1
|
Yin J, Lu Y, Liu Y, Shi Q, Shi M, Zhu Z, Fu D, Wang Z, Li C. SIGLEC11 promotes M2 macrophage polarization through AKT-mTOR signaling and facilitates the progression of gastric cancer. J Immunother Cancer 2025; 13:e010162. [PMID: 39755581 PMCID: PMC11748936 DOI: 10.1136/jitc-2024-010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2024] [Accepted: 11/21/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Sialic acid-binding immunoglobulin-like lectins (SIGLECs) are widely expressed on immune cell surfaces, play an important role in maintaining immune homeostasis and regulating inflammatory responses, and are increasingly emerging as potential targets for tumor immunotherapy. However, the expression profile and crucial role of SIGLEC11 in gastric cancer (GC) remain unclear. This study aimed to elucidate the prognostic relevance of SIGLEC11 expression and its role in the immune microenvironment in patients with GC. METHODS SIGLEC11 expression profile was analyzed using bioinformatics, immunohistochemistry, and immunofluorescence staining. Flow cytometry, mouse tumor models, patient-derived tumor organoid models, and RNA sequencing were used to explore the potential functions with the underlying mechanisms of SIGLEC11 in a coculture system of macrophages and GC cells. RESULTS We demonstrated that SIGLEC11 was predominantly expressed in normal tissues. However, tumor-infiltrating SIGLEC11+ cells in the high SIGLEC11 expression subgroups showed poor overall survival, which was associated with the expression of an immunosuppressive regulator. Our results showed that SIGLEC11 was predominantly expressed in monocytes and macrophages and selectively upregulated in tumor-associated macrophages. Furthermore, SIGLEC11 promoted macrophage M2 polarization via AKT-mTOR signaling. In addition, SIGLEC11+ macrophages accelerate GC progression. CONCLUSIONS The abundance of SIGLEC11+ M2-like macrophage-infiltrating tumors may serve as a biomarker for identifying immunosuppressive subtypes of GC. Thus, the potential role of SIGLEC11+ M2 macrophages as therapeutic targets warrants further investigation.
Collapse
Affiliation(s)
- Jingxin Yin
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Lu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihao Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qimeng Shi
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da Fu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenqiang Wang
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Li H, Zhang J, Li H, Zhang E, Kong W, Kong R, Zhao Y, Qu F, Tan W. Twisted Intramolecular Charge Transfer-Based Viscosity-Responsive Probe Reveals Lysosomal Degradation Process of Endocytosed Foreign Bodies. Anal Chem 2024. [PMID: 39155448 DOI: 10.1021/acs.analchem.4c02729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 08/20/2024]
Abstract
The optimization of nanomedicines requires a thorough understanding of nanocarrier attrition during lysosome-mediated biological processes. Real-time monitoring of endocytosis provides valuable insights into the lysosomal effects on nanocarriers and the release of nanodrugs. We report the development of a coresponsive probe that detects changes in the spatial viscosity of the intracellular domain caused by lysosomal degradation of foreign bodies. The probe, based on a benzofuro[2,3-d]pyrimidine structure, exhibits torsional intramolecular charge transfer (TICT) and responds to ambient viscosity changes with a sensitive fluorescence intensity. The antidiffused fluorescence transition of the probe in the spatially restricted domain serves as a key indicator for real-time monitoring. When encapsulated with diverse foreign bodies and emitted into macrophages by endocytosis, the probe forms nanoparticles. Lysosomes uptake these materials for intracellular digestion, causing alterations in the aggregation or depolymerization state of the nanoparticles, leading to viscosity changes manifested by the probe's fluorescence. By studying the spatial viscosity changes caused by lysosomal degradation of foreign bodies, our monitoring strategy contributes to understanding the digestion or escape capabilities of potential pharmaceutical-carrying nanocarriers, providing guidelines to design more effective nanocarriers that navigate lysosomal degradation to achieve precise drug payloads and release.
Collapse
Affiliation(s)
- He Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jingchen Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Huaijiang Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Ensheng Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Weiheng Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Rongmei Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yan Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Fengli Qu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
3
|
Cao L, Wang L. Biospecific Chemistry for Covalent Linking of Biomacromolecules. Chem Rev 2024; 124:8516-8549. [PMID: 38913432 PMCID: PMC11240265 DOI: 10.1021/acs.chemrev.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/26/2024]
Abstract
Interactions among biomacromolecules, predominantly noncovalent, underpin biological processes. However, recent advancements in biospecific chemistry have enabled the creation of specific covalent bonds between biomolecules, both in vitro and in vivo. This Review traces the evolution of biospecific chemistry in proteins, emphasizing the role of genetically encoded latent bioreactive amino acids. These amino acids react selectively with adjacent natural groups through proximity-enabled bioreactivity, enabling targeted covalent linkages. We explore various latent bioreactive amino acids designed to target different protein residues, ribonucleic acids, and carbohydrates. We then discuss how these novel covalent linkages can drive challenging protein properties and capture transient protein-protein and protein-RNA interactions in vivo. Additionally, we examine the application of covalent peptides as potential therapeutic agents and site-specific conjugates for native antibodies, highlighting their capacity to form stable linkages with target molecules. A significant focus is placed on proximity-enabled reactive therapeutics (PERx), a pioneering technology in covalent protein therapeutics. We detail its wide-ranging applications in immunotherapy, viral neutralization, and targeted radionuclide therapy. Finally, we present a perspective on the existing challenges within biospecific chemistry and discuss the potential avenues for future exploration and advancement in this rapidly evolving field.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
4
|
Cao Y, Yi W, Zhu Q. Glycosylation in the tumor immune response: the bitter side of sweetness. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1184-1198. [PMID: 38946426 PMCID: PMC11399423 DOI: 10.3724/abbs.2024107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Glycosylation is the most structurally diverse form of post-translational modification (PTM) of proteins that affects a myriad of cellular processes. As a pivotal regulator of protein homeostasis, glycosylation notably impacts the function of proteins, spanning from protein localization and stability to protein-protein interactions. Aberrant glycosylation is a hallmark of cancer, and extensive studies have revealed the multifaceted roles of glycosylation in tumor growth, migration, invasion and immune escape Over the past decade, glycosylation has emerged as an immune regulator in the tumor microenvironment (TME). Here, we summarize the intricate interplay between glycosylation and the immune system documented in recent literature, which orchestrates the regulation of the tumor immune response through endogenous lectins, immune checkpoints and the extracellular matrix (ECM) in the TME. In addition, we discuss the latest progress in glycan-based cancer immunotherapy. This review provides a basic understanding of glycosylation in the tumor immune response and a theoretical framework for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuting Cao
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Wen Yi
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Qiang Zhu
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
5
|
Kukan EN, Fabiano GL, Cobb BA. Siglecs as modulators of macrophage phenotype and function. Semin Immunol 2024; 73:101887. [PMID: 39357273 DOI: 10.1016/j.smim.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors expressed widely on cells of the hematopoietic system. Siglecs recognize terminal sialic acid residues on glycans and often initiate intracellular signaling upon ligation. Cells can express several Siglec family members concurrently with each showing differential specificities for sialic acid linkages to the underlying glycan as well as varied hydroxyl substitutions, allowing these receptors to fine tune downstream responses. Macrophages are among the many immune cells that express Siglec family members. Macrophages exhibit wide diversity in their phenotypes and functions, and this diversity is often mediated by signals from the local environment, including those from glycans. In this review, we detail the known expression of Siglecs in macrophages while focusing on their functional importance and potential clinical relevance.
Collapse
Affiliation(s)
- Emily N Kukan
- Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Gabrielle L Fabiano
- Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Brian A Cobb
- Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States.
| |
Collapse
|
6
|
Ayyalasomayajula R, Cudic M. Targeting Siglec-Sialylated MUC1 Immune Axis in Cancer. Cancers (Basel) 2024; 16:1334. [PMID: 38611013 PMCID: PMC11011055 DOI: 10.3390/cancers16071334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Siglecs play a key role in mediating cell-cell interactions via the recognition of different sialylated glycoconjugates, including tumor-associated MUC1, which can lead to the activation or inhibition of the immune response. The activation occurs through the signaling of Siglecs with the cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins, while the inhibition signal is a result of the interaction of intracellular immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing receptors. The interaction of tumor-associated MUC1 sialylated glycans with Siglecs via ITIM motifs decreases antitumor immunity. Consequently, these interactions are expected to play a key role in tumor evasion. Efforts to modulate the response of immune cells by blocking the immune-suppressive effects of inhibitory Siglecs, driving immune-activating Siglecs, and/or altering the synthesis and expression of the sialic acid glycocalyx are new therapeutic strategies deserving further investigation. We will highlight the role of Siglec's family receptors in immune evasion through interactions with glycan ligands in their natural context, presented on the protein such as MUC1, factors affecting their fine binding specificities, such as the role of multivalency either at the ligand or receptor side, their spatial organization, and finally the current and future therapeutic interventions targeting the Siglec-sialylated MUC1 immune axis in cancer.
Collapse
Affiliation(s)
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA;
| |
Collapse
|
7
|
Lee IM, Wu HY, Angata T, Wu SH. Bacterial pseudaminic acid binding to Siglec-10 induces a macrophage interleukin-10 response and suppresses phagocytosis. Chem Commun (Camb) 2024; 60:2930-2933. [PMID: 38372418 DOI: 10.1039/d4cc00077c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/20/2024]
Abstract
Pseudaminic acid (Pse) on pathogenic bacteria exopolysaccharide engages with the sialic acid-binding immunoglobulin-type lectin (Siglec)-10 receptor on macrophages via the critical 7-N-acetyl group. This binding stimulates macrophages to secrete interleukin 10 that suppresses phagocytosis against bacteria, but can be reverted by blocking Pse-Siglec-10 interaction with Pse-binding protein as a promising therapy.
Collapse
Affiliation(s)
- I-Ming Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70 Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Hsing-Yu Wu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, 11529, Taipei, Taiwan.
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, 11529, Taipei, Taiwan.
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, 11529, Taipei, Taiwan.
| |
Collapse
|
8
|
Wang Y, Xu Z, Wu KL, Yu L, Wang C, Ding H, Gao Y, Sun H, Wu YH, Xia M, Chen Y, Xiao H. Siglec-15/sialic acid axis as a central glyco-immune checkpoint in breast cancer bone metastasis. Proc Natl Acad Sci U S A 2024; 121:e2312929121. [PMID: 38252825 PMCID: PMC10835054 DOI: 10.1073/pnas.2312929121] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Immunotherapy is a promising approach for treating metastatic breast cancer (MBC), offering new possibilities for therapy. While checkpoint inhibitors have shown great progress in the treatment of metastatic breast cancer, their effectiveness in patients with bone metastases has been disappointing. This lack of efficacy seems to be specific to the bone environment, which exhibits immunosuppressive features. In this study, we elucidate the multiple roles of the sialic acid-binding Ig-like lectin (Siglec)-15/sialic acid glyco-immune checkpoint axis in the bone metastatic niche and explore potential therapeutic strategies targeting this glyco-immune checkpoint. Our research reveals that elevated levels of Siglec-15 in the bone metastatic niche can promote tumor-induced osteoclastogenesis as well as suppress antigen-specific T cell responses. Next, we demonstrate that antibody blockade of the Siglec-15/sialic acid glyco-immune checkpoint axis can act as a potential treatment for breast cancer bone metastasis. By targeting this pathway, we not only aim to treat bone metastasis but also inhibit the spread of metastatic cancer cells from bone lesions to other organs.
Collapse
Affiliation(s)
- Yixian Wang
- Department of Chemistry, Rice University, Houston, TX77005
| | - Zhan Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Kuan-Lin Wu
- Department of Chemistry, Rice University, Houston, TX77005
| | - Liqun Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Chenhang Wang
- Department of Chemistry, Rice University, Houston, TX77005
| | - Haoxue Ding
- Department of Chemistry, Rice University, Houston, TX77005
| | - Yang Gao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Han Sun
- Department of Chemistry, Rice University, Houston, TX77005
| | - Yi-Hsuan Wu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Meng Xia
- Department of Chemistry, Rice University, Houston, TX77005
| | - Yuda Chen
- Department of Chemistry, Rice University, Houston, TX77005
| | - Han Xiao
- Department of Chemistry, Rice University, Houston, TX77005
- Department of Biosciences, Rice University, Houston, TX77005
- Department of Bioengineering, Rice University, Houston, TX77005
| |
Collapse
|
9
|
Conti G, Bärenwaldt A, Rabbani S, Mühlethaler T, Sarcevic M, Jiang X, Schwardt O, Ricklin D, Pieters RJ, Läubli H, Ernst B. Tetra- and Hexavalent Siglec-8 Ligands Modulate Immune Cell Activation. Angew Chem Int Ed Engl 2023; 62:e202314280. [PMID: 37947772 DOI: 10.1002/anie.202314280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Carbohydrate-binding proteins are generally characterized by poor affinities for their natural glycan ligands, predominantly due to the shallow and solvent-exposed binding sites. To overcome this drawback, nature has exploited multivalency to strengthen the binding by establishing multiple interactions simultaneously. The development of oligovalent structures frequently proved to be successful, not only for proteins with multiple binding sites, but also for proteins that possess a single recognition domain. Herein we present the syntheses of a number of oligovalent ligands for Siglec-8, a monomeric I-type lectin found on eosinophils and mast cells, alongside the thermodynamic characterization of their binding. While the enthalpic contribution of each binding epitope was within a narrow range to that of the monomeric ligand, the entropy penalty increased steadily with growing valency. Additionally, we observed a successful agonistic binding of the tetra- and hexavalent and, to an even larger extent, multivalent ligands to Siglec-8 on immune cells and modulation of immune cell activation. Thus, triggering a biological effect is not restricted to multivalent ligands but could be induced by low oligovalent ligands as well, whereas a monovalent ligand, despite binding with similar affinity, showed an antagonistic effect.
Collapse
Affiliation(s)
- Gabriele Conti
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
- Chemical Biology and Drug Discovery Group, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Anne Bärenwaldt
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4051, Basel, Switzerland
- Division of Medical Oncology, University Hospital Basel, Petersgraben 4, 4051, Basel, Switzerland
| | - Said Rabbani
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Tobias Mühlethaler
- Biophysics Facility, Department Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Mirza Sarcevic
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4051, Basel, Switzerland
- Division of Medical Oncology, University Hospital Basel, Petersgraben 4, 4051, Basel, Switzerland
| | - Xiaohua Jiang
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Oliver Schwardt
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Daniel Ricklin
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Roland J Pieters
- Chemical Biology and Drug Discovery Group, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4051, Basel, Switzerland
- Division of Medical Oncology, University Hospital Basel, Petersgraben 4, 4051, Basel, Switzerland
| | - Beat Ernst
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
10
|
Frank M, Kuhfeldt E, Cramer J, Watzl C, Prescher H. Synthesis and Binding Mode Predictions of Novel Siglec-7 Ligands. J Med Chem 2023; 66:14315-14334. [PMID: 37793071 DOI: 10.1021/acs.jmedchem.3c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/06/2023]
Abstract
Siglec-7 regulates immune cell activity and is a promising target for immunomodulation. Here, we report the discovery of novel sialic acid derivatives binding to Siglec-7. Synthesis and affinity measurements are complemented by high-quality models of sialoside-Siglec-7 complexes based on molecular dynamics (MD) simulations on the microsecond time scale. We provide details for the predicted binding modes for the new ligands, e.g., that an extension of the carbon backbone leads to a different molecular interaction pattern with the receptor and the nearby water structure than found for known Siglec-7 ligands. Further on, we uncover some shortcomings of the GLYCAM06 and GAFF2 force fields when used for the simulation of sialoside-based glycomimetics. Our results open new opportunities for the rational design of Siglec-7 inhibitors. In addition, we provide strategies on how to use and visualize MD simulations to describe and investigate sialoside-Siglec complexes in general.
Collapse
Affiliation(s)
- Martin Frank
- Molecular Structure Analysis Core Facility-W160, German Cancer Research Center, 69120 Heidelberg, Germany
- Biognos AB, Generatorsgatan 1, 40274 Göteborg, Sweden
| | | | - Jonathan Cramer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Carsten Watzl
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
11
|
Zhang Q, Li S, Tong R, Zhu Y. Sialylation: An alternative to designing long-acting and targeted drug delivery system. Biomed Pharmacother 2023; 166:115353. [PMID: 37611437 DOI: 10.1016/j.biopha.2023.115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Long-acting and specific targeting are two important properties of excellent drug delivery systems. Currently, the long-acting strategies based on polyethylene glycol (PEG) are controversial, and PEGylation is incapable of simultaneously possessing targeting ability. Thus, it is crucial to identify and develop approaches to produce long-acting and targeted drug delivery systems. Sialic acid (SA) is an endogenous, negatively charged, nine-carbon monosaccharide. SA not only mediates immune escape in the body but also binds to numerous disease related targets. This suggests a potential strategy, namely "sialylation," for preparing long-acting and targeted drug delivery systems. This review focuses on the application status of SA-based long-acting and targeted agents as a reference for subsequent research.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Rongsheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
12
|
Ruiz-Ciancio D, Lin LH, Veeramani S, Barros MN, Sanchez D, Di Bartolo AL, Masone D, Giangrande PH, Mestre MB, Thiel WH. Selection of a novel cell-internalizing RNA aptamer specific for CD22 antigen in B cell acute lymphoblastic leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:698-712. [PMID: 37662970 PMCID: PMC10469072 DOI: 10.1016/j.omtn.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/28/2022] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
Despite improvements in B cell acute lymphoblastic leukemia (B-ALL) treatment, a significant number of patients experience relapse of the disease, resulting in poor prognosis and high mortality. One of the drawbacks of current B-ALL treatments is the high toxicity associated with the non-specificity of chemotherapeutic drugs. Targeted therapy is an appealing strategy to treat B-ALL to mitigate these toxic off-target effects. One such target is the B cell surface protein CD22. The restricted expression of CD22 on the B-cell lineage and its ligand-induced internalizing properties make it an attractive target in cases of B cell malignancies. To target B-ALL and the CD22 protein, we performed cell internalization SELEX (Systematic Evolution of Ligands by EXponential enrichment) followed by molecular docking to identify internalizing aptamers specific for B-ALL cells that bind the CD22 cell-surface receptor. We identified two RNA aptamers, B-ALL1 and B-ALL2, that target human malignant B cells, with B-ALL1 the first documented RNA aptamer interacting with the CD22 antigen. These B-ALL-specific aptamers represent an important first step toward developing novel targeted therapies for B cell malignancy treatments.
Collapse
Affiliation(s)
- Dario Ruiz-Ciancio
- Instituto de Ciencias Biomédicas (ICBM), Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia, San Juan 5400, Argentina
- National Council of Scientific and Technical Research (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Li-Hsien Lin
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
| | - Suresh Veeramani
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Maya N. Barros
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
| | - Diego Sanchez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza 5500, Argentina
| | - Ary Lautaro Di Bartolo
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza M5502JMA, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza M5502JMA, Argentina
| | - Paloma H. Giangrande
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
- VP Platform Discovery Sciences, Biology, Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | - María Belén Mestre
- Instituto de Ciencias Biomédicas (ICBM), Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia, San Juan 5400, Argentina
- National Council of Scientific and Technical Research (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - William H. Thiel
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
| |
Collapse
|
13
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
14
|
Bochner BS, O'Sullivan JA, Chang AT, Youngblood BA. Siglecs in allergy and asthma. Mol Aspects Med 2023; 90:101104. [PMID: 35835621 PMCID: PMC10757266 DOI: 10.1016/j.mam.2022.101104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 01/21/2023]
Abstract
The term "allergic diseases" encompasses several common, IgE-mediated conditions that range from being annoying to those that are life-threatening. Available treatments include active avoidance of the instigating allergen and the use of a variety of oral, inhaled, intranasal, intraocular and injected agents. While most individuals with allergies do well with existing therapies, there are still unmet therapeutic needs. Siglecs (sialic acid-binding, immunoglobulin-like lectins) are a family of single-pass transmembrane I-type lectins found on various subsets of cells, especially those of the immune system. All Siglecs have extracellular domains recognizing sialoside ligands, and most contain cytoplasmic domains with inhibitory signaling activity. This review focuses on Siglecs that likely play a role in regulating allergic and asthmatic responses, and how specific Siglecs, expressed on cells such as eosinophils and mast cells, are being targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Jeremy A O'Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
15
|
CD33 isoforms in microglia and Alzheimer's disease: Friend and foe. Mol Aspects Med 2023; 90:101111. [PMID: 35940942 DOI: 10.1016/j.mam.2022.101111] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease and is considered the main cause of dementia worldwide. Genome-wide association studies combined with integrated analysis of functional datasets support a critical role for microglia in AD pathogenesis, identifying them as important potential therapeutic targets. The ability of immunomodulatory receptors on microglia to control the response to pathogenic amyloid-β aggregates has gained significant interest. Siglec-3, also known as CD33, is one of these immunomodulatory receptors expressed on microglia that has been identified as an AD susceptibility factor. Here, we review recent advances made in understanding the multifaceted roles that CD33 plays in microglia with emphasis on two human-specific CD33 isoforms that differentially correlate with AD susceptibility. We also describe several different therapeutic approaches for targeting CD33 that have been advanced for the purpose of skewing microglial cell responses.
Collapse
|
16
|
Stanczak MA, Läubli H. Siglec receptors as new immune checkpoints in cancer. Mol Aspects Med 2023; 90:101112. [PMID: 35948467 DOI: 10.1016/j.mam.2022.101112] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy in the form of immune checkpoint inhibitors and cellular therapies has improved the treatment and prognosis of many patients. Nevertheless, most cancers are still resistant to currently approved cancer immunotherapies. New approaches and rational combinations are needed to overcome these resistances. There is emerging evidence that Siglec receptors could be regarded as new immune checkpoints and targets for cancer immunotherapy. In this review, we summarize the experimental evidence supporting Siglec receptors as new immune checkpoints in cancer and discuss their mechanisms of action, as well as current efforts to target Siglec receptors and their interactions with sialoglycan Siglec-ligands.
Collapse
Affiliation(s)
- Michal A Stanczak
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, 21287, USA
| | - Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Division of Oncology, University Hospital Basel, Switzerland.
| |
Collapse
|
17
|
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
18
|
Liu G, Hao M, Zeng B, Liu M, Wang J, Sun S, Liu C, Huilian C. Sialic acid and food allergies: The link between nutrition and immunology. Crit Rev Food Sci Nutr 2022; 64:3880-3906. [PMID: 36369942 DOI: 10.1080/10408398.2022.2136620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
Food allergies (FA), a major public health problem recognized by the World Health Organization, affect an estimated 3%-10% of adults and 8% of children worldwide. However, effective treatments for FA are still lacking. Recent advances in glycoimmunology have demonstrated the great potential of sialic acids (SAs) in the treatment of FA. SAs are a group of nine-carbon α-ketoacids usually linked to glycoproteins and glycolipids as terminal glycans. They play an essential role in modulating immune responses and may be an effective target for FA intervention. As exogenous food components, sialylated polysaccharides have anti-FA effects. In contrast, as endogenous components, SAs on immunoglobulin E and immune cell surfaces contribute to the pathogenesis of FA. Given the lack of comprehensive information on the effects of SAs on FA, we reviewed the roles of endogenous and exogenous SAs in the pathogenesis and treatment of FA. In addition, we considered the structure-function relationship of SAs to provide a theoretical basis for the development of SA-based FA treatments.
Collapse
Affiliation(s)
- Guirong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengzhen Hao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Binghui Zeng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Manman Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Junjuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shanfeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, California, United States of America
| | - Che Huilian
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Antillon K, Ross PA, Farrell MP. Directing CAR NK Cells via the Metabolic Incorporation of CAR Ligands into Malignant Cell Glycans. ACS Chem Biol 2022; 17:1505-1512. [PMID: 35648806 PMCID: PMC10061155 DOI: 10.1021/acschembio.2c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
The abundance of sialic acid-containing glycans in the glycocalyx of malignant cells enables immune evasion. Here, we leverage the biosynthetic pathways that permit pervasive sialylation to incorporate a chimeric antigen receptor (CAR) ligand into malignant cell glycans, and demonstrate that this increases the susceptibility of malignant cells to the cytolytic activity of CAR-expressing natural killer (NK) cells. Specifically, we applied a C-9-functionalized nonnatural sialic acid [i.e., fluorescein sialic acid (FL-SA)] to modify malignant cell glycans. We confirm the metabolic incorporation of FL-SA into plasma membrane-associated glycans. The preparation of anti-fluorescein CAR NK cells permitted studies demonstrating that treating malignant cells with FL-SA increased susceptibility to CAR NK cell-mediated cytolysis. Furthermore, we observed that the specificity of the anti-fluorescein CAR NK cells is enhanced for fluorescein-labeled cells, and an increased release of cytokines from the CAR NK cells upon incubation with FL-SA-treated cells. The results arising from this study demonstrate that CAR ligands can be metabolically incorporated into malignant cells, and we reason that such strategies could be leveraged to tackle the issue of antigen heterogeneity that limits the clinical efficacy of CAR T/NK cell therapies.
Collapse
Affiliation(s)
- Kathia Antillon
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Patrick A Ross
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Mark P Farrell
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
20
|
Forgione RE, Nieto FF, Di Carluccio C, Milanesi F, Fruscella M, Papi F, Nativi C, Molinaro A, Palladino P, Scarano S, Minunni M, Montefiori M, Civera M, Sattin S, Francesconi O, Marchetti R, Silipo A. Conformationally Constrained Sialyl Analogues as New Potential Binders of h-CD22. Chembiochem 2022; 23:e202200076. [PMID: 35313057 PMCID: PMC9315041 DOI: 10.1002/cbic.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Indexed: 11/21/2022]
Abstract
Here, two conformationally constrained sialyl analogues were synthesized and characterized in their interaction with the inhibitory Siglec, human CD22 (h-CD22). An orthogonal approach, including biophysical assays (SPR and fluorescence), ligand-based NMR techniques, and molecular modelling, was employed to disentangle the interaction mechanisms at a molecular level. The results showed that the Sialyl-TnThr antigen analogue represents a promising scaffold for the design of novel h-CD22 inhibitors. Our findings also suggest that the introduction of a biphenyl moiety at position 9 of the sialic acid hampers canonical accommodation of the ligand in the protein binding pocket, even though the affinity with respect to the natural ligand is increased. Our results address the search for novel modifications of the Neu5Ac-α(2-6)-Gal epitope, outline new insights for the design and synthesis of high-affinity h-CD22 ligands, and offer novel prospects for therapeutic intervention to prevent autoimmune diseases and B-cell malignancies.
Collapse
Affiliation(s)
- Rosa Ester Forgione
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 480126NapoliItaly
| | - Ferran Fabregat Nieto
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 480126NapoliItaly
| | - Cristina Di Carluccio
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 480126NapoliItaly
| | - Francesco Milanesi
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
- Centro Risonanze MagneticheCERMVia L. Sacconi 650019 Sesto FiorentinoFirenzeItaly
| | - Martina Fruscella
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
| | - Francesco Papi
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
| | - Antonio Molinaro
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 480126NapoliItaly
| | - Pasquale Palladino
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
| | - Simona Scarano
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
| | - Maria Minunni
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
| | - Marco Montefiori
- Dipartimento di ChimicaUniversità degli Studi di Milanovia C. Golgi, 1920133MilanoItaly
| | - Monica Civera
- Dipartimento di ChimicaUniversità degli Studi di Milanovia C. Golgi, 1920133MilanoItaly
| | - Sara Sattin
- Dipartimento di ChimicaUniversità degli Studi di Milanovia C. Golgi, 1920133MilanoItaly
| | - Oscar Francesconi
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
| | - Roberta Marchetti
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 480126NapoliItaly
| | - Alba Silipo
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 480126NapoliItaly
| |
Collapse
|
21
|
Xie Y, Li Y, Han S. Metabolic installation of macrophage-recruiting glycan ligand on tumor cell surface for in vivo tumor suppression. Bioorg Med Chem Lett 2022; 57:128500. [PMID: 34906672 DOI: 10.1016/j.bmcl.2021.128500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022]
Abstract
Synthetic probes that could direct immune cells against tumors are potential immunotherapeutics. We herein report in vivo tumor suppression via an intravenously injected abiotic sialic acid (TCCSia) that could be metabolically incorporated into tumor cell surface to yield of a high affinity ligand (TCCSiaα2,3-Gal) of Siglec-1 specifically expressed on macrophages. We observed marked suppression of pulmonary metastasis and subcutaneous tumor growth of B16F10 melanoma cells in mice with TCCSia, suggesting the utility of abiotic sialic acid to modulate tumor immunity via recruiting Siglec+ immune cells.
Collapse
Affiliation(s)
- Yunzhi Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361005, China
| | - Yibao Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, Jiangxi 341000, China.
| | - Shoufa Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
22
|
Molecular dynamics simulations, docking and MMGBSA studies of newly designed peptide-conjugated glucosyloxy stilbene derivatives with tumor cell receptors. Mol Divers 2022; 26:2717-2743. [PMID: 35037187 DOI: 10.1007/s11030-021-10354-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
In this work, for the first time, we designed derivatives of beta-D-glucosyloxy-3-hydroxy-trans-stiblene-2-carboxylic acid (GHS), by conjugating GHS with tumor targeting peptides RPARPAR and GGKRPAR to target over-expressed receptors in tumor cells. The sequences RPARPAR and GGKRPAR are known to target the neuropilin1 (NRP1) receptor due to the C-terminal Arg domain; however, their effectiveness has never been examined with other commonly over-expressed receptors in tumor cells, particularly of chronic lymphocytic leukemia that include integrin α1β1 and CD22. By conjugating these peptides with GHS, which is known for its inherent anti-cancer properties, the goal is to further enhance tumor cell targeting by developing compounds that can target multiple receptors. The physicochemical properties of the conjugates and individual peptides were analyzed using Turbomole and COSMOthermX20 in order to determine their hydrogen bond accepting and donating capabilities. The web server POCASA was used in order to determine the surface cavities and binding pockets of the three receptors. To explore the binding affinities, we conducted molecular docking studies with the peptides and the conjugates with each of the receptors. After molecular docking, the complexes were analyzed using Protein-Ligand Interaction Profiler to determine the types of interactions involved. Molecular dynamics simulation studies were conducted to explore the stability of the receptor-ligand complexes. Our results indicated that in most cases the conjugates showed higher binding and stability with the receptors. Additionally, highly stable complexes of conjugates were obtained with CD22, NRP1 and in most cases with the integrin α1β1 receptor as well. The binding energies were calculated for each of the receptor ligand complexes through trajectory analysis using MMGBSA studies. SwissADME studies revealed that the compounds showed low GI absorption and were not found to be CYP inhibitors and had bioavailability score that would allow them to be considered as potential drug candidates. Overall, our results for the first time show that the designed conjugates can target multiple over-expressed receptors in tumor cells and may be potentially developed as future therapeutics for targeting tumor cells.
Collapse
|
23
|
Singh RP, Niharika J, Kondepudi KK, Bishnoi M, Tingirikari JMR. Recent understanding of human milk oligosaccharides in establishing infant gut microbiome and roles in immune system. Food Res Int 2022; 151:110884. [PMID: 34980411 DOI: 10.1016/j.foodres.2021.110884] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Human milk oligosaccharides (HMOs) are complex sugars with distinctive structural diversity present in breast milk. HMOs have various functional roles to play in infant development starting from establishing the gut microbiome and immune system to take it up to the mature phase. It has been a major energy source for human gut microbes that confer positive benefits on infant health by directly interacting through intestinal cells and generating short-chain fatty acids. It has recently become evident that each species of Bifidobacterium and other genera which are resident of the infant gut employ distinct molecular mechanisms to capture and digest diverse structural HMOs to avoid competition among themselves and successfully maintain gut homeostasis. HMOs also directly modulate gut immune responses and can decoy receptors of pathogenic bacteria and viruses, inhibiting their binding on intestinal cells, thus preventing the emergence of a disease. This review provides a critical understanding of how different gut bacteria capture and utilize selective sugars from the HMO pool and how different structural HMOs protect infants from infectious diseases.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Laboratory of Gut Glycobiology, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India.
| | - Jayashree Niharika
- Laboratory of Gut Glycobiology, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Jagan Mohan Rao Tingirikari
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh 534101, India
| |
Collapse
|
24
|
Soares CO, Grosso AS, Ereño-Orbea J, Coelho H, Marcelo F. Molecular Recognition Insights of Sialic Acid Glycans by Distinct Receptors Unveiled by NMR and Molecular Modeling. Front Mol Biosci 2021; 8:727847. [PMID: 34869580 PMCID: PMC8634706 DOI: 10.3389/fmolb.2021.727847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
All cells are decorated with a highly dense and complex structure of glycan chains, which are mostly attached to proteins and lipids. In this context, sialic acids are a family of nine-carbon acidic monosaccharides typically found at the terminal position of glycan chains, modulating several physiological and pathological processes. Sialic acids have many structural and modulatory roles due to their negative charge and hydrophilicity. In addition, the recognition of sialic acid glycans by mammalian cell lectins, such as siglecs, has been described as an important immunological checkpoint. Furthermore, sialic acid glycans also play a pivotal role in host-pathogen interactions. Various pathogen receptors exposed on the surface of viruses and bacteria are responsible for the binding to sialic acid sugars located on the surface of host cells, becoming a critical point of contact in the infection process. Understanding the molecular mechanism of sialic acid glycans recognition by sialic acid-binding proteins, present on the surface of pathogens or human cells, is essential to realize the biological mechanism of these events and paves the way for the rational development of strategies to modulate sialic acid-protein interactions in diseases. In this perspective, nuclear magnetic resonance (NMR) spectroscopy, assisted with molecular modeling protocols, is a versatile and powerful technique to investigate the structural and dynamic aspects of glycoconjugates and their interactions in solution at the atomic level. NMR provides the corresponding ligand and protein epitopes, essential for designing and developing potential glycan-based therapies. In this review, we critically discuss the current state of knowledge about the structural features behind the molecular recognition of sialic acid glycans by different receptors, naturally present on human cells or pathogens, disclosed by NMR spectroscopy and molecular modeling protocols.
Collapse
Affiliation(s)
- Cátia Oliveira Soares
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,Department of Chemistry, UCIBIO-Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Ana Sofia Grosso
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,Department of Chemistry, UCIBIO-Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - June Ereño-Orbea
- CIC bioGUNE, Basque Research and Technology Alliance, Bizkaia Technology Park, Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Helena Coelho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,Department of Chemistry, UCIBIO-Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Filipa Marcelo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,Department of Chemistry, UCIBIO-Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
25
|
Choi H, Ho M, Adeniji OS, Giron L, Bordoloi D, Kulkarni AJ, Puchalt AP, Abdel-Mohsen M, Muthumani K. Development of Siglec-9 Blocking Antibody to Enhance Anti-Tumor Immunity. Front Oncol 2021; 11:778989. [PMID: 34869028 PMCID: PMC8640189 DOI: 10.3389/fonc.2021.778989] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Sialic acid-binding Immunoglobulin-like lectin-9 (Siglec-9) is a glyco-immune negative checkpoint expressed on several immune cells. Siglec-9 exerts its inhibitory effects by binding to sialoglycan ligands expressed on cancer cells, enabling them to evade immunosurveillance. We developed a panel of human anti-Siglec-9 hybridoma clones by immunizing mice with Siglec-9-encoding DNA and Siglec-9 protein. The lead antibodies, with high specificity and functionality against Siglec-9, were identified through screening of clones. The in vitro cytotoxicity assays showed that our lead antibody enhances anti-tumor immune activity. Further, in vivo testing utilizing ovarian cancer humanized mouse model showed a drastic reduction in tumor volume. Together, we developed novel antibodies that augment anti-tumor immunity through interference with Siglec-9-mediated immunosuppression.
Collapse
Affiliation(s)
- Hyeree Choi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Michelle Ho
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Opeyemi S Adeniji
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Leila Giron
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Devivasha Bordoloi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Abhijeet J Kulkarni
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | | | - Mohamed Abdel-Mohsen
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
26
|
Installation of high-affinity Siglec-1 ligand on tumor surface for macrophage-engaged tumor suppression. Bioorg Med Chem Lett 2021; 50:128328. [PMID: 34425200 DOI: 10.1016/j.bmcl.2021.128328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022]
Abstract
Siglecs that binds cell surface sialoglycans are a family of immunomodulatory receptors, of which, Siglec-7 expressed on natural killer (NK) cells promotes tumor immunoevation while the role of Siglec-1 expressed on macrophages on tumor development remains largely unexplored. Herein, we selectively introduced high affinity sialoside ligands of Siglec-1 and Siglec-7 to tumor cell surface via in vivo Strain-promoted Azide-Alkyne cyclization of TCCSiaα2,3-Lactose or FITCSiaα2,6-Lactose with 9-azido sialic acid (AzSia) metabolically installed on tumor cell surface. We found that TCCSiaα2,3-Lactose conjugated on tumor surface moderately inhibited tumor growth while FITCSiaα2,6-Lactose promote tumor growth. These results suggest high-affinity ligand of Siglec-1 dispalyed on tumors surface provide a new perspective for tumor immunotherapy.
Collapse
|
27
|
Increasing phagocytosis of microglia by targeting CD33 with liposomes displaying glycan ligands. J Control Release 2021; 338:680-693. [PMID: 34517042 DOI: 10.1016/j.jconrel.2021.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022]
Abstract
CD33 is an immunomodulatory receptor expressed by microglia and genetically linked to Alzheimer's disease (AD) susceptibility. While antibodies targeting CD33 have entered clinical trials to treat neurodegeneration, it is unknown whether the glycan-binding properties of CD33 can be exploited to modulate microglia. Here, we use liposomes that multivalently display glycan ligands of CD33 (CD33L liposomes) to engage CD33. We find that CD33L liposomes increase phagocytosis of cultured monocytic cells and microglia in a CD33-dependent manner. Enhanced phagocytosis strongly correlates with loss of CD33 from the cell surface and internalization of liposomes. Increased phagocytosis by treatment with CD33L liposomes is dependent on a key intracellular signaling motif on CD33 as well as the glycan-binding ability of CD33. These effects are specific to trans engagement of CD33 by CD33L liposomes, as cis engagement through insertion of lipid-linked CD33L into cells produces the opposite effect on phagocytosis. Moreover, intracerebroventricular injection of CD33L liposomes into transgenic mice expressing human CD33 in the microglial cell lineage enhances phagocytosis of microglia in a CD33-dependent manner. These results demonstrate that multivalent engagement of CD33 with glycan ligands can modulate microglial cell function.
Collapse
|
28
|
Abstract
A dense and diverse array of glycans on glycoproteins and glycolipids decorate all cell surfaces. In vertebrates, many of these carry sialic acid, in a variety of linkages and glycan contexts, as their outermost sugar moiety. Among their functions, glycans engage complementary glycan binding proteins (lectins) to regulate cell physiology. Among the glycan binding proteins are the Siglecs, sialic acid binding immunoglobulin-like lectins. In humans, there are 14 Siglecs, most of which are expressed on overlapping subsets of immune system cells. Each Siglec engages distinct, endogenous sialylated glycans that initiate signaling programs and regulate cellular responses. Here, we explore the emerging science of Siglec ligands, including endogenous sialoglycoproteins and glycolipids and synthetic sialomimetics. Knowledge in this field promises to reveal new molecular pathways controlling cell physiology and new opportunities for therapeutic intervention.
Collapse
|
29
|
Wang S, Chen C, Guan M, Liu D, Wan XF, Li L. Terminal Epitope-Dependent Branch Preference of Siglecs Toward N-Glycans. Front Mol Biosci 2021; 8:645999. [PMID: 33996901 PMCID: PMC8116747 DOI: 10.3389/fmolb.2021.645999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2020] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
Siglecs are sialic acid–binding immunoglobulin-like lectins that play vital roles in immune cell signaling. Siglecs help the immune system distinguish between self and nonself through the recognition of glycan ligands. While the primary binding specificities of Siglecs are known to be divergent, their specificities for complex glycans remain unclear. Herein, we determined N-glycan binding profiles of a set of Siglecs by using a complex asymmetric N-glycan microarray. Our results showed that Siglecs had unique terminal epitope-dependent branch preference when recognizing asymmetric N-glycans. Specifically, human Siglec-3, -9, and -10 prefer the α1-3 branch when Siaα2-6Galβ1-4GlcNAc terminal epitope serves as the binding ligand but prefer the opposite α1-6 branch when Siaα2-3Galβ1-4GlcNAc epitope serves as the ligand. Interestingly, Siglec-10 exhibited dramatic binding divergence toward a pair of Neu5Ac-containing asymmetric N-glycan isomers, as well as their Neu5Gc-containing counterparts. This new information on complex glycan recognition by Siglecs provides insights into their biological roles and applications.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Congcong Chen
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Minhui Guan
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States.,Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States.,Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Electrical Engineering and Computer Science, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
30
|
Büll C, Nason R, Sun L, Van Coillie J, Madriz Sørensen D, Moons SJ, Yang Z, Arbitman S, Fernandes SM, Furukawa S, McBride R, Nycholat CM, Adema GJ, Paulson JC, Schnaar RL, Boltje TJ, Clausen H, Narimatsu Y. Probing the binding specificities of human Siglecs by cell-based glycan arrays. Proc Natl Acad Sci U S A 2021; 118:e2026102118. [PMID: 33893239 PMCID: PMC8092401 DOI: 10.1073/pnas.2026102118] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
Siglecs are a family of sialic acid-binding receptors expressed by cells of the immune system and a few other cell types capable of modulating immune cell functions upon recognition of sialoglycan ligands. While human Siglecs primarily bind to sialic acid residues on diverse types of glycoproteins and glycolipids that constitute the sialome, their fine binding specificities for elaborated complex glycan structures and the contribution of the glycoconjugate and protein context for recognition of sialoglycans at the cell surface are not fully elucidated. Here, we generated a library of isogenic human HEK293 cells with combinatorial loss/gain of individual sialyltransferase genes and the introduction of sulfotransferases for display of the human sialome and to dissect Siglec interactions in the natural context of glycoconjugates at the cell surface. We found that Siglec-4/7/15 all have distinct binding preferences for sialylated GalNAc-type O-glycans but exhibit selectivity for patterns of O-glycans as presented on distinct protein sequences. We discovered that the sulfotransferase CHST1 drives sialoglycan binding of Siglec-3/8/7/15 and that sulfation can impact the preferences for binding to O-glycan patterns. In particular, the branched Neu5Acα2-3(6-O-sulfo)Galβ1-4GlcNAc (6'-Su-SLacNAc) epitope was discovered as the binding epitope for Siglec-3 (CD33) implicated in late-onset Alzheimer's disease. The cell-based display of the human sialome provides a versatile discovery platform that enables dissection of the genetic and biosynthetic basis for the Siglec glycan interactome and other sialic acid-binding proteins.
Collapse
Affiliation(s)
- Christian Büll
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rebecca Nason
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lingbo Sun
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Julie Van Coillie
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Daniel Madriz Sørensen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Sam J Moons
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Steven Arbitman
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Steve M Fernandes
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sanae Furukawa
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ryan McBride
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Corwin M Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Gosse J Adema
- Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Ronald L Schnaar
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
- GlycoDisplay ApS, Copenhagen, 2100 N, Denmark
| |
Collapse
|
31
|
Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
|
32
|
Yoshimura A, Asahina Y, Chang LY, Angata T, Tanaka H, Kitajima K, Sato C. Identification and functional characterization of a Siglec-7 counter-receptor on K562 cells. J Biol Chem 2021; 296:100477. [PMID: 33640457 PMCID: PMC8040268 DOI: 10.1016/j.jbc.2021.100477] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acid (Sia)-binding immunoglobulin-like lectin 7 (Siglec-7) is an inhibitory receptor primarily expressed on natural killer (NK) cells and monocytes. Siglec-7 is known to negatively regulate the innate immune system through Sia binding to distinguish self and nonself; however, a counter-receptor bearing its natural ligand remains largely unclear. Here, we identified a counter-receptor of Siglec-7 using K562 hematopoietic carcinoma cells presenting cell surface ligands for Siglec-7. We affinity-purified the ligands using Fc-ligated recombinant Siglec-7 and diSia-dextran polymer, a strong inhibitor for Siglec-7. We then confirmed the counter-receptor for Siglec-7 as leukosialin (CD43) through mass spectrometry, immunoprecipitation, and proximity labeling. Additionally, we demonstrated that the cytotoxicity of NK cells toward K562 cells was suppressed by overexpression of leukosialin in a Siglec-7-dependent manner. Taken together, our data suggest that leukosialin on K562 is a counter-receptor for Siglec-7 on NK cells and that a cluster of the Sia-containing glycan epitope on leukosialin is key as trans-ligand for unmasking the cis-ligand.
Collapse
Affiliation(s)
- Atsushi Yoshimura
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Yuki Asahina
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Lan-Yi Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan; Integrated Glyco-Biomedical Research Center (iGMed), Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan; Integrated Glyco-Biomedical Research Center (iGMed), Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan.
| |
Collapse
|
33
|
Shirakawa A, Manabe Y, Fukase K. Recent Advances in the Chemical Biology of N-Glycans. Molecules 2021; 26:molecules26041040. [PMID: 33669465 PMCID: PMC7920464 DOI: 10.3390/molecules26041040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
Asparagine-linked N-glycans on proteins have diverse structures, and their functions vary according to their structures. In recent years, it has become possible to obtain high quantities of N-glycans via isolation and chemical/enzymatic/chemoenzymatic synthesis. This has allowed for progress in the elucidation of N-glycan functions at the molecular level. Interaction analyses with lectins by glycan arrays or nuclear magnetic resonance (NMR) using various N-glycans have revealed the molecular basis for the recognition of complex structures of N-glycans. Preparation of proteins modified with homogeneous N-glycans revealed the influence of N-glycan modifications on protein functions. Furthermore, N-glycans have potential applications in drug development. This review discusses recent advances in the chemical biology of N-glycans.
Collapse
Affiliation(s)
- Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| |
Collapse
|
34
|
Abstract
The surfaces of all living organisms and most secreted proteins share a common feature: They are glycosylated. As the outermost-facing molecules, glycans participate in nearly all immunological processes, including driving host-pathogen interactions, immunological recognition and activation, and differentiation between self and nonself through a complex array of pathways and mechanisms. These fundamental immunologic roles are further cast into sharp relief in inflammatory, autoimmune, and cancer disease states in which immune regulation goes awry. Here, we review the broad impact of glycans on the immune system and discuss the changes and clinical opportunities associated with the onset of immunologic disease.
Collapse
Affiliation(s)
- Julie Y Zhou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-7288, USA;
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-7288, USA;
| |
Collapse
|
35
|
Damalanka VC, Maddirala AR, Janetka JW. Novel approaches to glycomimetic design: development of small molecular weight lectin antagonists. Expert Opin Drug Discov 2021; 16:513-536. [PMID: 33337918 DOI: 10.1080/17460441.2021.1857721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Introduction: The direct binding of carbohydrates or those presented on glycoproteins or glycolipids to proteins is the primary effector of many biological responses. One class of carbohydrate-binding proteins, lectins are important in all forms of life. Their functions in animals include regulating cell adhesion, glycoprotein synthesis, metabolism, and mediating immune system response while in bacteria and viruses a lectin-mediated carbohydrate-protein interaction between host cells and the pathogen initiates pathogenesis of the infection.Areas covered: In this review, the authors outline the structural and functional pathogenesis of lectins from bacteria, amoeba, and humans. Mimics of a carbohydrate are referred to as glycomimetics, which are much smaller in molecular weight and are devised to mimic the key binding interactions of the carbohydrate while also allowing additional contacts with the lectin. This article emphasizes the various approaches used over the past 10-15 years in the rational design of glycomimetic ligands.Expert opinion: Medicinal chemistry efforts enabled by X-ray structural biology have identified small-molecule glycomimetic lectin antagonists that have entered or are nearing clinical trials. A common theme in these strategies is the use of biaryl ring systems to emulate the carbohydrate interactions with the lectin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - Amarendar Reddy Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| |
Collapse
|
36
|
Delaveris CS, Chiu SH, Riley NM, Bertozzi CR. Modulation of immune cell reactivity with cis-binding Siglec agonists. Proc Natl Acad Sci U S A 2021; 118:e2012408118. [PMID: 33431669 PMCID: PMC7826350 DOI: 10.1073/pnas.2012408118] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
Inflammatory pathologies caused by phagocytes lead to numerous debilitating conditions, including chronic pain and blindness due to age-related macular degeneration. Many members of the sialic acid-binding immunoglobulin-like lectin (Siglec) family are immunoinhibitory receptors whose agonism is an attractive approach for antiinflammatory therapy. Here, we show that synthetic lipid-conjugated glycopolypeptides can insert into cell membranes and engage Siglec receptors in cis, leading to inhibitory signaling. Specifically, we construct a cis-binding agonist of Siglec-9 and show that it modulates mitogen-activated protein kinase (MAPK) signaling in reporter cell lines, immortalized macrophage and microglial cell lines, and primary human macrophages. Thus, these cis-binding agonists of Siglecs present a method for therapeutic suppression of immune cell reactivity.
Collapse
Affiliation(s)
- Corleone S Delaveris
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Shannon H Chiu
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305;
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| |
Collapse
|
37
|
Functions and therapeutic targets of Siglec-mediated infections, inflammations and cancers. J Formos Med Assoc 2021; 120:5-24. [DOI: 10.1016/j.jfma.2019.10.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
|
38
|
Current Status on Therapeutic Molecules Targeting Siglec Receptors. Cells 2020; 9:cells9122691. [PMID: 33333862 PMCID: PMC7765293 DOI: 10.3390/cells9122691] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
The sialic acid-binding immunoglobulin-type of lectins (Siglecs) are receptors that recognize sialic acid-containing glycans. In the majority of the cases, Siglecs are expressed on immune cells and play a critical role in regulating immune cell signaling. Over the years, it has been shown that the sialic acid-Siglec axis participates in immunological homeostasis, and that any imbalance can trigger different pathologies, such as autoimmune diseases or cancer. For all this, different therapeutics have been developed that bind to Siglecs, either based on antibodies or being smaller molecules. In this review, we briefly introduce the Siglec family and we compile a description of glycan-based molecules and antibody-based therapies (including CAR-T and bispecific antibodies) that have been designed to therapeutically targeting Siglecs.
Collapse
|
39
|
Abdu-Allah HHM, Wu SC, Lin CH, Tseng YY. Design, synthesis and molecular docking study of α-triazolylsialosides as non-hydrolyzable and potent CD22 ligands. Eur J Med Chem 2020; 208:112707. [PMID: 32942185 DOI: 10.1016/j.ejmech.2020.112707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
Ligand 1 was the first reported example of monomeric high-affinity synthetic CD22 ligand that regulated B cell activation in vitro, augmented antibody production and regulated immune responses in mice. Replacing O-glycoside linkage of 1 by nitrogen of triazole by click reaction afforded compounds which are as potent as the parent compound. The synthesis of the new compounds is straightforward with fewer synthetic steps and higher yield. Such a strategy provided stable ligand that can bind avidly and can be conjugated to drugs for B-cell targeting or multimeric formation. The new compounds were screened for their affinity to CD22, using surface plasmon resonance (SPR). Compound 12 was obtained as a bioisosteric analogue and an anomerically stable imitation of 1. It was, also, screened for MAG to test for selectivity and analyzed by molecular docking and dynamic simulation to explore the potential binding modes and source of selectivity within CD22. Our results could enable the development of small molecule drug capable of modulating the activity of CD22 in autoimmune diseases and malignancies derived from B-cells.
Collapse
Affiliation(s)
- Hajjaj H M Abdu-Allah
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.
| | - Shang-Chuen Wu
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Yao Tseng
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.
| |
Collapse
|
40
|
Gray MA, Stanczak MA, Mantuano NR, Xiao H, Pijnenborg JFA, Malaker SA, Miller CL, Weidenbacher PA, Tanzo JT, Ahn G, Woods EC, Läubli H, Bertozzi CR. Targeted glycan degradation potentiates the anticancer immune response in vivo. Nat Chem Biol 2020; 16:1376-1384. [PMID: 32807964 PMCID: PMC7727925 DOI: 10.1038/s41589-020-0622-x] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2019] [Accepted: 07/08/2020] [Indexed: 12/24/2022]
Abstract
Currently approved immune checkpoint inhibitor therapies targeting the PD-1 and CTLA-4 receptor pathways are powerful treatment options for certain cancers; however, most patients across cancer types still fail to respond. Consequently, there is interest in discovering and blocking alternative pathways that mediate immune suppression. One such mechanism is an upregulation of sialoglycans in malignancy, which has been recently shown to inhibit immune cell activation through multiple mechanisms and therefore represents a targetable glycoimmune checkpoint. Since these glycans are not canonically druggable, we designed an αHER2 antibody-sialidase conjugate that potently and selectively strips diverse sialoglycans from breast cancer cells. In syngeneic breast cancer models, desialylation enhanced immune cell infiltration and activation and prolonged the survival of mice, an effect that was dependent on expression of the Siglec-E checkpoint receptor found on tumor-infiltrating myeloid cells. Thus, antibody-sialidase conjugates represent a promising modality for glycoimmune checkpoint therapy.
Collapse
MESH Headings
- Allografts
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/metabolism
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- Cell Line, Tumor
- Humans
- Hydrolysis
- Immunoconjugates/chemistry
- Immunoconjugates/metabolism
- Immunoconjugates/pharmacology
- Immunotherapy/methods
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/mortality
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Molecular
- Molecular Targeted Therapy
- Neuraminidase/chemistry
- Neuraminidase/genetics
- Neuraminidase/immunology
- Polysaccharides/chemistry
- Polysaccharides/immunology
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Structure, Secondary
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Sialic Acid Binding Immunoglobulin-like Lectins/chemistry
- Sialic Acid Binding Immunoglobulin-like Lectins/genetics
- Sialic Acid Binding Immunoglobulin-like Lectins/immunology
- Survival Analysis
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Melissa A Gray
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Michal A Stanczak
- Cancer Immunology Laboratory, Department of Biomedicine, University Hospital, Basel, Switzerland
- Division of Oncology, Department of Internal Medicine, University Hospital, Basel, Switzerland
| | - Natália R Mantuano
- Cancer Immunology Laboratory, Department of Biomedicine, University Hospital, Basel, Switzerland
- Division of Oncology, Department of Internal Medicine, University Hospital, Basel, Switzerland
| | - Han Xiao
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Stacy A Malaker
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Caitlyn L Miller
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Julia T Tanzo
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Green Ahn
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Elliot C Woods
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Heinz Läubli
- Cancer Immunology Laboratory, Department of Biomedicine, University Hospital, Basel, Switzerland
- Division of Oncology, Department of Internal Medicine, University Hospital, Basel, Switzerland
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
41
|
Läubli H, Kawanishi K, George Vazhappilly C, Matar R, Merheb M, Sarwar Siddiqui S. Tools to study and target the Siglec-sialic acid axis in cancer. FEBS J 2020; 288:6206-6225. [PMID: 33251699 DOI: 10.1111/febs.15647] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
Siglecs are widely expressed on leucocytes and bind to ubiquitously presented glycans containing sialic acids (sialoglycans). Most Siglecs carry an immunoreceptor tyrosine-based inhibition motif (ITIM) and elicit an inhibitory intracellular signal upon ligand binding. A few Siglec receptors can, however, recruit immunoreceptor tyrosine-based activation motif (ITAM)-containing factors, which activate cells. The role of hypersialylation (the enhanced expression of sialoglycans) has recently been explored in cancer progression. Mechanistic studies have shown that hypersialylation on cancer cells can engage inhibitory Siglecs on the surface of immune cells and induce immunosuppression. These recent studies strongly suggest that the Siglec-sialic acid axis can act as a potential target for cancer immunotherapy. Moreover, the use of new tools and techniques is facilitating these studies. In this review, we summarise techniques used to study Siglecs, including different mouse models, monoclonal antibodies, Siglec fusion proteins, and sialoglycan arrays. Furthermore, we discuss the recent major developments in the study of Siglecs in cancer immunosuppression, tools, and techniques used in targeting the Siglec-sialic acid axis and the possibility of clinical intervention.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, and Medical Oncology, Department of Internal Medicine, University Hospital Basel, Switzerland
| | - Kunio Kawanishi
- Kidney and Vascular Pathology, University of Tsukuba, Ibaraki, Japan
| | | | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | | |
Collapse
|
42
|
Kroezen BS, Conti G, Girardi B, Cramer J, Jiang X, Rabbani S, Müller J, Kokot M, Luisoni E, Ricklin D, Schwardt O, Ernst B. A Potent Mimetic of the Siglec-8 Ligand 6'-Sulfo-Sialyl Lewis x. ChemMedChem 2020; 15:1706-1719. [PMID: 32744401 DOI: 10.1002/cmdc.202000417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Siglecs are members of the immunoglobulin gene family containing sialic acid binding N-terminal domains. Among them, Siglec-8 is expressed on various cell types of the immune system such as eosinophils, mast cells and weakly on basophils. Cross-linking of Siglec-8 with monoclonal antibodies triggers apoptosis in eosinophils and inhibits degranulation of mast cells, making Siglec-8 a promising target for the treatment of eosinophil- and mast cell-associated diseases such as asthma. The tetrasaccharide 6'-sulfo-sialyl Lewisx has been identified as a specific Siglec-8 ligand in glycan array screening. Here, we describe an extended study enlightening the pharmacophores of 6'-sulfo-sialyl Lewisx and the successful development of a high-affinity mimetic. Retaining the neuraminic acid core, the introduction of a carbocyclic mimetic of the Gal moiety and a sulfonamide substituent in the 9-position gave a 20-fold improved binding affinity. Finally, the residence time, which usually is the Achilles tendon of carbohydrate/lectin interactions, could be improved.
Collapse
Affiliation(s)
- Blijke S Kroezen
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Gabriele Conti
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Benedetta Girardi
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jonathan Cramer
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Xiaohua Jiang
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Said Rabbani
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jennifer Müller
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Maja Kokot
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Enrico Luisoni
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Daniel Ricklin
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Oliver Schwardt
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Beat Ernst
- Molecular Pharmacy Group Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
43
|
Movsisyan LD, Macauley MS. Structural advances of Siglecs: insight into synthetic glycan ligands for immunomodulation. Org Biomol Chem 2020; 18:5784-5797. [PMID: 32756649 DOI: 10.1039/d0ob01116a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are transmembrane proteins of the immunoglobulin (Ig) superfamily predominantly expressed on the cells of our immune system. Siglecs recognize sialic acid via their terminal V-set domain. In mammals, sialic acid-terminated glycolipids and glycoproteins are the ligands of Siglecs, and the monomeric affinity of Siglecs for their sialic acid-containing ligands is weak. Significant efforts have been devoted toward the development of chemically modified sialoside ligands to target Siglecs with higher affinity and selectivity. In this review we discuss natural and synthetic sialoside ligands for each human Siglec, emphasizing the ligand binding determinants uncovered from recent advances in protein structural information. Potential therapeutic applications of these ligands are also discussed.
Collapse
Affiliation(s)
- Levon D Movsisyan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
44
|
O'Sullivan JA, Chang AT, Youngblood BA, Bochner BS. Eosinophil and mast cell Siglecs: From biology to drug target. J Leukoc Biol 2020; 108:73-81. [PMID: 31965606 PMCID: PMC7531194 DOI: 10.1002/jlb.2mr0120-352rr] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/26/2022] Open
Abstract
Mast cells and eosinophils are innate immune cells involved in both acute and chronic inflammatory responses. Siglecs are a family of cell surface receptors that share sialic acid binding activity. Over the past 20 years, our knowledge of the expression and function of Siglecs on cells of the immune system and others has greatly expanded, as has our understanding of their signaling, ligands, and possible roles in disease pathophysiology. Because of this, Siglecs have garnered interest as potential drug targets using strategies ranging from biologics to ligand-directed nanoparticles. This mini-review will highlight the state of our knowledge regarding human eosinophil and mast cell Siglecs, their biology, what they recognize, tools developed for in vitro and preclinical experimentation, and the status of ongoing efforts to develop drugs that engage eosinophil and mast cell Siglecs for potential therapeutic benefit.
Collapse
Affiliation(s)
- Jeremy A O'Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
45
|
Unveiling Molecular Recognition of Sialoglycans by Human Siglec-10. iScience 2020; 23:101231. [PMID: 32629603 PMCID: PMC7306591 DOI: 10.1016/j.isci.2020.101231] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Siglec-10 is an inhibitory I-type lectin selectively recognizing sialoglycans exposed on cell surfaces, involved in several patho-physiological processes. The key role Siglec-10 plays in the regulation of immune cell functions has made it a potential target for the development of immunotherapeutics against a broad range of diseases. However, the crystal structure of the protein has not been resolved for the time being and the atomic description of Siglec-10 interactions with complex glycans has not been previously unraveled. We present here the first insights of the molecular mechanisms regulating the interaction between Siglec-10 and naturally occurring sialoglycans. We used combined spectroscopic, computational and biophysical approaches to dissect glycans' epitope mapping and conformation upon binding in order to afford a description of the 3D complexes. Our outcomes provide a structural perspective for the rational design and development of high-affinity ligands to control the receptor functionality. We unveiled the molecular basis of sialoglycans recognition by Siglec-10 The conformation of sialoglycans drives the interaction with the protein Siglec-10 is able to recognize and bind complex N-glycans Our outcomes may open the venue for the design and development of novel glycomimetics
Collapse
|
46
|
Läubli H, Varki A. Sialic acid-binding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses. Cell Mol Life Sci 2020; 77:593-605. [PMID: 31485715 PMCID: PMC7942692 DOI: 10.1007/s00018-019-03288-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2019] [Revised: 08/11/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
The mammalian immune system evolved to tightly regulate the elimination of pathogenic microbes and neoplastic transformed cells while tolerating our own healthy cells. Here, we summarize experimental evidence for the role of Siglecs-in particular CD33-related Siglecs-as self-receptors and their sialoglycan ligands in regulating this balance between recognition of self and non-self. Sialoglycans are found in the glycocalyx and extracellular fluids and matrices of all mammalian cells and can be considered as self-associated molecular patterns (SAMPs). We also provide an overview of the known interactions of Siglec receptors and sialoglycan-SAMPs. Manipulation of the Siglec-SAMP axis offers new therapeutic opportunities for the treatment of inflammatory conditions, autoimmune diseases and also cancer immunotherapy.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Ajit Varki
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093-0687, USA.
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093-0687, USA.
| |
Collapse
|
47
|
Abstract
Sialic acids are important molecule with high structural diversity. They are known to occur in higher animals such as Echinoderms, Hemichordata, Cephalochorda, and Vertebrata and also in other animals such as Platyhelminthes, Cephalopoda, and Crustaceae. Plants are known to lack sialic acid. But they are reported to occur in viruses, bacteria, protozoa, and fungi. Deaminated neuraminic acid although occurs in vertebrates and bacteria, is reported to occur in abundance in the lower vertebrates. Sialic acids are mostly located in terminal ends of glycoproteins and glycolipids, capsular and tissue polysialic acids, bacterial lipooligosaccharides/polysaccharides, and in different forms that dictate their role in biology. Sialic acid play important roles in human physiology of cell-cell interaction, communication, cell-cell signaling, carbohydrate-protein interactions, cellular aggregation, development processes, immune reactions, reproduction, and in neurobiology and human diseases in enabling the infection process by bacteria and virus, tumor growth and metastasis, microbiome biology, and pathology. It enables molecular mimicry in pathogens that allows them to escape host immune responses. Recently sialic acid has found role in therapeutics. In this chapter we have highlighted the (i) diversity of sialic acid, (ii) their occurrence in the diverse life forms, (iii) sialylation and disease, and (iv) sialic acid and therapeutics.
Collapse
|
48
|
Chang LY, Low PY, Sridharan D, Gerlovin K, Angata T. Preparation of Recombinant Siglecs and Identification of Their Ligands. Methods Mol Biol 2020; 2132:85-98. [PMID: 32306317 DOI: 10.1007/978-1-0716-0430-4_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Siglecs are transmembrane receptor-like vertebrate lectins that recognize glycans containing sialic acid. Most Siglecs also interact with intracellular signal transduction molecules, and modulate immune responses. Recombinant soluble Siglecs fused with the fragment crystallizable (Fc) region of immunoglobulin G (Siglec-Fc) are a versatile tool for the investigation of Siglec functions. We describe protocols for the production of recombinant Siglec-Fc, the analysis of expression of Siglec ligands by flow cytometry, and the identification of the Siglec ligand candidates based on proximity labeling.
Collapse
Affiliation(s)
- Lan-Yi Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Penk Yeir Low
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Deepa Sridharan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kaia Gerlovin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
49
|
Denham EM, Barton MI, Black SM, Bridge MJ, de Wet B, Paterson RL, van der Merwe PA, Goyette J. A generic cell surface ligand system for studying cell-cell recognition. PLoS Biol 2019; 17:e3000549. [PMID: 31815943 PMCID: PMC6922461 DOI: 10.1371/journal.pbio.3000549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2019] [Revised: 12/19/2019] [Accepted: 11/12/2019] [Indexed: 01/11/2023] Open
Abstract
Dose-response experiments are a mainstay of receptor biology studies and can reveal valuable insights into receptor function. Such studies of receptors that bind cell surface ligands are currently limited by the difficulty in manipulating the surface density of ligands at a cell–cell interface. Here, we describe a generic cell surface ligand system that allows precise manipulation of cell surface ligand densities over several orders of magnitude. These densities are robustly quantifiable, a major advance over previous studies. We validate the system for a range of immunoreceptors, including the T-cell receptor (TCR), and show that this generic ligand stimulates via the TCR at a similar surface density as its native ligand. We also extend our work to the activation of chimeric antigen receptors. This novel system allows the effect of varying the surface density, valency, dimensions, and affinity of the ligand to be investigated. It can be readily broadened to other receptor–cell surface ligand interactions and will facilitate investigation into the activation of, and signal integration between, cell surface receptors. This study describes a generic cell-surface ligand system that allows precise manipulation of ligand densities, valency, dimensions, and affinity. The system is validated for a range of immunoreceptors, including the T-cell receptor, and can be readily broadened to other cell-surface receptor-ligand interactions.
Collapse
Affiliation(s)
- Eleanor M. Denham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Michael I. Barton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Susannah M. Black
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Marcus J. Bridge
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Ben de Wet
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Rachel L. Paterson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - P. Anton van der Merwe
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
- * E-mail: (JG); (PAvdM)
| | - Jesse Goyette
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (JG); (PAvdM)
| |
Collapse
|
50
|
Bhattacherjee A, Rodrigues E, Jung J, Luzentales-Simpson M, Enterina JR, Galleguillos D, St. Laurent CD, Nakhaei-Nejad M, Fuchsberger FF, Streith L, Wang Q, Kawasaki N, Duan S, Bains A, Paulson JC, Rademacher C, Giuliani F, Sipione S, Macauley MS. Repression of phagocytosis by human CD33 is not conserved with mouse CD33. Commun Biol 2019; 2:450. [PMID: 31815204 PMCID: PMC6890642 DOI: 10.1038/s42003-019-0698-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023] Open
Abstract
CD33 is an immunomodulatory receptor linked to Alzheimer's disease (AD) susceptibility via regulation of phagocytosis in microglia. Divergent features between human CD33 (hCD33) and murine CD33 (mCD33) include a unique transmembrane lysine in mCD33 and cytoplasmic tyrosine in hCD33. The functional consequences of these differences in restraining phagocytosis remains poorly understood. Using a new αmCD33 monoclonal antibody, we show that mCD33 is expressed at high levels on neutrophils and low levels on microglia. Notably, cell surface expression of mCD33 is entirely dependent on Dap12 due to an interaction with the transmembrane lysine in mCD33. In RAW264.7 cultured macrophages, BV-2 cultured microglia, primary neonatal and adult microglia, uptake of cargo - including aggregated Aβ1-42 - is not altered upon genetic ablation of mCD33. Alternatively, deletion of hCD33 in monocytic cell lines increased cargo uptake. Moreover, transgenic mice expressing hCD33 in the microglial cell lineage showed repressed cargo uptake in primary microglia. Therefore, mCD33 and hCD33 have divergent roles in regulating phagocytosis, highlighting the importance of studying hCD33 in AD susceptibility.
Collapse
Affiliation(s)
| | - Emily Rodrigues
- Department of Chemistry, University of Alberta, Alberta, Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Alberta, Canada
| | | | - Jhon R. Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| | | | | | | | - Felix F. Fuchsberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Laura Streith
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| | - Qian Wang
- Department of Pharmacology, University of Alberta, Alberta, Canada
| | - Norihito Kawasaki
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Shiteng Duan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Arjun Bains
- Department of Chemistry, University of Alberta, Alberta, Canada
| | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | | | - Matthew S. Macauley
- Department of Chemistry, University of Alberta, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| |
Collapse
|