-L1-mediated immune escape in MPN was only recently reported. In this review, we summarize the role of HSPs and PD-1/PD-L1 signaling, the modalities of their experimental blockade, and the effect in MPN. Finally, we discuss the potential of these emerging targeted approaches in MPN therapy.
Collapse
|
15
|
Kang MA, Lee J, Ha SH, Lee CM, Kim KM, Jang KY, Park SH. Interleukin4Rα (IL4Rα) and IL13Rα1 Are Associated with the Progress of Renal Cell Carcinoma through Janus Kinase 2 (JAK2)/Forkhead Box O3 (FOXO3) Pathways. Cancers (Basel) 2019; 11:cancers11091394. [PMID: 31540495 PMCID: PMC6770213 DOI: 10.3390/cancers11091394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022] Open
Abstract
Specific kinds of interleukin (IL) receptors are known to mediate lymphocyte proliferation and survival. However, recent reports have suggested that the high expression of IL4Rα and IL13Rα1 in tumor tissue might be associated with tumorigenesis in several kinds of tumor. We found that a significant association between mRNA level of IL4Rα or IL13Rα1 and the poor prognosis of renal cell carcinoma (RCC) from the public database (http://www.oncolnc.org/). Then, we evaluated the clinicopathological significance of the immunohistochemical expression of IL4Rα and IL13Rα1 in 199 clear cell RCC (CCRCC) patients. The individual and co-expression patterns of IL4Rα and IL13Rα1 were significantly associated with cancer-specific survival (CSS) and relapse-free survival (RFS) in univariate analysis. Multivariate analysis indicated IL4Rα-positivity and co-expression of IL4Rα and IL13Rα1 as the independent indicators of shorter CSS and RFS of CCRCC patients. For the in vitro evaluation of the oncogenic role of IL4Rα and IL13Rα1 in RCC, we knock-downed IL4Rα or IL13Rα1 and observed that the cell proliferation rate was decreased, and the apoptosis rate was increased in A498 and ACHN cells. Furthermore, we examined the possible role of Janus kinase 2 (JAK2), well-known down-stream tyrosine kinase under the heterodimeric receptor complex of IL4Rα and IL13Rα1. Interestingly, JAK2 interacted with Forkhead box O3 (FOXO3) to cause tyrosine-phosphorylation of FOXO3. Silencing IL4Rα or JAK2 in A498 and ACHN cells reduced the interaction between JAK2 and FOXO3. Moreover, pharmacological inhibition of JAK2 induced the nuclear localization of FOXO3, leading to increase apoptosis and decrease cell proliferation rate in A498 and ACHN cells. Taken together, these results suggest that IL4Rα and IL13Rα1 might be involved in the progression of RCC through JAK2/FOXO3 pathway, and their expression might be used as the novel prognostic factor and therapeutic target for RCC patients.
Collapse
Affiliation(s)
- Mi-Ae Kang
- Department of Biological Science, Gachon University, Seongnam 13120, Korea.
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea.
| | - Sang Hoon Ha
- Division of Biotechnology, Chonbuk National University, Iksan 54596, Korea.
| | - Chang Min Lee
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea.
| | - Kyoung Min Kim
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Chonbuk National University Hospital, Chonbuk National University, Jeonju 54896, Korea.
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Chonbuk National University Hospital, Chonbuk National University, Jeonju 54896, Korea.
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea.
| |
Collapse
|
16
|
Bailetti AA, Negrón-Piñeiro LJ, Dhruva V, Harsh S, Lu S, Bosula A, Bach EA. Enhancer of Polycomb and the Tip60 complex repress hematological tumor initiation by negatively regulating JAK/STAT pathway activity. Dis Model Mech 2019; 12:dmm.038679. [PMID: 31072879 PMCID: PMC6550037 DOI: 10.1242/dmm.038679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic disorders that cause excessive production of myeloid cells. Most MPN patients have a point mutation in JAK2 (JAK2V617F), which encodes a dominant-active kinase that constitutively triggers JAK/STAT signaling. In Drosophila, this pathway is simplified, with a single JAK, Hopscotch (Hop), and a single STAT transcription factor, Stat92E. The hopTumorous-lethal [hopTum] allele encodes a dominant-active kinase that induces sustained Stat92E activation. Like MPN patients, hopTum mutants have significantly more myeloid cells, which form invasive tumors. Through an unbiased genetic screen, we found that heterozygosity for Enhancer of Polycomb [E(Pc)], a component of the Tip60 lysine acetyltransferase complex (also known as KAT5 in humans), significantly increased tumor burden in hopTum animals. Hematopoietic depletion of E(Pc) or other Tip60 components in an otherwise wild-type background also induced blood cell tumors. The E(Pc) tumor phenotype was dependent on JAK/STAT activity, as concomitant depletion of hop or Stat92E inhibited tumor formation. Stat92E target genes were significantly upregulated in E(Pc)-mutant myeloid cells, indicating that loss of E(Pc) activates JAK/STAT signaling. Neither the hop nor Stat92E gene was upregulated upon hematopoietic E(Pc) depletion, suggesting that the regulation of the JAK/STAT pathway by E(Pc) is dependent on substrates other than histones. Indeed, E(Pc) depletion significantly increased expression of Hop protein in myeloid cells. This study indicates that E(Pc) works as a tumor suppressor by attenuating Hop protein expression and ultimately JAK/STAT signaling. Since loss-of-function mutations in the human homologs of E(Pc) and Tip60 are frequently observed in cancer, our work could lead to new treatments for MPN patients. This article has an associated First Person interview with the first author of the paper. Editor's choice: Using Drosophila as a low-complexity model for human myeloproliferative neoplasms, the authors identified a conserved mechanism by which the Tip60 lysine acetyltransferase acts as a tumor suppressor by repressing JAK protein expression in a histone-independent manner.
Collapse
Affiliation(s)
- Alessandro A Bailetti
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Lenny J Negrón-Piñeiro
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Vishal Dhruva
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Sneh Harsh
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Sean Lu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Aisha Bosula
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Erika A Bach
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA .,Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
17
|
Harhous Z, Badawi S, Bona NG, Pillot B, Augeul L, Paillard M, Booz GW, Canet-Soulas E, Ovize M, Kurdi M, Bidaux G. Critical appraisal of STAT3 pattern in adult cardiomyocytes. J Mol Cell Cardiol 2019; 131:91-100. [PMID: 31022374 DOI: 10.1016/j.yjmcc.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/19/2019] [Indexed: 11/19/2022]
Abstract
The signal transducer and activator of transcription 3, STAT3, transfers cellular signals from the plasma membrane to the nucleus, acting as a signaling molecule and a transcription factor. Reports proposed an additional non-canonical role of STAT3 that could regulate the activity of complexes I and II of the electron transport chain and the opening of the mitochondrial permeability transition pore (PTP) after ischemia-reperfusion in various cell types. The native expression of STAT3 in heart mitochondria, together with a direct versus an indirect transcriptional role in mitochondrial functions, have been recently questioned. The objective of the present study was to investigate the cellular distribution of STAT3 in mouse adult cardiomyocytes under basal and stress conditions, along with assessing its presence and activity in cardiac mitochondria using structural and functional approaches. The analysis of the spatial distribution of STAT3 signal in the cardiomyocytes interestingly showed that it is transversely distributed along the T-tubules and in the nucleus. This distribution was neither affected by hypoxia nor by hypoxia/re‑oxygenation conditions. Focusing on the mitochondrial STAT3 localization, our results suggest that serine-phosphorylated STAT3 (PS727-STAT3) and total STAT3 are detected in crude but not in pure mitochondria of mouse adult cardiomyocytes, under basal and ischemia-reperfusion conditions. The inhibition of STAT3, with a pre-validated non-toxic Stattic dose, had no significant effects on mitochondrial respiration, but a weak effect on the calcium retention capacity. Overall, our results exclusively reveal a unique cellular distribution of STAT3 in mouse adult cardiomyocytes, along the T-tubules and in nucleus, under different conditions. They also challenge the expression and activity of STAT3 in mitochondria of these cells under basal conditions and following ischemia-reperfusion. In addition, our results underline technical methods, complemental to cell fractionation, to evaluate STAT3 roles during hypoxia-reoxygenation and at the interface between nucleus and endoplasmic reticulum.
Collapse
Affiliation(s)
- Zeina Harhous
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; Lebanese University, Faculty of Sciences, Doctoral School of Sciences and Techlogy, Laboratory of Experimental and Clinical Pharmacology, Hadat, Lebanon
| | - Sally Badawi
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France; Lebanese University, Faculty of Sciences, Doctoral School of Sciences and Techlogy, Laboratory of Experimental and Clinical Pharmacology, Hadat, Lebanon
| | - Noelle Gallo Bona
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France
| | - Bruno Pillot
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France
| | - Lionel Augeul
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France
| | - Melanie Paillard
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Emmanuelle Canet-Soulas
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France
| | - Michel Ovize
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France
| | - Mazen Kurdi
- Lebanese University, Faculty of Sciences, Doctoral School of Sciences and Techlogy, Laboratory of Experimental and Clinical Pharmacology, Hadat, Lebanon.
| | - Gabriel Bidaux
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France; IHU OPeRa, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France.
| |
Collapse
|
18
|
Liang X, Zang J, Li X, Tang S, Huang M, Geng M, Chou CJ, Li C, Cao Y, Xu W, Liu H, Zhang Y. Discovery of Novel Janus Kinase (JAK) and Histone Deacetylase (HDAC) Dual Inhibitors for the Treatment of Hematological Malignancies. J Med Chem 2019; 62:3898-3923. [PMID: 30901208 DOI: 10.1021/acs.jmedchem.8b01597] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xuewu Liang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, Shandong 250012, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jie Zang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, Shandong 250012, P. R. China
| | - Xiaoyang Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Shuai Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - C. James Chou
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yichun Cao
- School of Pharmacy, Fudan University, 826 Zhanghen Road, Shanghai 201203, China
| | - Wenfang Xu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, Shandong 250012, P. R. China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, Shandong 250012, P. R. China
| |
Collapse
|
19
|
Pluthero FG, Kahr WHA. The Birth and Death of Platelets in Health and Disease. Physiology (Bethesda) 2019; 33:225-234. [PMID: 29638183 DOI: 10.1152/physiol.00005.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Blood platelets are involved in a wide range of physiological responses and pathological processes. Recent studies have considerably advanced our understanding of the mechanisms of platelet production and clearance, revealing new connections between the birth and death of these tiny, abundant cells. Key insights have also been gained into how physiological challenges such as inflammation, infection, and chemotherapy can affect megakaryocytes, the cells that produce platelets.
Collapse
Affiliation(s)
- Fred G Pluthero
- Cell Biology Program, Research Institute, Hospital for Sick Children , Toronto, Ontario , Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, Hospital for Sick Children , Toronto, Ontario , Canada.,Department of Biochemistry, University of Toronto , Toronto, Ontario , Canada.,Department of Paediatrics, Division of Haematology/Oncology, University of Toronto and The Hospital for Sick Children , Toronto, Ontario , Canada
| |
Collapse
|
20
|
Bousoik E, Montazeri Aliabadi H. "Do We Know Jack" About JAK? A Closer Look at JAK/STAT Signaling Pathway. Front Oncol 2018; 8:287. [PMID: 30109213 PMCID: PMC6079274 DOI: 10.3389/fonc.2018.00287] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Janus tyrosine kinase (JAK) family of proteins have been identified as crucial proteins in signal transduction initiated by a wide range of membrane receptors. Among the proteins in this family JAK2 has been associated with important downstream proteins, including signal transducers and activators of transcription (STATs), which in turn regulate the expression of a variety of proteins involved in induction or prevention of apoptosis. Therefore, the JAK/STAT signaling axis plays a major role in the proliferation and survival of different cancer cells, and may even be involved in resistance mechanisms against molecularly targeted drugs. Despite extensive research focused on the protein structure and mechanisms of activation of JAKs, and signal transduction through these proteins, their importance in cancer initiation and progression seem to be underestimated. This manuscript is an attempt to highlight the role of JAK proteins in cancer biology, the most recent developments in targeting JAKs, and the central role they play in intracellular cross-talks with other signaling cascades.
Collapse
Affiliation(s)
- Emira Bousoik
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States.,School of Pharmacy, Omar Al-Mukhtar University, Dèrna, Libya
| | - Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States
| |
Collapse
|
21
|
Cheng X, Peuckert C, Wölfl S. Essential role of mitochondrial Stat3 in p38 MAPK mediated apoptosis under oxidative stress. Sci Rep 2017; 7:15388. [PMID: 29133922 PMCID: PMC5684365 DOI: 10.1038/s41598-017-15342-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023] Open
Abstract
Stat3 is an oncogene, frequently associated with malignant transformation. A body of evidence implicates that phospho-Stat3Y705 contributes to its nucleic translocation, while phospho-Stat3S727 leads to the accumulation in mitochondria. Both are of importance for tumor cell proliferation. In comparison to well-characterized signaling pathways interplaying with Stat3Y705, little is known about Stat3S727. In this work, we studied the influence of Stat3 deficiency on the viability of cells exposed to H2O2 or hypoxia using siRNA and CRISPR/Cas9 genome-editing. We found dysregulation of mitochondrial activity, which was associated with excessive ROS formation and reduced mitochondrial membrane potential, and observed a synergistic effect for oxidative stress-mediated apoptosis in Stat3-KD cells or cells carrying Stat3Y705F, but not Stat3S727D, suggesting the importance of functional mitochondrial Stat3 in this context. We also found that ROS-mediated activation of ASK1/p38MAPK was involved and adding antioxidants, p38MAPK inhibitor, or genetic repression of ASK1 could easily rescue the cellular damage. Our finding reveals a new role of mitochondrial Stat3 in preventing ASK1/p38MAPK-mediated apoptosis, wich further support the notion that selective inhibition mitochondrial Stat3 could provide a primsing target for chemotherapy.
Collapse
Affiliation(s)
- Xinlai Cheng
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.
| | - Christiane Peuckert
- Department of Organismal Biology, Uppsala University, Uppsala, S-75236, Sweden
| | - Stefan Wölfl
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
22
|
Civallero M, Cosenza M, Pozzi S, Sacchi S. Ruxolitinib combined with vorinostat suppresses tumor growth and alters metabolic phenotype in hematological diseases. Oncotarget 2017; 8:103797-103814. [PMID: 29262601 PMCID: PMC5732767 DOI: 10.18632/oncotarget.21951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/24/2017] [Indexed: 12/18/2022] Open
Abstract
JAK-2 dysregulation plays an important role as an oncogenic driver, and is thus a promising therapeutic target in hematological malignancies. Ruxolitinib is a pyrrolo[2.3-d]pyrimidine derivative with inhibitory activity against JAK1 and JAK2, moderate activity against TYK2, and minor activity against JAK3. Vorinostat is an HDAC inhibitor that reduces JAK-2 expression, thus affecting JAK-2 mRNA expression and increasing JAK-2 proteasomal deterioration. Here we hypothesized that the combination of ruxolitinib and vorinostat could have synergistic effects against hematological disease. We tested combinations of low doses of ruxolitinib and vorinostat in 12 cell lines, and observed highly synergistic cytotoxic action in six cell lines, which was maintained for up to 120 h in the presence of stromal cells. The sensitivity of the six cell lines may be explained by the broad effects of the drug combination, which can affect various targets. Treatment with the combination of ruxolitinib and vorinostat appeared to induce a possible reversal of the Warburg effect, with associated ROS production, apoptotic events, and growth inhibition. Decreased glucose metabolism may have markedly sensitized the six more susceptible cell lines to combined treatment. Therapeutic inhibition of the JAK/STAT pathway seems to offer substantial anti-tumor benefit, and combined therapy with ruxolitinib and vorinostat may represent a promising novel therapeutic modality for hematological neoplasms.
Collapse
Affiliation(s)
- Monica Civallero
- Department of Diagnostic, Clinical, and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Cosenza
- Department of Diagnostic, Clinical, and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Samantha Pozzi
- Department of Diagnostic, Clinical, and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Sacchi
- Department of Diagnostic, Clinical, and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
23
|
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv Pharm Bull 2017; 7:339-348. [PMID: 29071215 PMCID: PMC5651054 DOI: 10.15171/apb.2017.041] [Citation(s) in RCA: 1051] [Impact Index Per Article: 150.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/19/2017] [Accepted: 07/22/2017] [Indexed: 12/11/2022] Open
Abstract
Anticancer drugs resistance is a complex process that arises from altering in the drug targets. Advances in the DNA microarray, proteomics technology and the development of targeted therapies provide the new strategies to overcome the drug resistance. Although a design of the new chemotherapy agents is growing quickly, effective chemotherapy agent has not been discovered against the advanced stage of cancer (such as invasion and metastasis). The cancer cell resistance against the anticancer agents can be due to many factors such as the individual's genetic differences, especially in tumoral somatic cells. Also, the cancer drug resistance is acquired, the drug resistance can be occurred by different mechanisms, including multi-drug resistance, cell death inhibiting (apoptosis suppression), altering in the drug metabolism, epigenetic and drug targets, enhancing DNA repair and gene amplification. In this review, we outlined the mechanisms of cancer drug resistance and in following, the treatment failures by common chemotherapy agents in the different type of cancers.
Collapse
Affiliation(s)
- Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadaf Davudian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Platelet clearance by the hepatic Ashwell-Morrell receptor: mechanisms and biological significance. Thromb Res 2017; 141 Suppl 2:S68-72. [PMID: 27207430 DOI: 10.1016/s0049-3848(16)30370-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The daily production of billions of platelets must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Complex mechanisms control platelet production and clearance in physiological and pathological conditions. This review will focus on the mechanisms of platelet senescence with specific emphasis on the role of post-translational modifications in platelet life-span and thrombopoietin production downstream of the hepatic Ashwell-Morrell receptor.
Collapse
|
25
|
Klein S, Rick J, Lehmann J, Schierwagen R, Schierwagen IG, Verbeke L, Hittatiya K, Uschner FE, Manekeller S, Strassburg CP, Wagner KU, Sayeski PP, Wolf D, Laleman W, Sauerbruch T, Trebicka J. Janus-kinase-2 relates directly to portal hypertension and to complications in rodent and human cirrhosis. Gut 2017; 66:145-155. [PMID: 26385087 DOI: 10.1136/gutjnl-2015-309600] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Angiotensin II (AngII) activates via angiotensin-II-type-I receptor (AT1R) Janus-kinase-2 (JAK2)/Arhgef1 pathway and subsequently RHOA/Rho-kinase (ROCK), which induces experimental and probably human liver fibrosis. This study investigated the relationship of JAK2 to experimental and human portal hypertension. DESIGN The mRNA and protein levels of JAK2/ARHGEF1 signalling components were analysed in 49 human liver samples and correlated with clinical parameters of portal hypertension in these patients. Correspondingly, liver fibrosis (bile duct ligation (BDL), carbon tetrachloride (CCl4)) was induced in floxed-Jak2 knock-out mice with SM22-promotor (SM22Cre+-Jak2f/f). Transcription and contraction of primary myofibroblasts from healthy and fibrotic mice and rats were analysed. In two different cirrhosis models (BDL, CCl4) in rats, the acute haemodynamic effect of the JAK2 inhibitor AG490 was assessed using microsphere technique and isolated liver perfusion experiments. RESULTS Hepatic transcription of JAK2/ARHGEF1 pathway components was upregulated in liver cirrhosis dependent on aetiology, severity and complications of human liver cirrhosis (Model for End-stage Liver disease (MELD) score, Child score as well as ascites, high-risk varices, spontaneous bacterial peritonitis). SM22Cre+- Jak2f/f mice lacking Jak2 developed less fibrosis and lower portal pressure (PP) than SM22Cre--Jak2f/f upon fibrosis induction. Myofibroblasts from SM22Cre+-Jak2f/f mice expressed less collagen and profibrotic markers upon activation. AG490 relaxed activated hepatic stellate cells in vitro. In cirrhotic rats, AG490 decreased hepatic vascular resistance and consequently the PP in vivo and in situ. CONCLUSIONS Hepatic JAK2/ARHGEF1/ROCK expression is associated with portal hypertension and decompensation in human cirrhosis. The deletion of Jak2 in myofibroblasts attenuated experimental fibrosis and acute inhibition of JAK2 decreased PP. Thus, JAK2 inhibitors, already in clinical use for other indications, might be a new approach to treat cirrhosis with portal hypertension.
Collapse
Affiliation(s)
- Sabine Klein
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Johanna Rick
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jennifer Lehmann
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | | | - Len Verbeke
- Department of Liver and Biliopancreatic Disorders, University of Leuven, Leuven, Belgium
| | | | | | - Steffen Manekeller
- Department of General and Visceral Surgery, University of Bonn, Bonn, Germany
| | | | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Dominik Wolf
- Medical Clinic III, Oncology, Hematology and Rheumatology, University of Bonn, Bonn, Germany
| | - Wim Laleman
- Department of Liver and Biliopancreatic Disorders, University of Leuven, Leuven, Belgium
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
Yang EG, Mustafa N, Tan EC, Poulsen A, Ramanujulu PM, Chng WJ, Yen JJY, Dymock BW. Design and Synthesis of Janus Kinase 2 (JAK2) and Histone Deacetlyase (HDAC) Bispecific Inhibitors Based on Pacritinib and Evidence of Dual Pathway Inhibition in Hematological Cell Lines. J Med Chem 2016; 59:8233-62. [DOI: 10.1021/acs.jmedchem.6b00157] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eugene Guorong Yang
- Department
of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Nurulhuda Mustafa
- Department
of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 10, Singapore 119228
| | - Eng Chong Tan
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Anders Poulsen
- Experimental Therapeutics Centre, 31 Biopolis Way, 03-01 Nanos, Singapore 138669
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Pondy Murugappan Ramanujulu
- Department
of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543
- Life Sciences
Institute, National University of Singapore, Centre for Life Sciences, Level
5, 28 Medical Drive, Singapore 117456
| | - Wee Joo Chng
- Department
of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 10, Singapore 119228
- Cancer
Science Institute, Singapore, National University of Singapore, Singapore 117599
- National
University Cancer Institute of Singapore, National University Health SystemSingapore 119074
| | - Jeffrey J. Y. Yen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Brian W. Dymock
- Department
of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543
| |
Collapse
|
27
|
Wang L, Zhang TP, Zhang Y, Bi HL, Guan XM, Wang HX, Wang X, Du J, Xia YL, Li HH. Protection against doxorubicin-induced myocardial dysfunction in mice by cardiac-specific expression of carboxyl terminus of hsp70-interacting protein. Sci Rep 2016; 6:28399. [PMID: 27323684 PMCID: PMC4914971 DOI: 10.1038/srep28399] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 06/01/2016] [Indexed: 01/06/2023] Open
Abstract
Carboxyl terminus of Hsp70-interacting protein (CHIP) is a critical ubiquitin ligase/cochaperone to reduce cardiac oxidative stress, inflammation, cardiomyocyte apoptosis and autophage etc. However, it is unclear whether overexpression of CHIP in the heart would exert protective effects against DOX-induced cardiomyopathy. Cardiac-specific CHIP transgenic (CHIP-TG) mice and the wild-type (WT) littermates were treated with DOX or saline. DOX-induced cardiac atrophy, dysfunction, inflammation, oxidative stress and cardiomyocyte apoptosis were significantly attenuated in CHIP-TG mice. CHIP-TG mice also showed higher survival rate than that of WT mice (40% versus 10%) after 10-day administration of DOX. In contrast, knockdown of CHIP by siRNA in vitro further enhanced DOX-induced cardiotoxic effects. Global gene microarray assay revealed that after DOX-treatment, differentially expressed genes between WT and CHIP-TG mice were mainly involved in apoptosis, atrophy, immune/inflammation and oxidative stress. Mechanistically, CHIP directly promotes ubiquitin-mediated degradation of p53 and SHP-1, which results in activation of ERK1/2 and STAT3 pathways thereby ameliorating DOX-induced cardiac toxicity.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Tian-Peng Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yuan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Baotou Medical College, Baotou 014060, China
| | - Hai-Lian Bi
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xu-Min Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hong-Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jie Du
- Beijing AnZhen Hospital the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing 100029, China
| | - Yun-Long Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.,Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
28
|
Abstract
Platelet numbers are intricately regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. The growth factor thrombopoietin (TPO) drives platelet biogenesis by inducing megakaryocyte production. A recent study in mice identified a feedback mechanism by which clearance of aged, desialylated platelets stimulates TPO synthesis by hepatocytes. This new finding generated renewed interest in platelet clearance mechanisms. Here, different established and emerging mechanisms of platelet senescence and clearance will be reviewed with specific emphasis on the role of posttranslational modifications.
Collapse
Affiliation(s)
- Renhao Li
- a Aflac Cancer and Blood Disorders Center, Department of Pediatrics , Emory University School of Medicine , Atlanta , GA , USA
| | - Karin M Hoffmeister
- b Division of Hematology, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Hervé Falet
- b Division of Hematology, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The human body produces and removes 10 platelets daily to maintain a normal steady-state platelet count. Platelet production must be tightly regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet removal and production in physiological and pathological conditions. This review will focus on different mechanisms of platelet clearance, with focus on the biological significance of platelet glycans. RECENT FINDINGS The Ashwell-Morrell receptor (AMR) recognizes senescent, desialylated platelets under steady state conditions. Desialylated platelets and the AMR are the physiological ligand-receptor pair regulating hepatic thrombopoietin (TPO) mRNA production, resolving the longstanding mystery of steady state TPO regulation. The AMR-mediated removal of desialylated platelets regulates TPO synthesis in the liver by recruiting JAK2 and STAT3 to increase thrombopoiesis. SUMMARY Inhibition of TPO production downstream of the hepatic AMR-JAK2 signaling cascade could additionally contribute to the thrombocytopenia associated with JAK1/2 treatment, which is clinically used in myeloproliferative neoplasms.
Collapse
|
30
|
Kesarwani M, Huber E, Kincaid Z, Evelyn CR, Biesiada J, Rance M, Thapa MB, Shah NP, Meller J, Zheng Y, Azam M. Targeting substrate-site in Jak2 kinase prevents emergence of genetic resistance. Sci Rep 2015; 5:14538. [PMID: 26419724 PMCID: PMC4588578 DOI: 10.1038/srep14538] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022] Open
Abstract
Emergence of genetic resistance against kinase inhibitors poses a great challenge for durable therapeutic response. Here, we report a novel mechanism of JAK2 kinase inhibition by fedratinib (TG101348) that prevents emergence of genetic resistance. Using in vitro drug screening, we identified 211 amino-acid substitutions conferring resistance to ruxolitinib (INCB018424) and cross-resistance to the JAK2 inhibitors AZD1480, CYT-387 and lestaurtinib. In contrast, these resistant variants were fully sensitive to fedratinib. Structural modeling, coupled with mutagenesis and biochemical studies, revealed dual binding sites for fedratinib. In vitro binding assays using purified proteins showed strong affinity for the substrate-binding site (Kd = 20 nM) while affinity for the ATP site was poor (Kd = ~8 μM). Our studies demonstrate that mutations affecting the substrate-binding pocket encode a catalytically incompetent kinase, thereby preventing emergence of resistant variants. Most importantly, our data suggest that in order to develop resistance-free kinase inhibitors, the next-generation drug design should target the substrate-binding site.
Collapse
Affiliation(s)
- Meenu Kesarwani
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Erika Huber
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Zachary Kincaid
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Chris R Evelyn
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Jacek Biesiada
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology University of Cincinnati College of Medicine, University of Cincinnati, Ohio 45229 USA
| | - Mahendra B Thapa
- Department of Molecular Genetics, Biochemistry and Microbiology University of Cincinnati College of Medicine, University of Cincinnati, Ohio 45229 USA
| | - Neil P Shah
- Division of Hematology-Oncology UCSF School of Medicine, San Francisco, California, 94143 USA
| | - Jarek Meller
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Yi Zheng
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Mohammad Azam
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA.,Department of Molecular Genetics, Biochemistry and Microbiology University of Cincinnati College of Medicine, University of Cincinnati, Ohio 45229 USA
| |
Collapse
|
31
|
Regulating billions of blood platelets: glycans and beyond. Blood 2015; 126:1877-84. [PMID: 26330242 DOI: 10.1182/blood-2015-01-569129] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
The human body produces and removes 10(11) platelets daily to maintain a normal steady state platelet count. Platelet production must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet production and removal in physiological and pathological conditions. This review will focus on different mechanisms of platelet senescence and clearance with specific emphasis on the role of posttranslational modifications. It will also briefly address platelet transfusion and the role of glycans in the clearance of stored platelets.
Collapse
|
32
|
Byun S, Lim S, Mun JY, Kim KH, Ramadhar TR, Farrand L, Shin SH, Thimmegowda NR, Lee HJ, Frank DA, Clardy J, Lee SW, Lee KW. Identification of a Dual Inhibitor of Janus Kinase 2 (JAK2) and p70 Ribosomal S6 Kinase1 (S6K1) Pathways. J Biol Chem 2015; 290:23553-62. [PMID: 26242912 DOI: 10.1074/jbc.m115.662445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 01/06/2023] Open
Abstract
Bioactive phytochemicals can suppress the growth of malignant cells, and investigation of the mechanisms responsible can assist in the identification of novel therapeutic strategies for cancer therapy. Ginger has been reported to exhibit potent anti-cancer effects, although previous reports have often focused on a narrow range of specific compounds. Through a direct comparison of various ginger compounds, we determined that gingerenone A selectively kills cancer cells while exhibiting minimal toxicity toward normal cells. Kinase array screening revealed JAK2 and S6K1 as the molecular targets primarily responsible for gingerenone A-induced cancer cell death. The effect of gingerenone A was strongly associated with relative phosphorylation levels of JAK2 and S6K1, and administration of gingerenone A significantly suppressed tumor growth in vivo. More importantly, the combined inhibition of JAK2 and S6K1 by commercial inhibitors selectively induced apoptosis in cancer cells, whereas treatment with either agent alone did not. These findings provide rationale for dual targeting of JAK2 and S6K1 in cancer for a combinatorial therapeutic approach.
Collapse
Affiliation(s)
- Sanguine Byun
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea
| | - Semi Lim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji Young Mun
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam 461-463, Republic of Korea
| | - Ki Hyun Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Timothy R Ramadhar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Lee Farrand
- Yuhan Research Institute, Yuhan Corp., Yongin 446-902, Republic of Korea
| | - Seung Ho Shin
- Program in Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455
| | - N R Thimmegowda
- Department of Chemistry, Government Sri Krishnarajendra Silver Jubilee Technological Institute, Bangalore 560001, India, World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang 363-883, Korea
| | - Hyong Joo Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115,
| | - Sam W Lee
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129,
| | - Ki Won Lee
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea, WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea,
| |
Collapse
|
33
|
Vicente C, Schwab C, Broux M, Geerdens E, Degryse S, Demeyer S, Lahortiga I, Elliott A, Chilton L, La Starza R, Mecucci C, Vandenberghe P, Goulden N, Vora A, Moorman AV, Soulier J, Harrison CJ, Clappier E, Cools J. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia. Haematologica 2015. [PMID: 26206799 DOI: 10.3324/haematol.2015.130179] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Carmen Vicente
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Claire Schwab
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Michaël Broux
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Ellen Geerdens
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Sandrine Degryse
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Sofie Demeyer
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Idoya Lahortiga
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Alannah Elliott
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Lucy Chilton
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Roberta La Starza
- Hematology Unit, University of Perugia, Polo Unico S.M. Misericordia, Italy
| | - Cristina Mecucci
- Hematology Unit, University of Perugia, Polo Unico S.M. Misericordia, Italy
| | | | - Nicholas Goulden
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - Ajay Vora
- Department of Haematology, Sheffield Children's Hospital, Sheffield, UK
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jean Soulier
- U944 INSERM and Hematology Laboratory, St-Louis Hospital, APHP, Hematology University Institute, University Paris-Diderot, Paris, France
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Emmanuelle Clappier
- U944 INSERM and Hematology Laboratory, St-Louis Hospital, APHP, Hematology University Institute, University Paris-Diderot, Paris, France
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| |
Collapse
|
34
|
Abstract
Major progress has been recently made in understanding the molecular pathogenesis of myeloproliferative neoplasms (MPN). Mutations in one of four genes-JAK2, MPL, CALR, and CSF3R-can be found in the vast majority of patients with MPN and represent driver mutations that can induce the MPN phenotype. Hyperactive JAK/STAT signaling appears to be the common denominator of MPN, even in patients with CALR mutations and the so-called "triple-negative" MPN, where the driver gene mutation is still unknown. Mutations in epigenetic regulators, transcription factors, and signaling components modify the course of the disease and can contribute to disease initiation and/or progression. The central role of JAK2 in MPN allowed development of small molecular inhibitors that are in clinical use and are active in almost all patients with MPN. Advances in understanding the mechanism of JAK2 activation open new perspectives of developing the next generation of inhibitors that will be selective for the mutated forms of JAK2.
Collapse
|
35
|
Azzato EM, Bagg A. Molecular genetic evaluation of myeloproliferative neoplasms. Int J Lab Hematol 2015; 37 Suppl 1:61-71. [DOI: 10.1111/ijlh.12353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/16/2015] [Indexed: 01/06/2023]
Affiliation(s)
- E. M. Azzato
- Department of Pathology and Laboratory Medicine; Hospital of the University of Pennsylvania; Philadelphia PA USA
| | - A. Bagg
- Department of Pathology and Laboratory Medicine; Hospital of the University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
36
|
Macrocyclic compounds as anti-cancer agents: Design and synthesis of multi-acting inhibitors against HDAC, FLT3 and JAK2. Eur J Med Chem 2015; 95:104-15. [DOI: 10.1016/j.ejmech.2015.03.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/22/2015] [Accepted: 03/13/2015] [Indexed: 11/20/2022]
|
37
|
Abstract
Protein phosphorylation lies at the heart of cell signalling, and somatic mutation(s) in kinases drives and sustains a multitude of human diseases, including cancer. The human protein kinase superfamily (the kinome) encodes approximately 50 'pseudokinases', which were initially predicted to be incapable of dynamic cell signalling when compared with canonical enzymatically active kinases. This assumption was supported by bioinformatics, which showed that amino acid changes at one or more key loci, making up the nucleotide-binding site or phosphotransferase machinery, were conserved in multiple vertebrate and non-vertebrate pseudokinase homologues. Protein kinases are highly attractive targets for drug discovery, as evidenced by the approval of almost 30 kinase inhibitors in oncology, and the successful development of the dual JAK1/2 (Janus kinase 1/2) inhibitor ruxolitinib for inflammatory indications. However, for such a large (>550) protein family, a remarkable number have still not been analysed at the molecular level, and only a surprisingly small percentage of kinases have been successfully targeted clinically. This is despite evidence that many are potential candidates for the development of new therapeutics. Indeed, several recent reports confirm that disease-associated pseudokinases can bind to nucleotide co-factors at concentrations achievable in the cell. Together, these findings suggest that drug targeting using either ATP-site or unbiased ligand-discovery approaches should now be attempted using the validation technology currently employed to evaluate their classic protein kinase counterparts. In the present review, we discuss members of the human pseudokinome repertoire, and catalogue somatic amino acid pseudokinase mutations that are emerging as the depth and clinical coverage of the human cancer pseudokinome expand.
Collapse
|
38
|
Grozovsky R, Begonja AJ, Liu K, Visner G, Hartwig JH, Falet H, Hoffmeister KM. The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nat Med 2015; 21:47-54. [PMID: 25485912 PMCID: PMC4303234 DOI: 10.1038/nm.3770] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023]
Abstract
The hepatic Ashwell-Morell receptor (AMR) can bind and remove desialylated platelets. Here we demonstrate that platelets become desialylated as they circulate and age in blood. Binding of desialylated platelets to the AMR induces hepatic expression of thrombopoietin (TPO) mRNA and protein, thereby regulating platelet production. Endocytic AMR controls TPO expression through Janus kinase 2 (JAK2) and the acute phase response signal transducer and activator of transcription 3 (STAT3) in vivo and in vitro. Recognition of this newly identified physiological feedback mechanism illuminates the pathophysiology of platelet diseases, such as essential thrombocythemia and immune thrombocytopenia, and contributes to an understanding of the mechanisms of thrombocytopenia observed with JAK1/2 inhibition.
Collapse
Affiliation(s)
- Renata Grozovsky
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonija Jurak Begonja
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaifeng Liu
- Division of Pulmonary and Respiratory Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gary Visner
- Division of Pulmonary and Respiratory Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John H Hartwig
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hervé Falet
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Karin M Hoffmeister
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model. Blood 2014; 124:3092-100. [PMID: 25193870 DOI: 10.1182/blood-2014-04-566687] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
JAK3 is a tyrosine kinase that associates with the common γ chain of cytokine receptors and is recurrently mutated in T-cell acute lymphoblastic leukemia (T-ALL). We tested the transforming properties of JAK3 pseudokinase and kinase domain mutants using in vitro and in vivo assays. Most, but not all, JAK3 mutants transformed cytokine-dependent Ba/F3 or MOHITO cell lines to cytokine-independent proliferation. JAK3 pseudokinase mutants were dependent on Jak1 kinase activity for cellular transformation, whereas the JAK3 kinase domain mutant could transform cells in a Jak1 kinase-independent manner. Reconstitution of the IL7 receptor signaling complex in 293T cells showed that JAK3 mutants required receptor binding to mediate downstream STAT5 phosphorylation. Mice transplanted with bone marrow progenitor cells expressing JAK3 mutants developed a long-latency transplantable T-ALL-like disease, characterized by an accumulation of immature CD8(+) T cells. In vivo treatment of leukemic mice with the JAK3 selective inhibitor tofacitinib reduced the white blood cell count and caused leukemic cell apoptosis. Our data show that JAK3 mutations are drivers of T-ALL and require the cytokine receptor complex for transformation. These results warrant further investigation of JAK1/JAK3 inhibitors for the treatment of T-ALL.
Collapse
|
40
|
The Hepatocyte Growth Factor (HGF)/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms? Cancers (Basel) 2014; 6:1631-69. [PMID: 25119536 PMCID: PMC4190560 DOI: 10.3390/cancers6031631] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022] Open
Abstract
Met is the receptor of hepatocyte growth factor (HGF), a cytoprotective cytokine. Disturbing the equilibrium between Met and its ligand may lead to inappropriate cell survival, accumulation of genetic abnormalities and eventually, malignancy. Abnormal activation of the HGF/Met axis is established in solid tumours and in chronic haematological malignancies, including myeloma, acute myeloid leukaemia, chronic myelogenous leukaemia (CML), and myeloproliferative neoplasms (MPNs). The molecular mechanisms potentially responsible for the abnormal activation of HGF/Met pathways are described and discussed. Importantly, inCML and in MPNs, the production of HGF is independent of Bcr-Abl and JAK2V617F, the main molecular markers of these diseases. In vitro studies showed that blocking HGF/Met function with neutralizing antibodies or Met inhibitors significantly impairs the growth of JAK2V617F-mutated cells. With personalised medicine and curative treatment in view, blocking activation of HGF/Met could be a useful addition in the treatment of CML and MPNs for those patients with high HGF/MET expression not controlled by current treatments (Bcr-Abl inhibitors in CML; phlebotomy, hydroxurea, JAK inhibitors in MPNs).
Collapse
|
41
|
Abstract
Although great strides have been made in the improvement of outcome for newly diagnosed pediatric acute lymphoblastic leukemia because of refinements in risk stratification and selective intensification of therapy, the prognosis for relapsed leukemia has lagged behind significantly. Understanding the underlying biological pathways responsible for drug resistance is essential to develop novel approaches for the prevention of recurrence and treatment of relapsed disease. High throughput genomic technologies have the potential to revolutionize cancer care in this era of personalized medicine. Using such advanced technologies, we and others have shown that a diverse assortment of cooperative genetic and epigenetic events drive the resistant phenotype. Herein, we summarize results using a variety of genomic technologies to highlight the power of this methodology in providing insight into the biological mechanisms that impart resistant disease.
Collapse
|
42
|
Zhao W, Zou K, Farasyn T, Ho WT, Zhao ZJ. Generation and characterization of a JAK2V617F-containing erythroleukemia cell line. PLoS One 2014; 9:e99017. [PMID: 25036984 PMCID: PMC4103785 DOI: 10.1371/journal.pone.0099017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/09/2014] [Indexed: 01/01/2023] Open
Abstract
The JAK2V617F mutation is found in the majority of patients with myeloproliferative neoplasms (MPNs). Transgenic expression of the mutant gene causes MPN-like phenotypes in mice. We have produced JAK2V617F mice with p53 null background. Some of these mice developed acute erythroleukemia. From one of these mice, we derived a cell line designated J53Z1. J53Z1 cells were stained positive for surface markers CD71 and CD117 but negative for Sca-1, TER-119, CD11b, Gr-1, F4/80, CD11c, CD317, CD4, CD8a, CD3e, B220, CD19, CD41, CD42d, NK-1.1, and FceR1. Real time PCR analyses demonstrated expressions of erythropoietin receptor EpoR, GATA1, and GATA2 in these cells. J53Z1 cells grew rapidly in suspension culture containing fetal bovine serum with a doubling time of ∼18 hours. When transplanted into C57Bl/6 mice, J53Z1 cells induced acute erythroleukemia with massive infiltration of tumor cells in the spleen and liver. J53Z1 cells were responsive to stimulation with erythropoietin and stem cell factor and were selectively inhibited by JAK2 inhibitors which induced apoptosis of the cells. Together, J53Z1 cells belong to the erythroid lineage, and they may be useful for studying the role of JAK2V617F in proliferation and differentiation of erythroid cells and for identifying potential therapeutic drugs targeting JAK2.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/enzymology
- Cell Line, Tumor/transplantation
- Crosses, Genetic
- Drug Screening Assays, Antitumor
- Erythropoiesis/drug effects
- Gene Expression Profiling
- Genes, p53
- Hematopoietic Cell Growth Factors/pharmacology
- Humans
- Janus Kinase 2/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Liver/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mutation, Missense
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Point Mutation
- Protein Kinase Inhibitors/pharmacology
- Spleen/pathology
Collapse
Affiliation(s)
- Wanke Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Kang Zou
- Oklahoma School of Science and Mathematics, Oklahoma City, Oklahoma, United States of America
| | - Taleah Farasyn
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Wanting Tina Ho
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
43
|
Granzow M, Schierwagen R, Klein S, Kowallick B, Huss S, Linhart M, Reza Mazar IG, Görtzen J, Vogt A, Schildberg FA, Gonzalez-Carmona MA, Wojtalla A, Krämer B, Nattermann J, Siegmund SV, Werner N, Fürst DO, Laleman W, Knolle P, Shah VH, Sauerbruch T, Trebicka J. Angiotensin-II type 1 receptor-mediated Janus kinase 2 activation induces liver fibrosis. Hepatology 2014; 60:334-48. [PMID: 24619965 PMCID: PMC5512562 DOI: 10.1002/hep.27117] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 02/21/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED Activation of the renin angiotensin system resulting in stimulation of angiotensin-II (AngII) type I receptor (AT1R) is an important factor in the development of liver fibrosis. Here, we investigated the role of Janus kinase 2 (JAK2) as a newly described intracellular effector of AT1R in mediating liver fibrosis. Fibrotic liver samples from rodents and humans were compared to respective controls. Transcription, protein expression, activation, and localization of JAK2 and downstream effectors were analyzed by real-time polymerase chain reaction, western blotting, immunohistochemistry, and confocal microscopy. Experimental fibrosis was induced by bile duct ligation (BDL), CCl4 intoxication, thioacetamide intoxication or continuous AngII infusion. JAK2 was inhibited by AG490. In vitro experiments were performed with primary rodent hepatic stellate cells (HSCs), Kupffer cells (KCs), and hepatocytes as well as primary human and human-derived LX2 cells. JAK2 expression and activity were increased in experimental rodent and human liver fibrosis, specifically in myofibroblastic HSCs. AT1R stimulation in wild-type animals led to activation of HSCs and fibrosis in vivo through phosphorylation of JAK2 and subsequent RhoA/Rho-kinase activation. These effects were prevented in AT1R(-/-) mice. Pharmacological inhibition of JAK2 attenuated liver fibrosis in rodent fibrosis models. In vitro, JAK2 and downstream effectors showed increased expression and activation in activated HSCs, when compared to quiescent HSCs, KCs, and hepatocytes isolated from rodents. In primary human and LX2 cells, AG490 blocked AngII-induced profibrotic gene expression. Overexpression of JAK2 led to increased profibrotic gene expression in LX2 cells, which was blocked by AG490. CONCLUSION Our study substantiates the important cell-intrinsic role of JAK2 in HSCs for development of liver fibrosis. Inhibition of JAK2 might therefore offer a promising therapy for liver fibrosis.
Collapse
Affiliation(s)
- Michaela Granzow
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | - Sabine Klein
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Benita Kowallick
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Sebastian Huss
- Department of Pathology, University of Bonn, Bonn, Germany
| | - Markus Linhart
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | | | - Jan Görtzen
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Annabelle Vogt
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Frank A. Schildberg
- Institutes for Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | | | | | - Benjamin Krämer
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Sören V. Siegmund
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Nikos Werner
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | - Dieter O. Fürst
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Wim Laleman
- Department of Liver and Biliopancreatic disorders, University of Leuven, Leuven, Belgium
| | - Percy Knolle
- Institutes for Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Vijay H. Shah
- Gastroenterology Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| |
Collapse
|
44
|
Pietraforte D, Vona R, Marchesi A, de Jacobis IT, Villani A, Del Principe D, Straface E. Redox control of platelet functions in physiology and pathophysiology. Antioxid Redox Signal 2014; 21:177-93. [PMID: 24597688 DOI: 10.1089/ars.2013.5532] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE An imbalance between the production and the detoxification of reactive oxygen species and reactive nitrogen species (ROS/RNS) can be implicated in many pathological processes. Platelets are best known as primary mediators of hemostasis and can be either targets of ROS/RNS or generate radicals during cell activation. These conditions can dramatically affect platelet physiology, leading even, as an ultimate event, to the cell number modification. In this case, pathological conditions such as thrombocytosis (promoted by increased cell number) or thrombocytopenia and myelodysplasia (promoted by cell decrease mediated by accelerated apoptosis) can occur. RECENT ADVANCES Usually, in peripheral blood, ROS/RNS production is balanced by the rate of oxidant elimination. Under this condition, platelets are in a nonadherent "resting" state. During endothelial dysfunction or under pathological conditions, ROS/RNS production increases and the platelets respond with specific biochemical and morphologic changes. Mitochondria are at the center of these processes, being able to both generate ROS/RNS, that drive redox-sensitive events, and respond to ROS/RNS-mediated changes of the cellular redox state. Irregular function of platelets and enhanced interaction with leukocytes and endothelial cells can contribute to pathogenesis of atherosclerotic and thrombotic events. CRITICAL ISSUES The relationship between oxidative stress, platelet death, and the activation-dependent pathways that drive platelet pro-coagulant activity is unclear and deserves to be explored. FUTURE DIRECTIONS Expanding knowledge about how platelets can mediate hemostasis and modulate inflammation may lead to novel and effective therapeutic strategies for the long and growing list of pathological conditions that involve both thrombosis and inflammation.
Collapse
Affiliation(s)
- Donatella Pietraforte
- 1 Department of Cell Biology and Neurosciences, Section of Cell Aging and Gender Medicine, Istituto Superiore di Sanità , Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Brasca MG, Nesi M, Avanzi N, Ballinari D, Bandiera T, Bertrand J, Bindi S, Canevari G, Carenzi D, Casero D, Ceriani L, Ciomei M, Cirla A, Colombo M, Cribioli S, Cristiani C, Della Vedova F, Fachin G, Fasolini M, Felder ER, Galvani A, Isacchi A, Mirizzi D, Motto I, Panzeri A, Pesenti E, Vianello P, Gnocchi P, Donati D. Pyrrole-3-carboxamides as potent and selective JAK2 inhibitors. Bioorg Med Chem 2014; 22:4998-5012. [PMID: 25009002 DOI: 10.1016/j.bmc.2014.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 01/05/2023]
Abstract
We report herein the discovery, structure guided design, synthesis and biological evaluation of a novel class of JAK2 inhibitors. Optimization of the series led to the identification of the potent and orally bioavailable JAK2 inhibitor 28 (NMS-P953). Compound 28 displayed significant tumour growth inhibition in SET-2 xenograft tumour model, with a mechanism of action confirmed in vivo by typical modulation of known biomarkers, and with a favourable pharmacokinetic and safety profile.
Collapse
Affiliation(s)
- Maria Gabriella Brasca
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy.
| | - Marcella Nesi
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Nilla Avanzi
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Dario Ballinari
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Tiziano Bandiera
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Jay Bertrand
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Simona Bindi
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Giulia Canevari
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Davide Carenzi
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Daniele Casero
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Lucio Ceriani
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Marina Ciomei
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Alessandra Cirla
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Maristella Colombo
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Sabrina Cribioli
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Cinzia Cristiani
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Franco Della Vedova
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Gabriele Fachin
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Marina Fasolini
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Eduard R Felder
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Arturo Galvani
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Antonella Isacchi
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Danilo Mirizzi
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Ilaria Motto
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Achille Panzeri
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Enrico Pesenti
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Paola Vianello
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Paola Gnocchi
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Daniele Donati
- Nerviano Medical Sciences S.r.l., Oncology, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| |
Collapse
|
46
|
Jin X, Zhao W, Kirabo A, Park SO, Ho WT, Sayeski PP, Zhao ZJ. Elevated levels of mast cells are involved in pruritus associated with polycythemia vera in JAK2V617F transgenic mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:477-84. [PMID: 24920845 DOI: 10.4049/jimmunol.1301946] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pruritus occurs frequently in patients with polycythemia vera (PV), and the pathophysiology of PV-associated pruritus is unclear. We have previously demonstrated that transgenic mice expressing JAK2V617F displayed clear PV-like phenotypes. In the current study, we found frequent occurrence of pruritus with aged JAK2V617F transgenic mice and further investigated the underlying mechanisms by studying mast cells, key players in allergic reactions and anaphylaxis. Massive accumulations of mast cells were observed in the skin of pruritic JAK2V617F transgenic mice. In vitro culture yielded much higher mast cell counts from the bone marrow, spleen, peripheral blood, and peritoneal cavity of JAK2V617F transgenic mice than from controls. Cultured mast cells from JAK2V617F transgenic mice exhibited enhanced proliferative signals, relative resistance to cell death upon growth factor deprivation, and a growth advantage over control cells under suboptimal growth conditions. However, these mast cells displayed normal morphology and contained normal levels of mast cell proteases before and after degranulation. Finally, the JAK2 inhibitor G6 effectively reduced mast cell numbers and alleviated pruritus in JAK2V617F transgenic mice. Collectively, these data demonstrate that mast cells are involved in PV-associated pruritogenesis and that JAK2 inhibitors are potential antipruritus drugs.
Collapse
Affiliation(s)
- Xi Jin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Wanke Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Annet Kirabo
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32611
| | - Sung O Park
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32611
| | - Wanting T Ho
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32611
| | - Zhizhuang J Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| |
Collapse
|
47
|
Shan Y, Gnanasambandan K, Ungureanu D, Kim ET, Hammarén H, Yamashita K, Silvennoinen O, Shaw DE, Hubbard SR. Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase. Nat Struct Mol Biol 2014; 21:579-84. [PMID: 24918548 DOI: 10.1038/nsmb.2849] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 06/04/2014] [Indexed: 12/31/2022]
Abstract
Janus kinase-2 (JAK2) mediates signaling by various cytokines, including erythropoietin and growth hormone. JAK2 possesses tandem pseudokinase and tyrosine-kinase domains. Mutations in the pseudokinase domain are causally linked to myeloproliferative neoplasms (MPNs) in humans. The structure of the JAK2 tandem kinase domains is unknown, and therefore the molecular bases for pseudokinase-mediated autoinhibition and pathogenic activation remain obscure. Using molecular dynamics simulations of protein-protein docking, we produced a structural model for the autoinhibitory interaction between the JAK2 pseudokinase and kinase domains. A striking feature of our model, which is supported by mutagenesis experiments, is that nearly all of the disease mutations map to the domain interface. The simulations indicate that the kinase domain is stabilized in an inactive state by the pseudokinase domain, and they offer a molecular rationale for the hyperactivity of V617F, the predominant JAK2 MPN mutation.
Collapse
Affiliation(s)
- Yibing Shan
- 1] D. E. Shaw Research, New York, New York, USA. [2]
| | - Kavitha Gnanasambandan
- 1] Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA. [2]
| | - Daniela Ungureanu
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Eric T Kim
- D. E. Shaw Research, New York, New York, USA
| | - Henrik Hammarén
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Kazuo Yamashita
- Systems Immunology Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Olli Silvennoinen
- School of Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - David E Shaw
- 1] D. E. Shaw Research, New York, New York, USA. [2] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| | - Stevan R Hubbard
- Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
48
|
Abstract
The Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathway is an active mediator of cytokine signaling in the pathogenesis of solid and hematologic malignancies. The seven-member STAT family is composed of latent cytoplasmic transcription factors that are activated by phosphorylation intertwined in a network with activation that ultimately leads to cell proliferation. An activated kinase enzyme phosphorylates one STAT factor or more, which shuttle to the nucleus to regulate gene expression, promoting cell survival. Somatic STAT3 mutations have been recently reported in large granular lymphocytic leukemia, aplastic anemia, and myelodysplastic syndrome. Furthermore, the relationship between BCL6 and STAT3 in diffuse large B-cell lymphomas, particularly on the activated B-cell subtype, needs to be further explored. The search for therapeutic STAT3 inhibitors that abrogate the JAK/STAT pathway is currently under way. Targeting the STAT pathway, which seems to be critical in tumorigenesis, is promising for multiple malignancies including lymphoma and leukemia. In this paper, we review mechanisms of action, failures, and successes of STAT3 inhibitors.
Collapse
Affiliation(s)
- Javier Munoz
- Hematology-Oncology, Banner, MD Anderson Cancer Center, Gilbert, Arizona, USA; Hematology-Oncology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Departments of Investigational Cancer Therapeutics (Phase I Clinical Trials Program) and Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
49
|
Lu WJ, Lin KC, Huang SY, Thomas PA, Wu YH, Wu HC, Lin KH, Sheu JR. Role of a Janus kinase 2-dependent signaling pathway in platelet activation. Thromb Res 2014; 133:1088-96. [PMID: 24731555 DOI: 10.1016/j.thromres.2014.03.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/12/2014] [Accepted: 03/26/2014] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Janus kinases (JAKs) are intracellular non-receptor tyrosine kinases that transduce cytokine-mediated signals through a pathway mediated by JAK and the signal transducer and activator of transcription (STAT) proteins. The JAK-STAT pathway is involved in immune response, inflammation, and tumorigenesis. Platelets are anuclear blood cells that play a central role in hemostasis. METHODS The aggregometry, immunoblotting, and platelet functional analysis used in this study. RESULTS We found that the JAK2 inhibitor AG490 (25 and 50μM) attenuated collagen-induced platelet aggregation and calcium mobilization in a concentration-dependent manner. In the presence of AG490, the phosphorylation of PLCγ2, protein kinase C (PKC), Akt or JNK in collagen-activated aggregation of human platelets was also inhibited. In addition, we found that various inhibitors, such as the PLCγ2 inhibitor U73122, the PKC inhibitor Ro318220, the phospoinositide 3-kinase inhibitor LY294002, the p38 mitogen-activated protein kinase inhibitor SB203580, the ERK inhibitor PD98059, and the JNK inhibitor SP600125, had no effects on collagen-induced JAK2 activity. However, U73122, Ro318220 and SP600125 significantly diminished collagen-induced STAT3 phosphorylation. These findings suggest that PLCγ2-PKC and JNK are involved in JAK2-STAT3 signaling in collagen-activated platelets. CONCLUSION Our results demonstrate that the JAK2-STAT3 pathway is involved in collagen-induced platelet activation through the activation of JAK2-JNK/PKC-STAT3 signaling. The inhibition of JAK2 may represent a potential therapeutic strategy for the preventing or treating thromboembolic disorders.
Collapse
Affiliation(s)
- Wan-Jung Lu
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Kao-Chang Lin
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Philip Aloysius Thomas
- Department of Microbiology, Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli, Tamil Nadu, India
| | - Yu-Hua Wu
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsu-Chu Wu
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Hung Lin
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences and Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
50
|
Grisouard J, Hao-Shen H, Dirnhofer S, Wagner KU, Skoda RC. Selective deletion of Jak2 in adult mouse hematopoietic cells leads to lethal anemia and thrombocytopenia. Haematologica 2014; 99:e52-4. [PMID: 24510341 DOI: 10.3324/haematol.2013.100016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|